Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
5a0e3ad6 36#include <linux/gfp.h>
b20a3503 37
0d1836c3
MN
38#include <asm/tlbflush.h>
39
b20a3503
CL
40#include "internal.h"
41
b20a3503 42/*
742755a1 43 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
b20a3503
CL
46 */
47int migrate_prep(void)
48{
b20a3503
CL
49 /*
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
54 */
55 lru_add_drain_all();
56
57 return 0;
58}
59
748446bb
MG
60/* Do the necessary work of migrate_prep but not if it involves other CPUs */
61int migrate_prep_local(void)
62{
63 lru_add_drain();
64
65 return 0;
66}
67
b20a3503 68/*
894bc310
LS
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 71 */
e13861d8 72void putback_lru_pages(struct list_head *l)
b20a3503
CL
73{
74 struct page *page;
75 struct page *page2;
b20a3503
CL
76
77 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 78 list_del(&page->lru);
a731286d 79 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 80 page_is_file_cache(page));
894bc310 81 putback_lru_page(page);
b20a3503 82 }
b20a3503
CL
83}
84
0697212a
CL
85/*
86 * Restore a potential migration pte to a working pte entry
87 */
e9995ef9
HD
88static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 unsigned long addr, void *old)
0697212a
CL
90{
91 struct mm_struct *mm = vma->vm_mm;
92 swp_entry_t entry;
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *ptep, pte;
97 spinlock_t *ptl;
98
290408d4
NH
99 if (unlikely(PageHuge(new))) {
100 ptep = huge_pte_offset(mm, addr);
101 if (!ptep)
102 goto out;
103 ptl = &mm->page_table_lock;
104 } else {
105 pgd = pgd_offset(mm, addr);
106 if (!pgd_present(*pgd))
107 goto out;
0697212a 108
290408d4
NH
109 pud = pud_offset(pgd, addr);
110 if (!pud_present(*pud))
111 goto out;
0697212a 112
290408d4 113 pmd = pmd_offset(pud, addr);
500d65d4
AA
114 if (pmd_trans_huge(*pmd))
115 goto out;
290408d4
NH
116 if (!pmd_present(*pmd))
117 goto out;
0697212a 118
290408d4 119 ptep = pte_offset_map(pmd, addr);
0697212a 120
486cf46f
HD
121 /*
122 * Peek to check is_swap_pte() before taking ptlock? No, we
123 * can race mremap's move_ptes(), which skips anon_vma lock.
124 */
290408d4
NH
125
126 ptl = pte_lockptr(mm, pmd);
127 }
0697212a 128
0697212a
CL
129 spin_lock(ptl);
130 pte = *ptep;
131 if (!is_swap_pte(pte))
e9995ef9 132 goto unlock;
0697212a
CL
133
134 entry = pte_to_swp_entry(pte);
135
e9995ef9
HD
136 if (!is_migration_entry(entry) ||
137 migration_entry_to_page(entry) != old)
138 goto unlock;
0697212a 139
0697212a
CL
140 get_page(new);
141 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 if (is_write_migration_entry(entry))
143 pte = pte_mkwrite(pte);
3ef8fd7f 144#ifdef CONFIG_HUGETLB_PAGE
290408d4
NH
145 if (PageHuge(new))
146 pte = pte_mkhuge(pte);
3ef8fd7f 147#endif
97ee0524 148 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 149 set_pte_at(mm, addr, ptep, pte);
04e62a29 150
290408d4
NH
151 if (PageHuge(new)) {
152 if (PageAnon(new))
153 hugepage_add_anon_rmap(new, vma, addr);
154 else
155 page_dup_rmap(new);
156 } else if (PageAnon(new))
04e62a29
CL
157 page_add_anon_rmap(new, vma, addr);
158 else
159 page_add_file_rmap(new);
160
161 /* No need to invalidate - it was non-present before */
4b3073e1 162 update_mmu_cache(vma, addr, ptep);
e9995ef9 163unlock:
0697212a 164 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
165out:
166 return SWAP_AGAIN;
0697212a
CL
167}
168
04e62a29
CL
169/*
170 * Get rid of all migration entries and replace them by
171 * references to the indicated page.
172 */
173static void remove_migration_ptes(struct page *old, struct page *new)
174{
e9995ef9 175 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
176}
177
0697212a
CL
178/*
179 * Something used the pte of a page under migration. We need to
180 * get to the page and wait until migration is finished.
181 * When we return from this function the fault will be retried.
0697212a
CL
182 */
183void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 unsigned long address)
185{
186 pte_t *ptep, pte;
187 spinlock_t *ptl;
188 swp_entry_t entry;
189 struct page *page;
190
191 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 pte = *ptep;
193 if (!is_swap_pte(pte))
194 goto out;
195
196 entry = pte_to_swp_entry(pte);
197 if (!is_migration_entry(entry))
198 goto out;
199
200 page = migration_entry_to_page(entry);
201
e286781d
NP
202 /*
203 * Once radix-tree replacement of page migration started, page_count
204 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 * against a page without get_page().
206 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 * will occur again.
208 */
209 if (!get_page_unless_zero(page))
210 goto out;
0697212a
CL
211 pte_unmap_unlock(ptep, ptl);
212 wait_on_page_locked(page);
213 put_page(page);
214 return;
215out:
216 pte_unmap_unlock(ptep, ptl);
217}
218
b969c4ab
MG
219#ifdef CONFIG_BLOCK
220/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
221static bool buffer_migrate_lock_buffers(struct buffer_head *head,
222 enum migrate_mode mode)
b969c4ab
MG
223{
224 struct buffer_head *bh = head;
225
226 /* Simple case, sync compaction */
a6bc32b8 227 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
228 do {
229 get_bh(bh);
230 lock_buffer(bh);
231 bh = bh->b_this_page;
232
233 } while (bh != head);
234
235 return true;
236 }
237
238 /* async case, we cannot block on lock_buffer so use trylock_buffer */
239 do {
240 get_bh(bh);
241 if (!trylock_buffer(bh)) {
242 /*
243 * We failed to lock the buffer and cannot stall in
244 * async migration. Release the taken locks
245 */
246 struct buffer_head *failed_bh = bh;
247 put_bh(failed_bh);
248 bh = head;
249 while (bh != failed_bh) {
250 unlock_buffer(bh);
251 put_bh(bh);
252 bh = bh->b_this_page;
253 }
254 return false;
255 }
256
257 bh = bh->b_this_page;
258 } while (bh != head);
259 return true;
260}
261#else
262static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 263 enum migrate_mode mode)
b969c4ab
MG
264{
265 return true;
266}
267#endif /* CONFIG_BLOCK */
268
b20a3503 269/*
c3fcf8a5 270 * Replace the page in the mapping.
5b5c7120
CL
271 *
272 * The number of remaining references must be:
273 * 1 for anonymous pages without a mapping
274 * 2 for pages with a mapping
266cf658 275 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 276 */
2d1db3b1 277static int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 278 struct page *newpage, struct page *page,
a6bc32b8 279 struct buffer_head *head, enum migrate_mode mode)
b20a3503 280{
e286781d 281 int expected_count;
7cf9c2c7 282 void **pslot;
b20a3503 283
6c5240ae 284 if (!mapping) {
0e8c7d0f 285 /* Anonymous page without mapping */
6c5240ae
CL
286 if (page_count(page) != 1)
287 return -EAGAIN;
288 return 0;
289 }
290
19fd6231 291 spin_lock_irq(&mapping->tree_lock);
b20a3503 292
7cf9c2c7
NP
293 pslot = radix_tree_lookup_slot(&mapping->page_tree,
294 page_index(page));
b20a3503 295
edcf4748 296 expected_count = 2 + page_has_private(page);
e286781d 297 if (page_count(page) != expected_count ||
29c1f677 298 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 299 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 300 return -EAGAIN;
b20a3503
CL
301 }
302
e286781d 303 if (!page_freeze_refs(page, expected_count)) {
19fd6231 304 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
305 return -EAGAIN;
306 }
307
b969c4ab
MG
308 /*
309 * In the async migration case of moving a page with buffers, lock the
310 * buffers using trylock before the mapping is moved. If the mapping
311 * was moved, we later failed to lock the buffers and could not move
312 * the mapping back due to an elevated page count, we would have to
313 * block waiting on other references to be dropped.
314 */
a6bc32b8
MG
315 if (mode == MIGRATE_ASYNC && head &&
316 !buffer_migrate_lock_buffers(head, mode)) {
b969c4ab
MG
317 page_unfreeze_refs(page, expected_count);
318 spin_unlock_irq(&mapping->tree_lock);
319 return -EAGAIN;
320 }
321
b20a3503
CL
322 /*
323 * Now we know that no one else is looking at the page.
b20a3503 324 */
7cf9c2c7 325 get_page(newpage); /* add cache reference */
b20a3503
CL
326 if (PageSwapCache(page)) {
327 SetPageSwapCache(newpage);
328 set_page_private(newpage, page_private(page));
329 }
330
7cf9c2c7
NP
331 radix_tree_replace_slot(pslot, newpage);
332
333 /*
937a94c9
JG
334 * Drop cache reference from old page by unfreezing
335 * to one less reference.
7cf9c2c7
NP
336 * We know this isn't the last reference.
337 */
937a94c9 338 page_unfreeze_refs(page, expected_count - 1);
7cf9c2c7 339
0e8c7d0f
CL
340 /*
341 * If moved to a different zone then also account
342 * the page for that zone. Other VM counters will be
343 * taken care of when we establish references to the
344 * new page and drop references to the old page.
345 *
346 * Note that anonymous pages are accounted for
347 * via NR_FILE_PAGES and NR_ANON_PAGES if they
348 * are mapped to swap space.
349 */
350 __dec_zone_page_state(page, NR_FILE_PAGES);
351 __inc_zone_page_state(newpage, NR_FILE_PAGES);
99a15e21 352 if (!PageSwapCache(page) && PageSwapBacked(page)) {
4b02108a
KM
353 __dec_zone_page_state(page, NR_SHMEM);
354 __inc_zone_page_state(newpage, NR_SHMEM);
355 }
19fd6231 356 spin_unlock_irq(&mapping->tree_lock);
b20a3503
CL
357
358 return 0;
359}
b20a3503 360
290408d4
NH
361/*
362 * The expected number of remaining references is the same as that
363 * of migrate_page_move_mapping().
364 */
365int migrate_huge_page_move_mapping(struct address_space *mapping,
366 struct page *newpage, struct page *page)
367{
368 int expected_count;
369 void **pslot;
370
371 if (!mapping) {
372 if (page_count(page) != 1)
373 return -EAGAIN;
374 return 0;
375 }
376
377 spin_lock_irq(&mapping->tree_lock);
378
379 pslot = radix_tree_lookup_slot(&mapping->page_tree,
380 page_index(page));
381
382 expected_count = 2 + page_has_private(page);
383 if (page_count(page) != expected_count ||
29c1f677 384 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
385 spin_unlock_irq(&mapping->tree_lock);
386 return -EAGAIN;
387 }
388
389 if (!page_freeze_refs(page, expected_count)) {
390 spin_unlock_irq(&mapping->tree_lock);
391 return -EAGAIN;
392 }
393
394 get_page(newpage);
395
396 radix_tree_replace_slot(pslot, newpage);
397
937a94c9 398 page_unfreeze_refs(page, expected_count - 1);
290408d4
NH
399
400 spin_unlock_irq(&mapping->tree_lock);
401 return 0;
402}
403
b20a3503
CL
404/*
405 * Copy the page to its new location
406 */
290408d4 407void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 408{
290408d4
NH
409 if (PageHuge(page))
410 copy_huge_page(newpage, page);
411 else
412 copy_highpage(newpage, page);
b20a3503
CL
413
414 if (PageError(page))
415 SetPageError(newpage);
416 if (PageReferenced(page))
417 SetPageReferenced(newpage);
418 if (PageUptodate(page))
419 SetPageUptodate(newpage);
894bc310
LS
420 if (TestClearPageActive(page)) {
421 VM_BUG_ON(PageUnevictable(page));
b20a3503 422 SetPageActive(newpage);
418b27ef
LS
423 } else if (TestClearPageUnevictable(page))
424 SetPageUnevictable(newpage);
b20a3503
CL
425 if (PageChecked(page))
426 SetPageChecked(newpage);
427 if (PageMappedToDisk(page))
428 SetPageMappedToDisk(newpage);
429
430 if (PageDirty(page)) {
431 clear_page_dirty_for_io(page);
3a902c5f
NP
432 /*
433 * Want to mark the page and the radix tree as dirty, and
434 * redo the accounting that clear_page_dirty_for_io undid,
435 * but we can't use set_page_dirty because that function
436 * is actually a signal that all of the page has become dirty.
25985edc 437 * Whereas only part of our page may be dirty.
3a902c5f
NP
438 */
439 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
440 }
441
b291f000 442 mlock_migrate_page(newpage, page);
e9995ef9 443 ksm_migrate_page(newpage, page);
b291f000 444
b20a3503 445 ClearPageSwapCache(page);
b20a3503
CL
446 ClearPagePrivate(page);
447 set_page_private(page, 0);
448 page->mapping = NULL;
449
450 /*
451 * If any waiters have accumulated on the new page then
452 * wake them up.
453 */
454 if (PageWriteback(newpage))
455 end_page_writeback(newpage);
456}
b20a3503 457
1d8b85cc
CL
458/************************************************************
459 * Migration functions
460 ***********************************************************/
461
462/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
463int fail_migrate_page(struct address_space *mapping,
464 struct page *newpage, struct page *page)
1d8b85cc
CL
465{
466 return -EIO;
467}
468EXPORT_SYMBOL(fail_migrate_page);
469
b20a3503
CL
470/*
471 * Common logic to directly migrate a single page suitable for
266cf658 472 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
473 *
474 * Pages are locked upon entry and exit.
475 */
2d1db3b1 476int migrate_page(struct address_space *mapping,
a6bc32b8
MG
477 struct page *newpage, struct page *page,
478 enum migrate_mode mode)
b20a3503
CL
479{
480 int rc;
481
482 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
483
a6bc32b8 484 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
b20a3503
CL
485
486 if (rc)
487 return rc;
488
489 migrate_page_copy(newpage, page);
b20a3503
CL
490 return 0;
491}
492EXPORT_SYMBOL(migrate_page);
493
9361401e 494#ifdef CONFIG_BLOCK
1d8b85cc
CL
495/*
496 * Migration function for pages with buffers. This function can only be used
497 * if the underlying filesystem guarantees that no other references to "page"
498 * exist.
499 */
2d1db3b1 500int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 501 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 502{
1d8b85cc
CL
503 struct buffer_head *bh, *head;
504 int rc;
505
1d8b85cc 506 if (!page_has_buffers(page))
a6bc32b8 507 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
508
509 head = page_buffers(page);
510
a6bc32b8 511 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
1d8b85cc
CL
512
513 if (rc)
514 return rc;
515
b969c4ab
MG
516 /*
517 * In the async case, migrate_page_move_mapping locked the buffers
518 * with an IRQ-safe spinlock held. In the sync case, the buffers
519 * need to be locked now
520 */
a6bc32b8
MG
521 if (mode != MIGRATE_ASYNC)
522 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
523
524 ClearPagePrivate(page);
525 set_page_private(newpage, page_private(page));
526 set_page_private(page, 0);
527 put_page(page);
528 get_page(newpage);
529
530 bh = head;
531 do {
532 set_bh_page(bh, newpage, bh_offset(bh));
533 bh = bh->b_this_page;
534
535 } while (bh != head);
536
537 SetPagePrivate(newpage);
538
539 migrate_page_copy(newpage, page);
540
541 bh = head;
542 do {
543 unlock_buffer(bh);
544 put_bh(bh);
545 bh = bh->b_this_page;
546
547 } while (bh != head);
548
549 return 0;
550}
551EXPORT_SYMBOL(buffer_migrate_page);
9361401e 552#endif
1d8b85cc 553
04e62a29
CL
554/*
555 * Writeback a page to clean the dirty state
556 */
557static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 558{
04e62a29
CL
559 struct writeback_control wbc = {
560 .sync_mode = WB_SYNC_NONE,
561 .nr_to_write = 1,
562 .range_start = 0,
563 .range_end = LLONG_MAX,
04e62a29
CL
564 .for_reclaim = 1
565 };
566 int rc;
567
568 if (!mapping->a_ops->writepage)
569 /* No write method for the address space */
570 return -EINVAL;
571
572 if (!clear_page_dirty_for_io(page))
573 /* Someone else already triggered a write */
574 return -EAGAIN;
575
8351a6e4 576 /*
04e62a29
CL
577 * A dirty page may imply that the underlying filesystem has
578 * the page on some queue. So the page must be clean for
579 * migration. Writeout may mean we loose the lock and the
580 * page state is no longer what we checked for earlier.
581 * At this point we know that the migration attempt cannot
582 * be successful.
8351a6e4 583 */
04e62a29 584 remove_migration_ptes(page, page);
8351a6e4 585
04e62a29 586 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 587
04e62a29
CL
588 if (rc != AOP_WRITEPAGE_ACTIVATE)
589 /* unlocked. Relock */
590 lock_page(page);
591
bda8550d 592 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
593}
594
595/*
596 * Default handling if a filesystem does not provide a migration function.
597 */
598static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 599 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 600{
b969c4ab 601 if (PageDirty(page)) {
a6bc32b8
MG
602 /* Only writeback pages in full synchronous migration */
603 if (mode != MIGRATE_SYNC)
b969c4ab 604 return -EBUSY;
04e62a29 605 return writeout(mapping, page);
b969c4ab 606 }
8351a6e4
CL
607
608 /*
609 * Buffers may be managed in a filesystem specific way.
610 * We must have no buffers or drop them.
611 */
266cf658 612 if (page_has_private(page) &&
8351a6e4
CL
613 !try_to_release_page(page, GFP_KERNEL))
614 return -EAGAIN;
615
a6bc32b8 616 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
617}
618
e24f0b8f
CL
619/*
620 * Move a page to a newly allocated page
621 * The page is locked and all ptes have been successfully removed.
622 *
623 * The new page will have replaced the old page if this function
624 * is successful.
894bc310
LS
625 *
626 * Return value:
627 * < 0 - error code
628 * == 0 - success
e24f0b8f 629 */
3fe2011f 630static int move_to_new_page(struct page *newpage, struct page *page,
a6bc32b8 631 int remap_swapcache, enum migrate_mode mode)
e24f0b8f
CL
632{
633 struct address_space *mapping;
634 int rc;
635
636 /*
637 * Block others from accessing the page when we get around to
638 * establishing additional references. We are the only one
639 * holding a reference to the new page at this point.
640 */
529ae9aa 641 if (!trylock_page(newpage))
e24f0b8f
CL
642 BUG();
643
644 /* Prepare mapping for the new page.*/
645 newpage->index = page->index;
646 newpage->mapping = page->mapping;
b2e18538
RR
647 if (PageSwapBacked(page))
648 SetPageSwapBacked(newpage);
e24f0b8f
CL
649
650 mapping = page_mapping(page);
651 if (!mapping)
a6bc32b8 652 rc = migrate_page(mapping, newpage, page, mode);
b969c4ab 653 else if (mapping->a_ops->migratepage)
e24f0b8f 654 /*
b969c4ab
MG
655 * Most pages have a mapping and most filesystems provide a
656 * migratepage callback. Anonymous pages are part of swap
657 * space which also has its own migratepage callback. This
658 * is the most common path for page migration.
e24f0b8f 659 */
b969c4ab 660 rc = mapping->a_ops->migratepage(mapping,
a6bc32b8 661 newpage, page, mode);
b969c4ab 662 else
a6bc32b8 663 rc = fallback_migrate_page(mapping, newpage, page, mode);
e24f0b8f 664
3fe2011f 665 if (rc) {
e24f0b8f 666 newpage->mapping = NULL;
3fe2011f
MG
667 } else {
668 if (remap_swapcache)
669 remove_migration_ptes(page, newpage);
670 }
e24f0b8f
CL
671
672 unlock_page(newpage);
673
674 return rc;
675}
676
0dabec93 677static int __unmap_and_move(struct page *page, struct page *newpage,
a6bc32b8 678 int force, bool offlining, enum migrate_mode mode)
e24f0b8f 679{
0dabec93 680 int rc = -EAGAIN;
3fe2011f 681 int remap_swapcache = 1;
ae41be37 682 int charge = 0;
56039efa 683 struct mem_cgroup *mem;
3f6c8272 684 struct anon_vma *anon_vma = NULL;
95a402c3 685
529ae9aa 686 if (!trylock_page(page)) {
a6bc32b8 687 if (!force || mode == MIGRATE_ASYNC)
0dabec93 688 goto out;
3e7d3449
MG
689
690 /*
691 * It's not safe for direct compaction to call lock_page.
692 * For example, during page readahead pages are added locked
693 * to the LRU. Later, when the IO completes the pages are
694 * marked uptodate and unlocked. However, the queueing
695 * could be merging multiple pages for one bio (e.g.
696 * mpage_readpages). If an allocation happens for the
697 * second or third page, the process can end up locking
698 * the same page twice and deadlocking. Rather than
699 * trying to be clever about what pages can be locked,
700 * avoid the use of lock_page for direct compaction
701 * altogether.
702 */
703 if (current->flags & PF_MEMALLOC)
0dabec93 704 goto out;
3e7d3449 705
e24f0b8f
CL
706 lock_page(page);
707 }
708
62b61f61
HD
709 /*
710 * Only memory hotplug's offline_pages() caller has locked out KSM,
711 * and can safely migrate a KSM page. The other cases have skipped
712 * PageKsm along with PageReserved - but it is only now when we have
713 * the page lock that we can be certain it will not go KSM beneath us
714 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
715 * its pagecount raised, but only here do we take the page lock which
716 * serializes that).
717 */
718 if (PageKsm(page) && !offlining) {
719 rc = -EBUSY;
720 goto unlock;
721 }
722
01b1ae63 723 /* charge against new page */
ef6a3c63 724 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
01b1ae63
KH
725 if (charge == -ENOMEM) {
726 rc = -ENOMEM;
727 goto unlock;
728 }
729 BUG_ON(charge);
730
e24f0b8f 731 if (PageWriteback(page)) {
11bc82d6 732 /*
a6bc32b8
MG
733 * Only in the case of a full syncronous migration is it
734 * necessary to wait for PageWriteback. In the async case,
735 * the retry loop is too short and in the sync-light case,
736 * the overhead of stalling is too much
11bc82d6 737 */
a6bc32b8 738 if (mode != MIGRATE_SYNC) {
11bc82d6
AA
739 rc = -EBUSY;
740 goto uncharge;
741 }
742 if (!force)
01b1ae63 743 goto uncharge;
e24f0b8f
CL
744 wait_on_page_writeback(page);
745 }
e24f0b8f 746 /*
dc386d4d
KH
747 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
748 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 749 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 750 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
751 * File Caches may use write_page() or lock_page() in migration, then,
752 * just care Anon page here.
dc386d4d 753 */
989f89c5 754 if (PageAnon(page)) {
1ce82b69
HD
755 /*
756 * Only page_lock_anon_vma() understands the subtleties of
757 * getting a hold on an anon_vma from outside one of its mms.
758 */
746b18d4 759 anon_vma = page_get_anon_vma(page);
1ce82b69
HD
760 if (anon_vma) {
761 /*
746b18d4 762 * Anon page
1ce82b69 763 */
1ce82b69 764 } else if (PageSwapCache(page)) {
3fe2011f
MG
765 /*
766 * We cannot be sure that the anon_vma of an unmapped
767 * swapcache page is safe to use because we don't
768 * know in advance if the VMA that this page belonged
769 * to still exists. If the VMA and others sharing the
770 * data have been freed, then the anon_vma could
771 * already be invalid.
772 *
773 * To avoid this possibility, swapcache pages get
774 * migrated but are not remapped when migration
775 * completes
776 */
777 remap_swapcache = 0;
778 } else {
1ce82b69 779 goto uncharge;
3fe2011f 780 }
989f89c5 781 }
62e1c553 782
dc386d4d 783 /*
62e1c553
SL
784 * Corner case handling:
785 * 1. When a new swap-cache page is read into, it is added to the LRU
786 * and treated as swapcache but it has no rmap yet.
787 * Calling try_to_unmap() against a page->mapping==NULL page will
788 * trigger a BUG. So handle it here.
789 * 2. An orphaned page (see truncate_complete_page) might have
790 * fs-private metadata. The page can be picked up due to memory
791 * offlining. Everywhere else except page reclaim, the page is
792 * invisible to the vm, so the page can not be migrated. So try to
793 * free the metadata, so the page can be freed.
e24f0b8f 794 */
62e1c553 795 if (!page->mapping) {
1ce82b69
HD
796 VM_BUG_ON(PageAnon(page));
797 if (page_has_private(page)) {
62e1c553 798 try_to_free_buffers(page);
1ce82b69 799 goto uncharge;
62e1c553 800 }
abfc3488 801 goto skip_unmap;
62e1c553
SL
802 }
803
dc386d4d 804 /* Establish migration ptes or remove ptes */
14fa31b8 805 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 806
abfc3488 807skip_unmap:
e6a1530d 808 if (!page_mapped(page))
a6bc32b8 809 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
e24f0b8f 810
3fe2011f 811 if (rc && remap_swapcache)
e24f0b8f 812 remove_migration_ptes(page, page);
3f6c8272
MG
813
814 /* Drop an anon_vma reference if we took one */
76545066 815 if (anon_vma)
9e60109f 816 put_anon_vma(anon_vma);
3f6c8272 817
01b1ae63
KH
818uncharge:
819 if (!charge)
50de1dd9 820 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
e24f0b8f
CL
821unlock:
822 unlock_page(page);
0dabec93
MK
823out:
824 return rc;
825}
95a402c3 826
0dabec93
MK
827/*
828 * Obtain the lock on page, remove all ptes and migrate the page
829 * to the newly allocated page in newpage.
830 */
831static int unmap_and_move(new_page_t get_new_page, unsigned long private,
a6bc32b8
MG
832 struct page *page, int force, bool offlining,
833 enum migrate_mode mode)
0dabec93
MK
834{
835 int rc = 0;
836 int *result = NULL;
837 struct page *newpage = get_new_page(page, private, &result);
838
839 if (!newpage)
840 return -ENOMEM;
841
4e5f01c2
KH
842 mem_cgroup_reset_owner(newpage);
843
0dabec93
MK
844 if (page_count(page) == 1) {
845 /* page was freed from under us. So we are done. */
846 goto out;
847 }
848
849 if (unlikely(PageTransHuge(page)))
850 if (unlikely(split_huge_page(page)))
851 goto out;
852
a6bc32b8 853 rc = __unmap_and_move(page, newpage, force, offlining, mode);
0dabec93 854out:
e24f0b8f 855 if (rc != -EAGAIN) {
0dabec93
MK
856 /*
857 * A page that has been migrated has all references
858 * removed and will be freed. A page that has not been
859 * migrated will have kepts its references and be
860 * restored.
861 */
862 list_del(&page->lru);
a731286d 863 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 864 page_is_file_cache(page));
894bc310 865 putback_lru_page(page);
e24f0b8f 866 }
95a402c3
CL
867 /*
868 * Move the new page to the LRU. If migration was not successful
869 * then this will free the page.
870 */
894bc310 871 putback_lru_page(newpage);
742755a1
CL
872 if (result) {
873 if (rc)
874 *result = rc;
875 else
876 *result = page_to_nid(newpage);
877 }
e24f0b8f
CL
878 return rc;
879}
880
290408d4
NH
881/*
882 * Counterpart of unmap_and_move_page() for hugepage migration.
883 *
884 * This function doesn't wait the completion of hugepage I/O
885 * because there is no race between I/O and migration for hugepage.
886 * Note that currently hugepage I/O occurs only in direct I/O
887 * where no lock is held and PG_writeback is irrelevant,
888 * and writeback status of all subpages are counted in the reference
889 * count of the head page (i.e. if all subpages of a 2MB hugepage are
890 * under direct I/O, the reference of the head page is 512 and a bit more.)
891 * This means that when we try to migrate hugepage whose subpages are
892 * doing direct I/O, some references remain after try_to_unmap() and
893 * hugepage migration fails without data corruption.
894 *
895 * There is also no race when direct I/O is issued on the page under migration,
896 * because then pte is replaced with migration swap entry and direct I/O code
897 * will wait in the page fault for migration to complete.
898 */
899static int unmap_and_move_huge_page(new_page_t get_new_page,
900 unsigned long private, struct page *hpage,
a6bc32b8
MG
901 int force, bool offlining,
902 enum migrate_mode mode)
290408d4
NH
903{
904 int rc = 0;
905 int *result = NULL;
906 struct page *new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
907 struct anon_vma *anon_vma = NULL;
908
909 if (!new_hpage)
910 return -ENOMEM;
911
912 rc = -EAGAIN;
913
914 if (!trylock_page(hpage)) {
a6bc32b8 915 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
916 goto out;
917 lock_page(hpage);
918 }
919
746b18d4
PZ
920 if (PageAnon(hpage))
921 anon_vma = page_get_anon_vma(hpage);
290408d4
NH
922
923 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
924
925 if (!page_mapped(hpage))
a6bc32b8 926 rc = move_to_new_page(new_hpage, hpage, 1, mode);
290408d4
NH
927
928 if (rc)
929 remove_migration_ptes(hpage, hpage);
930
fd4a4663 931 if (anon_vma)
9e60109f 932 put_anon_vma(anon_vma);
290408d4
NH
933 unlock_page(hpage);
934
09761333 935out:
290408d4
NH
936 if (rc != -EAGAIN) {
937 list_del(&hpage->lru);
938 put_page(hpage);
939 }
940
941 put_page(new_hpage);
942
943 if (result) {
944 if (rc)
945 *result = rc;
946 else
947 *result = page_to_nid(new_hpage);
948 }
949 return rc;
950}
951
b20a3503
CL
952/*
953 * migrate_pages
954 *
95a402c3
CL
955 * The function takes one list of pages to migrate and a function
956 * that determines from the page to be migrated and the private data
957 * the target of the move and allocates the page.
b20a3503
CL
958 *
959 * The function returns after 10 attempts or if no pages
960 * are movable anymore because to has become empty
cf608ac1
MK
961 * or no retryable pages exist anymore.
962 * Caller should call putback_lru_pages to return pages to the LRU
28bd6578 963 * or free list only if ret != 0.
b20a3503 964 *
95a402c3 965 * Return: Number of pages not migrated or error code.
b20a3503 966 */
95a402c3 967int migrate_pages(struct list_head *from,
7f0f2496 968 new_page_t get_new_page, unsigned long private, bool offlining,
a6bc32b8 969 enum migrate_mode mode)
b20a3503 970{
e24f0b8f 971 int retry = 1;
b20a3503
CL
972 int nr_failed = 0;
973 int pass = 0;
974 struct page *page;
975 struct page *page2;
976 int swapwrite = current->flags & PF_SWAPWRITE;
977 int rc;
978
979 if (!swapwrite)
980 current->flags |= PF_SWAPWRITE;
981
e24f0b8f
CL
982 for(pass = 0; pass < 10 && retry; pass++) {
983 retry = 0;
b20a3503 984
e24f0b8f 985 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 986 cond_resched();
2d1db3b1 987
95a402c3 988 rc = unmap_and_move(get_new_page, private,
77f1fe6b 989 page, pass > 2, offlining,
a6bc32b8 990 mode);
2d1db3b1 991
e24f0b8f 992 switch(rc) {
95a402c3
CL
993 case -ENOMEM:
994 goto out;
e24f0b8f 995 case -EAGAIN:
2d1db3b1 996 retry++;
e24f0b8f
CL
997 break;
998 case 0:
e24f0b8f
CL
999 break;
1000 default:
2d1db3b1 1001 /* Permanent failure */
2d1db3b1 1002 nr_failed++;
e24f0b8f 1003 break;
2d1db3b1 1004 }
b20a3503
CL
1005 }
1006 }
95a402c3
CL
1007 rc = 0;
1008out:
b20a3503
CL
1009 if (!swapwrite)
1010 current->flags &= ~PF_SWAPWRITE;
1011
95a402c3
CL
1012 if (rc)
1013 return rc;
b20a3503 1014
95a402c3 1015 return nr_failed + retry;
b20a3503 1016}
95a402c3 1017
290408d4 1018int migrate_huge_pages(struct list_head *from,
7f0f2496 1019 new_page_t get_new_page, unsigned long private, bool offlining,
a6bc32b8 1020 enum migrate_mode mode)
290408d4
NH
1021{
1022 int retry = 1;
1023 int nr_failed = 0;
1024 int pass = 0;
1025 struct page *page;
1026 struct page *page2;
1027 int rc;
1028
1029 for (pass = 0; pass < 10 && retry; pass++) {
1030 retry = 0;
1031
1032 list_for_each_entry_safe(page, page2, from, lru) {
1033 cond_resched();
1034
1035 rc = unmap_and_move_huge_page(get_new_page,
77f1fe6b 1036 private, page, pass > 2, offlining,
a6bc32b8 1037 mode);
290408d4
NH
1038
1039 switch(rc) {
1040 case -ENOMEM:
1041 goto out;
1042 case -EAGAIN:
1043 retry++;
1044 break;
1045 case 0:
1046 break;
1047 default:
1048 /* Permanent failure */
1049 nr_failed++;
1050 break;
1051 }
1052 }
1053 }
1054 rc = 0;
1055out:
290408d4
NH
1056 if (rc)
1057 return rc;
1058
1059 return nr_failed + retry;
1060}
1061
742755a1
CL
1062#ifdef CONFIG_NUMA
1063/*
1064 * Move a list of individual pages
1065 */
1066struct page_to_node {
1067 unsigned long addr;
1068 struct page *page;
1069 int node;
1070 int status;
1071};
1072
1073static struct page *new_page_node(struct page *p, unsigned long private,
1074 int **result)
1075{
1076 struct page_to_node *pm = (struct page_to_node *)private;
1077
1078 while (pm->node != MAX_NUMNODES && pm->page != p)
1079 pm++;
1080
1081 if (pm->node == MAX_NUMNODES)
1082 return NULL;
1083
1084 *result = &pm->status;
1085
6484eb3e 1086 return alloc_pages_exact_node(pm->node,
769848c0 1087 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
1088}
1089
1090/*
1091 * Move a set of pages as indicated in the pm array. The addr
1092 * field must be set to the virtual address of the page to be moved
1093 * and the node number must contain a valid target node.
5e9a0f02 1094 * The pm array ends with node = MAX_NUMNODES.
742755a1 1095 */
5e9a0f02
BG
1096static int do_move_page_to_node_array(struct mm_struct *mm,
1097 struct page_to_node *pm,
1098 int migrate_all)
742755a1
CL
1099{
1100 int err;
1101 struct page_to_node *pp;
1102 LIST_HEAD(pagelist);
1103
1104 down_read(&mm->mmap_sem);
1105
1106 /*
1107 * Build a list of pages to migrate
1108 */
742755a1
CL
1109 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1110 struct vm_area_struct *vma;
1111 struct page *page;
1112
742755a1
CL
1113 err = -EFAULT;
1114 vma = find_vma(mm, pp->addr);
70384dc6 1115 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1116 goto set_status;
1117
500d65d4 1118 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
89f5b7da
LT
1119
1120 err = PTR_ERR(page);
1121 if (IS_ERR(page))
1122 goto set_status;
1123
742755a1
CL
1124 err = -ENOENT;
1125 if (!page)
1126 goto set_status;
1127
62b61f61
HD
1128 /* Use PageReserved to check for zero page */
1129 if (PageReserved(page) || PageKsm(page))
742755a1
CL
1130 goto put_and_set;
1131
1132 pp->page = page;
1133 err = page_to_nid(page);
1134
1135 if (err == pp->node)
1136 /*
1137 * Node already in the right place
1138 */
1139 goto put_and_set;
1140
1141 err = -EACCES;
1142 if (page_mapcount(page) > 1 &&
1143 !migrate_all)
1144 goto put_and_set;
1145
62695a84 1146 err = isolate_lru_page(page);
6d9c285a 1147 if (!err) {
62695a84 1148 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1149 inc_zone_page_state(page, NR_ISOLATED_ANON +
1150 page_is_file_cache(page));
1151 }
742755a1
CL
1152put_and_set:
1153 /*
1154 * Either remove the duplicate refcount from
1155 * isolate_lru_page() or drop the page ref if it was
1156 * not isolated.
1157 */
1158 put_page(page);
1159set_status:
1160 pp->status = err;
1161 }
1162
e78bbfa8 1163 err = 0;
cf608ac1 1164 if (!list_empty(&pagelist)) {
742755a1 1165 err = migrate_pages(&pagelist, new_page_node,
a6bc32b8 1166 (unsigned long)pm, 0, MIGRATE_SYNC);
cf608ac1
MK
1167 if (err)
1168 putback_lru_pages(&pagelist);
1169 }
742755a1
CL
1170
1171 up_read(&mm->mmap_sem);
1172 return err;
1173}
1174
5e9a0f02
BG
1175/*
1176 * Migrate an array of page address onto an array of nodes and fill
1177 * the corresponding array of status.
1178 */
1179static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1180 unsigned long nr_pages,
1181 const void __user * __user *pages,
1182 const int __user *nodes,
1183 int __user *status, int flags)
1184{
3140a227 1185 struct page_to_node *pm;
5e9a0f02 1186 nodemask_t task_nodes;
3140a227
BG
1187 unsigned long chunk_nr_pages;
1188 unsigned long chunk_start;
1189 int err;
5e9a0f02
BG
1190
1191 task_nodes = cpuset_mems_allowed(task);
1192
3140a227
BG
1193 err = -ENOMEM;
1194 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1195 if (!pm)
5e9a0f02 1196 goto out;
35282a2d
BG
1197
1198 migrate_prep();
1199
5e9a0f02 1200 /*
3140a227
BG
1201 * Store a chunk of page_to_node array in a page,
1202 * but keep the last one as a marker
5e9a0f02 1203 */
3140a227 1204 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1205
3140a227
BG
1206 for (chunk_start = 0;
1207 chunk_start < nr_pages;
1208 chunk_start += chunk_nr_pages) {
1209 int j;
5e9a0f02 1210
3140a227
BG
1211 if (chunk_start + chunk_nr_pages > nr_pages)
1212 chunk_nr_pages = nr_pages - chunk_start;
1213
1214 /* fill the chunk pm with addrs and nodes from user-space */
1215 for (j = 0; j < chunk_nr_pages; j++) {
1216 const void __user *p;
5e9a0f02
BG
1217 int node;
1218
3140a227
BG
1219 err = -EFAULT;
1220 if (get_user(p, pages + j + chunk_start))
1221 goto out_pm;
1222 pm[j].addr = (unsigned long) p;
1223
1224 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1225 goto out_pm;
1226
1227 err = -ENODEV;
6f5a55f1
LT
1228 if (node < 0 || node >= MAX_NUMNODES)
1229 goto out_pm;
1230
5e9a0f02
BG
1231 if (!node_state(node, N_HIGH_MEMORY))
1232 goto out_pm;
1233
1234 err = -EACCES;
1235 if (!node_isset(node, task_nodes))
1236 goto out_pm;
1237
3140a227
BG
1238 pm[j].node = node;
1239 }
1240
1241 /* End marker for this chunk */
1242 pm[chunk_nr_pages].node = MAX_NUMNODES;
1243
1244 /* Migrate this chunk */
1245 err = do_move_page_to_node_array(mm, pm,
1246 flags & MPOL_MF_MOVE_ALL);
1247 if (err < 0)
1248 goto out_pm;
5e9a0f02 1249
5e9a0f02 1250 /* Return status information */
3140a227
BG
1251 for (j = 0; j < chunk_nr_pages; j++)
1252 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1253 err = -EFAULT;
3140a227
BG
1254 goto out_pm;
1255 }
1256 }
1257 err = 0;
5e9a0f02
BG
1258
1259out_pm:
3140a227 1260 free_page((unsigned long)pm);
5e9a0f02
BG
1261out:
1262 return err;
1263}
1264
742755a1 1265/*
2f007e74 1266 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1267 */
80bba129
BG
1268static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1269 const void __user **pages, int *status)
742755a1 1270{
2f007e74 1271 unsigned long i;
2f007e74 1272
742755a1
CL
1273 down_read(&mm->mmap_sem);
1274
2f007e74 1275 for (i = 0; i < nr_pages; i++) {
80bba129 1276 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1277 struct vm_area_struct *vma;
1278 struct page *page;
c095adbc 1279 int err = -EFAULT;
2f007e74
BG
1280
1281 vma = find_vma(mm, addr);
70384dc6 1282 if (!vma || addr < vma->vm_start)
742755a1
CL
1283 goto set_status;
1284
2f007e74 1285 page = follow_page(vma, addr, 0);
89f5b7da
LT
1286
1287 err = PTR_ERR(page);
1288 if (IS_ERR(page))
1289 goto set_status;
1290
742755a1
CL
1291 err = -ENOENT;
1292 /* Use PageReserved to check for zero page */
62b61f61 1293 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1294 goto set_status;
1295
1296 err = page_to_nid(page);
1297set_status:
80bba129
BG
1298 *status = err;
1299
1300 pages++;
1301 status++;
1302 }
1303
1304 up_read(&mm->mmap_sem);
1305}
1306
1307/*
1308 * Determine the nodes of a user array of pages and store it in
1309 * a user array of status.
1310 */
1311static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1312 const void __user * __user *pages,
1313 int __user *status)
1314{
1315#define DO_PAGES_STAT_CHUNK_NR 16
1316 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1317 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1318
87b8d1ad
PA
1319 while (nr_pages) {
1320 unsigned long chunk_nr;
80bba129 1321
87b8d1ad
PA
1322 chunk_nr = nr_pages;
1323 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1324 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1325
1326 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1327 break;
80bba129
BG
1328
1329 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1330
87b8d1ad
PA
1331 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1332 break;
742755a1 1333
87b8d1ad
PA
1334 pages += chunk_nr;
1335 status += chunk_nr;
1336 nr_pages -= chunk_nr;
1337 }
1338 return nr_pages ? -EFAULT : 0;
742755a1
CL
1339}
1340
1341/*
1342 * Move a list of pages in the address space of the currently executing
1343 * process.
1344 */
938bb9f5
HC
1345SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1346 const void __user * __user *, pages,
1347 const int __user *, nodes,
1348 int __user *, status, int, flags)
742755a1 1349{
c69e8d9c 1350 const struct cred *cred = current_cred(), *tcred;
742755a1 1351 struct task_struct *task;
742755a1 1352 struct mm_struct *mm;
5e9a0f02 1353 int err;
742755a1
CL
1354
1355 /* Check flags */
1356 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1357 return -EINVAL;
1358
1359 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1360 return -EPERM;
1361
1362 /* Find the mm_struct */
a879bf58 1363 rcu_read_lock();
228ebcbe 1364 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1365 if (!task) {
a879bf58 1366 rcu_read_unlock();
742755a1
CL
1367 return -ESRCH;
1368 }
1369 mm = get_task_mm(task);
a879bf58 1370 rcu_read_unlock();
742755a1
CL
1371
1372 if (!mm)
1373 return -EINVAL;
1374
1375 /*
1376 * Check if this process has the right to modify the specified
1377 * process. The right exists if the process has administrative
1378 * capabilities, superuser privileges or the same
1379 * userid as the target process.
1380 */
c69e8d9c
DH
1381 rcu_read_lock();
1382 tcred = __task_cred(task);
b6dff3ec
DH
1383 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1384 cred->uid != tcred->suid && cred->uid != tcred->uid &&
742755a1 1385 !capable(CAP_SYS_NICE)) {
c69e8d9c 1386 rcu_read_unlock();
742755a1 1387 err = -EPERM;
5e9a0f02 1388 goto out;
742755a1 1389 }
c69e8d9c 1390 rcu_read_unlock();
742755a1 1391
86c3a764
DQ
1392 err = security_task_movememory(task);
1393 if (err)
5e9a0f02 1394 goto out;
86c3a764 1395
5e9a0f02
BG
1396 if (nodes) {
1397 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1398 flags);
1399 } else {
2f007e74 1400 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1
CL
1401 }
1402
742755a1 1403out:
742755a1
CL
1404 mmput(mm);
1405 return err;
1406}
742755a1 1407
7b2259b3
CL
1408/*
1409 * Call migration functions in the vma_ops that may prepare
1410 * memory in a vm for migration. migration functions may perform
1411 * the migration for vmas that do not have an underlying page struct.
1412 */
1413int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1414 const nodemask_t *from, unsigned long flags)
1415{
1416 struct vm_area_struct *vma;
1417 int err = 0;
1418
1001c9fb 1419 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1420 if (vma->vm_ops && vma->vm_ops->migrate) {
1421 err = vma->vm_ops->migrate(vma, to, from, flags);
1422 if (err)
1423 break;
1424 }
1425 }
1426 return err;
1427}
83d1674a 1428#endif