badpage: ratelimit print_bad_pte and bad_page
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
cddb8a5c 54#include <linux/mmu_notifier.h>
3dc14741
HD
55#include <linux/kallsyms.h>
56#include <linux/swapops.h>
57#include <linux/elf.h>
1da177e4
LT
58
59#include <asm/pgalloc.h>
60#include <asm/uaccess.h>
61#include <asm/tlb.h>
62#include <asm/tlbflush.h>
63#include <asm/pgtable.h>
64
42b77728
JB
65#include "internal.h"
66
d41dee36 67#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
68/* use the per-pgdat data instead for discontigmem - mbligh */
69unsigned long max_mapnr;
70struct page *mem_map;
71
72EXPORT_SYMBOL(max_mapnr);
73EXPORT_SYMBOL(mem_map);
74#endif
75
76unsigned long num_physpages;
77/*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84void * high_memory;
1da177e4
LT
85
86EXPORT_SYMBOL(num_physpages);
87EXPORT_SYMBOL(high_memory);
1da177e4 88
32a93233
IM
89/*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
94 */
95int randomize_va_space __read_mostly =
96#ifdef CONFIG_COMPAT_BRK
97 1;
98#else
99 2;
100#endif
a62eaf15
AK
101
102static int __init disable_randmaps(char *s)
103{
104 randomize_va_space = 0;
9b41046c 105 return 1;
a62eaf15
AK
106}
107__setup("norandmaps", disable_randmaps);
108
109
1da177e4
LT
110/*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116void pgd_clear_bad(pgd_t *pgd)
117{
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
120}
121
122void pud_clear_bad(pud_t *pud)
123{
124 pud_ERROR(*pud);
125 pud_clear(pud);
126}
127
128void pmd_clear_bad(pmd_t *pmd)
129{
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
132}
133
134/*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
e0da382c 138static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 139{
2f569afd 140 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 141 pmd_clear(pmd);
2f569afd 142 pte_free_tlb(tlb, token);
e0da382c 143 tlb->mm->nr_ptes--;
1da177e4
LT
144}
145
e0da382c
HD
146static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
1da177e4
LT
149{
150 pmd_t *pmd;
151 unsigned long next;
e0da382c 152 unsigned long start;
1da177e4 153
e0da382c 154 start = addr;
1da177e4 155 pmd = pmd_offset(pud, addr);
1da177e4
LT
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
e0da382c 160 free_pte_range(tlb, pmd);
1da177e4
LT
161 } while (pmd++, addr = next, addr != end);
162
e0da382c
HD
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
1da177e4 170 }
e0da382c
HD
171 if (end - 1 > ceiling - 1)
172 return;
173
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
1da177e4
LT
177}
178
e0da382c
HD
179static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
e0da382c 185 unsigned long start;
1da177e4 186
e0da382c 187 start = addr;
1da177e4 188 pud = pud_offset(pgd, addr);
1da177e4
LT
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
e0da382c 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
194 } while (pud++, addr = next, addr != end);
195
e0da382c
HD
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
1da177e4 203 }
e0da382c
HD
204 if (end - 1 > ceiling - 1)
205 return;
206
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
1da177e4
LT
210}
211
212/*
e0da382c
HD
213 * This function frees user-level page tables of a process.
214 *
1da177e4
LT
215 * Must be called with pagetable lock held.
216 */
42b77728 217void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
1da177e4
LT
220{
221 pgd_t *pgd;
222 unsigned long next;
e0da382c
HD
223 unsigned long start;
224
225 /*
226 * The next few lines have given us lots of grief...
227 *
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
231 *
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
239 *
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
244 *
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
249 */
1da177e4 250
e0da382c
HD
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
256 }
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
266
267 start = addr;
42b77728 268 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
42b77728 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 274 } while (pgd++, addr = next, addr != end);
e0da382c
HD
275}
276
42b77728 277void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 278 unsigned long floor, unsigned long ceiling)
e0da382c
HD
279{
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
283
8f4f8c16
HD
284 /*
285 * Hide vma from rmap and vmtruncate before freeing pgtables
286 */
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
289
9da61aef 290 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 292 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
293 } else {
294 /*
295 * Optimization: gather nearby vmas into one call down
296 */
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 298 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
299 vma = next;
300 next = vma->vm_next;
8f4f8c16
HD
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
3bf5ee95
HD
303 }
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
306 }
e0da382c
HD
307 vma = next;
308 }
1da177e4
LT
309}
310
1bb3630e 311int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 312{
2f569afd 313 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
314 if (!new)
315 return -ENOMEM;
316
362a61ad
NP
317 /*
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
321 *
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
329 */
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
c74df32c 332 spin_lock(&mm->page_table_lock);
2f569afd 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 334 mm->nr_ptes++;
1da177e4 335 pmd_populate(mm, pmd, new);
2f569afd 336 new = NULL;
1da177e4 337 }
c74df32c 338 spin_unlock(&mm->page_table_lock);
2f569afd
MS
339 if (new)
340 pte_free(mm, new);
1bb3630e 341 return 0;
1da177e4
LT
342}
343
1bb3630e 344int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 345{
1bb3630e
HD
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
349
362a61ad
NP
350 smp_wmb(); /* See comment in __pte_alloc */
351
1bb3630e 352 spin_lock(&init_mm.page_table_lock);
2f569afd 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 354 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
355 new = NULL;
356 }
1bb3630e 357 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
358 if (new)
359 pte_free_kernel(&init_mm, new);
1bb3630e 360 return 0;
1da177e4
LT
361}
362
ae859762
HD
363static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364{
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
369}
370
b5810039 371/*
6aab341e
LT
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
b5810039
NP
375 *
376 * The calling function must still handle the error.
377 */
3dc14741
HD
378static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379 pte_t pte, struct page *page)
b5810039 380{
3dc14741
HD
381 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382 pud_t *pud = pud_offset(pgd, addr);
383 pmd_t *pmd = pmd_offset(pud, addr);
384 struct address_space *mapping;
385 pgoff_t index;
d936cf9b
HD
386 static unsigned long resume;
387 static unsigned long nr_shown;
388 static unsigned long nr_unshown;
389
390 /*
391 * Allow a burst of 60 reports, then keep quiet for that minute;
392 * or allow a steady drip of one report per second.
393 */
394 if (nr_shown == 60) {
395 if (time_before(jiffies, resume)) {
396 nr_unshown++;
397 return;
398 }
399 if (nr_unshown) {
400 printk(KERN_EMERG
401 "Bad page map: %lu messages suppressed\n",
402 nr_unshown);
403 nr_unshown = 0;
404 }
405 nr_shown = 0;
406 }
407 if (nr_shown++ == 0)
408 resume = jiffies + 60 * HZ;
3dc14741
HD
409
410 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
411 index = linear_page_index(vma, addr);
412
413 printk(KERN_EMERG "Bad page map in process %s pte:%08llx pmd:%08llx\n",
414 current->comm,
415 (long long)pte_val(pte), (long long)pmd_val(*pmd));
416 if (page) {
417 printk(KERN_EMERG
418 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
419 page, (void *)page->flags, page_count(page),
420 page_mapcount(page), page->mapping, page->index);
421 }
422 printk(KERN_EMERG
423 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
424 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
425 /*
426 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
427 */
428 if (vma->vm_ops)
429 print_symbol(KERN_EMERG "vma->vm_ops->fault: %s\n",
430 (unsigned long)vma->vm_ops->fault);
431 if (vma->vm_file && vma->vm_file->f_op)
432 print_symbol(KERN_EMERG "vma->vm_file->f_op->mmap: %s\n",
433 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 434 dump_stack();
3dc14741 435 add_taint(TAINT_BAD_PAGE);
b5810039
NP
436}
437
67121172
LT
438static inline int is_cow_mapping(unsigned int flags)
439{
440 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
441}
442
ee498ed7 443/*
7e675137 444 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 445 *
7e675137
NP
446 * "Special" mappings do not wish to be associated with a "struct page" (either
447 * it doesn't exist, or it exists but they don't want to touch it). In this
448 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 449 *
7e675137
NP
450 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
451 * pte bit, in which case this function is trivial. Secondly, an architecture
452 * may not have a spare pte bit, which requires a more complicated scheme,
453 * described below.
454 *
455 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
456 * special mapping (even if there are underlying and valid "struct pages").
457 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 458 *
b379d790
JH
459 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
460 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
461 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
462 * mapping will always honor the rule
6aab341e
LT
463 *
464 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
465 *
7e675137
NP
466 * And for normal mappings this is false.
467 *
468 * This restricts such mappings to be a linear translation from virtual address
469 * to pfn. To get around this restriction, we allow arbitrary mappings so long
470 * as the vma is not a COW mapping; in that case, we know that all ptes are
471 * special (because none can have been COWed).
b379d790 472 *
b379d790 473 *
7e675137 474 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
475 *
476 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
477 * page" backing, however the difference is that _all_ pages with a struct
478 * page (that is, those where pfn_valid is true) are refcounted and considered
479 * normal pages by the VM. The disadvantage is that pages are refcounted
480 * (which can be slower and simply not an option for some PFNMAP users). The
481 * advantage is that we don't have to follow the strict linearity rule of
482 * PFNMAP mappings in order to support COWable mappings.
483 *
ee498ed7 484 */
7e675137
NP
485#ifdef __HAVE_ARCH_PTE_SPECIAL
486# define HAVE_PTE_SPECIAL 1
487#else
488# define HAVE_PTE_SPECIAL 0
489#endif
490struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
491 pte_t pte)
ee498ed7 492{
22b31eec 493 unsigned long pfn = pte_pfn(pte);
7e675137
NP
494
495 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
496 if (likely(!pte_special(pte)))
497 goto check_pfn;
498 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
499 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
500 return NULL;
501 }
502
503 /* !HAVE_PTE_SPECIAL case follows: */
504
b379d790
JH
505 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
506 if (vma->vm_flags & VM_MIXEDMAP) {
507 if (!pfn_valid(pfn))
508 return NULL;
509 goto out;
510 } else {
7e675137
NP
511 unsigned long off;
512 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
513 if (pfn == vma->vm_pgoff + off)
514 return NULL;
515 if (!is_cow_mapping(vma->vm_flags))
516 return NULL;
517 }
6aab341e
LT
518 }
519
22b31eec
HD
520check_pfn:
521 if (unlikely(pfn > highest_memmap_pfn)) {
522 print_bad_pte(vma, addr, pte, NULL);
523 return NULL;
524 }
6aab341e
LT
525
526 /*
7e675137 527 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 528 * eg. VDSO mappings can cause them to exist.
6aab341e 529 */
b379d790 530out:
6aab341e 531 return pfn_to_page(pfn);
ee498ed7
HD
532}
533
1da177e4
LT
534/*
535 * copy one vm_area from one task to the other. Assumes the page tables
536 * already present in the new task to be cleared in the whole range
537 * covered by this vma.
1da177e4
LT
538 */
539
8c103762 540static inline void
1da177e4 541copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 542 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 543 unsigned long addr, int *rss)
1da177e4 544{
b5810039 545 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
546 pte_t pte = *src_pte;
547 struct page *page;
1da177e4
LT
548
549 /* pte contains position in swap or file, so copy. */
550 if (unlikely(!pte_present(pte))) {
551 if (!pte_file(pte)) {
0697212a
CL
552 swp_entry_t entry = pte_to_swp_entry(pte);
553
554 swap_duplicate(entry);
1da177e4
LT
555 /* make sure dst_mm is on swapoff's mmlist. */
556 if (unlikely(list_empty(&dst_mm->mmlist))) {
557 spin_lock(&mmlist_lock);
f412ac08
HD
558 if (list_empty(&dst_mm->mmlist))
559 list_add(&dst_mm->mmlist,
560 &src_mm->mmlist);
1da177e4
LT
561 spin_unlock(&mmlist_lock);
562 }
0697212a
CL
563 if (is_write_migration_entry(entry) &&
564 is_cow_mapping(vm_flags)) {
565 /*
566 * COW mappings require pages in both parent
567 * and child to be set to read.
568 */
569 make_migration_entry_read(&entry);
570 pte = swp_entry_to_pte(entry);
571 set_pte_at(src_mm, addr, src_pte, pte);
572 }
1da177e4 573 }
ae859762 574 goto out_set_pte;
1da177e4
LT
575 }
576
1da177e4
LT
577 /*
578 * If it's a COW mapping, write protect it both
579 * in the parent and the child
580 */
67121172 581 if (is_cow_mapping(vm_flags)) {
1da177e4 582 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 583 pte = pte_wrprotect(pte);
1da177e4
LT
584 }
585
586 /*
587 * If it's a shared mapping, mark it clean in
588 * the child
589 */
590 if (vm_flags & VM_SHARED)
591 pte = pte_mkclean(pte);
592 pte = pte_mkold(pte);
6aab341e
LT
593
594 page = vm_normal_page(vma, addr, pte);
595 if (page) {
596 get_page(page);
c97a9e10 597 page_dup_rmap(page, vma, addr);
6aab341e
LT
598 rss[!!PageAnon(page)]++;
599 }
ae859762
HD
600
601out_set_pte:
602 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
603}
604
605static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
607 unsigned long addr, unsigned long end)
608{
609 pte_t *src_pte, *dst_pte;
c74df32c 610 spinlock_t *src_ptl, *dst_ptl;
e040f218 611 int progress = 0;
8c103762 612 int rss[2];
1da177e4
LT
613
614again:
ae859762 615 rss[1] = rss[0] = 0;
c74df32c 616 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
617 if (!dst_pte)
618 return -ENOMEM;
619 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 620 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 621 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 622 arch_enter_lazy_mmu_mode();
1da177e4 623
1da177e4
LT
624 do {
625 /*
626 * We are holding two locks at this point - either of them
627 * could generate latencies in another task on another CPU.
628 */
e040f218
HD
629 if (progress >= 32) {
630 progress = 0;
631 if (need_resched() ||
95c354fe 632 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
633 break;
634 }
1da177e4
LT
635 if (pte_none(*src_pte)) {
636 progress++;
637 continue;
638 }
8c103762 639 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
640 progress += 8;
641 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 642
6606c3e0 643 arch_leave_lazy_mmu_mode();
c74df32c 644 spin_unlock(src_ptl);
1da177e4 645 pte_unmap_nested(src_pte - 1);
ae859762 646 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
647 pte_unmap_unlock(dst_pte - 1, dst_ptl);
648 cond_resched();
1da177e4
LT
649 if (addr != end)
650 goto again;
651 return 0;
652}
653
654static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
655 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
656 unsigned long addr, unsigned long end)
657{
658 pmd_t *src_pmd, *dst_pmd;
659 unsigned long next;
660
661 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
662 if (!dst_pmd)
663 return -ENOMEM;
664 src_pmd = pmd_offset(src_pud, addr);
665 do {
666 next = pmd_addr_end(addr, end);
667 if (pmd_none_or_clear_bad(src_pmd))
668 continue;
669 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
670 vma, addr, next))
671 return -ENOMEM;
672 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
673 return 0;
674}
675
676static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
677 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
678 unsigned long addr, unsigned long end)
679{
680 pud_t *src_pud, *dst_pud;
681 unsigned long next;
682
683 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
684 if (!dst_pud)
685 return -ENOMEM;
686 src_pud = pud_offset(src_pgd, addr);
687 do {
688 next = pud_addr_end(addr, end);
689 if (pud_none_or_clear_bad(src_pud))
690 continue;
691 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
692 vma, addr, next))
693 return -ENOMEM;
694 } while (dst_pud++, src_pud++, addr = next, addr != end);
695 return 0;
696}
697
698int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699 struct vm_area_struct *vma)
700{
701 pgd_t *src_pgd, *dst_pgd;
702 unsigned long next;
703 unsigned long addr = vma->vm_start;
704 unsigned long end = vma->vm_end;
cddb8a5c 705 int ret;
1da177e4 706
d992895b
NP
707 /*
708 * Don't copy ptes where a page fault will fill them correctly.
709 * Fork becomes much lighter when there are big shared or private
710 * readonly mappings. The tradeoff is that copy_page_range is more
711 * efficient than faulting.
712 */
4d7672b4 713 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
714 if (!vma->anon_vma)
715 return 0;
716 }
717
1da177e4
LT
718 if (is_vm_hugetlb_page(vma))
719 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
720
34801ba9 721 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 722 /*
723 * We do not free on error cases below as remove_vma
724 * gets called on error from higher level routine
725 */
726 ret = track_pfn_vma_copy(vma);
727 if (ret)
728 return ret;
729 }
730
cddb8a5c
AA
731 /*
732 * We need to invalidate the secondary MMU mappings only when
733 * there could be a permission downgrade on the ptes of the
734 * parent mm. And a permission downgrade will only happen if
735 * is_cow_mapping() returns true.
736 */
737 if (is_cow_mapping(vma->vm_flags))
738 mmu_notifier_invalidate_range_start(src_mm, addr, end);
739
740 ret = 0;
1da177e4
LT
741 dst_pgd = pgd_offset(dst_mm, addr);
742 src_pgd = pgd_offset(src_mm, addr);
743 do {
744 next = pgd_addr_end(addr, end);
745 if (pgd_none_or_clear_bad(src_pgd))
746 continue;
cddb8a5c
AA
747 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
748 vma, addr, next))) {
749 ret = -ENOMEM;
750 break;
751 }
1da177e4 752 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
753
754 if (is_cow_mapping(vma->vm_flags))
755 mmu_notifier_invalidate_range_end(src_mm,
756 vma->vm_start, end);
757 return ret;
1da177e4
LT
758}
759
51c6f666 760static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 761 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 762 unsigned long addr, unsigned long end,
51c6f666 763 long *zap_work, struct zap_details *details)
1da177e4 764{
b5810039 765 struct mm_struct *mm = tlb->mm;
1da177e4 766 pte_t *pte;
508034a3 767 spinlock_t *ptl;
ae859762
HD
768 int file_rss = 0;
769 int anon_rss = 0;
1da177e4 770
508034a3 771 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 772 arch_enter_lazy_mmu_mode();
1da177e4
LT
773 do {
774 pte_t ptent = *pte;
51c6f666
RH
775 if (pte_none(ptent)) {
776 (*zap_work)--;
1da177e4 777 continue;
51c6f666 778 }
6f5e6b9e
HD
779
780 (*zap_work) -= PAGE_SIZE;
781
1da177e4 782 if (pte_present(ptent)) {
ee498ed7 783 struct page *page;
51c6f666 784
6aab341e 785 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
786 if (unlikely(details) && page) {
787 /*
788 * unmap_shared_mapping_pages() wants to
789 * invalidate cache without truncating:
790 * unmap shared but keep private pages.
791 */
792 if (details->check_mapping &&
793 details->check_mapping != page->mapping)
794 continue;
795 /*
796 * Each page->index must be checked when
797 * invalidating or truncating nonlinear.
798 */
799 if (details->nonlinear_vma &&
800 (page->index < details->first_index ||
801 page->index > details->last_index))
802 continue;
803 }
b5810039 804 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 805 tlb->fullmm);
1da177e4
LT
806 tlb_remove_tlb_entry(tlb, pte, addr);
807 if (unlikely(!page))
808 continue;
809 if (unlikely(details) && details->nonlinear_vma
810 && linear_page_index(details->nonlinear_vma,
811 addr) != page->index)
b5810039 812 set_pte_at(mm, addr, pte,
1da177e4 813 pgoff_to_pte(page->index));
1da177e4 814 if (PageAnon(page))
86d912f4 815 anon_rss--;
6237bcd9
HD
816 else {
817 if (pte_dirty(ptent))
818 set_page_dirty(page);
4917e5d0
JW
819 if (pte_young(ptent) &&
820 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 821 mark_page_accessed(page);
86d912f4 822 file_rss--;
6237bcd9 823 }
edc315fd 824 page_remove_rmap(page);
3dc14741
HD
825 if (unlikely(page_mapcount(page) < 0))
826 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
827 tlb_remove_page(tlb, page);
828 continue;
829 }
830 /*
831 * If details->check_mapping, we leave swap entries;
832 * if details->nonlinear_vma, we leave file entries.
833 */
834 if (unlikely(details))
835 continue;
2509ef26
HD
836 if (pte_file(ptent)) {
837 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
838 print_bad_pte(vma, addr, ptent, NULL);
839 } else if
840 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
841 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 842 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 843 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 844
86d912f4 845 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 846 arch_leave_lazy_mmu_mode();
508034a3 847 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
848
849 return addr;
1da177e4
LT
850}
851
51c6f666 852static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 853 struct vm_area_struct *vma, pud_t *pud,
1da177e4 854 unsigned long addr, unsigned long end,
51c6f666 855 long *zap_work, struct zap_details *details)
1da177e4
LT
856{
857 pmd_t *pmd;
858 unsigned long next;
859
860 pmd = pmd_offset(pud, addr);
861 do {
862 next = pmd_addr_end(addr, end);
51c6f666
RH
863 if (pmd_none_or_clear_bad(pmd)) {
864 (*zap_work)--;
1da177e4 865 continue;
51c6f666
RH
866 }
867 next = zap_pte_range(tlb, vma, pmd, addr, next,
868 zap_work, details);
869 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
870
871 return addr;
1da177e4
LT
872}
873
51c6f666 874static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 875 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 876 unsigned long addr, unsigned long end,
51c6f666 877 long *zap_work, struct zap_details *details)
1da177e4
LT
878{
879 pud_t *pud;
880 unsigned long next;
881
882 pud = pud_offset(pgd, addr);
883 do {
884 next = pud_addr_end(addr, end);
51c6f666
RH
885 if (pud_none_or_clear_bad(pud)) {
886 (*zap_work)--;
1da177e4 887 continue;
51c6f666
RH
888 }
889 next = zap_pmd_range(tlb, vma, pud, addr, next,
890 zap_work, details);
891 } while (pud++, addr = next, (addr != end && *zap_work > 0));
892
893 return addr;
1da177e4
LT
894}
895
51c6f666
RH
896static unsigned long unmap_page_range(struct mmu_gather *tlb,
897 struct vm_area_struct *vma,
1da177e4 898 unsigned long addr, unsigned long end,
51c6f666 899 long *zap_work, struct zap_details *details)
1da177e4
LT
900{
901 pgd_t *pgd;
902 unsigned long next;
903
904 if (details && !details->check_mapping && !details->nonlinear_vma)
905 details = NULL;
906
907 BUG_ON(addr >= end);
908 tlb_start_vma(tlb, vma);
909 pgd = pgd_offset(vma->vm_mm, addr);
910 do {
911 next = pgd_addr_end(addr, end);
51c6f666
RH
912 if (pgd_none_or_clear_bad(pgd)) {
913 (*zap_work)--;
1da177e4 914 continue;
51c6f666
RH
915 }
916 next = zap_pud_range(tlb, vma, pgd, addr, next,
917 zap_work, details);
918 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 919 tlb_end_vma(tlb, vma);
51c6f666
RH
920
921 return addr;
1da177e4
LT
922}
923
924#ifdef CONFIG_PREEMPT
925# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
926#else
927/* No preempt: go for improved straight-line efficiency */
928# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
929#endif
930
931/**
932 * unmap_vmas - unmap a range of memory covered by a list of vma's
933 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
934 * @vma: the starting vma
935 * @start_addr: virtual address at which to start unmapping
936 * @end_addr: virtual address at which to end unmapping
937 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
938 * @details: details of nonlinear truncation or shared cache invalidation
939 *
ee39b37b 940 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 941 *
508034a3 942 * Unmap all pages in the vma list.
1da177e4 943 *
508034a3
HD
944 * We aim to not hold locks for too long (for scheduling latency reasons).
945 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
946 * return the ending mmu_gather to the caller.
947 *
948 * Only addresses between `start' and `end' will be unmapped.
949 *
950 * The VMA list must be sorted in ascending virtual address order.
951 *
952 * unmap_vmas() assumes that the caller will flush the whole unmapped address
953 * range after unmap_vmas() returns. So the only responsibility here is to
954 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
955 * drops the lock and schedules.
956 */
508034a3 957unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
958 struct vm_area_struct *vma, unsigned long start_addr,
959 unsigned long end_addr, unsigned long *nr_accounted,
960 struct zap_details *details)
961{
51c6f666 962 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
963 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
964 int tlb_start_valid = 0;
ee39b37b 965 unsigned long start = start_addr;
1da177e4 966 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 967 int fullmm = (*tlbp)->fullmm;
cddb8a5c 968 struct mm_struct *mm = vma->vm_mm;
1da177e4 969
cddb8a5c 970 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 971 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
972 unsigned long end;
973
974 start = max(vma->vm_start, start_addr);
975 if (start >= vma->vm_end)
976 continue;
977 end = min(vma->vm_end, end_addr);
978 if (end <= vma->vm_start)
979 continue;
980
981 if (vma->vm_flags & VM_ACCOUNT)
982 *nr_accounted += (end - start) >> PAGE_SHIFT;
983
34801ba9 984 if (unlikely(is_pfn_mapping(vma)))
2ab64037 985 untrack_pfn_vma(vma, 0, 0);
986
1da177e4 987 while (start != end) {
1da177e4
LT
988 if (!tlb_start_valid) {
989 tlb_start = start;
990 tlb_start_valid = 1;
991 }
992
51c6f666 993 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
994 /*
995 * It is undesirable to test vma->vm_file as it
996 * should be non-null for valid hugetlb area.
997 * However, vm_file will be NULL in the error
998 * cleanup path of do_mmap_pgoff. When
999 * hugetlbfs ->mmap method fails,
1000 * do_mmap_pgoff() nullifies vma->vm_file
1001 * before calling this function to clean up.
1002 * Since no pte has actually been setup, it is
1003 * safe to do nothing in this case.
1004 */
1005 if (vma->vm_file) {
1006 unmap_hugepage_range(vma, start, end, NULL);
1007 zap_work -= (end - start) /
a5516438 1008 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1009 }
1010
51c6f666
RH
1011 start = end;
1012 } else
1013 start = unmap_page_range(*tlbp, vma,
1014 start, end, &zap_work, details);
1015
1016 if (zap_work > 0) {
1017 BUG_ON(start != end);
1018 break;
1da177e4
LT
1019 }
1020
1da177e4
LT
1021 tlb_finish_mmu(*tlbp, tlb_start, start);
1022
1023 if (need_resched() ||
95c354fe 1024 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1025 if (i_mmap_lock) {
508034a3 1026 *tlbp = NULL;
1da177e4
LT
1027 goto out;
1028 }
1da177e4 1029 cond_resched();
1da177e4
LT
1030 }
1031
508034a3 1032 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1033 tlb_start_valid = 0;
51c6f666 1034 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1035 }
1036 }
1037out:
cddb8a5c 1038 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1039 return start; /* which is now the end (or restart) address */
1da177e4
LT
1040}
1041
1042/**
1043 * zap_page_range - remove user pages in a given range
1044 * @vma: vm_area_struct holding the applicable pages
1045 * @address: starting address of pages to zap
1046 * @size: number of bytes to zap
1047 * @details: details of nonlinear truncation or shared cache invalidation
1048 */
ee39b37b 1049unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1050 unsigned long size, struct zap_details *details)
1051{
1052 struct mm_struct *mm = vma->vm_mm;
1053 struct mmu_gather *tlb;
1054 unsigned long end = address + size;
1055 unsigned long nr_accounted = 0;
1056
1da177e4 1057 lru_add_drain();
1da177e4 1058 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1059 update_hiwater_rss(mm);
508034a3
HD
1060 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1061 if (tlb)
1062 tlb_finish_mmu(tlb, address, end);
ee39b37b 1063 return end;
1da177e4
LT
1064}
1065
c627f9cc
JS
1066/**
1067 * zap_vma_ptes - remove ptes mapping the vma
1068 * @vma: vm_area_struct holding ptes to be zapped
1069 * @address: starting address of pages to zap
1070 * @size: number of bytes to zap
1071 *
1072 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1073 *
1074 * The entire address range must be fully contained within the vma.
1075 *
1076 * Returns 0 if successful.
1077 */
1078int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1079 unsigned long size)
1080{
1081 if (address < vma->vm_start || address + size > vma->vm_end ||
1082 !(vma->vm_flags & VM_PFNMAP))
1083 return -1;
1084 zap_page_range(vma, address, size, NULL);
1085 return 0;
1086}
1087EXPORT_SYMBOL_GPL(zap_vma_ptes);
1088
1da177e4
LT
1089/*
1090 * Do a quick page-table lookup for a single page.
1da177e4 1091 */
6aab341e 1092struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1093 unsigned int flags)
1da177e4
LT
1094{
1095 pgd_t *pgd;
1096 pud_t *pud;
1097 pmd_t *pmd;
1098 pte_t *ptep, pte;
deceb6cd 1099 spinlock_t *ptl;
1da177e4 1100 struct page *page;
6aab341e 1101 struct mm_struct *mm = vma->vm_mm;
1da177e4 1102
deceb6cd
HD
1103 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1104 if (!IS_ERR(page)) {
1105 BUG_ON(flags & FOLL_GET);
1106 goto out;
1107 }
1da177e4 1108
deceb6cd 1109 page = NULL;
1da177e4
LT
1110 pgd = pgd_offset(mm, address);
1111 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1112 goto no_page_table;
1da177e4
LT
1113
1114 pud = pud_offset(pgd, address);
ceb86879 1115 if (pud_none(*pud))
deceb6cd 1116 goto no_page_table;
ceb86879
AK
1117 if (pud_huge(*pud)) {
1118 BUG_ON(flags & FOLL_GET);
1119 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1120 goto out;
1121 }
1122 if (unlikely(pud_bad(*pud)))
1123 goto no_page_table;
1124
1da177e4 1125 pmd = pmd_offset(pud, address);
aeed5fce 1126 if (pmd_none(*pmd))
deceb6cd 1127 goto no_page_table;
deceb6cd
HD
1128 if (pmd_huge(*pmd)) {
1129 BUG_ON(flags & FOLL_GET);
1130 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1131 goto out;
deceb6cd 1132 }
aeed5fce
HD
1133 if (unlikely(pmd_bad(*pmd)))
1134 goto no_page_table;
1135
deceb6cd 1136 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1137
1138 pte = *ptep;
deceb6cd 1139 if (!pte_present(pte))
89f5b7da 1140 goto no_page;
deceb6cd
HD
1141 if ((flags & FOLL_WRITE) && !pte_write(pte))
1142 goto unlock;
6aab341e
LT
1143 page = vm_normal_page(vma, address, pte);
1144 if (unlikely(!page))
89f5b7da 1145 goto bad_page;
1da177e4 1146
deceb6cd
HD
1147 if (flags & FOLL_GET)
1148 get_page(page);
1149 if (flags & FOLL_TOUCH) {
1150 if ((flags & FOLL_WRITE) &&
1151 !pte_dirty(pte) && !PageDirty(page))
1152 set_page_dirty(page);
1153 mark_page_accessed(page);
1154 }
1155unlock:
1156 pte_unmap_unlock(ptep, ptl);
1da177e4 1157out:
deceb6cd 1158 return page;
1da177e4 1159
89f5b7da
LT
1160bad_page:
1161 pte_unmap_unlock(ptep, ptl);
1162 return ERR_PTR(-EFAULT);
1163
1164no_page:
1165 pte_unmap_unlock(ptep, ptl);
1166 if (!pte_none(pte))
1167 return page;
1168 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1169no_page_table:
1170 /*
1171 * When core dumping an enormous anonymous area that nobody
1172 * has touched so far, we don't want to allocate page tables.
1173 */
1174 if (flags & FOLL_ANON) {
557ed1fa 1175 page = ZERO_PAGE(0);
deceb6cd
HD
1176 if (flags & FOLL_GET)
1177 get_page(page);
1178 BUG_ON(flags & FOLL_WRITE);
1179 }
1180 return page;
1da177e4
LT
1181}
1182
672ca28e
LT
1183/* Can we do the FOLL_ANON optimization? */
1184static inline int use_zero_page(struct vm_area_struct *vma)
1185{
1186 /*
1187 * We don't want to optimize FOLL_ANON for make_pages_present()
1188 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1189 * we want to get the page from the page tables to make sure
1190 * that we serialize and update with any other user of that
1191 * mapping.
1192 */
1193 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1194 return 0;
1195 /*
0d71d10a 1196 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1197 */
0d71d10a 1198 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1199}
1200
b291f000
NP
1201
1202
1203int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1204 unsigned long start, int len, int flags,
1da177e4
LT
1205 struct page **pages, struct vm_area_struct **vmas)
1206{
1207 int i;
b291f000
NP
1208 unsigned int vm_flags = 0;
1209 int write = !!(flags & GUP_FLAGS_WRITE);
1210 int force = !!(flags & GUP_FLAGS_FORCE);
1211 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1da177e4 1212
900cf086
JC
1213 if (len <= 0)
1214 return 0;
1da177e4
LT
1215 /*
1216 * Require read or write permissions.
1217 * If 'force' is set, we only require the "MAY" flags.
1218 */
deceb6cd
HD
1219 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1220 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1221 i = 0;
1222
1223 do {
deceb6cd
HD
1224 struct vm_area_struct *vma;
1225 unsigned int foll_flags;
1da177e4
LT
1226
1227 vma = find_extend_vma(mm, start);
1228 if (!vma && in_gate_area(tsk, start)) {
1229 unsigned long pg = start & PAGE_MASK;
1230 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1231 pgd_t *pgd;
1232 pud_t *pud;
1233 pmd_t *pmd;
1234 pte_t *pte;
b291f000
NP
1235
1236 /* user gate pages are read-only */
1237 if (!ignore && write)
1da177e4
LT
1238 return i ? : -EFAULT;
1239 if (pg > TASK_SIZE)
1240 pgd = pgd_offset_k(pg);
1241 else
1242 pgd = pgd_offset_gate(mm, pg);
1243 BUG_ON(pgd_none(*pgd));
1244 pud = pud_offset(pgd, pg);
1245 BUG_ON(pud_none(*pud));
1246 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1247 if (pmd_none(*pmd))
1248 return i ? : -EFAULT;
1da177e4 1249 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1250 if (pte_none(*pte)) {
1251 pte_unmap(pte);
1252 return i ? : -EFAULT;
1253 }
1da177e4 1254 if (pages) {
fa2a455b 1255 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1256 pages[i] = page;
1257 if (page)
1258 get_page(page);
1da177e4
LT
1259 }
1260 pte_unmap(pte);
1261 if (vmas)
1262 vmas[i] = gate_vma;
1263 i++;
1264 start += PAGE_SIZE;
1265 len--;
1266 continue;
1267 }
1268
b291f000
NP
1269 if (!vma ||
1270 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1271 (!ignore && !(vm_flags & vma->vm_flags)))
1da177e4
LT
1272 return i ? : -EFAULT;
1273
1274 if (is_vm_hugetlb_page(vma)) {
1275 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1276 &start, &len, i, write);
1da177e4
LT
1277 continue;
1278 }
deceb6cd
HD
1279
1280 foll_flags = FOLL_TOUCH;
1281 if (pages)
1282 foll_flags |= FOLL_GET;
672ca28e 1283 if (!write && use_zero_page(vma))
deceb6cd
HD
1284 foll_flags |= FOLL_ANON;
1285
1da177e4 1286 do {
08ef4729 1287 struct page *page;
1da177e4 1288
462e00cc
ES
1289 /*
1290 * If tsk is ooming, cut off its access to large memory
1291 * allocations. It has a pending SIGKILL, but it can't
1292 * be processed until returning to user space.
1293 */
1294 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1295 return i ? i : -ENOMEM;
462e00cc 1296
deceb6cd
HD
1297 if (write)
1298 foll_flags |= FOLL_WRITE;
a68d2ebc 1299
deceb6cd 1300 cond_resched();
6aab341e 1301 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1302 int ret;
83c54070 1303 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1304 foll_flags & FOLL_WRITE);
83c54070
NP
1305 if (ret & VM_FAULT_ERROR) {
1306 if (ret & VM_FAULT_OOM)
1307 return i ? i : -ENOMEM;
1308 else if (ret & VM_FAULT_SIGBUS)
1309 return i ? i : -EFAULT;
1310 BUG();
1311 }
1312 if (ret & VM_FAULT_MAJOR)
1313 tsk->maj_flt++;
1314 else
1315 tsk->min_flt++;
1316
a68d2ebc 1317 /*
83c54070
NP
1318 * The VM_FAULT_WRITE bit tells us that
1319 * do_wp_page has broken COW when necessary,
1320 * even if maybe_mkwrite decided not to set
1321 * pte_write. We can thus safely do subsequent
878b63ac
HD
1322 * page lookups as if they were reads. But only
1323 * do so when looping for pte_write is futile:
1324 * in some cases userspace may also be wanting
1325 * to write to the gotten user page, which a
1326 * read fault here might prevent (a readonly
1327 * page might get reCOWed by userspace write).
a68d2ebc 1328 */
878b63ac
HD
1329 if ((ret & VM_FAULT_WRITE) &&
1330 !(vma->vm_flags & VM_WRITE))
deceb6cd 1331 foll_flags &= ~FOLL_WRITE;
83c54070 1332
7f7bbbe5 1333 cond_resched();
1da177e4 1334 }
89f5b7da
LT
1335 if (IS_ERR(page))
1336 return i ? i : PTR_ERR(page);
1da177e4 1337 if (pages) {
08ef4729 1338 pages[i] = page;
03beb076 1339
a6f36be3 1340 flush_anon_page(vma, page, start);
08ef4729 1341 flush_dcache_page(page);
1da177e4
LT
1342 }
1343 if (vmas)
1344 vmas[i] = vma;
1345 i++;
1346 start += PAGE_SIZE;
1347 len--;
08ef4729 1348 } while (len && start < vma->vm_end);
08ef4729 1349 } while (len);
1da177e4
LT
1350 return i;
1351}
b291f000
NP
1352
1353int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1354 unsigned long start, int len, int write, int force,
1355 struct page **pages, struct vm_area_struct **vmas)
1356{
1357 int flags = 0;
1358
1359 if (write)
1360 flags |= GUP_FLAGS_WRITE;
1361 if (force)
1362 flags |= GUP_FLAGS_FORCE;
1363
1364 return __get_user_pages(tsk, mm,
1365 start, len, flags,
1366 pages, vmas);
1367}
1368
1da177e4
LT
1369EXPORT_SYMBOL(get_user_pages);
1370
920c7a5d
HH
1371pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1372 spinlock_t **ptl)
c9cfcddf
LT
1373{
1374 pgd_t * pgd = pgd_offset(mm, addr);
1375 pud_t * pud = pud_alloc(mm, pgd, addr);
1376 if (pud) {
49c91fb0 1377 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1378 if (pmd)
1379 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1380 }
1381 return NULL;
1382}
1383
238f58d8
LT
1384/*
1385 * This is the old fallback for page remapping.
1386 *
1387 * For historical reasons, it only allows reserved pages. Only
1388 * old drivers should use this, and they needed to mark their
1389 * pages reserved for the old functions anyway.
1390 */
423bad60
NP
1391static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1392 struct page *page, pgprot_t prot)
238f58d8 1393{
423bad60 1394 struct mm_struct *mm = vma->vm_mm;
238f58d8 1395 int retval;
c9cfcddf 1396 pte_t *pte;
8a9f3ccd
BS
1397 spinlock_t *ptl;
1398
238f58d8 1399 retval = -EINVAL;
a145dd41 1400 if (PageAnon(page))
5b4e655e 1401 goto out;
238f58d8
LT
1402 retval = -ENOMEM;
1403 flush_dcache_page(page);
c9cfcddf 1404 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1405 if (!pte)
5b4e655e 1406 goto out;
238f58d8
LT
1407 retval = -EBUSY;
1408 if (!pte_none(*pte))
1409 goto out_unlock;
1410
1411 /* Ok, finally just insert the thing.. */
1412 get_page(page);
1413 inc_mm_counter(mm, file_rss);
1414 page_add_file_rmap(page);
1415 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1416
1417 retval = 0;
8a9f3ccd
BS
1418 pte_unmap_unlock(pte, ptl);
1419 return retval;
238f58d8
LT
1420out_unlock:
1421 pte_unmap_unlock(pte, ptl);
1422out:
1423 return retval;
1424}
1425
bfa5bf6d
REB
1426/**
1427 * vm_insert_page - insert single page into user vma
1428 * @vma: user vma to map to
1429 * @addr: target user address of this page
1430 * @page: source kernel page
1431 *
a145dd41
LT
1432 * This allows drivers to insert individual pages they've allocated
1433 * into a user vma.
1434 *
1435 * The page has to be a nice clean _individual_ kernel allocation.
1436 * If you allocate a compound page, you need to have marked it as
1437 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1438 * (see split_page()).
a145dd41
LT
1439 *
1440 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1441 * took an arbitrary page protection parameter. This doesn't allow
1442 * that. Your vma protection will have to be set up correctly, which
1443 * means that if you want a shared writable mapping, you'd better
1444 * ask for a shared writable mapping!
1445 *
1446 * The page does not need to be reserved.
1447 */
423bad60
NP
1448int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1449 struct page *page)
a145dd41
LT
1450{
1451 if (addr < vma->vm_start || addr >= vma->vm_end)
1452 return -EFAULT;
1453 if (!page_count(page))
1454 return -EINVAL;
4d7672b4 1455 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1456 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1457}
e3c3374f 1458EXPORT_SYMBOL(vm_insert_page);
a145dd41 1459
423bad60
NP
1460static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1461 unsigned long pfn, pgprot_t prot)
1462{
1463 struct mm_struct *mm = vma->vm_mm;
1464 int retval;
1465 pte_t *pte, entry;
1466 spinlock_t *ptl;
1467
1468 retval = -ENOMEM;
1469 pte = get_locked_pte(mm, addr, &ptl);
1470 if (!pte)
1471 goto out;
1472 retval = -EBUSY;
1473 if (!pte_none(*pte))
1474 goto out_unlock;
1475
1476 /* Ok, finally just insert the thing.. */
1477 entry = pte_mkspecial(pfn_pte(pfn, prot));
1478 set_pte_at(mm, addr, pte, entry);
1479 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1480
1481 retval = 0;
1482out_unlock:
1483 pte_unmap_unlock(pte, ptl);
1484out:
1485 return retval;
1486}
1487
e0dc0d8f
NP
1488/**
1489 * vm_insert_pfn - insert single pfn into user vma
1490 * @vma: user vma to map to
1491 * @addr: target user address of this page
1492 * @pfn: source kernel pfn
1493 *
1494 * Similar to vm_inert_page, this allows drivers to insert individual pages
1495 * they've allocated into a user vma. Same comments apply.
1496 *
1497 * This function should only be called from a vm_ops->fault handler, and
1498 * in that case the handler should return NULL.
0d71d10a
NP
1499 *
1500 * vma cannot be a COW mapping.
1501 *
1502 * As this is called only for pages that do not currently exist, we
1503 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1504 */
1505int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1506 unsigned long pfn)
e0dc0d8f 1507{
2ab64037 1508 int ret;
7e675137
NP
1509 /*
1510 * Technically, architectures with pte_special can avoid all these
1511 * restrictions (same for remap_pfn_range). However we would like
1512 * consistency in testing and feature parity among all, so we should
1513 * try to keep these invariants in place for everybody.
1514 */
b379d790
JH
1515 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1516 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1517 (VM_PFNMAP|VM_MIXEDMAP));
1518 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1519 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1520
423bad60
NP
1521 if (addr < vma->vm_start || addr >= vma->vm_end)
1522 return -EFAULT;
2ab64037 1523 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1524 return -EINVAL;
1525
1526 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1527
1528 if (ret)
1529 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1530
1531 return ret;
423bad60
NP
1532}
1533EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1534
423bad60
NP
1535int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1536 unsigned long pfn)
1537{
1538 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1539
423bad60
NP
1540 if (addr < vma->vm_start || addr >= vma->vm_end)
1541 return -EFAULT;
e0dc0d8f 1542
423bad60
NP
1543 /*
1544 * If we don't have pte special, then we have to use the pfn_valid()
1545 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1546 * refcount the page if pfn_valid is true (hence insert_page rather
1547 * than insert_pfn).
1548 */
1549 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1550 struct page *page;
1551
1552 page = pfn_to_page(pfn);
1553 return insert_page(vma, addr, page, vma->vm_page_prot);
1554 }
1555 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1556}
423bad60 1557EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1558
1da177e4
LT
1559/*
1560 * maps a range of physical memory into the requested pages. the old
1561 * mappings are removed. any references to nonexistent pages results
1562 * in null mappings (currently treated as "copy-on-access")
1563 */
1564static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1565 unsigned long addr, unsigned long end,
1566 unsigned long pfn, pgprot_t prot)
1567{
1568 pte_t *pte;
c74df32c 1569 spinlock_t *ptl;
1da177e4 1570
c74df32c 1571 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1572 if (!pte)
1573 return -ENOMEM;
6606c3e0 1574 arch_enter_lazy_mmu_mode();
1da177e4
LT
1575 do {
1576 BUG_ON(!pte_none(*pte));
7e675137 1577 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1578 pfn++;
1579 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1580 arch_leave_lazy_mmu_mode();
c74df32c 1581 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1582 return 0;
1583}
1584
1585static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1586 unsigned long addr, unsigned long end,
1587 unsigned long pfn, pgprot_t prot)
1588{
1589 pmd_t *pmd;
1590 unsigned long next;
1591
1592 pfn -= addr >> PAGE_SHIFT;
1593 pmd = pmd_alloc(mm, pud, addr);
1594 if (!pmd)
1595 return -ENOMEM;
1596 do {
1597 next = pmd_addr_end(addr, end);
1598 if (remap_pte_range(mm, pmd, addr, next,
1599 pfn + (addr >> PAGE_SHIFT), prot))
1600 return -ENOMEM;
1601 } while (pmd++, addr = next, addr != end);
1602 return 0;
1603}
1604
1605static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1606 unsigned long addr, unsigned long end,
1607 unsigned long pfn, pgprot_t prot)
1608{
1609 pud_t *pud;
1610 unsigned long next;
1611
1612 pfn -= addr >> PAGE_SHIFT;
1613 pud = pud_alloc(mm, pgd, addr);
1614 if (!pud)
1615 return -ENOMEM;
1616 do {
1617 next = pud_addr_end(addr, end);
1618 if (remap_pmd_range(mm, pud, addr, next,
1619 pfn + (addr >> PAGE_SHIFT), prot))
1620 return -ENOMEM;
1621 } while (pud++, addr = next, addr != end);
1622 return 0;
1623}
1624
bfa5bf6d
REB
1625/**
1626 * remap_pfn_range - remap kernel memory to userspace
1627 * @vma: user vma to map to
1628 * @addr: target user address to start at
1629 * @pfn: physical address of kernel memory
1630 * @size: size of map area
1631 * @prot: page protection flags for this mapping
1632 *
1633 * Note: this is only safe if the mm semaphore is held when called.
1634 */
1da177e4
LT
1635int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1636 unsigned long pfn, unsigned long size, pgprot_t prot)
1637{
1638 pgd_t *pgd;
1639 unsigned long next;
2d15cab8 1640 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1641 struct mm_struct *mm = vma->vm_mm;
1642 int err;
1643
1644 /*
1645 * Physically remapped pages are special. Tell the
1646 * rest of the world about it:
1647 * VM_IO tells people not to look at these pages
1648 * (accesses can have side effects).
0b14c179
HD
1649 * VM_RESERVED is specified all over the place, because
1650 * in 2.4 it kept swapout's vma scan off this vma; but
1651 * in 2.6 the LRU scan won't even find its pages, so this
1652 * flag means no more than count its pages in reserved_vm,
1653 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1654 * VM_PFNMAP tells the core MM that the base pages are just
1655 * raw PFN mappings, and do not have a "struct page" associated
1656 * with them.
fb155c16
LT
1657 *
1658 * There's a horrible special case to handle copy-on-write
1659 * behaviour that some programs depend on. We mark the "original"
1660 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1661 */
3c8bb73a 1662 if (addr == vma->vm_start && end == vma->vm_end)
fb155c16 1663 vma->vm_pgoff = pfn;
3c8bb73a 1664 else if (is_cow_mapping(vma->vm_flags))
1665 return -EINVAL;
fb155c16 1666
6aab341e 1667 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1668
2ab64037 1669 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1670 if (err)
1671 return -EINVAL;
1672
1da177e4
LT
1673 BUG_ON(addr >= end);
1674 pfn -= addr >> PAGE_SHIFT;
1675 pgd = pgd_offset(mm, addr);
1676 flush_cache_range(vma, addr, end);
1da177e4
LT
1677 do {
1678 next = pgd_addr_end(addr, end);
1679 err = remap_pud_range(mm, pgd, addr, next,
1680 pfn + (addr >> PAGE_SHIFT), prot);
1681 if (err)
1682 break;
1683 } while (pgd++, addr = next, addr != end);
2ab64037 1684
1685 if (err)
1686 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1687
1da177e4
LT
1688 return err;
1689}
1690EXPORT_SYMBOL(remap_pfn_range);
1691
aee16b3c
JF
1692static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1693 unsigned long addr, unsigned long end,
1694 pte_fn_t fn, void *data)
1695{
1696 pte_t *pte;
1697 int err;
2f569afd 1698 pgtable_t token;
94909914 1699 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1700
1701 pte = (mm == &init_mm) ?
1702 pte_alloc_kernel(pmd, addr) :
1703 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1704 if (!pte)
1705 return -ENOMEM;
1706
1707 BUG_ON(pmd_huge(*pmd));
1708
38e0edb1
JF
1709 arch_enter_lazy_mmu_mode();
1710
2f569afd 1711 token = pmd_pgtable(*pmd);
aee16b3c
JF
1712
1713 do {
2f569afd 1714 err = fn(pte, token, addr, data);
aee16b3c
JF
1715 if (err)
1716 break;
1717 } while (pte++, addr += PAGE_SIZE, addr != end);
1718
38e0edb1
JF
1719 arch_leave_lazy_mmu_mode();
1720
aee16b3c
JF
1721 if (mm != &init_mm)
1722 pte_unmap_unlock(pte-1, ptl);
1723 return err;
1724}
1725
1726static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1727 unsigned long addr, unsigned long end,
1728 pte_fn_t fn, void *data)
1729{
1730 pmd_t *pmd;
1731 unsigned long next;
1732 int err;
1733
ceb86879
AK
1734 BUG_ON(pud_huge(*pud));
1735
aee16b3c
JF
1736 pmd = pmd_alloc(mm, pud, addr);
1737 if (!pmd)
1738 return -ENOMEM;
1739 do {
1740 next = pmd_addr_end(addr, end);
1741 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1742 if (err)
1743 break;
1744 } while (pmd++, addr = next, addr != end);
1745 return err;
1746}
1747
1748static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1749 unsigned long addr, unsigned long end,
1750 pte_fn_t fn, void *data)
1751{
1752 pud_t *pud;
1753 unsigned long next;
1754 int err;
1755
1756 pud = pud_alloc(mm, pgd, addr);
1757 if (!pud)
1758 return -ENOMEM;
1759 do {
1760 next = pud_addr_end(addr, end);
1761 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1762 if (err)
1763 break;
1764 } while (pud++, addr = next, addr != end);
1765 return err;
1766}
1767
1768/*
1769 * Scan a region of virtual memory, filling in page tables as necessary
1770 * and calling a provided function on each leaf page table.
1771 */
1772int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1773 unsigned long size, pte_fn_t fn, void *data)
1774{
1775 pgd_t *pgd;
1776 unsigned long next;
cddb8a5c 1777 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1778 int err;
1779
1780 BUG_ON(addr >= end);
cddb8a5c 1781 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1782 pgd = pgd_offset(mm, addr);
1783 do {
1784 next = pgd_addr_end(addr, end);
1785 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1786 if (err)
1787 break;
1788 } while (pgd++, addr = next, addr != end);
cddb8a5c 1789 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1790 return err;
1791}
1792EXPORT_SYMBOL_GPL(apply_to_page_range);
1793
8f4e2101
HD
1794/*
1795 * handle_pte_fault chooses page fault handler according to an entry
1796 * which was read non-atomically. Before making any commitment, on
1797 * those architectures or configurations (e.g. i386 with PAE) which
1798 * might give a mix of unmatched parts, do_swap_page and do_file_page
1799 * must check under lock before unmapping the pte and proceeding
1800 * (but do_wp_page is only called after already making such a check;
1801 * and do_anonymous_page and do_no_page can safely check later on).
1802 */
4c21e2f2 1803static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1804 pte_t *page_table, pte_t orig_pte)
1805{
1806 int same = 1;
1807#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1808 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1809 spinlock_t *ptl = pte_lockptr(mm, pmd);
1810 spin_lock(ptl);
8f4e2101 1811 same = pte_same(*page_table, orig_pte);
4c21e2f2 1812 spin_unlock(ptl);
8f4e2101
HD
1813 }
1814#endif
1815 pte_unmap(page_table);
1816 return same;
1817}
1818
1da177e4
LT
1819/*
1820 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1821 * servicing faults for write access. In the normal case, do always want
1822 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1823 * that do not have writing enabled, when used by access_process_vm.
1824 */
1825static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1826{
1827 if (likely(vma->vm_flags & VM_WRITE))
1828 pte = pte_mkwrite(pte);
1829 return pte;
1830}
1831
9de455b2 1832static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1833{
1834 /*
1835 * If the source page was a PFN mapping, we don't have
1836 * a "struct page" for it. We do a best-effort copy by
1837 * just copying from the original user address. If that
1838 * fails, we just zero-fill it. Live with it.
1839 */
1840 if (unlikely(!src)) {
1841 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1842 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1843
1844 /*
1845 * This really shouldn't fail, because the page is there
1846 * in the page tables. But it might just be unreadable,
1847 * in which case we just give up and fill the result with
1848 * zeroes.
1849 */
1850 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1851 memset(kaddr, 0, PAGE_SIZE);
1852 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1853 flush_dcache_page(dst);
0ed361de
NP
1854 } else
1855 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1856}
1857
1da177e4
LT
1858/*
1859 * This routine handles present pages, when users try to write
1860 * to a shared page. It is done by copying the page to a new address
1861 * and decrementing the shared-page counter for the old page.
1862 *
1da177e4
LT
1863 * Note that this routine assumes that the protection checks have been
1864 * done by the caller (the low-level page fault routine in most cases).
1865 * Thus we can safely just mark it writable once we've done any necessary
1866 * COW.
1867 *
1868 * We also mark the page dirty at this point even though the page will
1869 * change only once the write actually happens. This avoids a few races,
1870 * and potentially makes it more efficient.
1871 *
8f4e2101
HD
1872 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1873 * but allow concurrent faults), with pte both mapped and locked.
1874 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1875 */
65500d23
HD
1876static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1877 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1878 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1879{
e5bbe4df 1880 struct page *old_page, *new_page;
1da177e4 1881 pte_t entry;
83c54070 1882 int reuse = 0, ret = 0;
a200ee18 1883 int page_mkwrite = 0;
d08b3851 1884 struct page *dirty_page = NULL;
1da177e4 1885
6aab341e 1886 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1887 if (!old_page) {
1888 /*
1889 * VM_MIXEDMAP !pfn_valid() case
1890 *
1891 * We should not cow pages in a shared writeable mapping.
1892 * Just mark the pages writable as we can't do any dirty
1893 * accounting on raw pfn maps.
1894 */
1895 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1896 (VM_WRITE|VM_SHARED))
1897 goto reuse;
6aab341e 1898 goto gotten;
251b97f5 1899 }
1da177e4 1900
d08b3851 1901 /*
ee6a6457
PZ
1902 * Take out anonymous pages first, anonymous shared vmas are
1903 * not dirty accountable.
d08b3851 1904 */
ee6a6457 1905 if (PageAnon(old_page)) {
ab967d86
HD
1906 if (!trylock_page(old_page)) {
1907 page_cache_get(old_page);
1908 pte_unmap_unlock(page_table, ptl);
1909 lock_page(old_page);
1910 page_table = pte_offset_map_lock(mm, pmd, address,
1911 &ptl);
1912 if (!pte_same(*page_table, orig_pte)) {
1913 unlock_page(old_page);
1914 page_cache_release(old_page);
1915 goto unlock;
1916 }
1917 page_cache_release(old_page);
ee6a6457 1918 }
7b1fe597 1919 reuse = reuse_swap_page(old_page);
ab967d86 1920 unlock_page(old_page);
ee6a6457 1921 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1922 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1923 /*
1924 * Only catch write-faults on shared writable pages,
1925 * read-only shared pages can get COWed by
1926 * get_user_pages(.write=1, .force=1).
1927 */
9637a5ef
DH
1928 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1929 /*
1930 * Notify the address space that the page is about to
1931 * become writable so that it can prohibit this or wait
1932 * for the page to get into an appropriate state.
1933 *
1934 * We do this without the lock held, so that it can
1935 * sleep if it needs to.
1936 */
1937 page_cache_get(old_page);
1938 pte_unmap_unlock(page_table, ptl);
1939
1940 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1941 goto unwritable_page;
1942
9637a5ef
DH
1943 /*
1944 * Since we dropped the lock we need to revalidate
1945 * the PTE as someone else may have changed it. If
1946 * they did, we just return, as we can count on the
1947 * MMU to tell us if they didn't also make it writable.
1948 */
1949 page_table = pte_offset_map_lock(mm, pmd, address,
1950 &ptl);
c3704ceb 1951 page_cache_release(old_page);
9637a5ef
DH
1952 if (!pte_same(*page_table, orig_pte))
1953 goto unlock;
a200ee18
PZ
1954
1955 page_mkwrite = 1;
1da177e4 1956 }
d08b3851
PZ
1957 dirty_page = old_page;
1958 get_page(dirty_page);
9637a5ef 1959 reuse = 1;
9637a5ef
DH
1960 }
1961
1962 if (reuse) {
251b97f5 1963reuse:
9637a5ef
DH
1964 flush_cache_page(vma, address, pte_pfn(orig_pte));
1965 entry = pte_mkyoung(orig_pte);
1966 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1967 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1968 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1969 ret |= VM_FAULT_WRITE;
1970 goto unlock;
1da177e4 1971 }
1da177e4
LT
1972
1973 /*
1974 * Ok, we need to copy. Oh, well..
1975 */
b5810039 1976 page_cache_get(old_page);
920fc356 1977gotten:
8f4e2101 1978 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1979
1980 if (unlikely(anon_vma_prepare(vma)))
65500d23 1981 goto oom;
557ed1fa
NP
1982 VM_BUG_ON(old_page == ZERO_PAGE(0));
1983 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1984 if (!new_page)
1985 goto oom;
b291f000
NP
1986 /*
1987 * Don't let another task, with possibly unlocked vma,
1988 * keep the mlocked page.
1989 */
1990 if (vma->vm_flags & VM_LOCKED) {
1991 lock_page(old_page); /* for LRU manipulation */
1992 clear_page_mlock(old_page);
1993 unlock_page(old_page);
1994 }
557ed1fa 1995 cow_user_page(new_page, old_page, address, vma);
0ed361de 1996 __SetPageUptodate(new_page);
65500d23 1997
e1a1cd59 1998 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
1999 goto oom_free_new;
2000
1da177e4
LT
2001 /*
2002 * Re-check the pte - we dropped the lock
2003 */
8f4e2101 2004 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2005 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2006 if (old_page) {
920fc356
HD
2007 if (!PageAnon(old_page)) {
2008 dec_mm_counter(mm, file_rss);
2009 inc_mm_counter(mm, anon_rss);
2010 }
2011 } else
4294621f 2012 inc_mm_counter(mm, anon_rss);
eca35133 2013 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2014 entry = mk_pte(new_page, vma->vm_page_prot);
2015 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2016 /*
2017 * Clear the pte entry and flush it first, before updating the
2018 * pte with the new entry. This will avoid a race condition
2019 * seen in the presence of one thread doing SMC and another
2020 * thread doing COW.
2021 */
cddb8a5c 2022 ptep_clear_flush_notify(vma, address, page_table);
9617d95e 2023 page_add_new_anon_rmap(new_page, vma, address);
64d6519d
LS
2024 set_pte_at(mm, address, page_table, entry);
2025 update_mmu_cache(vma, address, entry);
945754a1
NP
2026 if (old_page) {
2027 /*
2028 * Only after switching the pte to the new page may
2029 * we remove the mapcount here. Otherwise another
2030 * process may come and find the rmap count decremented
2031 * before the pte is switched to the new page, and
2032 * "reuse" the old page writing into it while our pte
2033 * here still points into it and can be read by other
2034 * threads.
2035 *
2036 * The critical issue is to order this
2037 * page_remove_rmap with the ptp_clear_flush above.
2038 * Those stores are ordered by (if nothing else,)
2039 * the barrier present in the atomic_add_negative
2040 * in page_remove_rmap.
2041 *
2042 * Then the TLB flush in ptep_clear_flush ensures that
2043 * no process can access the old page before the
2044 * decremented mapcount is visible. And the old page
2045 * cannot be reused until after the decremented
2046 * mapcount is visible. So transitively, TLBs to
2047 * old page will be flushed before it can be reused.
2048 */
edc315fd 2049 page_remove_rmap(old_page);
945754a1
NP
2050 }
2051
1da177e4
LT
2052 /* Free the old page.. */
2053 new_page = old_page;
f33ea7f4 2054 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2055 } else
2056 mem_cgroup_uncharge_page(new_page);
2057
920fc356
HD
2058 if (new_page)
2059 page_cache_release(new_page);
2060 if (old_page)
2061 page_cache_release(old_page);
65500d23 2062unlock:
8f4e2101 2063 pte_unmap_unlock(page_table, ptl);
d08b3851 2064 if (dirty_page) {
8f7b3d15
AS
2065 if (vma->vm_file)
2066 file_update_time(vma->vm_file);
2067
79352894
NP
2068 /*
2069 * Yes, Virginia, this is actually required to prevent a race
2070 * with clear_page_dirty_for_io() from clearing the page dirty
2071 * bit after it clear all dirty ptes, but before a racing
2072 * do_wp_page installs a dirty pte.
2073 *
2074 * do_no_page is protected similarly.
2075 */
2076 wait_on_page_locked(dirty_page);
a200ee18 2077 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2078 put_page(dirty_page);
2079 }
f33ea7f4 2080 return ret;
8a9f3ccd 2081oom_free_new:
6dbf6d3b 2082 page_cache_release(new_page);
65500d23 2083oom:
920fc356
HD
2084 if (old_page)
2085 page_cache_release(old_page);
1da177e4 2086 return VM_FAULT_OOM;
9637a5ef
DH
2087
2088unwritable_page:
2089 page_cache_release(old_page);
2090 return VM_FAULT_SIGBUS;
1da177e4
LT
2091}
2092
2093/*
2094 * Helper functions for unmap_mapping_range().
2095 *
2096 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2097 *
2098 * We have to restart searching the prio_tree whenever we drop the lock,
2099 * since the iterator is only valid while the lock is held, and anyway
2100 * a later vma might be split and reinserted earlier while lock dropped.
2101 *
2102 * The list of nonlinear vmas could be handled more efficiently, using
2103 * a placeholder, but handle it in the same way until a need is shown.
2104 * It is important to search the prio_tree before nonlinear list: a vma
2105 * may become nonlinear and be shifted from prio_tree to nonlinear list
2106 * while the lock is dropped; but never shifted from list to prio_tree.
2107 *
2108 * In order to make forward progress despite restarting the search,
2109 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2110 * quickly skip it next time around. Since the prio_tree search only
2111 * shows us those vmas affected by unmapping the range in question, we
2112 * can't efficiently keep all vmas in step with mapping->truncate_count:
2113 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2114 * mapping->truncate_count and vma->vm_truncate_count are protected by
2115 * i_mmap_lock.
2116 *
2117 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2118 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2119 * and restart from that address when we reach that vma again. It might
2120 * have been split or merged, shrunk or extended, but never shifted: so
2121 * restart_addr remains valid so long as it remains in the vma's range.
2122 * unmap_mapping_range forces truncate_count to leap over page-aligned
2123 * values so we can save vma's restart_addr in its truncate_count field.
2124 */
2125#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2126
2127static void reset_vma_truncate_counts(struct address_space *mapping)
2128{
2129 struct vm_area_struct *vma;
2130 struct prio_tree_iter iter;
2131
2132 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2133 vma->vm_truncate_count = 0;
2134 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2135 vma->vm_truncate_count = 0;
2136}
2137
2138static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2139 unsigned long start_addr, unsigned long end_addr,
2140 struct zap_details *details)
2141{
2142 unsigned long restart_addr;
2143 int need_break;
2144
d00806b1
NP
2145 /*
2146 * files that support invalidating or truncating portions of the
d0217ac0 2147 * file from under mmaped areas must have their ->fault function
83c54070
NP
2148 * return a locked page (and set VM_FAULT_LOCKED in the return).
2149 * This provides synchronisation against concurrent unmapping here.
d00806b1 2150 */
d00806b1 2151
1da177e4
LT
2152again:
2153 restart_addr = vma->vm_truncate_count;
2154 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2155 start_addr = restart_addr;
2156 if (start_addr >= end_addr) {
2157 /* Top of vma has been split off since last time */
2158 vma->vm_truncate_count = details->truncate_count;
2159 return 0;
2160 }
2161 }
2162
ee39b37b
HD
2163 restart_addr = zap_page_range(vma, start_addr,
2164 end_addr - start_addr, details);
95c354fe 2165 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2166
ee39b37b 2167 if (restart_addr >= end_addr) {
1da177e4
LT
2168 /* We have now completed this vma: mark it so */
2169 vma->vm_truncate_count = details->truncate_count;
2170 if (!need_break)
2171 return 0;
2172 } else {
2173 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2174 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2175 if (!need_break)
2176 goto again;
2177 }
2178
2179 spin_unlock(details->i_mmap_lock);
2180 cond_resched();
2181 spin_lock(details->i_mmap_lock);
2182 return -EINTR;
2183}
2184
2185static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2186 struct zap_details *details)
2187{
2188 struct vm_area_struct *vma;
2189 struct prio_tree_iter iter;
2190 pgoff_t vba, vea, zba, zea;
2191
2192restart:
2193 vma_prio_tree_foreach(vma, &iter, root,
2194 details->first_index, details->last_index) {
2195 /* Skip quickly over those we have already dealt with */
2196 if (vma->vm_truncate_count == details->truncate_count)
2197 continue;
2198
2199 vba = vma->vm_pgoff;
2200 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2201 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2202 zba = details->first_index;
2203 if (zba < vba)
2204 zba = vba;
2205 zea = details->last_index;
2206 if (zea > vea)
2207 zea = vea;
2208
2209 if (unmap_mapping_range_vma(vma,
2210 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2211 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2212 details) < 0)
2213 goto restart;
2214 }
2215}
2216
2217static inline void unmap_mapping_range_list(struct list_head *head,
2218 struct zap_details *details)
2219{
2220 struct vm_area_struct *vma;
2221
2222 /*
2223 * In nonlinear VMAs there is no correspondence between virtual address
2224 * offset and file offset. So we must perform an exhaustive search
2225 * across *all* the pages in each nonlinear VMA, not just the pages
2226 * whose virtual address lies outside the file truncation point.
2227 */
2228restart:
2229 list_for_each_entry(vma, head, shared.vm_set.list) {
2230 /* Skip quickly over those we have already dealt with */
2231 if (vma->vm_truncate_count == details->truncate_count)
2232 continue;
2233 details->nonlinear_vma = vma;
2234 if (unmap_mapping_range_vma(vma, vma->vm_start,
2235 vma->vm_end, details) < 0)
2236 goto restart;
2237 }
2238}
2239
2240/**
72fd4a35 2241 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2242 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2243 * @holebegin: byte in first page to unmap, relative to the start of
2244 * the underlying file. This will be rounded down to a PAGE_SIZE
2245 * boundary. Note that this is different from vmtruncate(), which
2246 * must keep the partial page. In contrast, we must get rid of
2247 * partial pages.
2248 * @holelen: size of prospective hole in bytes. This will be rounded
2249 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2250 * end of the file.
2251 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2252 * but 0 when invalidating pagecache, don't throw away private data.
2253 */
2254void unmap_mapping_range(struct address_space *mapping,
2255 loff_t const holebegin, loff_t const holelen, int even_cows)
2256{
2257 struct zap_details details;
2258 pgoff_t hba = holebegin >> PAGE_SHIFT;
2259 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2260
2261 /* Check for overflow. */
2262 if (sizeof(holelen) > sizeof(hlen)) {
2263 long long holeend =
2264 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2265 if (holeend & ~(long long)ULONG_MAX)
2266 hlen = ULONG_MAX - hba + 1;
2267 }
2268
2269 details.check_mapping = even_cows? NULL: mapping;
2270 details.nonlinear_vma = NULL;
2271 details.first_index = hba;
2272 details.last_index = hba + hlen - 1;
2273 if (details.last_index < details.first_index)
2274 details.last_index = ULONG_MAX;
2275 details.i_mmap_lock = &mapping->i_mmap_lock;
2276
2277 spin_lock(&mapping->i_mmap_lock);
2278
d00806b1 2279 /* Protect against endless unmapping loops */
1da177e4 2280 mapping->truncate_count++;
1da177e4
LT
2281 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2282 if (mapping->truncate_count == 0)
2283 reset_vma_truncate_counts(mapping);
2284 mapping->truncate_count++;
2285 }
2286 details.truncate_count = mapping->truncate_count;
2287
2288 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2289 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2290 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2291 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2292 spin_unlock(&mapping->i_mmap_lock);
2293}
2294EXPORT_SYMBOL(unmap_mapping_range);
2295
bfa5bf6d
REB
2296/**
2297 * vmtruncate - unmap mappings "freed" by truncate() syscall
2298 * @inode: inode of the file used
2299 * @offset: file offset to start truncating
1da177e4
LT
2300 *
2301 * NOTE! We have to be ready to update the memory sharing
2302 * between the file and the memory map for a potential last
2303 * incomplete page. Ugly, but necessary.
2304 */
2305int vmtruncate(struct inode * inode, loff_t offset)
2306{
61d5048f
CH
2307 if (inode->i_size < offset) {
2308 unsigned long limit;
2309
2310 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2311 if (limit != RLIM_INFINITY && offset > limit)
2312 goto out_sig;
2313 if (offset > inode->i_sb->s_maxbytes)
2314 goto out_big;
2315 i_size_write(inode, offset);
2316 } else {
2317 struct address_space *mapping = inode->i_mapping;
1da177e4 2318
61d5048f
CH
2319 /*
2320 * truncation of in-use swapfiles is disallowed - it would
2321 * cause subsequent swapout to scribble on the now-freed
2322 * blocks.
2323 */
2324 if (IS_SWAPFILE(inode))
2325 return -ETXTBSY;
2326 i_size_write(inode, offset);
2327
2328 /*
2329 * unmap_mapping_range is called twice, first simply for
2330 * efficiency so that truncate_inode_pages does fewer
2331 * single-page unmaps. However after this first call, and
2332 * before truncate_inode_pages finishes, it is possible for
2333 * private pages to be COWed, which remain after
2334 * truncate_inode_pages finishes, hence the second
2335 * unmap_mapping_range call must be made for correctness.
2336 */
2337 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2338 truncate_inode_pages(mapping, offset);
2339 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2340 }
d00806b1 2341
acfa4380 2342 if (inode->i_op->truncate)
1da177e4
LT
2343 inode->i_op->truncate(inode);
2344 return 0;
61d5048f 2345
1da177e4
LT
2346out_sig:
2347 send_sig(SIGXFSZ, current, 0);
2348out_big:
2349 return -EFBIG;
1da177e4 2350}
1da177e4
LT
2351EXPORT_SYMBOL(vmtruncate);
2352
f6b3ec23
BP
2353int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2354{
2355 struct address_space *mapping = inode->i_mapping;
2356
2357 /*
2358 * If the underlying filesystem is not going to provide
2359 * a way to truncate a range of blocks (punch a hole) -
2360 * we should return failure right now.
2361 */
acfa4380 2362 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2363 return -ENOSYS;
2364
1b1dcc1b 2365 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2366 down_write(&inode->i_alloc_sem);
2367 unmap_mapping_range(mapping, offset, (end - offset), 1);
2368 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2369 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2370 inode->i_op->truncate_range(inode, offset, end);
2371 up_write(&inode->i_alloc_sem);
1b1dcc1b 2372 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2373
2374 return 0;
2375}
f6b3ec23 2376
1da177e4 2377/*
8f4e2101
HD
2378 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2379 * but allow concurrent faults), and pte mapped but not yet locked.
2380 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2381 */
65500d23
HD
2382static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2383 unsigned long address, pte_t *page_table, pmd_t *pmd,
2384 int write_access, pte_t orig_pte)
1da177e4 2385{
8f4e2101 2386 spinlock_t *ptl;
1da177e4 2387 struct page *page;
65500d23 2388 swp_entry_t entry;
1da177e4 2389 pte_t pte;
83c54070 2390 int ret = 0;
1da177e4 2391
4c21e2f2 2392 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2393 goto out;
65500d23
HD
2394
2395 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2396 if (is_migration_entry(entry)) {
2397 migration_entry_wait(mm, pmd, address);
2398 goto out;
2399 }
0ff92245 2400 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2401 page = lookup_swap_cache(entry);
2402 if (!page) {
098fe651 2403 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2404 page = swapin_readahead(entry,
2405 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2406 if (!page) {
2407 /*
8f4e2101
HD
2408 * Back out if somebody else faulted in this pte
2409 * while we released the pte lock.
1da177e4 2410 */
8f4e2101 2411 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2412 if (likely(pte_same(*page_table, orig_pte)))
2413 ret = VM_FAULT_OOM;
0ff92245 2414 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2415 goto unlock;
1da177e4
LT
2416 }
2417
2418 /* Had to read the page from swap area: Major fault */
2419 ret = VM_FAULT_MAJOR;
f8891e5e 2420 count_vm_event(PGMAJFAULT);
1da177e4
LT
2421 }
2422
073e587e
KH
2423 mark_page_accessed(page);
2424
2425 lock_page(page);
2426 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2427
e1a1cd59 2428 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd 2429 ret = VM_FAULT_OOM;
073e587e 2430 unlock_page(page);
8a9f3ccd
BS
2431 goto out;
2432 }
2433
1da177e4 2434 /*
8f4e2101 2435 * Back out if somebody else already faulted in this pte.
1da177e4 2436 */
8f4e2101 2437 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2438 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2439 goto out_nomap;
b8107480
KK
2440
2441 if (unlikely(!PageUptodate(page))) {
2442 ret = VM_FAULT_SIGBUS;
2443 goto out_nomap;
1da177e4
LT
2444 }
2445
2446 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2447
4294621f 2448 inc_mm_counter(mm, anon_rss);
1da177e4 2449 pte = mk_pte(page, vma->vm_page_prot);
7b1fe597 2450 if (write_access && reuse_swap_page(page)) {
1da177e4
LT
2451 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2452 write_access = 0;
2453 }
1da177e4
LT
2454
2455 flush_icache_page(vma, page);
2456 set_pte_at(mm, address, page_table, pte);
2457 page_add_anon_rmap(page, vma, address);
2458
c475a8ab 2459 swap_free(entry);
b291f000 2460 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2461 try_to_free_swap(page);
c475a8ab
HD
2462 unlock_page(page);
2463
1da177e4 2464 if (write_access) {
61469f1d
HD
2465 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2466 if (ret & VM_FAULT_ERROR)
2467 ret &= VM_FAULT_ERROR;
1da177e4
LT
2468 goto out;
2469 }
2470
2471 /* No need to invalidate - it was non-present before */
2472 update_mmu_cache(vma, address, pte);
65500d23 2473unlock:
8f4e2101 2474 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2475out:
2476 return ret;
b8107480 2477out_nomap:
8a9f3ccd 2478 mem_cgroup_uncharge_page(page);
8f4e2101 2479 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2480 unlock_page(page);
2481 page_cache_release(page);
65500d23 2482 return ret;
1da177e4
LT
2483}
2484
2485/*
8f4e2101
HD
2486 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2487 * but allow concurrent faults), and pte mapped but not yet locked.
2488 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2489 */
65500d23
HD
2490static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2491 unsigned long address, pte_t *page_table, pmd_t *pmd,
2492 int write_access)
1da177e4 2493{
8f4e2101
HD
2494 struct page *page;
2495 spinlock_t *ptl;
1da177e4 2496 pte_t entry;
1da177e4 2497
557ed1fa
NP
2498 /* Allocate our own private page. */
2499 pte_unmap(page_table);
8f4e2101 2500
557ed1fa
NP
2501 if (unlikely(anon_vma_prepare(vma)))
2502 goto oom;
2503 page = alloc_zeroed_user_highpage_movable(vma, address);
2504 if (!page)
2505 goto oom;
0ed361de 2506 __SetPageUptodate(page);
8f4e2101 2507
e1a1cd59 2508 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2509 goto oom_free_page;
2510
557ed1fa
NP
2511 entry = mk_pte(page, vma->vm_page_prot);
2512 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2513
557ed1fa
NP
2514 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2515 if (!pte_none(*page_table))
2516 goto release;
2517 inc_mm_counter(mm, anon_rss);
557ed1fa 2518 page_add_new_anon_rmap(page, vma, address);
65500d23 2519 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2520
2521 /* No need to invalidate - it was non-present before */
65500d23 2522 update_mmu_cache(vma, address, entry);
65500d23 2523unlock:
8f4e2101 2524 pte_unmap_unlock(page_table, ptl);
83c54070 2525 return 0;
8f4e2101 2526release:
8a9f3ccd 2527 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2528 page_cache_release(page);
2529 goto unlock;
8a9f3ccd 2530oom_free_page:
6dbf6d3b 2531 page_cache_release(page);
65500d23 2532oom:
1da177e4
LT
2533 return VM_FAULT_OOM;
2534}
2535
2536/*
54cb8821 2537 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2538 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2539 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2540 * the next page fault.
1da177e4
LT
2541 *
2542 * As this is called only for pages that do not currently exist, we
2543 * do not need to flush old virtual caches or the TLB.
2544 *
8f4e2101 2545 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2546 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2547 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2548 */
54cb8821 2549static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2550 unsigned long address, pmd_t *pmd,
54cb8821 2551 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2552{
16abfa08 2553 pte_t *page_table;
8f4e2101 2554 spinlock_t *ptl;
d0217ac0 2555 struct page *page;
1da177e4 2556 pte_t entry;
1da177e4 2557 int anon = 0;
5b4e655e 2558 int charged = 0;
d08b3851 2559 struct page *dirty_page = NULL;
d0217ac0
NP
2560 struct vm_fault vmf;
2561 int ret;
a200ee18 2562 int page_mkwrite = 0;
54cb8821 2563
d0217ac0
NP
2564 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2565 vmf.pgoff = pgoff;
2566 vmf.flags = flags;
2567 vmf.page = NULL;
1da177e4 2568
3c18ddd1
NP
2569 ret = vma->vm_ops->fault(vma, &vmf);
2570 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2571 return ret;
1da177e4 2572
d00806b1 2573 /*
d0217ac0 2574 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2575 * locked.
2576 */
83c54070 2577 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2578 lock_page(vmf.page);
54cb8821 2579 else
d0217ac0 2580 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2581
1da177e4
LT
2582 /*
2583 * Should we do an early C-O-W break?
2584 */
d0217ac0 2585 page = vmf.page;
54cb8821 2586 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2587 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2588 anon = 1;
d00806b1 2589 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2590 ret = VM_FAULT_OOM;
54cb8821 2591 goto out;
d00806b1 2592 }
83c54070
NP
2593 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2594 vma, address);
d00806b1 2595 if (!page) {
d0217ac0 2596 ret = VM_FAULT_OOM;
54cb8821 2597 goto out;
d00806b1 2598 }
5b4e655e
KH
2599 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2600 ret = VM_FAULT_OOM;
2601 page_cache_release(page);
2602 goto out;
2603 }
2604 charged = 1;
b291f000
NP
2605 /*
2606 * Don't let another task, with possibly unlocked vma,
2607 * keep the mlocked page.
2608 */
2609 if (vma->vm_flags & VM_LOCKED)
2610 clear_page_mlock(vmf.page);
d0217ac0 2611 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2612 __SetPageUptodate(page);
9637a5ef 2613 } else {
54cb8821
NP
2614 /*
2615 * If the page will be shareable, see if the backing
9637a5ef 2616 * address space wants to know that the page is about
54cb8821
NP
2617 * to become writable
2618 */
69676147
MF
2619 if (vma->vm_ops->page_mkwrite) {
2620 unlock_page(page);
2621 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2622 ret = VM_FAULT_SIGBUS;
2623 anon = 1; /* no anon but release vmf.page */
69676147
MF
2624 goto out_unlocked;
2625 }
2626 lock_page(page);
d0217ac0
NP
2627 /*
2628 * XXX: this is not quite right (racy vs
2629 * invalidate) to unlock and relock the page
2630 * like this, however a better fix requires
2631 * reworking page_mkwrite locking API, which
2632 * is better done later.
2633 */
2634 if (!page->mapping) {
83c54070 2635 ret = 0;
d0217ac0
NP
2636 anon = 1; /* no anon but release vmf.page */
2637 goto out;
2638 }
a200ee18 2639 page_mkwrite = 1;
9637a5ef
DH
2640 }
2641 }
54cb8821 2642
1da177e4
LT
2643 }
2644
8f4e2101 2645 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2646
2647 /*
2648 * This silly early PAGE_DIRTY setting removes a race
2649 * due to the bad i386 page protection. But it's valid
2650 * for other architectures too.
2651 *
2652 * Note that if write_access is true, we either now have
2653 * an exclusive copy of the page, or this is a shared mapping,
2654 * so we can make it writable and dirty to avoid having to
2655 * handle that later.
2656 */
2657 /* Only go through if we didn't race with anybody else... */
54cb8821 2658 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2659 flush_icache_page(vma, page);
2660 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2661 if (flags & FAULT_FLAG_WRITE)
1da177e4 2662 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2663 if (anon) {
64d6519d 2664 inc_mm_counter(mm, anon_rss);
64d6519d 2665 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2666 } else {
4294621f 2667 inc_mm_counter(mm, file_rss);
d00806b1 2668 page_add_file_rmap(page);
54cb8821 2669 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2670 dirty_page = page;
d08b3851
PZ
2671 get_page(dirty_page);
2672 }
4294621f 2673 }
64d6519d 2674 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2675
2676 /* no need to invalidate: a not-present page won't be cached */
2677 update_mmu_cache(vma, address, entry);
1da177e4 2678 } else {
5b4e655e
KH
2679 if (charged)
2680 mem_cgroup_uncharge_page(page);
d00806b1
NP
2681 if (anon)
2682 page_cache_release(page);
2683 else
54cb8821 2684 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2685 }
2686
8f4e2101 2687 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2688
2689out:
d0217ac0 2690 unlock_page(vmf.page);
69676147 2691out_unlocked:
d00806b1 2692 if (anon)
d0217ac0 2693 page_cache_release(vmf.page);
d00806b1 2694 else if (dirty_page) {
8f7b3d15
AS
2695 if (vma->vm_file)
2696 file_update_time(vma->vm_file);
2697
a200ee18 2698 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2699 put_page(dirty_page);
2700 }
d00806b1 2701
83c54070 2702 return ret;
54cb8821 2703}
d00806b1 2704
54cb8821
NP
2705static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2706 unsigned long address, pte_t *page_table, pmd_t *pmd,
2707 int write_access, pte_t orig_pte)
2708{
2709 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2710 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2711 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2712
16abfa08
HD
2713 pte_unmap(page_table);
2714 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2715}
2716
1da177e4
LT
2717/*
2718 * Fault of a previously existing named mapping. Repopulate the pte
2719 * from the encoded file_pte if possible. This enables swappable
2720 * nonlinear vmas.
8f4e2101
HD
2721 *
2722 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2723 * but allow concurrent faults), and pte mapped but not yet locked.
2724 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2725 */
d0217ac0 2726static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2727 unsigned long address, pte_t *page_table, pmd_t *pmd,
2728 int write_access, pte_t orig_pte)
1da177e4 2729{
d0217ac0
NP
2730 unsigned int flags = FAULT_FLAG_NONLINEAR |
2731 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2732 pgoff_t pgoff;
1da177e4 2733
4c21e2f2 2734 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2735 return 0;
1da177e4 2736
2509ef26 2737 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
2738 /*
2739 * Page table corrupted: show pte and kill process.
2740 */
3dc14741 2741 print_bad_pte(vma, address, orig_pte, NULL);
65500d23
HD
2742 return VM_FAULT_OOM;
2743 }
65500d23
HD
2744
2745 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2746 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2747}
2748
2749/*
2750 * These routines also need to handle stuff like marking pages dirty
2751 * and/or accessed for architectures that don't do it in hardware (most
2752 * RISC architectures). The early dirtying is also good on the i386.
2753 *
2754 * There is also a hook called "update_mmu_cache()" that architectures
2755 * with external mmu caches can use to update those (ie the Sparc or
2756 * PowerPC hashed page tables that act as extended TLBs).
2757 *
c74df32c
HD
2758 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759 * but allow concurrent faults), and pte mapped but not yet locked.
2760 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2761 */
2762static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2763 struct vm_area_struct *vma, unsigned long address,
2764 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2765{
2766 pte_t entry;
8f4e2101 2767 spinlock_t *ptl;
1da177e4 2768
8dab5241 2769 entry = *pte;
1da177e4 2770 if (!pte_present(entry)) {
65500d23 2771 if (pte_none(entry)) {
f4b81804 2772 if (vma->vm_ops) {
3c18ddd1 2773 if (likely(vma->vm_ops->fault))
54cb8821
NP
2774 return do_linear_fault(mm, vma, address,
2775 pte, pmd, write_access, entry);
f4b81804
JS
2776 }
2777 return do_anonymous_page(mm, vma, address,
2778 pte, pmd, write_access);
65500d23 2779 }
1da177e4 2780 if (pte_file(entry))
d0217ac0 2781 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2782 pte, pmd, write_access, entry);
2783 return do_swap_page(mm, vma, address,
2784 pte, pmd, write_access, entry);
1da177e4
LT
2785 }
2786
4c21e2f2 2787 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2788 spin_lock(ptl);
2789 if (unlikely(!pte_same(*pte, entry)))
2790 goto unlock;
1da177e4
LT
2791 if (write_access) {
2792 if (!pte_write(entry))
8f4e2101
HD
2793 return do_wp_page(mm, vma, address,
2794 pte, pmd, ptl, entry);
1da177e4
LT
2795 entry = pte_mkdirty(entry);
2796 }
2797 entry = pte_mkyoung(entry);
8dab5241 2798 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2799 update_mmu_cache(vma, address, entry);
1a44e149
AA
2800 } else {
2801 /*
2802 * This is needed only for protection faults but the arch code
2803 * is not yet telling us if this is a protection fault or not.
2804 * This still avoids useless tlb flushes for .text page faults
2805 * with threads.
2806 */
2807 if (write_access)
2808 flush_tlb_page(vma, address);
2809 }
8f4e2101
HD
2810unlock:
2811 pte_unmap_unlock(pte, ptl);
83c54070 2812 return 0;
1da177e4
LT
2813}
2814
2815/*
2816 * By the time we get here, we already hold the mm semaphore
2817 */
83c54070 2818int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2819 unsigned long address, int write_access)
2820{
2821 pgd_t *pgd;
2822 pud_t *pud;
2823 pmd_t *pmd;
2824 pte_t *pte;
2825
2826 __set_current_state(TASK_RUNNING);
2827
f8891e5e 2828 count_vm_event(PGFAULT);
1da177e4 2829
ac9b9c66
HD
2830 if (unlikely(is_vm_hugetlb_page(vma)))
2831 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2832
1da177e4 2833 pgd = pgd_offset(mm, address);
1da177e4
LT
2834 pud = pud_alloc(mm, pgd, address);
2835 if (!pud)
c74df32c 2836 return VM_FAULT_OOM;
1da177e4
LT
2837 pmd = pmd_alloc(mm, pud, address);
2838 if (!pmd)
c74df32c 2839 return VM_FAULT_OOM;
1da177e4
LT
2840 pte = pte_alloc_map(mm, pmd, address);
2841 if (!pte)
c74df32c 2842 return VM_FAULT_OOM;
1da177e4 2843
c74df32c 2844 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2845}
2846
2847#ifndef __PAGETABLE_PUD_FOLDED
2848/*
2849 * Allocate page upper directory.
872fec16 2850 * We've already handled the fast-path in-line.
1da177e4 2851 */
1bb3630e 2852int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2853{
c74df32c
HD
2854 pud_t *new = pud_alloc_one(mm, address);
2855 if (!new)
1bb3630e 2856 return -ENOMEM;
1da177e4 2857
362a61ad
NP
2858 smp_wmb(); /* See comment in __pte_alloc */
2859
872fec16 2860 spin_lock(&mm->page_table_lock);
1bb3630e 2861 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2862 pud_free(mm, new);
1bb3630e
HD
2863 else
2864 pgd_populate(mm, pgd, new);
c74df32c 2865 spin_unlock(&mm->page_table_lock);
1bb3630e 2866 return 0;
1da177e4
LT
2867}
2868#endif /* __PAGETABLE_PUD_FOLDED */
2869
2870#ifndef __PAGETABLE_PMD_FOLDED
2871/*
2872 * Allocate page middle directory.
872fec16 2873 * We've already handled the fast-path in-line.
1da177e4 2874 */
1bb3630e 2875int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2876{
c74df32c
HD
2877 pmd_t *new = pmd_alloc_one(mm, address);
2878 if (!new)
1bb3630e 2879 return -ENOMEM;
1da177e4 2880
362a61ad
NP
2881 smp_wmb(); /* See comment in __pte_alloc */
2882
872fec16 2883 spin_lock(&mm->page_table_lock);
1da177e4 2884#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2885 if (pud_present(*pud)) /* Another has populated it */
5e541973 2886 pmd_free(mm, new);
1bb3630e
HD
2887 else
2888 pud_populate(mm, pud, new);
1da177e4 2889#else
1bb3630e 2890 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2891 pmd_free(mm, new);
1bb3630e
HD
2892 else
2893 pgd_populate(mm, pud, new);
1da177e4 2894#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2895 spin_unlock(&mm->page_table_lock);
1bb3630e 2896 return 0;
e0f39591 2897}
1da177e4
LT
2898#endif /* __PAGETABLE_PMD_FOLDED */
2899
2900int make_pages_present(unsigned long addr, unsigned long end)
2901{
2902 int ret, len, write;
2903 struct vm_area_struct * vma;
2904
2905 vma = find_vma(current->mm, addr);
2906 if (!vma)
a477097d 2907 return -ENOMEM;
1da177e4 2908 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2909 BUG_ON(addr >= end);
2910 BUG_ON(end > vma->vm_end);
68e116a3 2911 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2912 ret = get_user_pages(current, current->mm, addr,
2913 len, write, 0, NULL, NULL);
c11d69d8 2914 if (ret < 0)
1da177e4 2915 return ret;
9978ad58 2916 return ret == len ? 0 : -EFAULT;
1da177e4
LT
2917}
2918
1da177e4
LT
2919#if !defined(__HAVE_ARCH_GATE_AREA)
2920
2921#if defined(AT_SYSINFO_EHDR)
5ce7852c 2922static struct vm_area_struct gate_vma;
1da177e4
LT
2923
2924static int __init gate_vma_init(void)
2925{
2926 gate_vma.vm_mm = NULL;
2927 gate_vma.vm_start = FIXADDR_USER_START;
2928 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2929 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2930 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2931 /*
2932 * Make sure the vDSO gets into every core dump.
2933 * Dumping its contents makes post-mortem fully interpretable later
2934 * without matching up the same kernel and hardware config to see
2935 * what PC values meant.
2936 */
2937 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2938 return 0;
2939}
2940__initcall(gate_vma_init);
2941#endif
2942
2943struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2944{
2945#ifdef AT_SYSINFO_EHDR
2946 return &gate_vma;
2947#else
2948 return NULL;
2949#endif
2950}
2951
2952int in_gate_area_no_task(unsigned long addr)
2953{
2954#ifdef AT_SYSINFO_EHDR
2955 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2956 return 1;
2957#endif
2958 return 0;
2959}
2960
2961#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2962
28b2ee20 2963#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 2964int follow_phys(struct vm_area_struct *vma,
2965 unsigned long address, unsigned int flags,
2966 unsigned long *prot, resource_size_t *phys)
28b2ee20
RR
2967{
2968 pgd_t *pgd;
2969 pud_t *pud;
2970 pmd_t *pmd;
2971 pte_t *ptep, pte;
2972 spinlock_t *ptl;
2973 resource_size_t phys_addr = 0;
2974 struct mm_struct *mm = vma->vm_mm;
d87fe660 2975 int ret = -EINVAL;
28b2ee20 2976
d87fe660 2977 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2978 goto out;
28b2ee20
RR
2979
2980 pgd = pgd_offset(mm, address);
2981 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
d87fe660 2982 goto out;
28b2ee20
RR
2983
2984 pud = pud_offset(pgd, address);
2985 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
d87fe660 2986 goto out;
28b2ee20
RR
2987
2988 pmd = pmd_offset(pud, address);
2989 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
d87fe660 2990 goto out;
28b2ee20
RR
2991
2992 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2993 if (pmd_huge(*pmd))
d87fe660 2994 goto out;
28b2ee20
RR
2995
2996 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2997 if (!ptep)
2998 goto out;
2999
3000 pte = *ptep;
3001 if (!pte_present(pte))
3002 goto unlock;
3003 if ((flags & FOLL_WRITE) && !pte_write(pte))
3004 goto unlock;
3005 phys_addr = pte_pfn(pte);
3006 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3007
3008 *prot = pgprot_val(pte_pgprot(pte));
d87fe660 3009 *phys = phys_addr;
3010 ret = 0;
28b2ee20
RR
3011
3012unlock:
3013 pte_unmap_unlock(ptep, ptl);
3014out:
d87fe660 3015 return ret;
28b2ee20
RR
3016}
3017
3018int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3019 void *buf, int len, int write)
3020{
3021 resource_size_t phys_addr;
3022 unsigned long prot = 0;
2bc7273b 3023 void __iomem *maddr;
28b2ee20
RR
3024 int offset = addr & (PAGE_SIZE-1);
3025
d87fe660 3026 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3027 return -EINVAL;
3028
3029 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3030 if (write)
3031 memcpy_toio(maddr + offset, buf, len);
3032 else
3033 memcpy_fromio(buf, maddr + offset, len);
3034 iounmap(maddr);
3035
3036 return len;
3037}
3038#endif
3039
0ec76a11
DH
3040/*
3041 * Access another process' address space.
3042 * Source/target buffer must be kernel space,
3043 * Do not walk the page table directly, use get_user_pages
3044 */
3045int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3046{
3047 struct mm_struct *mm;
3048 struct vm_area_struct *vma;
0ec76a11
DH
3049 void *old_buf = buf;
3050
3051 mm = get_task_mm(tsk);
3052 if (!mm)
3053 return 0;
3054
3055 down_read(&mm->mmap_sem);
183ff22b 3056 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3057 while (len) {
3058 int bytes, ret, offset;
3059 void *maddr;
28b2ee20 3060 struct page *page = NULL;
0ec76a11
DH
3061
3062 ret = get_user_pages(tsk, mm, addr, 1,
3063 write, 1, &page, &vma);
28b2ee20
RR
3064 if (ret <= 0) {
3065 /*
3066 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3067 * we can access using slightly different code.
3068 */
3069#ifdef CONFIG_HAVE_IOREMAP_PROT
3070 vma = find_vma(mm, addr);
3071 if (!vma)
3072 break;
3073 if (vma->vm_ops && vma->vm_ops->access)
3074 ret = vma->vm_ops->access(vma, addr, buf,
3075 len, write);
3076 if (ret <= 0)
3077#endif
3078 break;
3079 bytes = ret;
0ec76a11 3080 } else {
28b2ee20
RR
3081 bytes = len;
3082 offset = addr & (PAGE_SIZE-1);
3083 if (bytes > PAGE_SIZE-offset)
3084 bytes = PAGE_SIZE-offset;
3085
3086 maddr = kmap(page);
3087 if (write) {
3088 copy_to_user_page(vma, page, addr,
3089 maddr + offset, buf, bytes);
3090 set_page_dirty_lock(page);
3091 } else {
3092 copy_from_user_page(vma, page, addr,
3093 buf, maddr + offset, bytes);
3094 }
3095 kunmap(page);
3096 page_cache_release(page);
0ec76a11 3097 }
0ec76a11
DH
3098 len -= bytes;
3099 buf += bytes;
3100 addr += bytes;
3101 }
3102 up_read(&mm->mmap_sem);
3103 mmput(mm);
3104
3105 return buf - old_buf;
3106}
03252919
AK
3107
3108/*
3109 * Print the name of a VMA.
3110 */
3111void print_vma_addr(char *prefix, unsigned long ip)
3112{
3113 struct mm_struct *mm = current->mm;
3114 struct vm_area_struct *vma;
3115
e8bff74a
IM
3116 /*
3117 * Do not print if we are in atomic
3118 * contexts (in exception stacks, etc.):
3119 */
3120 if (preempt_count())
3121 return;
3122
03252919
AK
3123 down_read(&mm->mmap_sem);
3124 vma = find_vma(mm, ip);
3125 if (vma && vma->vm_file) {
3126 struct file *f = vma->vm_file;
3127 char *buf = (char *)__get_free_page(GFP_KERNEL);
3128 if (buf) {
3129 char *p, *s;
3130
cf28b486 3131 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3132 if (IS_ERR(p))
3133 p = "?";
3134 s = strrchr(p, '/');
3135 if (s)
3136 p = s+1;
3137 printk("%s%s[%lx+%lx]", prefix, p,
3138 vma->vm_start,
3139 vma->vm_end - vma->vm_start);
3140 free_page((unsigned long)buf);
3141 }
3142 }
3143 up_read(&current->mm->mmap_sem);
3144}
3ee1afa3
NP
3145
3146#ifdef CONFIG_PROVE_LOCKING
3147void might_fault(void)
3148{
3149 might_sleep();
3150 /*
3151 * it would be nicer only to annotate paths which are not under
3152 * pagefault_disable, however that requires a larger audit and
3153 * providing helpers like get_user_atomic.
3154 */
3155 if (!in_atomic() && current->mm)
3156 might_lock_read(&current->mm->mmap_sem);
3157}
3158EXPORT_SYMBOL(might_fault);
3159#endif