mm: bdi: allow setting a minimum for the bdi dirty limit
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 akpm@zip.com.au
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
1da177e4
LT
37
38/*
39 * The maximum number of pages to writeout in a single bdflush/kupdate
1c0eeaf5 40 * operation. We do this so we don't hold I_SYNC against an inode for
1da177e4
LT
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
44 */
45#define MAX_WRITEBACK_PAGES 1024
46
47/*
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
50 */
51static long ratelimit_pages = 32;
52
1da177e4
LT
53/*
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
58 */
59static inline long sync_writeback_pages(void)
60{
61 return ratelimit_pages + ratelimit_pages / 2;
62}
63
64/* The following parameters are exported via /proc/sys/vm */
65
66/*
67 * Start background writeback (via pdflush) at this percentage
68 */
07db59bd 69int dirty_background_ratio = 5;
1da177e4 70
195cf453
BG
71/*
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 */
75int vm_highmem_is_dirtyable;
76
1da177e4
LT
77/*
78 * The generator of dirty data starts writeback at this percentage
79 */
07db59bd 80int vm_dirty_ratio = 10;
1da177e4
LT
81
82/*
fd5403c7 83 * The interval between `kupdate'-style writebacks, in jiffies
1da177e4 84 */
f6ef9438 85int dirty_writeback_interval = 5 * HZ;
1da177e4
LT
86
87/*
fd5403c7 88 * The longest number of jiffies for which data is allowed to remain dirty
1da177e4 89 */
f6ef9438 90int dirty_expire_interval = 30 * HZ;
1da177e4
LT
91
92/*
93 * Flag that makes the machine dump writes/reads and block dirtyings.
94 */
95int block_dump;
96
97/*
ed5b43f1
BS
98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
100 */
101int laptop_mode;
102
103EXPORT_SYMBOL(laptop_mode);
104
105/* End of sysctl-exported parameters */
106
107
108static void background_writeout(unsigned long _min_pages);
109
04fbfdc1
PZ
110/*
111 * Scale the writeback cache size proportional to the relative writeout speeds.
112 *
113 * We do this by keeping a floating proportion between BDIs, based on page
114 * writeback completions [end_page_writeback()]. Those devices that write out
115 * pages fastest will get the larger share, while the slower will get a smaller
116 * share.
117 *
118 * We use page writeout completions because we are interested in getting rid of
119 * dirty pages. Having them written out is the primary goal.
120 *
121 * We introduce a concept of time, a period over which we measure these events,
122 * because demand can/will vary over time. The length of this period itself is
123 * measured in page writeback completions.
124 *
125 */
126static struct prop_descriptor vm_completions;
3e26c149 127static struct prop_descriptor vm_dirties;
04fbfdc1
PZ
128
129static unsigned long determine_dirtyable_memory(void);
130
131/*
132 * couple the period to the dirty_ratio:
133 *
134 * period/2 ~ roundup_pow_of_two(dirty limit)
135 */
136static int calc_period_shift(void)
137{
138 unsigned long dirty_total;
139
140 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
141 return 2 + ilog2(dirty_total - 1);
142}
143
144/*
145 * update the period when the dirty ratio changes.
146 */
147int dirty_ratio_handler(struct ctl_table *table, int write,
148 struct file *filp, void __user *buffer, size_t *lenp,
149 loff_t *ppos)
150{
151 int old_ratio = vm_dirty_ratio;
152 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
153 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
154 int shift = calc_period_shift();
155 prop_change_shift(&vm_completions, shift);
3e26c149 156 prop_change_shift(&vm_dirties, shift);
04fbfdc1
PZ
157 }
158 return ret;
159}
160
161/*
162 * Increment the BDI's writeout completion count and the global writeout
163 * completion count. Called from test_clear_page_writeback().
164 */
165static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
166{
167 __prop_inc_percpu(&vm_completions, &bdi->completions);
168}
169
3e26c149
PZ
170static inline void task_dirty_inc(struct task_struct *tsk)
171{
172 prop_inc_single(&vm_dirties, &tsk->dirties);
173}
174
04fbfdc1
PZ
175/*
176 * Obtain an accurate fraction of the BDI's portion.
177 */
178static void bdi_writeout_fraction(struct backing_dev_info *bdi,
179 long *numerator, long *denominator)
180{
181 if (bdi_cap_writeback_dirty(bdi)) {
182 prop_fraction_percpu(&vm_completions, &bdi->completions,
183 numerator, denominator);
184 } else {
185 *numerator = 0;
186 *denominator = 1;
187 }
188}
189
190/*
191 * Clip the earned share of dirty pages to that which is actually available.
192 * This avoids exceeding the total dirty_limit when the floating averages
193 * fluctuate too quickly.
194 */
195static void
196clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
197{
198 long avail_dirty;
199
200 avail_dirty = dirty -
201 (global_page_state(NR_FILE_DIRTY) +
202 global_page_state(NR_WRITEBACK) +
203 global_page_state(NR_UNSTABLE_NFS));
204
205 if (avail_dirty < 0)
206 avail_dirty = 0;
207
208 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
209 bdi_stat(bdi, BDI_WRITEBACK);
210
211 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
212}
213
3e26c149
PZ
214static inline void task_dirties_fraction(struct task_struct *tsk,
215 long *numerator, long *denominator)
216{
217 prop_fraction_single(&vm_dirties, &tsk->dirties,
218 numerator, denominator);
219}
220
221/*
222 * scale the dirty limit
223 *
224 * task specific dirty limit:
225 *
226 * dirty -= (dirty/8) * p_{t}
227 */
f61eaf9f 228static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
3e26c149
PZ
229{
230 long numerator, denominator;
231 long dirty = *pdirty;
232 u64 inv = dirty >> 3;
233
234 task_dirties_fraction(tsk, &numerator, &denominator);
235 inv *= numerator;
236 do_div(inv, denominator);
237
238 dirty -= inv;
239 if (dirty < *pdirty/2)
240 dirty = *pdirty/2;
241
242 *pdirty = dirty;
243}
244
189d3c4a
PZ
245/*
246 *
247 */
248static DEFINE_SPINLOCK(bdi_lock);
249static unsigned int bdi_min_ratio;
250
251int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
252{
253 int ret = 0;
254 unsigned long flags;
255
256 spin_lock_irqsave(&bdi_lock, flags);
257 min_ratio -= bdi->min_ratio;
258 if (bdi_min_ratio + min_ratio < 100) {
259 bdi_min_ratio += min_ratio;
260 bdi->min_ratio += min_ratio;
261 } else
262 ret = -EINVAL;
263 spin_unlock_irqrestore(&bdi_lock, flags);
264
265 return ret;
266}
267
1da177e4
LT
268/*
269 * Work out the current dirty-memory clamping and background writeout
270 * thresholds.
271 *
272 * The main aim here is to lower them aggressively if there is a lot of mapped
273 * memory around. To avoid stressing page reclaim with lots of unreclaimable
274 * pages. It is better to clamp down on writers than to start swapping, and
275 * performing lots of scanning.
276 *
277 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
278 *
279 * We don't permit the clamping level to fall below 5% - that is getting rather
280 * excessive.
281 *
282 * We make sure that the background writeout level is below the adjusted
283 * clamping level.
284 */
1b424464
CL
285
286static unsigned long highmem_dirtyable_memory(unsigned long total)
287{
288#ifdef CONFIG_HIGHMEM
289 int node;
290 unsigned long x = 0;
291
37b07e41 292 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
293 struct zone *z =
294 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
295
296 x += zone_page_state(z, NR_FREE_PAGES)
297 + zone_page_state(z, NR_INACTIVE)
298 + zone_page_state(z, NR_ACTIVE);
299 }
300 /*
301 * Make sure that the number of highmem pages is never larger
302 * than the number of the total dirtyable memory. This can only
303 * occur in very strange VM situations but we want to make sure
304 * that this does not occur.
305 */
306 return min(x, total);
307#else
308 return 0;
309#endif
310}
311
312static unsigned long determine_dirtyable_memory(void)
313{
314 unsigned long x;
315
316 x = global_page_state(NR_FREE_PAGES)
317 + global_page_state(NR_INACTIVE)
318 + global_page_state(NR_ACTIVE);
195cf453
BG
319
320 if (!vm_highmem_is_dirtyable)
321 x -= highmem_dirtyable_memory(x);
322
1b424464
CL
323 return x + 1; /* Ensure that we never return 0 */
324}
325
cf0ca9fe 326void
04fbfdc1
PZ
327get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
328 struct backing_dev_info *bdi)
1da177e4
LT
329{
330 int background_ratio; /* Percentages */
331 int dirty_ratio;
1da177e4
LT
332 long background;
333 long dirty;
1b424464 334 unsigned long available_memory = determine_dirtyable_memory();
1da177e4
LT
335 struct task_struct *tsk;
336
1da177e4 337 dirty_ratio = vm_dirty_ratio;
1da177e4
LT
338 if (dirty_ratio < 5)
339 dirty_ratio = 5;
340
341 background_ratio = dirty_background_ratio;
342 if (background_ratio >= dirty_ratio)
343 background_ratio = dirty_ratio / 2;
344
345 background = (background_ratio * available_memory) / 100;
346 dirty = (dirty_ratio * available_memory) / 100;
347 tsk = current;
348 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
349 background += background / 4;
350 dirty += dirty / 4;
351 }
352 *pbackground = background;
353 *pdirty = dirty;
04fbfdc1
PZ
354
355 if (bdi) {
189d3c4a 356 u64 bdi_dirty;
04fbfdc1
PZ
357 long numerator, denominator;
358
359 /*
360 * Calculate this BDI's share of the dirty ratio.
361 */
362 bdi_writeout_fraction(bdi, &numerator, &denominator);
363
189d3c4a 364 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
04fbfdc1
PZ
365 bdi_dirty *= numerator;
366 do_div(bdi_dirty, denominator);
189d3c4a 367 bdi_dirty += (dirty * bdi->min_ratio) / 100;
04fbfdc1
PZ
368
369 *pbdi_dirty = bdi_dirty;
370 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
3e26c149 371 task_dirty_limit(current, pbdi_dirty);
04fbfdc1 372 }
1da177e4
LT
373}
374
375/*
376 * balance_dirty_pages() must be called by processes which are generating dirty
377 * data. It looks at the number of dirty pages in the machine and will force
378 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
379 * If we're over `background_thresh' then pdflush is woken to perform some
380 * writeout.
381 */
382static void balance_dirty_pages(struct address_space *mapping)
383{
5fce25a9
PZ
384 long nr_reclaimable, bdi_nr_reclaimable;
385 long nr_writeback, bdi_nr_writeback;
1da177e4
LT
386 long background_thresh;
387 long dirty_thresh;
04fbfdc1 388 long bdi_thresh;
1da177e4
LT
389 unsigned long pages_written = 0;
390 unsigned long write_chunk = sync_writeback_pages();
391
392 struct backing_dev_info *bdi = mapping->backing_dev_info;
393
394 for (;;) {
395 struct writeback_control wbc = {
396 .bdi = bdi,
397 .sync_mode = WB_SYNC_NONE,
398 .older_than_this = NULL,
399 .nr_to_write = write_chunk,
111ebb6e 400 .range_cyclic = 1,
1da177e4
LT
401 };
402
04fbfdc1
PZ
403 get_dirty_limits(&background_thresh, &dirty_thresh,
404 &bdi_thresh, bdi);
5fce25a9
PZ
405
406 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
407 global_page_state(NR_UNSTABLE_NFS);
408 nr_writeback = global_page_state(NR_WRITEBACK);
409
04fbfdc1
PZ
410 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
411 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
5fce25a9 412
04fbfdc1
PZ
413 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
414 break;
1da177e4 415
5fce25a9
PZ
416 /*
417 * Throttle it only when the background writeback cannot
418 * catch-up. This avoids (excessively) small writeouts
419 * when the bdi limits are ramping up.
420 */
421 if (nr_reclaimable + nr_writeback <
422 (background_thresh + dirty_thresh) / 2)
423 break;
424
04fbfdc1
PZ
425 if (!bdi->dirty_exceeded)
426 bdi->dirty_exceeded = 1;
1da177e4
LT
427
428 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
429 * Unstable writes are a feature of certain networked
430 * filesystems (i.e. NFS) in which data may have been
431 * written to the server's write cache, but has not yet
432 * been flushed to permanent storage.
433 */
04fbfdc1 434 if (bdi_nr_reclaimable) {
1da177e4 435 writeback_inodes(&wbc);
1da177e4 436 pages_written += write_chunk - wbc.nr_to_write;
04fbfdc1
PZ
437 get_dirty_limits(&background_thresh, &dirty_thresh,
438 &bdi_thresh, bdi);
439 }
440
441 /*
442 * In order to avoid the stacked BDI deadlock we need
443 * to ensure we accurately count the 'dirty' pages when
444 * the threshold is low.
445 *
446 * Otherwise it would be possible to get thresh+n pages
447 * reported dirty, even though there are thresh-m pages
448 * actually dirty; with m+n sitting in the percpu
449 * deltas.
450 */
451 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
452 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
453 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
454 } else if (bdi_nr_reclaimable) {
455 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
456 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
1da177e4 457 }
04fbfdc1
PZ
458
459 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
460 break;
461 if (pages_written >= write_chunk)
462 break; /* We've done our duty */
463
3fcfab16 464 congestion_wait(WRITE, HZ/10);
1da177e4
LT
465 }
466
04fbfdc1
PZ
467 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
468 bdi->dirty_exceeded)
469 bdi->dirty_exceeded = 0;
1da177e4
LT
470
471 if (writeback_in_progress(bdi))
472 return; /* pdflush is already working this queue */
473
474 /*
475 * In laptop mode, we wait until hitting the higher threshold before
476 * starting background writeout, and then write out all the way down
477 * to the lower threshold. So slow writers cause minimal disk activity.
478 *
479 * In normal mode, we start background writeout at the lower
480 * background_thresh, to keep the amount of dirty memory low.
481 */
482 if ((laptop_mode && pages_written) ||
04fbfdc1
PZ
483 (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
484 + global_page_state(NR_UNSTABLE_NFS)
485 > background_thresh)))
1da177e4
LT
486 pdflush_operation(background_writeout, 0);
487}
488
a200ee18 489void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 490{
a200ee18 491 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
492 struct address_space *mapping = page_mapping(page);
493
494 if (mapping)
495 balance_dirty_pages_ratelimited(mapping);
496 }
497}
498
1da177e4 499/**
fa5a734e 500 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 501 * @mapping: address_space which was dirtied
a580290c 502 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
503 *
504 * Processes which are dirtying memory should call in here once for each page
505 * which was newly dirtied. The function will periodically check the system's
506 * dirty state and will initiate writeback if needed.
507 *
508 * On really big machines, get_writeback_state is expensive, so try to avoid
509 * calling it too often (ratelimiting). But once we're over the dirty memory
510 * limit we decrease the ratelimiting by a lot, to prevent individual processes
511 * from overshooting the limit by (ratelimit_pages) each.
512 */
fa5a734e
AM
513void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
514 unsigned long nr_pages_dirtied)
1da177e4 515{
fa5a734e
AM
516 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
517 unsigned long ratelimit;
518 unsigned long *p;
1da177e4
LT
519
520 ratelimit = ratelimit_pages;
04fbfdc1 521 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
522 ratelimit = 8;
523
524 /*
525 * Check the rate limiting. Also, we do not want to throttle real-time
526 * tasks in balance_dirty_pages(). Period.
527 */
fa5a734e
AM
528 preempt_disable();
529 p = &__get_cpu_var(ratelimits);
530 *p += nr_pages_dirtied;
531 if (unlikely(*p >= ratelimit)) {
532 *p = 0;
533 preempt_enable();
1da177e4
LT
534 balance_dirty_pages(mapping);
535 return;
536 }
fa5a734e 537 preempt_enable();
1da177e4 538}
fa5a734e 539EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 540
232ea4d6 541void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 542{
1da177e4
LT
543 long background_thresh;
544 long dirty_thresh;
545
546 for ( ; ; ) {
04fbfdc1 547 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
1da177e4
LT
548
549 /*
550 * Boost the allowable dirty threshold a bit for page
551 * allocators so they don't get DoS'ed by heavy writers
552 */
553 dirty_thresh += dirty_thresh / 10; /* wheeee... */
554
c24f21bd
CL
555 if (global_page_state(NR_UNSTABLE_NFS) +
556 global_page_state(NR_WRITEBACK) <= dirty_thresh)
557 break;
3fcfab16 558 congestion_wait(WRITE, HZ/10);
369f2389
FW
559
560 /*
561 * The caller might hold locks which can prevent IO completion
562 * or progress in the filesystem. So we cannot just sit here
563 * waiting for IO to complete.
564 */
565 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
566 break;
1da177e4
LT
567 }
568}
569
1da177e4
LT
570/*
571 * writeback at least _min_pages, and keep writing until the amount of dirty
572 * memory is less than the background threshold, or until we're all clean.
573 */
574static void background_writeout(unsigned long _min_pages)
575{
576 long min_pages = _min_pages;
577 struct writeback_control wbc = {
578 .bdi = NULL,
579 .sync_mode = WB_SYNC_NONE,
580 .older_than_this = NULL,
581 .nr_to_write = 0,
582 .nonblocking = 1,
111ebb6e 583 .range_cyclic = 1,
1da177e4
LT
584 };
585
586 for ( ; ; ) {
1da177e4
LT
587 long background_thresh;
588 long dirty_thresh;
589
04fbfdc1 590 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
c24f21bd
CL
591 if (global_page_state(NR_FILE_DIRTY) +
592 global_page_state(NR_UNSTABLE_NFS) < background_thresh
1da177e4
LT
593 && min_pages <= 0)
594 break;
8bc3be27 595 wbc.more_io = 0;
1da177e4
LT
596 wbc.encountered_congestion = 0;
597 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
598 wbc.pages_skipped = 0;
599 writeback_inodes(&wbc);
600 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
601 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
602 /* Wrote less than expected */
8bc3be27
FW
603 if (wbc.encountered_congestion || wbc.more_io)
604 congestion_wait(WRITE, HZ/10);
605 else
1da177e4
LT
606 break;
607 }
608 }
609}
610
611/*
612 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
613 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
614 * -1 if all pdflush threads were busy.
615 */
687a21ce 616int wakeup_pdflush(long nr_pages)
1da177e4 617{
c24f21bd
CL
618 if (nr_pages == 0)
619 nr_pages = global_page_state(NR_FILE_DIRTY) +
620 global_page_state(NR_UNSTABLE_NFS);
1da177e4
LT
621 return pdflush_operation(background_writeout, nr_pages);
622}
623
624static void wb_timer_fn(unsigned long unused);
625static void laptop_timer_fn(unsigned long unused);
626
8d06afab
IM
627static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
628static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
1da177e4
LT
629
630/*
631 * Periodic writeback of "old" data.
632 *
633 * Define "old": the first time one of an inode's pages is dirtied, we mark the
634 * dirtying-time in the inode's address_space. So this periodic writeback code
635 * just walks the superblock inode list, writing back any inodes which are
636 * older than a specific point in time.
637 *
f6ef9438
BS
638 * Try to run once per dirty_writeback_interval. But if a writeback event
639 * takes longer than a dirty_writeback_interval interval, then leave a
1da177e4
LT
640 * one-second gap.
641 *
642 * older_than_this takes precedence over nr_to_write. So we'll only write back
643 * all dirty pages if they are all attached to "old" mappings.
644 */
645static void wb_kupdate(unsigned long arg)
646{
647 unsigned long oldest_jif;
648 unsigned long start_jif;
649 unsigned long next_jif;
650 long nr_to_write;
1da177e4
LT
651 struct writeback_control wbc = {
652 .bdi = NULL,
653 .sync_mode = WB_SYNC_NONE,
654 .older_than_this = &oldest_jif,
655 .nr_to_write = 0,
656 .nonblocking = 1,
657 .for_kupdate = 1,
111ebb6e 658 .range_cyclic = 1,
1da177e4
LT
659 };
660
661 sync_supers();
662
f6ef9438 663 oldest_jif = jiffies - dirty_expire_interval;
1da177e4 664 start_jif = jiffies;
f6ef9438 665 next_jif = start_jif + dirty_writeback_interval;
c24f21bd
CL
666 nr_to_write = global_page_state(NR_FILE_DIRTY) +
667 global_page_state(NR_UNSTABLE_NFS) +
1da177e4
LT
668 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
669 while (nr_to_write > 0) {
8bc3be27 670 wbc.more_io = 0;
1da177e4
LT
671 wbc.encountered_congestion = 0;
672 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
673 writeback_inodes(&wbc);
674 if (wbc.nr_to_write > 0) {
8bc3be27 675 if (wbc.encountered_congestion || wbc.more_io)
3fcfab16 676 congestion_wait(WRITE, HZ/10);
1da177e4
LT
677 else
678 break; /* All the old data is written */
679 }
680 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
681 }
682 if (time_before(next_jif, jiffies + HZ))
683 next_jif = jiffies + HZ;
f6ef9438 684 if (dirty_writeback_interval)
1da177e4
LT
685 mod_timer(&wb_timer, next_jif);
686}
687
688/*
689 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
690 */
691int dirty_writeback_centisecs_handler(ctl_table *table, int write,
3e733f07 692 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 693{
f6ef9438 694 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
3e733f07
AM
695 if (dirty_writeback_interval)
696 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
697 else
1da177e4 698 del_timer(&wb_timer);
1da177e4
LT
699 return 0;
700}
701
702static void wb_timer_fn(unsigned long unused)
703{
704 if (pdflush_operation(wb_kupdate, 0) < 0)
705 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
706}
707
708static void laptop_flush(unsigned long unused)
709{
710 sys_sync();
711}
712
713static void laptop_timer_fn(unsigned long unused)
714{
715 pdflush_operation(laptop_flush, 0);
716}
717
718/*
719 * We've spun up the disk and we're in laptop mode: schedule writeback
720 * of all dirty data a few seconds from now. If the flush is already scheduled
721 * then push it back - the user is still using the disk.
722 */
723void laptop_io_completion(void)
724{
ed5b43f1 725 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
726}
727
728/*
729 * We're in laptop mode and we've just synced. The sync's writes will have
730 * caused another writeback to be scheduled by laptop_io_completion.
731 * Nothing needs to be written back anymore, so we unschedule the writeback.
732 */
733void laptop_sync_completion(void)
734{
735 del_timer(&laptop_mode_wb_timer);
736}
737
738/*
739 * If ratelimit_pages is too high then we can get into dirty-data overload
740 * if a large number of processes all perform writes at the same time.
741 * If it is too low then SMP machines will call the (expensive)
742 * get_writeback_state too often.
743 *
744 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
745 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
746 * thresholds before writeback cuts in.
747 *
748 * But the limit should not be set too high. Because it also controls the
749 * amount of memory which the balance_dirty_pages() caller has to write back.
750 * If this is too large then the caller will block on the IO queue all the
751 * time. So limit it to four megabytes - the balance_dirty_pages() caller
752 * will write six megabyte chunks, max.
753 */
754
2d1d43f6 755void writeback_set_ratelimit(void)
1da177e4 756{
40c99aae 757 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
758 if (ratelimit_pages < 16)
759 ratelimit_pages = 16;
760 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
761 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
762}
763
26c2143b 764static int __cpuinit
1da177e4
LT
765ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
766{
2d1d43f6 767 writeback_set_ratelimit();
aa0f0303 768 return NOTIFY_DONE;
1da177e4
LT
769}
770
74b85f37 771static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
772 .notifier_call = ratelimit_handler,
773 .next = NULL,
774};
775
776/*
dc6e29da
LT
777 * Called early on to tune the page writeback dirty limits.
778 *
779 * We used to scale dirty pages according to how total memory
780 * related to pages that could be allocated for buffers (by
781 * comparing nr_free_buffer_pages() to vm_total_pages.
782 *
783 * However, that was when we used "dirty_ratio" to scale with
784 * all memory, and we don't do that any more. "dirty_ratio"
785 * is now applied to total non-HIGHPAGE memory (by subtracting
786 * totalhigh_pages from vm_total_pages), and as such we can't
787 * get into the old insane situation any more where we had
788 * large amounts of dirty pages compared to a small amount of
789 * non-HIGHMEM memory.
790 *
791 * But we might still want to scale the dirty_ratio by how
792 * much memory the box has..
1da177e4
LT
793 */
794void __init page_writeback_init(void)
795{
04fbfdc1
PZ
796 int shift;
797
f6ef9438 798 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
2d1d43f6 799 writeback_set_ratelimit();
1da177e4 800 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
801
802 shift = calc_period_shift();
803 prop_descriptor_init(&vm_completions, shift);
3e26c149 804 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
805}
806
811d736f 807/**
0ea97180 808 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
809 * @mapping: address space structure to write
810 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
811 * @writepage: function called for each page
812 * @data: data passed to writepage function
811d736f 813 *
0ea97180 814 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
815 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
816 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
817 * and msync() need to guarantee that all the data which was dirty at the time
818 * the call was made get new I/O started against them. If wbc->sync_mode is
819 * WB_SYNC_ALL then we were called for data integrity and we must wait for
820 * existing IO to complete.
811d736f 821 */
0ea97180
MS
822int write_cache_pages(struct address_space *mapping,
823 struct writeback_control *wbc, writepage_t writepage,
824 void *data)
811d736f
DH
825{
826 struct backing_dev_info *bdi = mapping->backing_dev_info;
827 int ret = 0;
828 int done = 0;
811d736f
DH
829 struct pagevec pvec;
830 int nr_pages;
831 pgoff_t index;
832 pgoff_t end; /* Inclusive */
833 int scanned = 0;
834 int range_whole = 0;
835
836 if (wbc->nonblocking && bdi_write_congested(bdi)) {
837 wbc->encountered_congestion = 1;
838 return 0;
839 }
840
811d736f
DH
841 pagevec_init(&pvec, 0);
842 if (wbc->range_cyclic) {
843 index = mapping->writeback_index; /* Start from prev offset */
844 end = -1;
845 } else {
846 index = wbc->range_start >> PAGE_CACHE_SHIFT;
847 end = wbc->range_end >> PAGE_CACHE_SHIFT;
848 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
849 range_whole = 1;
850 scanned = 1;
851 }
852retry:
853 while (!done && (index <= end) &&
854 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
855 PAGECACHE_TAG_DIRTY,
856 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
857 unsigned i;
858
859 scanned = 1;
860 for (i = 0; i < nr_pages; i++) {
861 struct page *page = pvec.pages[i];
862
863 /*
864 * At this point we hold neither mapping->tree_lock nor
865 * lock on the page itself: the page may be truncated or
866 * invalidated (changing page->mapping to NULL), or even
867 * swizzled back from swapper_space to tmpfs file
868 * mapping
869 */
870 lock_page(page);
871
872 if (unlikely(page->mapping != mapping)) {
873 unlock_page(page);
874 continue;
875 }
876
877 if (!wbc->range_cyclic && page->index > end) {
878 done = 1;
879 unlock_page(page);
880 continue;
881 }
882
883 if (wbc->sync_mode != WB_SYNC_NONE)
884 wait_on_page_writeback(page);
885
886 if (PageWriteback(page) ||
887 !clear_page_dirty_for_io(page)) {
888 unlock_page(page);
889 continue;
890 }
891
0ea97180 892 ret = (*writepage)(page, wbc, data);
811d736f 893
e4230030 894 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
811d736f 895 unlock_page(page);
e4230030
AM
896 ret = 0;
897 }
811d736f
DH
898 if (ret || (--(wbc->nr_to_write) <= 0))
899 done = 1;
900 if (wbc->nonblocking && bdi_write_congested(bdi)) {
901 wbc->encountered_congestion = 1;
902 done = 1;
903 }
904 }
905 pagevec_release(&pvec);
906 cond_resched();
907 }
908 if (!scanned && !done) {
909 /*
910 * We hit the last page and there is more work to be done: wrap
911 * back to the start of the file
912 */
913 scanned = 1;
914 index = 0;
915 goto retry;
916 }
917 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
918 mapping->writeback_index = index;
919 return ret;
920}
0ea97180
MS
921EXPORT_SYMBOL(write_cache_pages);
922
923/*
924 * Function used by generic_writepages to call the real writepage
925 * function and set the mapping flags on error
926 */
927static int __writepage(struct page *page, struct writeback_control *wbc,
928 void *data)
929{
930 struct address_space *mapping = data;
931 int ret = mapping->a_ops->writepage(page, wbc);
932 mapping_set_error(mapping, ret);
933 return ret;
934}
935
936/**
937 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
938 * @mapping: address space structure to write
939 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
940 *
941 * This is a library function, which implements the writepages()
942 * address_space_operation.
943 */
944int generic_writepages(struct address_space *mapping,
945 struct writeback_control *wbc)
946{
947 /* deal with chardevs and other special file */
948 if (!mapping->a_ops->writepage)
949 return 0;
950
951 return write_cache_pages(mapping, wbc, __writepage, mapping);
952}
811d736f
DH
953
954EXPORT_SYMBOL(generic_writepages);
955
1da177e4
LT
956int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
957{
22905f77
AM
958 int ret;
959
1da177e4
LT
960 if (wbc->nr_to_write <= 0)
961 return 0;
22905f77 962 wbc->for_writepages = 1;
1da177e4 963 if (mapping->a_ops->writepages)
d08b3851 964 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
965 else
966 ret = generic_writepages(mapping, wbc);
967 wbc->for_writepages = 0;
968 return ret;
1da177e4
LT
969}
970
971/**
972 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
973 * @page: the page to write
974 * @wait: if true, wait on writeout
1da177e4
LT
975 *
976 * The page must be locked by the caller and will be unlocked upon return.
977 *
978 * write_one_page() returns a negative error code if I/O failed.
979 */
980int write_one_page(struct page *page, int wait)
981{
982 struct address_space *mapping = page->mapping;
983 int ret = 0;
984 struct writeback_control wbc = {
985 .sync_mode = WB_SYNC_ALL,
986 .nr_to_write = 1,
987 };
988
989 BUG_ON(!PageLocked(page));
990
991 if (wait)
992 wait_on_page_writeback(page);
993
994 if (clear_page_dirty_for_io(page)) {
995 page_cache_get(page);
996 ret = mapping->a_ops->writepage(page, &wbc);
997 if (ret == 0 && wait) {
998 wait_on_page_writeback(page);
999 if (PageError(page))
1000 ret = -EIO;
1001 }
1002 page_cache_release(page);
1003 } else {
1004 unlock_page(page);
1005 }
1006 return ret;
1007}
1008EXPORT_SYMBOL(write_one_page);
1009
76719325
KC
1010/*
1011 * For address_spaces which do not use buffers nor write back.
1012 */
1013int __set_page_dirty_no_writeback(struct page *page)
1014{
1015 if (!PageDirty(page))
1016 SetPageDirty(page);
1017 return 0;
1018}
1019
1da177e4
LT
1020/*
1021 * For address_spaces which do not use buffers. Just tag the page as dirty in
1022 * its radix tree.
1023 *
1024 * This is also used when a single buffer is being dirtied: we want to set the
1025 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1026 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1027 *
1028 * Most callers have locked the page, which pins the address_space in memory.
1029 * But zap_pte_range() does not lock the page, however in that case the
1030 * mapping is pinned by the vma's ->vm_file reference.
1031 *
1032 * We take care to handle the case where the page was truncated from the
183ff22b 1033 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1034 */
1035int __set_page_dirty_nobuffers(struct page *page)
1036{
1da177e4
LT
1037 if (!TestSetPageDirty(page)) {
1038 struct address_space *mapping = page_mapping(page);
1039 struct address_space *mapping2;
1040
8c08540f
AM
1041 if (!mapping)
1042 return 1;
1043
1044 write_lock_irq(&mapping->tree_lock);
1045 mapping2 = page_mapping(page);
1046 if (mapping2) { /* Race with truncate? */
1047 BUG_ON(mapping2 != mapping);
787d2214 1048 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
55e829af 1049 if (mapping_cap_account_dirty(mapping)) {
8c08540f 1050 __inc_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1051 __inc_bdi_stat(mapping->backing_dev_info,
1052 BDI_RECLAIMABLE);
55e829af
AM
1053 task_io_account_write(PAGE_CACHE_SIZE);
1054 }
8c08540f
AM
1055 radix_tree_tag_set(&mapping->page_tree,
1056 page_index(page), PAGECACHE_TAG_DIRTY);
1057 }
1058 write_unlock_irq(&mapping->tree_lock);
1059 if (mapping->host) {
1060 /* !PageAnon && !swapper_space */
1061 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1062 }
4741c9fd 1063 return 1;
1da177e4 1064 }
4741c9fd 1065 return 0;
1da177e4
LT
1066}
1067EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1068
1069/*
1070 * When a writepage implementation decides that it doesn't want to write this
1071 * page for some reason, it should redirty the locked page via
1072 * redirty_page_for_writepage() and it should then unlock the page and return 0
1073 */
1074int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1075{
1076 wbc->pages_skipped++;
1077 return __set_page_dirty_nobuffers(page);
1078}
1079EXPORT_SYMBOL(redirty_page_for_writepage);
1080
1081/*
1082 * If the mapping doesn't provide a set_page_dirty a_op, then
1083 * just fall through and assume that it wants buffer_heads.
1084 */
3e26c149 1085static int __set_page_dirty(struct page *page)
1da177e4
LT
1086{
1087 struct address_space *mapping = page_mapping(page);
1088
1089 if (likely(mapping)) {
1090 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
9361401e
DH
1091#ifdef CONFIG_BLOCK
1092 if (!spd)
1093 spd = __set_page_dirty_buffers;
1094#endif
1095 return (*spd)(page);
1da177e4 1096 }
4741c9fd
AM
1097 if (!PageDirty(page)) {
1098 if (!TestSetPageDirty(page))
1099 return 1;
1100 }
1da177e4
LT
1101 return 0;
1102}
3e26c149 1103
920c7a5d 1104int set_page_dirty(struct page *page)
3e26c149
PZ
1105{
1106 int ret = __set_page_dirty(page);
1107 if (ret)
1108 task_dirty_inc(current);
1109 return ret;
1110}
1da177e4
LT
1111EXPORT_SYMBOL(set_page_dirty);
1112
1113/*
1114 * set_page_dirty() is racy if the caller has no reference against
1115 * page->mapping->host, and if the page is unlocked. This is because another
1116 * CPU could truncate the page off the mapping and then free the mapping.
1117 *
1118 * Usually, the page _is_ locked, or the caller is a user-space process which
1119 * holds a reference on the inode by having an open file.
1120 *
1121 * In other cases, the page should be locked before running set_page_dirty().
1122 */
1123int set_page_dirty_lock(struct page *page)
1124{
1125 int ret;
1126
db37648c 1127 lock_page_nosync(page);
1da177e4
LT
1128 ret = set_page_dirty(page);
1129 unlock_page(page);
1130 return ret;
1131}
1132EXPORT_SYMBOL(set_page_dirty_lock);
1133
1da177e4
LT
1134/*
1135 * Clear a page's dirty flag, while caring for dirty memory accounting.
1136 * Returns true if the page was previously dirty.
1137 *
1138 * This is for preparing to put the page under writeout. We leave the page
1139 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1140 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1141 * implementation will run either set_page_writeback() or set_page_dirty(),
1142 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1143 * back into sync.
1144 *
1145 * This incoherency between the page's dirty flag and radix-tree tag is
1146 * unfortunate, but it only exists while the page is locked.
1147 */
1148int clear_page_dirty_for_io(struct page *page)
1149{
1150 struct address_space *mapping = page_mapping(page);
1151
79352894
NP
1152 BUG_ON(!PageLocked(page));
1153
fe3cba17 1154 ClearPageReclaim(page);
7658cc28
LT
1155 if (mapping && mapping_cap_account_dirty(mapping)) {
1156 /*
1157 * Yes, Virginia, this is indeed insane.
1158 *
1159 * We use this sequence to make sure that
1160 * (a) we account for dirty stats properly
1161 * (b) we tell the low-level filesystem to
1162 * mark the whole page dirty if it was
1163 * dirty in a pagetable. Only to then
1164 * (c) clean the page again and return 1 to
1165 * cause the writeback.
1166 *
1167 * This way we avoid all nasty races with the
1168 * dirty bit in multiple places and clearing
1169 * them concurrently from different threads.
1170 *
1171 * Note! Normally the "set_page_dirty(page)"
1172 * has no effect on the actual dirty bit - since
1173 * that will already usually be set. But we
1174 * need the side effects, and it can help us
1175 * avoid races.
1176 *
1177 * We basically use the page "master dirty bit"
1178 * as a serialization point for all the different
1179 * threads doing their things.
7658cc28
LT
1180 */
1181 if (page_mkclean(page))
1182 set_page_dirty(page);
79352894
NP
1183 /*
1184 * We carefully synchronise fault handlers against
1185 * installing a dirty pte and marking the page dirty
1186 * at this point. We do this by having them hold the
1187 * page lock at some point after installing their
1188 * pte, but before marking the page dirty.
1189 * Pages are always locked coming in here, so we get
1190 * the desired exclusion. See mm/memory.c:do_wp_page()
1191 * for more comments.
1192 */
7658cc28 1193 if (TestClearPageDirty(page)) {
8c08540f 1194 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1195 dec_bdi_stat(mapping->backing_dev_info,
1196 BDI_RECLAIMABLE);
7658cc28 1197 return 1;
1da177e4 1198 }
7658cc28 1199 return 0;
1da177e4 1200 }
7658cc28 1201 return TestClearPageDirty(page);
1da177e4 1202}
58bb01a9 1203EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1204
1205int test_clear_page_writeback(struct page *page)
1206{
1207 struct address_space *mapping = page_mapping(page);
1208 int ret;
1209
1210 if (mapping) {
69cb51d1 1211 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1212 unsigned long flags;
1213
1214 write_lock_irqsave(&mapping->tree_lock, flags);
1215 ret = TestClearPageWriteback(page);
69cb51d1 1216 if (ret) {
1da177e4
LT
1217 radix_tree_tag_clear(&mapping->page_tree,
1218 page_index(page),
1219 PAGECACHE_TAG_WRITEBACK);
04fbfdc1 1220 if (bdi_cap_writeback_dirty(bdi)) {
69cb51d1 1221 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1222 __bdi_writeout_inc(bdi);
1223 }
69cb51d1 1224 }
1da177e4
LT
1225 write_unlock_irqrestore(&mapping->tree_lock, flags);
1226 } else {
1227 ret = TestClearPageWriteback(page);
1228 }
d688abf5
AM
1229 if (ret)
1230 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1231 return ret;
1232}
1233
1234int test_set_page_writeback(struct page *page)
1235{
1236 struct address_space *mapping = page_mapping(page);
1237 int ret;
1238
1239 if (mapping) {
69cb51d1 1240 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1241 unsigned long flags;
1242
1243 write_lock_irqsave(&mapping->tree_lock, flags);
1244 ret = TestSetPageWriteback(page);
69cb51d1 1245 if (!ret) {
1da177e4
LT
1246 radix_tree_tag_set(&mapping->page_tree,
1247 page_index(page),
1248 PAGECACHE_TAG_WRITEBACK);
69cb51d1
PZ
1249 if (bdi_cap_writeback_dirty(bdi))
1250 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1251 }
1da177e4
LT
1252 if (!PageDirty(page))
1253 radix_tree_tag_clear(&mapping->page_tree,
1254 page_index(page),
1255 PAGECACHE_TAG_DIRTY);
1256 write_unlock_irqrestore(&mapping->tree_lock, flags);
1257 } else {
1258 ret = TestSetPageWriteback(page);
1259 }
d688abf5
AM
1260 if (!ret)
1261 inc_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1262 return ret;
1263
1264}
1265EXPORT_SYMBOL(test_set_page_writeback);
1266
1267/*
00128188 1268 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1269 * passed tag.
1270 */
1271int mapping_tagged(struct address_space *mapping, int tag)
1272{
1da177e4 1273 int ret;
00128188 1274 rcu_read_lock();
1da177e4 1275 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1276 rcu_read_unlock();
1da177e4
LT
1277 return ret;
1278}
1279EXPORT_SYMBOL(mapping_tagged);