drivers/scsi/ses.c: eliminate double free
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
1da177e4 59
6952b61d 60#include <asm/io.h>
1da177e4
LT
61#include <asm/pgalloc.h>
62#include <asm/uaccess.h>
63#include <asm/tlb.h>
64#include <asm/tlbflush.h>
65#include <asm/pgtable.h>
66
42b77728
JB
67#include "internal.h"
68
d41dee36 69#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
70/* use the per-pgdat data instead for discontigmem - mbligh */
71unsigned long max_mapnr;
72struct page *mem_map;
73
74EXPORT_SYMBOL(max_mapnr);
75EXPORT_SYMBOL(mem_map);
76#endif
77
78unsigned long num_physpages;
79/*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86void * high_memory;
1da177e4
LT
87
88EXPORT_SYMBOL(num_physpages);
89EXPORT_SYMBOL(high_memory);
1da177e4 90
32a93233
IM
91/*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97int randomize_va_space __read_mostly =
98#ifdef CONFIG_COMPAT_BRK
99 1;
100#else
101 2;
102#endif
a62eaf15
AK
103
104static int __init disable_randmaps(char *s)
105{
106 randomize_va_space = 0;
9b41046c 107 return 1;
a62eaf15
AK
108}
109__setup("norandmaps", disable_randmaps);
110
62eede62 111unsigned long zero_pfn __read_mostly;
03f6462a 112unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
113
114/*
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116 */
117static int __init init_zero_pfn(void)
118{
119 zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 return 0;
121}
122core_initcall(init_zero_pfn);
a62eaf15 123
d559db08 124
34e55232
KH
125#if defined(SPLIT_RSS_COUNTING)
126
127void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
128{
129 int i;
130
131 for (i = 0; i < NR_MM_COUNTERS; i++) {
132 if (task->rss_stat.count[i]) {
133 add_mm_counter(mm, i, task->rss_stat.count[i]);
134 task->rss_stat.count[i] = 0;
135 }
136 }
137 task->rss_stat.events = 0;
138}
139
140static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
141{
142 struct task_struct *task = current;
143
144 if (likely(task->mm == mm))
145 task->rss_stat.count[member] += val;
146 else
147 add_mm_counter(mm, member, val);
148}
149#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
150#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
151
152/* sync counter once per 64 page faults */
153#define TASK_RSS_EVENTS_THRESH (64)
154static void check_sync_rss_stat(struct task_struct *task)
155{
156 if (unlikely(task != current))
157 return;
158 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
159 __sync_task_rss_stat(task, task->mm);
160}
161
162unsigned long get_mm_counter(struct mm_struct *mm, int member)
163{
164 long val = 0;
165
166 /*
167 * Don't use task->mm here...for avoiding to use task_get_mm()..
168 * The caller must guarantee task->mm is not invalid.
169 */
170 val = atomic_long_read(&mm->rss_stat.count[member]);
171 /*
172 * counter is updated in asynchronous manner and may go to minus.
173 * But it's never be expected number for users.
174 */
175 if (val < 0)
176 return 0;
177 return (unsigned long)val;
178}
179
180void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
181{
182 __sync_task_rss_stat(task, mm);
183}
184#else
185
186#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
187#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
188
189static void check_sync_rss_stat(struct task_struct *task)
190{
191}
192
34e55232
KH
193#endif
194
1da177e4
LT
195/*
196 * If a p?d_bad entry is found while walking page tables, report
197 * the error, before resetting entry to p?d_none. Usually (but
198 * very seldom) called out from the p?d_none_or_clear_bad macros.
199 */
200
201void pgd_clear_bad(pgd_t *pgd)
202{
203 pgd_ERROR(*pgd);
204 pgd_clear(pgd);
205}
206
207void pud_clear_bad(pud_t *pud)
208{
209 pud_ERROR(*pud);
210 pud_clear(pud);
211}
212
213void pmd_clear_bad(pmd_t *pmd)
214{
215 pmd_ERROR(*pmd);
216 pmd_clear(pmd);
217}
218
219/*
220 * Note: this doesn't free the actual pages themselves. That
221 * has been handled earlier when unmapping all the memory regions.
222 */
9e1b32ca
BH
223static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
224 unsigned long addr)
1da177e4 225{
2f569afd 226 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 227 pmd_clear(pmd);
9e1b32ca 228 pte_free_tlb(tlb, token, addr);
e0da382c 229 tlb->mm->nr_ptes--;
1da177e4
LT
230}
231
e0da382c
HD
232static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
1da177e4
LT
235{
236 pmd_t *pmd;
237 unsigned long next;
e0da382c 238 unsigned long start;
1da177e4 239
e0da382c 240 start = addr;
1da177e4 241 pmd = pmd_offset(pud, addr);
1da177e4
LT
242 do {
243 next = pmd_addr_end(addr, end);
244 if (pmd_none_or_clear_bad(pmd))
245 continue;
9e1b32ca 246 free_pte_range(tlb, pmd, addr);
1da177e4
LT
247 } while (pmd++, addr = next, addr != end);
248
e0da382c
HD
249 start &= PUD_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= PUD_MASK;
254 if (!ceiling)
255 return;
1da177e4 256 }
e0da382c
HD
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pmd = pmd_offset(pud, start);
261 pud_clear(pud);
9e1b32ca 262 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
263}
264
e0da382c
HD
265static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
1da177e4
LT
268{
269 pud_t *pud;
270 unsigned long next;
e0da382c 271 unsigned long start;
1da177e4 272
e0da382c 273 start = addr;
1da177e4 274 pud = pud_offset(pgd, addr);
1da177e4
LT
275 do {
276 next = pud_addr_end(addr, end);
277 if (pud_none_or_clear_bad(pud))
278 continue;
e0da382c 279 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
280 } while (pud++, addr = next, addr != end);
281
e0da382c
HD
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
1da177e4 289 }
e0da382c
HD
290 if (end - 1 > ceiling - 1)
291 return;
292
293 pud = pud_offset(pgd, start);
294 pgd_clear(pgd);
9e1b32ca 295 pud_free_tlb(tlb, pud, start);
1da177e4
LT
296}
297
298/*
e0da382c
HD
299 * This function frees user-level page tables of a process.
300 *
1da177e4
LT
301 * Must be called with pagetable lock held.
302 */
42b77728 303void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
1da177e4
LT
306{
307 pgd_t *pgd;
308 unsigned long next;
e0da382c
HD
309 unsigned long start;
310
311 /*
312 * The next few lines have given us lots of grief...
313 *
314 * Why are we testing PMD* at this top level? Because often
315 * there will be no work to do at all, and we'd prefer not to
316 * go all the way down to the bottom just to discover that.
317 *
318 * Why all these "- 1"s? Because 0 represents both the bottom
319 * of the address space and the top of it (using -1 for the
320 * top wouldn't help much: the masks would do the wrong thing).
321 * The rule is that addr 0 and floor 0 refer to the bottom of
322 * the address space, but end 0 and ceiling 0 refer to the top
323 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 * that end 0 case should be mythical).
325 *
326 * Wherever addr is brought up or ceiling brought down, we must
327 * be careful to reject "the opposite 0" before it confuses the
328 * subsequent tests. But what about where end is brought down
329 * by PMD_SIZE below? no, end can't go down to 0 there.
330 *
331 * Whereas we round start (addr) and ceiling down, by different
332 * masks at different levels, in order to test whether a table
333 * now has no other vmas using it, so can be freed, we don't
334 * bother to round floor or end up - the tests don't need that.
335 */
1da177e4 336
e0da382c
HD
337 addr &= PMD_MASK;
338 if (addr < floor) {
339 addr += PMD_SIZE;
340 if (!addr)
341 return;
342 }
343 if (ceiling) {
344 ceiling &= PMD_MASK;
345 if (!ceiling)
346 return;
347 }
348 if (end - 1 > ceiling - 1)
349 end -= PMD_SIZE;
350 if (addr > end - 1)
351 return;
352
353 start = addr;
42b77728 354 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
42b77728 359 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 360 } while (pgd++, addr = next, addr != end);
e0da382c
HD
361}
362
42b77728 363void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 364 unsigned long floor, unsigned long ceiling)
e0da382c
HD
365{
366 while (vma) {
367 struct vm_area_struct *next = vma->vm_next;
368 unsigned long addr = vma->vm_start;
369
8f4f8c16 370 /*
25d9e2d1 371 * Hide vma from rmap and truncate_pagecache before freeing
372 * pgtables
8f4f8c16 373 */
5beb4930 374 unlink_anon_vmas(vma);
8f4f8c16
HD
375 unlink_file_vma(vma);
376
9da61aef 377 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 378 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 379 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
380 } else {
381 /*
382 * Optimization: gather nearby vmas into one call down
383 */
384 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 385 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
386 vma = next;
387 next = vma->vm_next;
5beb4930 388 unlink_anon_vmas(vma);
8f4f8c16 389 unlink_file_vma(vma);
3bf5ee95
HD
390 }
391 free_pgd_range(tlb, addr, vma->vm_end,
392 floor, next? next->vm_start: ceiling);
393 }
e0da382c
HD
394 vma = next;
395 }
1da177e4
LT
396}
397
1bb3630e 398int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 399{
2f569afd 400 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
401 if (!new)
402 return -ENOMEM;
403
362a61ad
NP
404 /*
405 * Ensure all pte setup (eg. pte page lock and page clearing) are
406 * visible before the pte is made visible to other CPUs by being
407 * put into page tables.
408 *
409 * The other side of the story is the pointer chasing in the page
410 * table walking code (when walking the page table without locking;
411 * ie. most of the time). Fortunately, these data accesses consist
412 * of a chain of data-dependent loads, meaning most CPUs (alpha
413 * being the notable exception) will already guarantee loads are
414 * seen in-order. See the alpha page table accessors for the
415 * smp_read_barrier_depends() barriers in page table walking code.
416 */
417 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
418
c74df32c 419 spin_lock(&mm->page_table_lock);
2f569afd 420 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 421 mm->nr_ptes++;
1da177e4 422 pmd_populate(mm, pmd, new);
2f569afd 423 new = NULL;
1da177e4 424 }
c74df32c 425 spin_unlock(&mm->page_table_lock);
2f569afd
MS
426 if (new)
427 pte_free(mm, new);
1bb3630e 428 return 0;
1da177e4
LT
429}
430
1bb3630e 431int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 432{
1bb3630e
HD
433 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
434 if (!new)
435 return -ENOMEM;
436
362a61ad
NP
437 smp_wmb(); /* See comment in __pte_alloc */
438
1bb3630e 439 spin_lock(&init_mm.page_table_lock);
2f569afd 440 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 441 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
442 new = NULL;
443 }
1bb3630e 444 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
445 if (new)
446 pte_free_kernel(&init_mm, new);
1bb3630e 447 return 0;
1da177e4
LT
448}
449
d559db08
KH
450static inline void init_rss_vec(int *rss)
451{
452 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
453}
454
455static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 456{
d559db08
KH
457 int i;
458
34e55232
KH
459 if (current->mm == mm)
460 sync_mm_rss(current, mm);
d559db08
KH
461 for (i = 0; i < NR_MM_COUNTERS; i++)
462 if (rss[i])
463 add_mm_counter(mm, i, rss[i]);
ae859762
HD
464}
465
b5810039 466/*
6aab341e
LT
467 * This function is called to print an error when a bad pte
468 * is found. For example, we might have a PFN-mapped pte in
469 * a region that doesn't allow it.
b5810039
NP
470 *
471 * The calling function must still handle the error.
472 */
3dc14741
HD
473static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
474 pte_t pte, struct page *page)
b5810039 475{
3dc14741
HD
476 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
477 pud_t *pud = pud_offset(pgd, addr);
478 pmd_t *pmd = pmd_offset(pud, addr);
479 struct address_space *mapping;
480 pgoff_t index;
d936cf9b
HD
481 static unsigned long resume;
482 static unsigned long nr_shown;
483 static unsigned long nr_unshown;
484
485 /*
486 * Allow a burst of 60 reports, then keep quiet for that minute;
487 * or allow a steady drip of one report per second.
488 */
489 if (nr_shown == 60) {
490 if (time_before(jiffies, resume)) {
491 nr_unshown++;
492 return;
493 }
494 if (nr_unshown) {
1e9e6365
HD
495 printk(KERN_ALERT
496 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
497 nr_unshown);
498 nr_unshown = 0;
499 }
500 nr_shown = 0;
501 }
502 if (nr_shown++ == 0)
503 resume = jiffies + 60 * HZ;
3dc14741
HD
504
505 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
506 index = linear_page_index(vma, addr);
507
1e9e6365
HD
508 printk(KERN_ALERT
509 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
510 current->comm,
511 (long long)pte_val(pte), (long long)pmd_val(*pmd));
512 if (page) {
1e9e6365 513 printk(KERN_ALERT
3dc14741
HD
514 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
515 page, (void *)page->flags, page_count(page),
516 page_mapcount(page), page->mapping, page->index);
517 }
1e9e6365 518 printk(KERN_ALERT
3dc14741
HD
519 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
521 /*
522 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
523 */
524 if (vma->vm_ops)
1e9e6365 525 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
526 (unsigned long)vma->vm_ops->fault);
527 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 528 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 529 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 530 dump_stack();
3dc14741 531 add_taint(TAINT_BAD_PAGE);
b5810039
NP
532}
533
67121172
LT
534static inline int is_cow_mapping(unsigned int flags)
535{
536 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
537}
538
62eede62
HD
539#ifndef is_zero_pfn
540static inline int is_zero_pfn(unsigned long pfn)
541{
542 return pfn == zero_pfn;
543}
544#endif
545
546#ifndef my_zero_pfn
547static inline unsigned long my_zero_pfn(unsigned long addr)
548{
549 return zero_pfn;
550}
551#endif
552
ee498ed7 553/*
7e675137 554 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 555 *
7e675137
NP
556 * "Special" mappings do not wish to be associated with a "struct page" (either
557 * it doesn't exist, or it exists but they don't want to touch it). In this
558 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 559 *
7e675137
NP
560 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561 * pte bit, in which case this function is trivial. Secondly, an architecture
562 * may not have a spare pte bit, which requires a more complicated scheme,
563 * described below.
564 *
565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566 * special mapping (even if there are underlying and valid "struct pages").
567 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 568 *
b379d790
JH
569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572 * mapping will always honor the rule
6aab341e
LT
573 *
574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575 *
7e675137
NP
576 * And for normal mappings this is false.
577 *
578 * This restricts such mappings to be a linear translation from virtual address
579 * to pfn. To get around this restriction, we allow arbitrary mappings so long
580 * as the vma is not a COW mapping; in that case, we know that all ptes are
581 * special (because none can have been COWed).
b379d790 582 *
b379d790 583 *
7e675137 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
585 *
586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587 * page" backing, however the difference is that _all_ pages with a struct
588 * page (that is, those where pfn_valid is true) are refcounted and considered
589 * normal pages by the VM. The disadvantage is that pages are refcounted
590 * (which can be slower and simply not an option for some PFNMAP users). The
591 * advantage is that we don't have to follow the strict linearity rule of
592 * PFNMAP mappings in order to support COWable mappings.
593 *
ee498ed7 594 */
7e675137
NP
595#ifdef __HAVE_ARCH_PTE_SPECIAL
596# define HAVE_PTE_SPECIAL 1
597#else
598# define HAVE_PTE_SPECIAL 0
599#endif
600struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
601 pte_t pte)
ee498ed7 602{
22b31eec 603 unsigned long pfn = pte_pfn(pte);
7e675137
NP
604
605 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
606 if (likely(!pte_special(pte)))
607 goto check_pfn;
a13ea5b7
HD
608 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
609 return NULL;
62eede62 610 if (!is_zero_pfn(pfn))
22b31eec 611 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
612 return NULL;
613 }
614
615 /* !HAVE_PTE_SPECIAL case follows: */
616
b379d790
JH
617 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 if (vma->vm_flags & VM_MIXEDMAP) {
619 if (!pfn_valid(pfn))
620 return NULL;
621 goto out;
622 } else {
7e675137
NP
623 unsigned long off;
624 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
625 if (pfn == vma->vm_pgoff + off)
626 return NULL;
627 if (!is_cow_mapping(vma->vm_flags))
628 return NULL;
629 }
6aab341e
LT
630 }
631
62eede62
HD
632 if (is_zero_pfn(pfn))
633 return NULL;
22b31eec
HD
634check_pfn:
635 if (unlikely(pfn > highest_memmap_pfn)) {
636 print_bad_pte(vma, addr, pte, NULL);
637 return NULL;
638 }
6aab341e
LT
639
640 /*
7e675137 641 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 642 * eg. VDSO mappings can cause them to exist.
6aab341e 643 */
b379d790 644out:
6aab341e 645 return pfn_to_page(pfn);
ee498ed7
HD
646}
647
1da177e4
LT
648/*
649 * copy one vm_area from one task to the other. Assumes the page tables
650 * already present in the new task to be cleared in the whole range
651 * covered by this vma.
1da177e4
LT
652 */
653
570a335b 654static inline unsigned long
1da177e4 655copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 656 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 657 unsigned long addr, int *rss)
1da177e4 658{
b5810039 659 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
660 pte_t pte = *src_pte;
661 struct page *page;
1da177e4
LT
662
663 /* pte contains position in swap or file, so copy. */
664 if (unlikely(!pte_present(pte))) {
665 if (!pte_file(pte)) {
0697212a
CL
666 swp_entry_t entry = pte_to_swp_entry(pte);
667
570a335b
HD
668 if (swap_duplicate(entry) < 0)
669 return entry.val;
670
1da177e4
LT
671 /* make sure dst_mm is on swapoff's mmlist. */
672 if (unlikely(list_empty(&dst_mm->mmlist))) {
673 spin_lock(&mmlist_lock);
f412ac08
HD
674 if (list_empty(&dst_mm->mmlist))
675 list_add(&dst_mm->mmlist,
676 &src_mm->mmlist);
1da177e4
LT
677 spin_unlock(&mmlist_lock);
678 }
b084d435
KH
679 if (likely(!non_swap_entry(entry)))
680 rss[MM_SWAPENTS]++;
681 else if (is_write_migration_entry(entry) &&
0697212a
CL
682 is_cow_mapping(vm_flags)) {
683 /*
684 * COW mappings require pages in both parent
685 * and child to be set to read.
686 */
687 make_migration_entry_read(&entry);
688 pte = swp_entry_to_pte(entry);
689 set_pte_at(src_mm, addr, src_pte, pte);
690 }
1da177e4 691 }
ae859762 692 goto out_set_pte;
1da177e4
LT
693 }
694
1da177e4
LT
695 /*
696 * If it's a COW mapping, write protect it both
697 * in the parent and the child
698 */
67121172 699 if (is_cow_mapping(vm_flags)) {
1da177e4 700 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 701 pte = pte_wrprotect(pte);
1da177e4
LT
702 }
703
704 /*
705 * If it's a shared mapping, mark it clean in
706 * the child
707 */
708 if (vm_flags & VM_SHARED)
709 pte = pte_mkclean(pte);
710 pte = pte_mkold(pte);
6aab341e
LT
711
712 page = vm_normal_page(vma, addr, pte);
713 if (page) {
714 get_page(page);
21333b2b 715 page_dup_rmap(page);
d559db08
KH
716 if (PageAnon(page))
717 rss[MM_ANONPAGES]++;
718 else
719 rss[MM_FILEPAGES]++;
6aab341e 720 }
ae859762
HD
721
722out_set_pte:
723 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 724 return 0;
1da177e4
LT
725}
726
727static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
728 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
729 unsigned long addr, unsigned long end)
730{
c36987e2 731 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 732 pte_t *src_pte, *dst_pte;
c74df32c 733 spinlock_t *src_ptl, *dst_ptl;
e040f218 734 int progress = 0;
d559db08 735 int rss[NR_MM_COUNTERS];
570a335b 736 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
737
738again:
d559db08
KH
739 init_rss_vec(rss);
740
c74df32c 741 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
742 if (!dst_pte)
743 return -ENOMEM;
744 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 745 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 746 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
747 orig_src_pte = src_pte;
748 orig_dst_pte = dst_pte;
6606c3e0 749 arch_enter_lazy_mmu_mode();
1da177e4 750
1da177e4
LT
751 do {
752 /*
753 * We are holding two locks at this point - either of them
754 * could generate latencies in another task on another CPU.
755 */
e040f218
HD
756 if (progress >= 32) {
757 progress = 0;
758 if (need_resched() ||
95c354fe 759 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
760 break;
761 }
1da177e4
LT
762 if (pte_none(*src_pte)) {
763 progress++;
764 continue;
765 }
570a335b
HD
766 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
767 vma, addr, rss);
768 if (entry.val)
769 break;
1da177e4
LT
770 progress += 8;
771 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 772
6606c3e0 773 arch_leave_lazy_mmu_mode();
c74df32c 774 spin_unlock(src_ptl);
c36987e2 775 pte_unmap_nested(orig_src_pte);
d559db08 776 add_mm_rss_vec(dst_mm, rss);
c36987e2 777 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 778 cond_resched();
570a335b
HD
779
780 if (entry.val) {
781 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
782 return -ENOMEM;
783 progress = 0;
784 }
1da177e4
LT
785 if (addr != end)
786 goto again;
787 return 0;
788}
789
790static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
791 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
792 unsigned long addr, unsigned long end)
793{
794 pmd_t *src_pmd, *dst_pmd;
795 unsigned long next;
796
797 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
798 if (!dst_pmd)
799 return -ENOMEM;
800 src_pmd = pmd_offset(src_pud, addr);
801 do {
802 next = pmd_addr_end(addr, end);
803 if (pmd_none_or_clear_bad(src_pmd))
804 continue;
805 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
806 vma, addr, next))
807 return -ENOMEM;
808 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
809 return 0;
810}
811
812static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
813 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
814 unsigned long addr, unsigned long end)
815{
816 pud_t *src_pud, *dst_pud;
817 unsigned long next;
818
819 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
820 if (!dst_pud)
821 return -ENOMEM;
822 src_pud = pud_offset(src_pgd, addr);
823 do {
824 next = pud_addr_end(addr, end);
825 if (pud_none_or_clear_bad(src_pud))
826 continue;
827 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
828 vma, addr, next))
829 return -ENOMEM;
830 } while (dst_pud++, src_pud++, addr = next, addr != end);
831 return 0;
832}
833
834int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
835 struct vm_area_struct *vma)
836{
837 pgd_t *src_pgd, *dst_pgd;
838 unsigned long next;
839 unsigned long addr = vma->vm_start;
840 unsigned long end = vma->vm_end;
cddb8a5c 841 int ret;
1da177e4 842
d992895b
NP
843 /*
844 * Don't copy ptes where a page fault will fill them correctly.
845 * Fork becomes much lighter when there are big shared or private
846 * readonly mappings. The tradeoff is that copy_page_range is more
847 * efficient than faulting.
848 */
4d7672b4 849 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
850 if (!vma->anon_vma)
851 return 0;
852 }
853
1da177e4
LT
854 if (is_vm_hugetlb_page(vma))
855 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
856
34801ba9 857 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 858 /*
859 * We do not free on error cases below as remove_vma
860 * gets called on error from higher level routine
861 */
862 ret = track_pfn_vma_copy(vma);
863 if (ret)
864 return ret;
865 }
866
cddb8a5c
AA
867 /*
868 * We need to invalidate the secondary MMU mappings only when
869 * there could be a permission downgrade on the ptes of the
870 * parent mm. And a permission downgrade will only happen if
871 * is_cow_mapping() returns true.
872 */
873 if (is_cow_mapping(vma->vm_flags))
874 mmu_notifier_invalidate_range_start(src_mm, addr, end);
875
876 ret = 0;
1da177e4
LT
877 dst_pgd = pgd_offset(dst_mm, addr);
878 src_pgd = pgd_offset(src_mm, addr);
879 do {
880 next = pgd_addr_end(addr, end);
881 if (pgd_none_or_clear_bad(src_pgd))
882 continue;
cddb8a5c
AA
883 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
884 vma, addr, next))) {
885 ret = -ENOMEM;
886 break;
887 }
1da177e4 888 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
889
890 if (is_cow_mapping(vma->vm_flags))
891 mmu_notifier_invalidate_range_end(src_mm,
892 vma->vm_start, end);
893 return ret;
1da177e4
LT
894}
895
51c6f666 896static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 897 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 898 unsigned long addr, unsigned long end,
51c6f666 899 long *zap_work, struct zap_details *details)
1da177e4 900{
b5810039 901 struct mm_struct *mm = tlb->mm;
1da177e4 902 pte_t *pte;
508034a3 903 spinlock_t *ptl;
d559db08
KH
904 int rss[NR_MM_COUNTERS];
905
906 init_rss_vec(rss);
1da177e4 907
508034a3 908 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 909 arch_enter_lazy_mmu_mode();
1da177e4
LT
910 do {
911 pte_t ptent = *pte;
51c6f666
RH
912 if (pte_none(ptent)) {
913 (*zap_work)--;
1da177e4 914 continue;
51c6f666 915 }
6f5e6b9e
HD
916
917 (*zap_work) -= PAGE_SIZE;
918
1da177e4 919 if (pte_present(ptent)) {
ee498ed7 920 struct page *page;
51c6f666 921
6aab341e 922 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
923 if (unlikely(details) && page) {
924 /*
925 * unmap_shared_mapping_pages() wants to
926 * invalidate cache without truncating:
927 * unmap shared but keep private pages.
928 */
929 if (details->check_mapping &&
930 details->check_mapping != page->mapping)
931 continue;
932 /*
933 * Each page->index must be checked when
934 * invalidating or truncating nonlinear.
935 */
936 if (details->nonlinear_vma &&
937 (page->index < details->first_index ||
938 page->index > details->last_index))
939 continue;
940 }
b5810039 941 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 942 tlb->fullmm);
1da177e4
LT
943 tlb_remove_tlb_entry(tlb, pte, addr);
944 if (unlikely(!page))
945 continue;
946 if (unlikely(details) && details->nonlinear_vma
947 && linear_page_index(details->nonlinear_vma,
948 addr) != page->index)
b5810039 949 set_pte_at(mm, addr, pte,
1da177e4 950 pgoff_to_pte(page->index));
1da177e4 951 if (PageAnon(page))
d559db08 952 rss[MM_ANONPAGES]--;
6237bcd9
HD
953 else {
954 if (pte_dirty(ptent))
955 set_page_dirty(page);
4917e5d0
JW
956 if (pte_young(ptent) &&
957 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 958 mark_page_accessed(page);
d559db08 959 rss[MM_FILEPAGES]--;
6237bcd9 960 }
edc315fd 961 page_remove_rmap(page);
3dc14741
HD
962 if (unlikely(page_mapcount(page) < 0))
963 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
964 tlb_remove_page(tlb, page);
965 continue;
966 }
967 /*
968 * If details->check_mapping, we leave swap entries;
969 * if details->nonlinear_vma, we leave file entries.
970 */
971 if (unlikely(details))
972 continue;
2509ef26
HD
973 if (pte_file(ptent)) {
974 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
975 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
976 } else {
977 swp_entry_t entry = pte_to_swp_entry(ptent);
978
979 if (!non_swap_entry(entry))
980 rss[MM_SWAPENTS]--;
981 if (unlikely(!free_swap_and_cache(entry)))
982 print_bad_pte(vma, addr, ptent, NULL);
983 }
9888a1ca 984 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 985 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 986
d559db08 987 add_mm_rss_vec(mm, rss);
6606c3e0 988 arch_leave_lazy_mmu_mode();
508034a3 989 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
990
991 return addr;
1da177e4
LT
992}
993
51c6f666 994static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 995 struct vm_area_struct *vma, pud_t *pud,
1da177e4 996 unsigned long addr, unsigned long end,
51c6f666 997 long *zap_work, struct zap_details *details)
1da177e4
LT
998{
999 pmd_t *pmd;
1000 unsigned long next;
1001
1002 pmd = pmd_offset(pud, addr);
1003 do {
1004 next = pmd_addr_end(addr, end);
51c6f666
RH
1005 if (pmd_none_or_clear_bad(pmd)) {
1006 (*zap_work)--;
1da177e4 1007 continue;
51c6f666
RH
1008 }
1009 next = zap_pte_range(tlb, vma, pmd, addr, next,
1010 zap_work, details);
1011 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1012
1013 return addr;
1da177e4
LT
1014}
1015
51c6f666 1016static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1017 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1018 unsigned long addr, unsigned long end,
51c6f666 1019 long *zap_work, struct zap_details *details)
1da177e4
LT
1020{
1021 pud_t *pud;
1022 unsigned long next;
1023
1024 pud = pud_offset(pgd, addr);
1025 do {
1026 next = pud_addr_end(addr, end);
51c6f666
RH
1027 if (pud_none_or_clear_bad(pud)) {
1028 (*zap_work)--;
1da177e4 1029 continue;
51c6f666
RH
1030 }
1031 next = zap_pmd_range(tlb, vma, pud, addr, next,
1032 zap_work, details);
1033 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1034
1035 return addr;
1da177e4
LT
1036}
1037
51c6f666
RH
1038static unsigned long unmap_page_range(struct mmu_gather *tlb,
1039 struct vm_area_struct *vma,
1da177e4 1040 unsigned long addr, unsigned long end,
51c6f666 1041 long *zap_work, struct zap_details *details)
1da177e4
LT
1042{
1043 pgd_t *pgd;
1044 unsigned long next;
1045
1046 if (details && !details->check_mapping && !details->nonlinear_vma)
1047 details = NULL;
1048
1049 BUG_ON(addr >= end);
569b846d 1050 mem_cgroup_uncharge_start();
1da177e4
LT
1051 tlb_start_vma(tlb, vma);
1052 pgd = pgd_offset(vma->vm_mm, addr);
1053 do {
1054 next = pgd_addr_end(addr, end);
51c6f666
RH
1055 if (pgd_none_or_clear_bad(pgd)) {
1056 (*zap_work)--;
1da177e4 1057 continue;
51c6f666
RH
1058 }
1059 next = zap_pud_range(tlb, vma, pgd, addr, next,
1060 zap_work, details);
1061 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 1062 tlb_end_vma(tlb, vma);
569b846d 1063 mem_cgroup_uncharge_end();
51c6f666
RH
1064
1065 return addr;
1da177e4
LT
1066}
1067
1068#ifdef CONFIG_PREEMPT
1069# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1070#else
1071/* No preempt: go for improved straight-line efficiency */
1072# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1073#endif
1074
1075/**
1076 * unmap_vmas - unmap a range of memory covered by a list of vma's
1077 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
1078 * @vma: the starting vma
1079 * @start_addr: virtual address at which to start unmapping
1080 * @end_addr: virtual address at which to end unmapping
1081 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1082 * @details: details of nonlinear truncation or shared cache invalidation
1083 *
ee39b37b 1084 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 1085 *
508034a3 1086 * Unmap all pages in the vma list.
1da177e4 1087 *
508034a3
HD
1088 * We aim to not hold locks for too long (for scheduling latency reasons).
1089 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
1090 * return the ending mmu_gather to the caller.
1091 *
1092 * Only addresses between `start' and `end' will be unmapped.
1093 *
1094 * The VMA list must be sorted in ascending virtual address order.
1095 *
1096 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1097 * range after unmap_vmas() returns. So the only responsibility here is to
1098 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1099 * drops the lock and schedules.
1100 */
508034a3 1101unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
1102 struct vm_area_struct *vma, unsigned long start_addr,
1103 unsigned long end_addr, unsigned long *nr_accounted,
1104 struct zap_details *details)
1105{
51c6f666 1106 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1107 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1108 int tlb_start_valid = 0;
ee39b37b 1109 unsigned long start = start_addr;
1da177e4 1110 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 1111 int fullmm = (*tlbp)->fullmm;
cddb8a5c 1112 struct mm_struct *mm = vma->vm_mm;
1da177e4 1113
cddb8a5c 1114 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1115 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1116 unsigned long end;
1117
1118 start = max(vma->vm_start, start_addr);
1119 if (start >= vma->vm_end)
1120 continue;
1121 end = min(vma->vm_end, end_addr);
1122 if (end <= vma->vm_start)
1123 continue;
1124
1125 if (vma->vm_flags & VM_ACCOUNT)
1126 *nr_accounted += (end - start) >> PAGE_SHIFT;
1127
34801ba9 1128 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1129 untrack_pfn_vma(vma, 0, 0);
1130
1da177e4 1131 while (start != end) {
1da177e4
LT
1132 if (!tlb_start_valid) {
1133 tlb_start = start;
1134 tlb_start_valid = 1;
1135 }
1136
51c6f666 1137 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1138 /*
1139 * It is undesirable to test vma->vm_file as it
1140 * should be non-null for valid hugetlb area.
1141 * However, vm_file will be NULL in the error
1142 * cleanup path of do_mmap_pgoff. When
1143 * hugetlbfs ->mmap method fails,
1144 * do_mmap_pgoff() nullifies vma->vm_file
1145 * before calling this function to clean up.
1146 * Since no pte has actually been setup, it is
1147 * safe to do nothing in this case.
1148 */
1149 if (vma->vm_file) {
1150 unmap_hugepage_range(vma, start, end, NULL);
1151 zap_work -= (end - start) /
a5516438 1152 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1153 }
1154
51c6f666
RH
1155 start = end;
1156 } else
1157 start = unmap_page_range(*tlbp, vma,
1158 start, end, &zap_work, details);
1159
1160 if (zap_work > 0) {
1161 BUG_ON(start != end);
1162 break;
1da177e4
LT
1163 }
1164
1da177e4
LT
1165 tlb_finish_mmu(*tlbp, tlb_start, start);
1166
1167 if (need_resched() ||
95c354fe 1168 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1169 if (i_mmap_lock) {
508034a3 1170 *tlbp = NULL;
1da177e4
LT
1171 goto out;
1172 }
1da177e4 1173 cond_resched();
1da177e4
LT
1174 }
1175
508034a3 1176 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1177 tlb_start_valid = 0;
51c6f666 1178 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1179 }
1180 }
1181out:
cddb8a5c 1182 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1183 return start; /* which is now the end (or restart) address */
1da177e4
LT
1184}
1185
1186/**
1187 * zap_page_range - remove user pages in a given range
1188 * @vma: vm_area_struct holding the applicable pages
1189 * @address: starting address of pages to zap
1190 * @size: number of bytes to zap
1191 * @details: details of nonlinear truncation or shared cache invalidation
1192 */
ee39b37b 1193unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1194 unsigned long size, struct zap_details *details)
1195{
1196 struct mm_struct *mm = vma->vm_mm;
1197 struct mmu_gather *tlb;
1198 unsigned long end = address + size;
1199 unsigned long nr_accounted = 0;
1200
1da177e4 1201 lru_add_drain();
1da177e4 1202 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1203 update_hiwater_rss(mm);
508034a3
HD
1204 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1205 if (tlb)
1206 tlb_finish_mmu(tlb, address, end);
ee39b37b 1207 return end;
1da177e4
LT
1208}
1209
c627f9cc
JS
1210/**
1211 * zap_vma_ptes - remove ptes mapping the vma
1212 * @vma: vm_area_struct holding ptes to be zapped
1213 * @address: starting address of pages to zap
1214 * @size: number of bytes to zap
1215 *
1216 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1217 *
1218 * The entire address range must be fully contained within the vma.
1219 *
1220 * Returns 0 if successful.
1221 */
1222int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1223 unsigned long size)
1224{
1225 if (address < vma->vm_start || address + size > vma->vm_end ||
1226 !(vma->vm_flags & VM_PFNMAP))
1227 return -1;
1228 zap_page_range(vma, address, size, NULL);
1229 return 0;
1230}
1231EXPORT_SYMBOL_GPL(zap_vma_ptes);
1232
1da177e4
LT
1233/*
1234 * Do a quick page-table lookup for a single page.
1da177e4 1235 */
6aab341e 1236struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1237 unsigned int flags)
1da177e4
LT
1238{
1239 pgd_t *pgd;
1240 pud_t *pud;
1241 pmd_t *pmd;
1242 pte_t *ptep, pte;
deceb6cd 1243 spinlock_t *ptl;
1da177e4 1244 struct page *page;
6aab341e 1245 struct mm_struct *mm = vma->vm_mm;
1da177e4 1246
deceb6cd
HD
1247 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1248 if (!IS_ERR(page)) {
1249 BUG_ON(flags & FOLL_GET);
1250 goto out;
1251 }
1da177e4 1252
deceb6cd 1253 page = NULL;
1da177e4
LT
1254 pgd = pgd_offset(mm, address);
1255 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1256 goto no_page_table;
1da177e4
LT
1257
1258 pud = pud_offset(pgd, address);
ceb86879 1259 if (pud_none(*pud))
deceb6cd 1260 goto no_page_table;
ceb86879
AK
1261 if (pud_huge(*pud)) {
1262 BUG_ON(flags & FOLL_GET);
1263 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1264 goto out;
1265 }
1266 if (unlikely(pud_bad(*pud)))
1267 goto no_page_table;
1268
1da177e4 1269 pmd = pmd_offset(pud, address);
aeed5fce 1270 if (pmd_none(*pmd))
deceb6cd 1271 goto no_page_table;
deceb6cd
HD
1272 if (pmd_huge(*pmd)) {
1273 BUG_ON(flags & FOLL_GET);
1274 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1275 goto out;
deceb6cd 1276 }
aeed5fce
HD
1277 if (unlikely(pmd_bad(*pmd)))
1278 goto no_page_table;
1279
deceb6cd 1280 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1281
1282 pte = *ptep;
deceb6cd 1283 if (!pte_present(pte))
89f5b7da 1284 goto no_page;
deceb6cd
HD
1285 if ((flags & FOLL_WRITE) && !pte_write(pte))
1286 goto unlock;
a13ea5b7 1287
6aab341e 1288 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1289 if (unlikely(!page)) {
1290 if ((flags & FOLL_DUMP) ||
62eede62 1291 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1292 goto bad_page;
1293 page = pte_page(pte);
1294 }
1da177e4 1295
deceb6cd
HD
1296 if (flags & FOLL_GET)
1297 get_page(page);
1298 if (flags & FOLL_TOUCH) {
1299 if ((flags & FOLL_WRITE) &&
1300 !pte_dirty(pte) && !PageDirty(page))
1301 set_page_dirty(page);
bd775c42
KM
1302 /*
1303 * pte_mkyoung() would be more correct here, but atomic care
1304 * is needed to avoid losing the dirty bit: it is easier to use
1305 * mark_page_accessed().
1306 */
deceb6cd
HD
1307 mark_page_accessed(page);
1308 }
1309unlock:
1310 pte_unmap_unlock(ptep, ptl);
1da177e4 1311out:
deceb6cd 1312 return page;
1da177e4 1313
89f5b7da
LT
1314bad_page:
1315 pte_unmap_unlock(ptep, ptl);
1316 return ERR_PTR(-EFAULT);
1317
1318no_page:
1319 pte_unmap_unlock(ptep, ptl);
1320 if (!pte_none(pte))
1321 return page;
8e4b9a60 1322
deceb6cd
HD
1323no_page_table:
1324 /*
1325 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1326 * has touched so far, we don't want to allocate unnecessary pages or
1327 * page tables. Return error instead of NULL to skip handle_mm_fault,
1328 * then get_dump_page() will return NULL to leave a hole in the dump.
1329 * But we can only make this optimization where a hole would surely
1330 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1331 */
8e4b9a60
HD
1332 if ((flags & FOLL_DUMP) &&
1333 (!vma->vm_ops || !vma->vm_ops->fault))
1334 return ERR_PTR(-EFAULT);
deceb6cd 1335 return page;
1da177e4
LT
1336}
1337
b291f000 1338int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1339 unsigned long start, int nr_pages, unsigned int gup_flags,
9d73777e 1340 struct page **pages, struct vm_area_struct **vmas)
1da177e4
LT
1341{
1342 int i;
58fa879e 1343 unsigned long vm_flags;
1da177e4 1344
9d73777e 1345 if (nr_pages <= 0)
900cf086 1346 return 0;
58fa879e
HD
1347
1348 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1349
1da177e4
LT
1350 /*
1351 * Require read or write permissions.
58fa879e 1352 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1353 */
58fa879e
HD
1354 vm_flags = (gup_flags & FOLL_WRITE) ?
1355 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1356 vm_flags &= (gup_flags & FOLL_FORCE) ?
1357 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1358 i = 0;
1359
1360 do {
deceb6cd 1361 struct vm_area_struct *vma;
1da177e4
LT
1362
1363 vma = find_extend_vma(mm, start);
1364 if (!vma && in_gate_area(tsk, start)) {
1365 unsigned long pg = start & PAGE_MASK;
1366 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1367 pgd_t *pgd;
1368 pud_t *pud;
1369 pmd_t *pmd;
1370 pte_t *pte;
b291f000
NP
1371
1372 /* user gate pages are read-only */
58fa879e 1373 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1374 return i ? : -EFAULT;
1375 if (pg > TASK_SIZE)
1376 pgd = pgd_offset_k(pg);
1377 else
1378 pgd = pgd_offset_gate(mm, pg);
1379 BUG_ON(pgd_none(*pgd));
1380 pud = pud_offset(pgd, pg);
1381 BUG_ON(pud_none(*pud));
1382 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1383 if (pmd_none(*pmd))
1384 return i ? : -EFAULT;
1da177e4 1385 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1386 if (pte_none(*pte)) {
1387 pte_unmap(pte);
1388 return i ? : -EFAULT;
1389 }
1da177e4 1390 if (pages) {
fa2a455b 1391 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1392 pages[i] = page;
1393 if (page)
1394 get_page(page);
1da177e4
LT
1395 }
1396 pte_unmap(pte);
1397 if (vmas)
1398 vmas[i] = gate_vma;
1399 i++;
1400 start += PAGE_SIZE;
9d73777e 1401 nr_pages--;
1da177e4
LT
1402 continue;
1403 }
1404
b291f000
NP
1405 if (!vma ||
1406 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1407 !(vm_flags & vma->vm_flags))
1da177e4
LT
1408 return i ? : -EFAULT;
1409
2a15efc9
HD
1410 if (is_vm_hugetlb_page(vma)) {
1411 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1412 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1413 continue;
1414 }
deceb6cd 1415
1da177e4 1416 do {
08ef4729 1417 struct page *page;
58fa879e 1418 unsigned int foll_flags = gup_flags;
1da177e4 1419
462e00cc 1420 /*
4779280d 1421 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1422 * pages and potentially allocating memory.
462e00cc 1423 */
1c3aff1c 1424 if (unlikely(fatal_signal_pending(current)))
4779280d 1425 return i ? i : -ERESTARTSYS;
462e00cc 1426
deceb6cd 1427 cond_resched();
6aab341e 1428 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1429 int ret;
d06063cc 1430
d26ed650
HD
1431 ret = handle_mm_fault(mm, vma, start,
1432 (foll_flags & FOLL_WRITE) ?
1433 FAULT_FLAG_WRITE : 0);
1434
83c54070
NP
1435 if (ret & VM_FAULT_ERROR) {
1436 if (ret & VM_FAULT_OOM)
1437 return i ? i : -ENOMEM;
d1737fdb
AK
1438 if (ret &
1439 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
83c54070
NP
1440 return i ? i : -EFAULT;
1441 BUG();
1442 }
1443 if (ret & VM_FAULT_MAJOR)
1444 tsk->maj_flt++;
1445 else
1446 tsk->min_flt++;
1447
a68d2ebc 1448 /*
83c54070
NP
1449 * The VM_FAULT_WRITE bit tells us that
1450 * do_wp_page has broken COW when necessary,
1451 * even if maybe_mkwrite decided not to set
1452 * pte_write. We can thus safely do subsequent
878b63ac
HD
1453 * page lookups as if they were reads. But only
1454 * do so when looping for pte_write is futile:
1455 * in some cases userspace may also be wanting
1456 * to write to the gotten user page, which a
1457 * read fault here might prevent (a readonly
1458 * page might get reCOWed by userspace write).
a68d2ebc 1459 */
878b63ac
HD
1460 if ((ret & VM_FAULT_WRITE) &&
1461 !(vma->vm_flags & VM_WRITE))
deceb6cd 1462 foll_flags &= ~FOLL_WRITE;
83c54070 1463
7f7bbbe5 1464 cond_resched();
1da177e4 1465 }
89f5b7da
LT
1466 if (IS_ERR(page))
1467 return i ? i : PTR_ERR(page);
1da177e4 1468 if (pages) {
08ef4729 1469 pages[i] = page;
03beb076 1470
a6f36be3 1471 flush_anon_page(vma, page, start);
08ef4729 1472 flush_dcache_page(page);
1da177e4
LT
1473 }
1474 if (vmas)
1475 vmas[i] = vma;
1476 i++;
1477 start += PAGE_SIZE;
9d73777e
PZ
1478 nr_pages--;
1479 } while (nr_pages && start < vma->vm_end);
1480 } while (nr_pages);
1da177e4
LT
1481 return i;
1482}
b291f000 1483
d2bf6be8
NP
1484/**
1485 * get_user_pages() - pin user pages in memory
1486 * @tsk: task_struct of target task
1487 * @mm: mm_struct of target mm
1488 * @start: starting user address
9d73777e 1489 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1490 * @write: whether pages will be written to by the caller
1491 * @force: whether to force write access even if user mapping is
1492 * readonly. This will result in the page being COWed even
1493 * in MAP_SHARED mappings. You do not want this.
1494 * @pages: array that receives pointers to the pages pinned.
1495 * Should be at least nr_pages long. Or NULL, if caller
1496 * only intends to ensure the pages are faulted in.
1497 * @vmas: array of pointers to vmas corresponding to each page.
1498 * Or NULL if the caller does not require them.
1499 *
1500 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1501 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1502 * were pinned, returns -errno. Each page returned must be released
1503 * with a put_page() call when it is finished with. vmas will only
1504 * remain valid while mmap_sem is held.
1505 *
1506 * Must be called with mmap_sem held for read or write.
1507 *
1508 * get_user_pages walks a process's page tables and takes a reference to
1509 * each struct page that each user address corresponds to at a given
1510 * instant. That is, it takes the page that would be accessed if a user
1511 * thread accesses the given user virtual address at that instant.
1512 *
1513 * This does not guarantee that the page exists in the user mappings when
1514 * get_user_pages returns, and there may even be a completely different
1515 * page there in some cases (eg. if mmapped pagecache has been invalidated
1516 * and subsequently re faulted). However it does guarantee that the page
1517 * won't be freed completely. And mostly callers simply care that the page
1518 * contains data that was valid *at some point in time*. Typically, an IO
1519 * or similar operation cannot guarantee anything stronger anyway because
1520 * locks can't be held over the syscall boundary.
1521 *
1522 * If write=0, the page must not be written to. If the page is written to,
1523 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1524 * after the page is finished with, and before put_page is called.
1525 *
1526 * get_user_pages is typically used for fewer-copy IO operations, to get a
1527 * handle on the memory by some means other than accesses via the user virtual
1528 * addresses. The pages may be submitted for DMA to devices or accessed via
1529 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1530 * use the correct cache flushing APIs.
1531 *
1532 * See also get_user_pages_fast, for performance critical applications.
1533 */
b291f000 1534int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1535 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1536 struct page **pages, struct vm_area_struct **vmas)
1537{
58fa879e 1538 int flags = FOLL_TOUCH;
b291f000 1539
58fa879e
HD
1540 if (pages)
1541 flags |= FOLL_GET;
b291f000 1542 if (write)
58fa879e 1543 flags |= FOLL_WRITE;
b291f000 1544 if (force)
58fa879e 1545 flags |= FOLL_FORCE;
b291f000 1546
9d73777e 1547 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
b291f000 1548}
1da177e4
LT
1549EXPORT_SYMBOL(get_user_pages);
1550
f3e8fccd
HD
1551/**
1552 * get_dump_page() - pin user page in memory while writing it to core dump
1553 * @addr: user address
1554 *
1555 * Returns struct page pointer of user page pinned for dump,
1556 * to be freed afterwards by page_cache_release() or put_page().
1557 *
1558 * Returns NULL on any kind of failure - a hole must then be inserted into
1559 * the corefile, to preserve alignment with its headers; and also returns
1560 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1561 * allowing a hole to be left in the corefile to save diskspace.
1562 *
1563 * Called without mmap_sem, but after all other threads have been killed.
1564 */
1565#ifdef CONFIG_ELF_CORE
1566struct page *get_dump_page(unsigned long addr)
1567{
1568 struct vm_area_struct *vma;
1569 struct page *page;
1570
1571 if (__get_user_pages(current, current->mm, addr, 1,
58fa879e 1572 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
f3e8fccd 1573 return NULL;
f3e8fccd
HD
1574 flush_cache_page(vma, addr, page_to_pfn(page));
1575 return page;
1576}
1577#endif /* CONFIG_ELF_CORE */
1578
920c7a5d
HH
1579pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1580 spinlock_t **ptl)
c9cfcddf
LT
1581{
1582 pgd_t * pgd = pgd_offset(mm, addr);
1583 pud_t * pud = pud_alloc(mm, pgd, addr);
1584 if (pud) {
49c91fb0 1585 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1586 if (pmd)
1587 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1588 }
1589 return NULL;
1590}
1591
238f58d8
LT
1592/*
1593 * This is the old fallback for page remapping.
1594 *
1595 * For historical reasons, it only allows reserved pages. Only
1596 * old drivers should use this, and they needed to mark their
1597 * pages reserved for the old functions anyway.
1598 */
423bad60
NP
1599static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1600 struct page *page, pgprot_t prot)
238f58d8 1601{
423bad60 1602 struct mm_struct *mm = vma->vm_mm;
238f58d8 1603 int retval;
c9cfcddf 1604 pte_t *pte;
8a9f3ccd
BS
1605 spinlock_t *ptl;
1606
238f58d8 1607 retval = -EINVAL;
a145dd41 1608 if (PageAnon(page))
5b4e655e 1609 goto out;
238f58d8
LT
1610 retval = -ENOMEM;
1611 flush_dcache_page(page);
c9cfcddf 1612 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1613 if (!pte)
5b4e655e 1614 goto out;
238f58d8
LT
1615 retval = -EBUSY;
1616 if (!pte_none(*pte))
1617 goto out_unlock;
1618
1619 /* Ok, finally just insert the thing.. */
1620 get_page(page);
34e55232 1621 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1622 page_add_file_rmap(page);
1623 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1624
1625 retval = 0;
8a9f3ccd
BS
1626 pte_unmap_unlock(pte, ptl);
1627 return retval;
238f58d8
LT
1628out_unlock:
1629 pte_unmap_unlock(pte, ptl);
1630out:
1631 return retval;
1632}
1633
bfa5bf6d
REB
1634/**
1635 * vm_insert_page - insert single page into user vma
1636 * @vma: user vma to map to
1637 * @addr: target user address of this page
1638 * @page: source kernel page
1639 *
a145dd41
LT
1640 * This allows drivers to insert individual pages they've allocated
1641 * into a user vma.
1642 *
1643 * The page has to be a nice clean _individual_ kernel allocation.
1644 * If you allocate a compound page, you need to have marked it as
1645 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1646 * (see split_page()).
a145dd41
LT
1647 *
1648 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1649 * took an arbitrary page protection parameter. This doesn't allow
1650 * that. Your vma protection will have to be set up correctly, which
1651 * means that if you want a shared writable mapping, you'd better
1652 * ask for a shared writable mapping!
1653 *
1654 * The page does not need to be reserved.
1655 */
423bad60
NP
1656int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1657 struct page *page)
a145dd41
LT
1658{
1659 if (addr < vma->vm_start || addr >= vma->vm_end)
1660 return -EFAULT;
1661 if (!page_count(page))
1662 return -EINVAL;
4d7672b4 1663 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1664 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1665}
e3c3374f 1666EXPORT_SYMBOL(vm_insert_page);
a145dd41 1667
423bad60
NP
1668static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1669 unsigned long pfn, pgprot_t prot)
1670{
1671 struct mm_struct *mm = vma->vm_mm;
1672 int retval;
1673 pte_t *pte, entry;
1674 spinlock_t *ptl;
1675
1676 retval = -ENOMEM;
1677 pte = get_locked_pte(mm, addr, &ptl);
1678 if (!pte)
1679 goto out;
1680 retval = -EBUSY;
1681 if (!pte_none(*pte))
1682 goto out_unlock;
1683
1684 /* Ok, finally just insert the thing.. */
1685 entry = pte_mkspecial(pfn_pte(pfn, prot));
1686 set_pte_at(mm, addr, pte, entry);
4b3073e1 1687 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1688
1689 retval = 0;
1690out_unlock:
1691 pte_unmap_unlock(pte, ptl);
1692out:
1693 return retval;
1694}
1695
e0dc0d8f
NP
1696/**
1697 * vm_insert_pfn - insert single pfn into user vma
1698 * @vma: user vma to map to
1699 * @addr: target user address of this page
1700 * @pfn: source kernel pfn
1701 *
1702 * Similar to vm_inert_page, this allows drivers to insert individual pages
1703 * they've allocated into a user vma. Same comments apply.
1704 *
1705 * This function should only be called from a vm_ops->fault handler, and
1706 * in that case the handler should return NULL.
0d71d10a
NP
1707 *
1708 * vma cannot be a COW mapping.
1709 *
1710 * As this is called only for pages that do not currently exist, we
1711 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1712 */
1713int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1714 unsigned long pfn)
e0dc0d8f 1715{
2ab64037 1716 int ret;
e4b866ed 1717 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1718 /*
1719 * Technically, architectures with pte_special can avoid all these
1720 * restrictions (same for remap_pfn_range). However we would like
1721 * consistency in testing and feature parity among all, so we should
1722 * try to keep these invariants in place for everybody.
1723 */
b379d790
JH
1724 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1725 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1726 (VM_PFNMAP|VM_MIXEDMAP));
1727 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1728 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1729
423bad60
NP
1730 if (addr < vma->vm_start || addr >= vma->vm_end)
1731 return -EFAULT;
e4b866ed 1732 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1733 return -EINVAL;
1734
e4b866ed 1735 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1736
1737 if (ret)
1738 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1739
1740 return ret;
423bad60
NP
1741}
1742EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1743
423bad60
NP
1744int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1745 unsigned long pfn)
1746{
1747 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1748
423bad60
NP
1749 if (addr < vma->vm_start || addr >= vma->vm_end)
1750 return -EFAULT;
e0dc0d8f 1751
423bad60
NP
1752 /*
1753 * If we don't have pte special, then we have to use the pfn_valid()
1754 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1755 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1756 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1757 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1758 */
1759 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1760 struct page *page;
1761
1762 page = pfn_to_page(pfn);
1763 return insert_page(vma, addr, page, vma->vm_page_prot);
1764 }
1765 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1766}
423bad60 1767EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1768
1da177e4
LT
1769/*
1770 * maps a range of physical memory into the requested pages. the old
1771 * mappings are removed. any references to nonexistent pages results
1772 * in null mappings (currently treated as "copy-on-access")
1773 */
1774static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1775 unsigned long addr, unsigned long end,
1776 unsigned long pfn, pgprot_t prot)
1777{
1778 pte_t *pte;
c74df32c 1779 spinlock_t *ptl;
1da177e4 1780
c74df32c 1781 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1782 if (!pte)
1783 return -ENOMEM;
6606c3e0 1784 arch_enter_lazy_mmu_mode();
1da177e4
LT
1785 do {
1786 BUG_ON(!pte_none(*pte));
7e675137 1787 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1788 pfn++;
1789 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1790 arch_leave_lazy_mmu_mode();
c74df32c 1791 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1792 return 0;
1793}
1794
1795static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1796 unsigned long addr, unsigned long end,
1797 unsigned long pfn, pgprot_t prot)
1798{
1799 pmd_t *pmd;
1800 unsigned long next;
1801
1802 pfn -= addr >> PAGE_SHIFT;
1803 pmd = pmd_alloc(mm, pud, addr);
1804 if (!pmd)
1805 return -ENOMEM;
1806 do {
1807 next = pmd_addr_end(addr, end);
1808 if (remap_pte_range(mm, pmd, addr, next,
1809 pfn + (addr >> PAGE_SHIFT), prot))
1810 return -ENOMEM;
1811 } while (pmd++, addr = next, addr != end);
1812 return 0;
1813}
1814
1815static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1816 unsigned long addr, unsigned long end,
1817 unsigned long pfn, pgprot_t prot)
1818{
1819 pud_t *pud;
1820 unsigned long next;
1821
1822 pfn -= addr >> PAGE_SHIFT;
1823 pud = pud_alloc(mm, pgd, addr);
1824 if (!pud)
1825 return -ENOMEM;
1826 do {
1827 next = pud_addr_end(addr, end);
1828 if (remap_pmd_range(mm, pud, addr, next,
1829 pfn + (addr >> PAGE_SHIFT), prot))
1830 return -ENOMEM;
1831 } while (pud++, addr = next, addr != end);
1832 return 0;
1833}
1834
bfa5bf6d
REB
1835/**
1836 * remap_pfn_range - remap kernel memory to userspace
1837 * @vma: user vma to map to
1838 * @addr: target user address to start at
1839 * @pfn: physical address of kernel memory
1840 * @size: size of map area
1841 * @prot: page protection flags for this mapping
1842 *
1843 * Note: this is only safe if the mm semaphore is held when called.
1844 */
1da177e4
LT
1845int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1846 unsigned long pfn, unsigned long size, pgprot_t prot)
1847{
1848 pgd_t *pgd;
1849 unsigned long next;
2d15cab8 1850 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1851 struct mm_struct *mm = vma->vm_mm;
1852 int err;
1853
1854 /*
1855 * Physically remapped pages are special. Tell the
1856 * rest of the world about it:
1857 * VM_IO tells people not to look at these pages
1858 * (accesses can have side effects).
0b14c179
HD
1859 * VM_RESERVED is specified all over the place, because
1860 * in 2.4 it kept swapout's vma scan off this vma; but
1861 * in 2.6 the LRU scan won't even find its pages, so this
1862 * flag means no more than count its pages in reserved_vm,
1863 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1864 * VM_PFNMAP tells the core MM that the base pages are just
1865 * raw PFN mappings, and do not have a "struct page" associated
1866 * with them.
fb155c16
LT
1867 *
1868 * There's a horrible special case to handle copy-on-write
1869 * behaviour that some programs depend on. We mark the "original"
1870 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1871 */
4bb9c5c0 1872 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 1873 vma->vm_pgoff = pfn;
895791da 1874 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 1875 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 1876 return -EINVAL;
fb155c16 1877
6aab341e 1878 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1879
e4b866ed 1880 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 1881 if (err) {
1882 /*
1883 * To indicate that track_pfn related cleanup is not
1884 * needed from higher level routine calling unmap_vmas
1885 */
1886 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 1887 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 1888 return -EINVAL;
a3670613 1889 }
2ab64037 1890
1da177e4
LT
1891 BUG_ON(addr >= end);
1892 pfn -= addr >> PAGE_SHIFT;
1893 pgd = pgd_offset(mm, addr);
1894 flush_cache_range(vma, addr, end);
1da177e4
LT
1895 do {
1896 next = pgd_addr_end(addr, end);
1897 err = remap_pud_range(mm, pgd, addr, next,
1898 pfn + (addr >> PAGE_SHIFT), prot);
1899 if (err)
1900 break;
1901 } while (pgd++, addr = next, addr != end);
2ab64037 1902
1903 if (err)
1904 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1905
1da177e4
LT
1906 return err;
1907}
1908EXPORT_SYMBOL(remap_pfn_range);
1909
aee16b3c
JF
1910static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1911 unsigned long addr, unsigned long end,
1912 pte_fn_t fn, void *data)
1913{
1914 pte_t *pte;
1915 int err;
2f569afd 1916 pgtable_t token;
94909914 1917 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1918
1919 pte = (mm == &init_mm) ?
1920 pte_alloc_kernel(pmd, addr) :
1921 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1922 if (!pte)
1923 return -ENOMEM;
1924
1925 BUG_ON(pmd_huge(*pmd));
1926
38e0edb1
JF
1927 arch_enter_lazy_mmu_mode();
1928
2f569afd 1929 token = pmd_pgtable(*pmd);
aee16b3c
JF
1930
1931 do {
c36987e2 1932 err = fn(pte++, token, addr, data);
aee16b3c
JF
1933 if (err)
1934 break;
c36987e2 1935 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1936
38e0edb1
JF
1937 arch_leave_lazy_mmu_mode();
1938
aee16b3c
JF
1939 if (mm != &init_mm)
1940 pte_unmap_unlock(pte-1, ptl);
1941 return err;
1942}
1943
1944static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1945 unsigned long addr, unsigned long end,
1946 pte_fn_t fn, void *data)
1947{
1948 pmd_t *pmd;
1949 unsigned long next;
1950 int err;
1951
ceb86879
AK
1952 BUG_ON(pud_huge(*pud));
1953
aee16b3c
JF
1954 pmd = pmd_alloc(mm, pud, addr);
1955 if (!pmd)
1956 return -ENOMEM;
1957 do {
1958 next = pmd_addr_end(addr, end);
1959 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1960 if (err)
1961 break;
1962 } while (pmd++, addr = next, addr != end);
1963 return err;
1964}
1965
1966static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1967 unsigned long addr, unsigned long end,
1968 pte_fn_t fn, void *data)
1969{
1970 pud_t *pud;
1971 unsigned long next;
1972 int err;
1973
1974 pud = pud_alloc(mm, pgd, addr);
1975 if (!pud)
1976 return -ENOMEM;
1977 do {
1978 next = pud_addr_end(addr, end);
1979 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1980 if (err)
1981 break;
1982 } while (pud++, addr = next, addr != end);
1983 return err;
1984}
1985
1986/*
1987 * Scan a region of virtual memory, filling in page tables as necessary
1988 * and calling a provided function on each leaf page table.
1989 */
1990int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1991 unsigned long size, pte_fn_t fn, void *data)
1992{
1993 pgd_t *pgd;
1994 unsigned long next;
cddb8a5c 1995 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1996 int err;
1997
1998 BUG_ON(addr >= end);
cddb8a5c 1999 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
2000 pgd = pgd_offset(mm, addr);
2001 do {
2002 next = pgd_addr_end(addr, end);
2003 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2004 if (err)
2005 break;
2006 } while (pgd++, addr = next, addr != end);
cddb8a5c 2007 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
2008 return err;
2009}
2010EXPORT_SYMBOL_GPL(apply_to_page_range);
2011
8f4e2101
HD
2012/*
2013 * handle_pte_fault chooses page fault handler according to an entry
2014 * which was read non-atomically. Before making any commitment, on
2015 * those architectures or configurations (e.g. i386 with PAE) which
2016 * might give a mix of unmatched parts, do_swap_page and do_file_page
2017 * must check under lock before unmapping the pte and proceeding
2018 * (but do_wp_page is only called after already making such a check;
2019 * and do_anonymous_page and do_no_page can safely check later on).
2020 */
4c21e2f2 2021static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2022 pte_t *page_table, pte_t orig_pte)
2023{
2024 int same = 1;
2025#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2026 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2027 spinlock_t *ptl = pte_lockptr(mm, pmd);
2028 spin_lock(ptl);
8f4e2101 2029 same = pte_same(*page_table, orig_pte);
4c21e2f2 2030 spin_unlock(ptl);
8f4e2101
HD
2031 }
2032#endif
2033 pte_unmap(page_table);
2034 return same;
2035}
2036
1da177e4
LT
2037/*
2038 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2039 * servicing faults for write access. In the normal case, do always want
2040 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2041 * that do not have writing enabled, when used by access_process_vm.
2042 */
2043static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2044{
2045 if (likely(vma->vm_flags & VM_WRITE))
2046 pte = pte_mkwrite(pte);
2047 return pte;
2048}
2049
9de455b2 2050static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2051{
2052 /*
2053 * If the source page was a PFN mapping, we don't have
2054 * a "struct page" for it. We do a best-effort copy by
2055 * just copying from the original user address. If that
2056 * fails, we just zero-fill it. Live with it.
2057 */
2058 if (unlikely(!src)) {
2059 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
2060 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2061
2062 /*
2063 * This really shouldn't fail, because the page is there
2064 * in the page tables. But it might just be unreadable,
2065 * in which case we just give up and fill the result with
2066 * zeroes.
2067 */
2068 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
2069 memset(kaddr, 0, PAGE_SIZE);
2070 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 2071 flush_dcache_page(dst);
0ed361de
NP
2072 } else
2073 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2074}
2075
1da177e4
LT
2076/*
2077 * This routine handles present pages, when users try to write
2078 * to a shared page. It is done by copying the page to a new address
2079 * and decrementing the shared-page counter for the old page.
2080 *
1da177e4
LT
2081 * Note that this routine assumes that the protection checks have been
2082 * done by the caller (the low-level page fault routine in most cases).
2083 * Thus we can safely just mark it writable once we've done any necessary
2084 * COW.
2085 *
2086 * We also mark the page dirty at this point even though the page will
2087 * change only once the write actually happens. This avoids a few races,
2088 * and potentially makes it more efficient.
2089 *
8f4e2101
HD
2090 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2091 * but allow concurrent faults), with pte both mapped and locked.
2092 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2093 */
65500d23
HD
2094static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2095 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2096 spinlock_t *ptl, pte_t orig_pte)
1da177e4 2097{
e5bbe4df 2098 struct page *old_page, *new_page;
1da177e4 2099 pte_t entry;
83c54070 2100 int reuse = 0, ret = 0;
a200ee18 2101 int page_mkwrite = 0;
d08b3851 2102 struct page *dirty_page = NULL;
1da177e4 2103
6aab341e 2104 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2105 if (!old_page) {
2106 /*
2107 * VM_MIXEDMAP !pfn_valid() case
2108 *
2109 * We should not cow pages in a shared writeable mapping.
2110 * Just mark the pages writable as we can't do any dirty
2111 * accounting on raw pfn maps.
2112 */
2113 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2114 (VM_WRITE|VM_SHARED))
2115 goto reuse;
6aab341e 2116 goto gotten;
251b97f5 2117 }
1da177e4 2118
d08b3851 2119 /*
ee6a6457
PZ
2120 * Take out anonymous pages first, anonymous shared vmas are
2121 * not dirty accountable.
d08b3851 2122 */
9a840895 2123 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2124 if (!trylock_page(old_page)) {
2125 page_cache_get(old_page);
2126 pte_unmap_unlock(page_table, ptl);
2127 lock_page(old_page);
2128 page_table = pte_offset_map_lock(mm, pmd, address,
2129 &ptl);
2130 if (!pte_same(*page_table, orig_pte)) {
2131 unlock_page(old_page);
2132 page_cache_release(old_page);
2133 goto unlock;
2134 }
2135 page_cache_release(old_page);
ee6a6457 2136 }
7b1fe597 2137 reuse = reuse_swap_page(old_page);
c44b6743
RR
2138 if (reuse)
2139 /*
2140 * The page is all ours. Move it to our anon_vma so
2141 * the rmap code will not search our parent or siblings.
2142 * Protected against the rmap code by the page lock.
2143 */
2144 page_move_anon_rmap(old_page, vma, address);
ab967d86 2145 unlock_page(old_page);
ee6a6457 2146 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2147 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2148 /*
2149 * Only catch write-faults on shared writable pages,
2150 * read-only shared pages can get COWed by
2151 * get_user_pages(.write=1, .force=1).
2152 */
9637a5ef 2153 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2154 struct vm_fault vmf;
2155 int tmp;
2156
2157 vmf.virtual_address = (void __user *)(address &
2158 PAGE_MASK);
2159 vmf.pgoff = old_page->index;
2160 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2161 vmf.page = old_page;
2162
9637a5ef
DH
2163 /*
2164 * Notify the address space that the page is about to
2165 * become writable so that it can prohibit this or wait
2166 * for the page to get into an appropriate state.
2167 *
2168 * We do this without the lock held, so that it can
2169 * sleep if it needs to.
2170 */
2171 page_cache_get(old_page);
2172 pte_unmap_unlock(page_table, ptl);
2173
c2ec175c
NP
2174 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2175 if (unlikely(tmp &
2176 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2177 ret = tmp;
9637a5ef 2178 goto unwritable_page;
c2ec175c 2179 }
b827e496
NP
2180 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2181 lock_page(old_page);
2182 if (!old_page->mapping) {
2183 ret = 0; /* retry the fault */
2184 unlock_page(old_page);
2185 goto unwritable_page;
2186 }
2187 } else
2188 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2189
9637a5ef
DH
2190 /*
2191 * Since we dropped the lock we need to revalidate
2192 * the PTE as someone else may have changed it. If
2193 * they did, we just return, as we can count on the
2194 * MMU to tell us if they didn't also make it writable.
2195 */
2196 page_table = pte_offset_map_lock(mm, pmd, address,
2197 &ptl);
b827e496
NP
2198 if (!pte_same(*page_table, orig_pte)) {
2199 unlock_page(old_page);
2200 page_cache_release(old_page);
9637a5ef 2201 goto unlock;
b827e496 2202 }
a200ee18
PZ
2203
2204 page_mkwrite = 1;
1da177e4 2205 }
d08b3851
PZ
2206 dirty_page = old_page;
2207 get_page(dirty_page);
9637a5ef 2208 reuse = 1;
9637a5ef
DH
2209 }
2210
2211 if (reuse) {
251b97f5 2212reuse:
9637a5ef
DH
2213 flush_cache_page(vma, address, pte_pfn(orig_pte));
2214 entry = pte_mkyoung(orig_pte);
2215 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2216 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2217 update_mmu_cache(vma, address, page_table);
9637a5ef
DH
2218 ret |= VM_FAULT_WRITE;
2219 goto unlock;
1da177e4 2220 }
1da177e4
LT
2221
2222 /*
2223 * Ok, we need to copy. Oh, well..
2224 */
b5810039 2225 page_cache_get(old_page);
920fc356 2226gotten:
8f4e2101 2227 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2228
2229 if (unlikely(anon_vma_prepare(vma)))
65500d23 2230 goto oom;
a13ea5b7 2231
62eede62 2232 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2233 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2234 if (!new_page)
2235 goto oom;
2236 } else {
2237 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2238 if (!new_page)
2239 goto oom;
2240 cow_user_page(new_page, old_page, address, vma);
2241 }
2242 __SetPageUptodate(new_page);
2243
b291f000
NP
2244 /*
2245 * Don't let another task, with possibly unlocked vma,
2246 * keep the mlocked page.
2247 */
ab92661d 2248 if ((vma->vm_flags & VM_LOCKED) && old_page) {
b291f000
NP
2249 lock_page(old_page); /* for LRU manipulation */
2250 clear_page_mlock(old_page);
2251 unlock_page(old_page);
2252 }
65500d23 2253
2c26fdd7 2254 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2255 goto oom_free_new;
2256
1da177e4
LT
2257 /*
2258 * Re-check the pte - we dropped the lock
2259 */
8f4e2101 2260 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2261 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2262 if (old_page) {
920fc356 2263 if (!PageAnon(old_page)) {
34e55232
KH
2264 dec_mm_counter_fast(mm, MM_FILEPAGES);
2265 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2266 }
2267 } else
34e55232 2268 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2269 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2270 entry = mk_pte(new_page, vma->vm_page_prot);
2271 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2272 /*
2273 * Clear the pte entry and flush it first, before updating the
2274 * pte with the new entry. This will avoid a race condition
2275 * seen in the presence of one thread doing SMC and another
2276 * thread doing COW.
2277 */
828502d3 2278 ptep_clear_flush(vma, address, page_table);
9617d95e 2279 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2280 /*
2281 * We call the notify macro here because, when using secondary
2282 * mmu page tables (such as kvm shadow page tables), we want the
2283 * new page to be mapped directly into the secondary page table.
2284 */
2285 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2286 update_mmu_cache(vma, address, page_table);
945754a1
NP
2287 if (old_page) {
2288 /*
2289 * Only after switching the pte to the new page may
2290 * we remove the mapcount here. Otherwise another
2291 * process may come and find the rmap count decremented
2292 * before the pte is switched to the new page, and
2293 * "reuse" the old page writing into it while our pte
2294 * here still points into it and can be read by other
2295 * threads.
2296 *
2297 * The critical issue is to order this
2298 * page_remove_rmap with the ptp_clear_flush above.
2299 * Those stores are ordered by (if nothing else,)
2300 * the barrier present in the atomic_add_negative
2301 * in page_remove_rmap.
2302 *
2303 * Then the TLB flush in ptep_clear_flush ensures that
2304 * no process can access the old page before the
2305 * decremented mapcount is visible. And the old page
2306 * cannot be reused until after the decremented
2307 * mapcount is visible. So transitively, TLBs to
2308 * old page will be flushed before it can be reused.
2309 */
edc315fd 2310 page_remove_rmap(old_page);
945754a1
NP
2311 }
2312
1da177e4
LT
2313 /* Free the old page.. */
2314 new_page = old_page;
f33ea7f4 2315 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2316 } else
2317 mem_cgroup_uncharge_page(new_page);
2318
920fc356
HD
2319 if (new_page)
2320 page_cache_release(new_page);
2321 if (old_page)
2322 page_cache_release(old_page);
65500d23 2323unlock:
8f4e2101 2324 pte_unmap_unlock(page_table, ptl);
d08b3851 2325 if (dirty_page) {
79352894
NP
2326 /*
2327 * Yes, Virginia, this is actually required to prevent a race
2328 * with clear_page_dirty_for_io() from clearing the page dirty
2329 * bit after it clear all dirty ptes, but before a racing
2330 * do_wp_page installs a dirty pte.
2331 *
2332 * do_no_page is protected similarly.
2333 */
b827e496
NP
2334 if (!page_mkwrite) {
2335 wait_on_page_locked(dirty_page);
2336 set_page_dirty_balance(dirty_page, page_mkwrite);
2337 }
d08b3851 2338 put_page(dirty_page);
b827e496
NP
2339 if (page_mkwrite) {
2340 struct address_space *mapping = dirty_page->mapping;
2341
2342 set_page_dirty(dirty_page);
2343 unlock_page(dirty_page);
2344 page_cache_release(dirty_page);
2345 if (mapping) {
2346 /*
2347 * Some device drivers do not set page.mapping
2348 * but still dirty their pages
2349 */
2350 balance_dirty_pages_ratelimited(mapping);
2351 }
2352 }
2353
2354 /* file_update_time outside page_lock */
2355 if (vma->vm_file)
2356 file_update_time(vma->vm_file);
d08b3851 2357 }
f33ea7f4 2358 return ret;
8a9f3ccd 2359oom_free_new:
6dbf6d3b 2360 page_cache_release(new_page);
65500d23 2361oom:
b827e496
NP
2362 if (old_page) {
2363 if (page_mkwrite) {
2364 unlock_page(old_page);
2365 page_cache_release(old_page);
2366 }
920fc356 2367 page_cache_release(old_page);
b827e496 2368 }
1da177e4 2369 return VM_FAULT_OOM;
9637a5ef
DH
2370
2371unwritable_page:
2372 page_cache_release(old_page);
c2ec175c 2373 return ret;
1da177e4
LT
2374}
2375
2376/*
2377 * Helper functions for unmap_mapping_range().
2378 *
2379 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2380 *
2381 * We have to restart searching the prio_tree whenever we drop the lock,
2382 * since the iterator is only valid while the lock is held, and anyway
2383 * a later vma might be split and reinserted earlier while lock dropped.
2384 *
2385 * The list of nonlinear vmas could be handled more efficiently, using
2386 * a placeholder, but handle it in the same way until a need is shown.
2387 * It is important to search the prio_tree before nonlinear list: a vma
2388 * may become nonlinear and be shifted from prio_tree to nonlinear list
2389 * while the lock is dropped; but never shifted from list to prio_tree.
2390 *
2391 * In order to make forward progress despite restarting the search,
2392 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2393 * quickly skip it next time around. Since the prio_tree search only
2394 * shows us those vmas affected by unmapping the range in question, we
2395 * can't efficiently keep all vmas in step with mapping->truncate_count:
2396 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2397 * mapping->truncate_count and vma->vm_truncate_count are protected by
2398 * i_mmap_lock.
2399 *
2400 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2401 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2402 * and restart from that address when we reach that vma again. It might
2403 * have been split or merged, shrunk or extended, but never shifted: so
2404 * restart_addr remains valid so long as it remains in the vma's range.
2405 * unmap_mapping_range forces truncate_count to leap over page-aligned
2406 * values so we can save vma's restart_addr in its truncate_count field.
2407 */
2408#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2409
2410static void reset_vma_truncate_counts(struct address_space *mapping)
2411{
2412 struct vm_area_struct *vma;
2413 struct prio_tree_iter iter;
2414
2415 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2416 vma->vm_truncate_count = 0;
2417 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2418 vma->vm_truncate_count = 0;
2419}
2420
2421static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2422 unsigned long start_addr, unsigned long end_addr,
2423 struct zap_details *details)
2424{
2425 unsigned long restart_addr;
2426 int need_break;
2427
d00806b1
NP
2428 /*
2429 * files that support invalidating or truncating portions of the
d0217ac0 2430 * file from under mmaped areas must have their ->fault function
83c54070
NP
2431 * return a locked page (and set VM_FAULT_LOCKED in the return).
2432 * This provides synchronisation against concurrent unmapping here.
d00806b1 2433 */
d00806b1 2434
1da177e4
LT
2435again:
2436 restart_addr = vma->vm_truncate_count;
2437 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2438 start_addr = restart_addr;
2439 if (start_addr >= end_addr) {
2440 /* Top of vma has been split off since last time */
2441 vma->vm_truncate_count = details->truncate_count;
2442 return 0;
2443 }
2444 }
2445
ee39b37b
HD
2446 restart_addr = zap_page_range(vma, start_addr,
2447 end_addr - start_addr, details);
95c354fe 2448 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2449
ee39b37b 2450 if (restart_addr >= end_addr) {
1da177e4
LT
2451 /* We have now completed this vma: mark it so */
2452 vma->vm_truncate_count = details->truncate_count;
2453 if (!need_break)
2454 return 0;
2455 } else {
2456 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2457 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2458 if (!need_break)
2459 goto again;
2460 }
2461
2462 spin_unlock(details->i_mmap_lock);
2463 cond_resched();
2464 spin_lock(details->i_mmap_lock);
2465 return -EINTR;
2466}
2467
2468static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2469 struct zap_details *details)
2470{
2471 struct vm_area_struct *vma;
2472 struct prio_tree_iter iter;
2473 pgoff_t vba, vea, zba, zea;
2474
2475restart:
2476 vma_prio_tree_foreach(vma, &iter, root,
2477 details->first_index, details->last_index) {
2478 /* Skip quickly over those we have already dealt with */
2479 if (vma->vm_truncate_count == details->truncate_count)
2480 continue;
2481
2482 vba = vma->vm_pgoff;
2483 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2484 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2485 zba = details->first_index;
2486 if (zba < vba)
2487 zba = vba;
2488 zea = details->last_index;
2489 if (zea > vea)
2490 zea = vea;
2491
2492 if (unmap_mapping_range_vma(vma,
2493 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2494 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2495 details) < 0)
2496 goto restart;
2497 }
2498}
2499
2500static inline void unmap_mapping_range_list(struct list_head *head,
2501 struct zap_details *details)
2502{
2503 struct vm_area_struct *vma;
2504
2505 /*
2506 * In nonlinear VMAs there is no correspondence between virtual address
2507 * offset and file offset. So we must perform an exhaustive search
2508 * across *all* the pages in each nonlinear VMA, not just the pages
2509 * whose virtual address lies outside the file truncation point.
2510 */
2511restart:
2512 list_for_each_entry(vma, head, shared.vm_set.list) {
2513 /* Skip quickly over those we have already dealt with */
2514 if (vma->vm_truncate_count == details->truncate_count)
2515 continue;
2516 details->nonlinear_vma = vma;
2517 if (unmap_mapping_range_vma(vma, vma->vm_start,
2518 vma->vm_end, details) < 0)
2519 goto restart;
2520 }
2521}
2522
2523/**
72fd4a35 2524 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2525 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2526 * @holebegin: byte in first page to unmap, relative to the start of
2527 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2528 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2529 * must keep the partial page. In contrast, we must get rid of
2530 * partial pages.
2531 * @holelen: size of prospective hole in bytes. This will be rounded
2532 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2533 * end of the file.
2534 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2535 * but 0 when invalidating pagecache, don't throw away private data.
2536 */
2537void unmap_mapping_range(struct address_space *mapping,
2538 loff_t const holebegin, loff_t const holelen, int even_cows)
2539{
2540 struct zap_details details;
2541 pgoff_t hba = holebegin >> PAGE_SHIFT;
2542 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2543
2544 /* Check for overflow. */
2545 if (sizeof(holelen) > sizeof(hlen)) {
2546 long long holeend =
2547 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2548 if (holeend & ~(long long)ULONG_MAX)
2549 hlen = ULONG_MAX - hba + 1;
2550 }
2551
2552 details.check_mapping = even_cows? NULL: mapping;
2553 details.nonlinear_vma = NULL;
2554 details.first_index = hba;
2555 details.last_index = hba + hlen - 1;
2556 if (details.last_index < details.first_index)
2557 details.last_index = ULONG_MAX;
2558 details.i_mmap_lock = &mapping->i_mmap_lock;
2559
2560 spin_lock(&mapping->i_mmap_lock);
2561
d00806b1 2562 /* Protect against endless unmapping loops */
1da177e4 2563 mapping->truncate_count++;
1da177e4
LT
2564 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2565 if (mapping->truncate_count == 0)
2566 reset_vma_truncate_counts(mapping);
2567 mapping->truncate_count++;
2568 }
2569 details.truncate_count = mapping->truncate_count;
2570
2571 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2572 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2573 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2574 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2575 spin_unlock(&mapping->i_mmap_lock);
2576}
2577EXPORT_SYMBOL(unmap_mapping_range);
2578
f6b3ec23
BP
2579int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2580{
2581 struct address_space *mapping = inode->i_mapping;
2582
2583 /*
2584 * If the underlying filesystem is not going to provide
2585 * a way to truncate a range of blocks (punch a hole) -
2586 * we should return failure right now.
2587 */
acfa4380 2588 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2589 return -ENOSYS;
2590
1b1dcc1b 2591 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2592 down_write(&inode->i_alloc_sem);
2593 unmap_mapping_range(mapping, offset, (end - offset), 1);
2594 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2595 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2596 inode->i_op->truncate_range(inode, offset, end);
2597 up_write(&inode->i_alloc_sem);
1b1dcc1b 2598 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2599
2600 return 0;
2601}
f6b3ec23 2602
1da177e4 2603/*
8f4e2101
HD
2604 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2605 * but allow concurrent faults), and pte mapped but not yet locked.
2606 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2607 */
65500d23
HD
2608static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2609 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2610 unsigned int flags, pte_t orig_pte)
1da177e4 2611{
8f4e2101 2612 spinlock_t *ptl;
1da177e4 2613 struct page *page;
65500d23 2614 swp_entry_t entry;
1da177e4 2615 pte_t pte;
7a81b88c 2616 struct mem_cgroup *ptr = NULL;
83c54070 2617 int ret = 0;
1da177e4 2618
4c21e2f2 2619 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2620 goto out;
65500d23
HD
2621
2622 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2623 if (unlikely(non_swap_entry(entry))) {
2624 if (is_migration_entry(entry)) {
2625 migration_entry_wait(mm, pmd, address);
2626 } else if (is_hwpoison_entry(entry)) {
2627 ret = VM_FAULT_HWPOISON;
2628 } else {
2629 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2630 ret = VM_FAULT_SIGBUS;
d1737fdb 2631 }
0697212a
CL
2632 goto out;
2633 }
0ff92245 2634 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2635 page = lookup_swap_cache(entry);
2636 if (!page) {
a5c9b696 2637 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2638 page = swapin_readahead(entry,
2639 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2640 if (!page) {
2641 /*
8f4e2101
HD
2642 * Back out if somebody else faulted in this pte
2643 * while we released the pte lock.
1da177e4 2644 */
8f4e2101 2645 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2646 if (likely(pte_same(*page_table, orig_pte)))
2647 ret = VM_FAULT_OOM;
0ff92245 2648 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2649 goto unlock;
1da177e4
LT
2650 }
2651
2652 /* Had to read the page from swap area: Major fault */
2653 ret = VM_FAULT_MAJOR;
f8891e5e 2654 count_vm_event(PGMAJFAULT);
d1737fdb 2655 } else if (PageHWPoison(page)) {
71f72525
WF
2656 /*
2657 * hwpoisoned dirty swapcache pages are kept for killing
2658 * owner processes (which may be unknown at hwpoison time)
2659 */
d1737fdb
AK
2660 ret = VM_FAULT_HWPOISON;
2661 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2662 goto out_release;
1da177e4
LT
2663 }
2664
073e587e
KH
2665 lock_page(page);
2666 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2667
5ad64688
HD
2668 page = ksm_might_need_to_copy(page, vma, address);
2669 if (!page) {
2670 ret = VM_FAULT_OOM;
2671 goto out;
2672 }
2673
2c26fdd7 2674 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2675 ret = VM_FAULT_OOM;
bc43f75c 2676 goto out_page;
8a9f3ccd
BS
2677 }
2678
1da177e4 2679 /*
8f4e2101 2680 * Back out if somebody else already faulted in this pte.
1da177e4 2681 */
8f4e2101 2682 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2683 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2684 goto out_nomap;
b8107480
KK
2685
2686 if (unlikely(!PageUptodate(page))) {
2687 ret = VM_FAULT_SIGBUS;
2688 goto out_nomap;
1da177e4
LT
2689 }
2690
8c7c6e34
KH
2691 /*
2692 * The page isn't present yet, go ahead with the fault.
2693 *
2694 * Be careful about the sequence of operations here.
2695 * To get its accounting right, reuse_swap_page() must be called
2696 * while the page is counted on swap but not yet in mapcount i.e.
2697 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2698 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2699 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2700 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2701 * in page->private. In this case, a record in swap_cgroup is silently
2702 * discarded at swap_free().
8c7c6e34 2703 */
1da177e4 2704
34e55232 2705 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2706 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2707 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2708 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2709 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2710 flags &= ~FAULT_FLAG_WRITE;
1da177e4 2711 }
1da177e4
LT
2712 flush_icache_page(vma, page);
2713 set_pte_at(mm, address, page_table, pte);
2714 page_add_anon_rmap(page, vma, address);
03f3c433
KH
2715 /* It's better to call commit-charge after rmap is established */
2716 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2717
c475a8ab 2718 swap_free(entry);
b291f000 2719 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2720 try_to_free_swap(page);
c475a8ab
HD
2721 unlock_page(page);
2722
30c9f3a9 2723 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2724 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2725 if (ret & VM_FAULT_ERROR)
2726 ret &= VM_FAULT_ERROR;
1da177e4
LT
2727 goto out;
2728 }
2729
2730 /* No need to invalidate - it was non-present before */
4b3073e1 2731 update_mmu_cache(vma, address, page_table);
65500d23 2732unlock:
8f4e2101 2733 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2734out:
2735 return ret;
b8107480 2736out_nomap:
7a81b88c 2737 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2738 pte_unmap_unlock(page_table, ptl);
bc43f75c 2739out_page:
b8107480 2740 unlock_page(page);
4779cb31 2741out_release:
b8107480 2742 page_cache_release(page);
65500d23 2743 return ret;
1da177e4
LT
2744}
2745
2746/*
8f4e2101
HD
2747 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2748 * but allow concurrent faults), and pte mapped but not yet locked.
2749 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2750 */
65500d23
HD
2751static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2752 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2753 unsigned int flags)
1da177e4 2754{
8f4e2101
HD
2755 struct page *page;
2756 spinlock_t *ptl;
1da177e4 2757 pte_t entry;
1da177e4 2758
62eede62
HD
2759 if (!(flags & FAULT_FLAG_WRITE)) {
2760 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2761 vma->vm_page_prot));
a13ea5b7
HD
2762 ptl = pte_lockptr(mm, pmd);
2763 spin_lock(ptl);
2764 if (!pte_none(*page_table))
2765 goto unlock;
2766 goto setpte;
2767 }
2768
557ed1fa
NP
2769 /* Allocate our own private page. */
2770 pte_unmap(page_table);
8f4e2101 2771
557ed1fa
NP
2772 if (unlikely(anon_vma_prepare(vma)))
2773 goto oom;
2774 page = alloc_zeroed_user_highpage_movable(vma, address);
2775 if (!page)
2776 goto oom;
0ed361de 2777 __SetPageUptodate(page);
8f4e2101 2778
2c26fdd7 2779 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2780 goto oom_free_page;
2781
557ed1fa 2782 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2783 if (vma->vm_flags & VM_WRITE)
2784 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2785
557ed1fa 2786 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2787 if (!pte_none(*page_table))
557ed1fa 2788 goto release;
9ba69294 2789
34e55232 2790 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2791 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 2792setpte:
65500d23 2793 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2794
2795 /* No need to invalidate - it was non-present before */
4b3073e1 2796 update_mmu_cache(vma, address, page_table);
65500d23 2797unlock:
8f4e2101 2798 pte_unmap_unlock(page_table, ptl);
83c54070 2799 return 0;
8f4e2101 2800release:
8a9f3ccd 2801 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2802 page_cache_release(page);
2803 goto unlock;
8a9f3ccd 2804oom_free_page:
6dbf6d3b 2805 page_cache_release(page);
65500d23 2806oom:
1da177e4
LT
2807 return VM_FAULT_OOM;
2808}
2809
2810/*
54cb8821 2811 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2812 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2813 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2814 * the next page fault.
1da177e4
LT
2815 *
2816 * As this is called only for pages that do not currently exist, we
2817 * do not need to flush old virtual caches or the TLB.
2818 *
8f4e2101 2819 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2820 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2821 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2822 */
54cb8821 2823static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2824 unsigned long address, pmd_t *pmd,
54cb8821 2825 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2826{
16abfa08 2827 pte_t *page_table;
8f4e2101 2828 spinlock_t *ptl;
d0217ac0 2829 struct page *page;
1da177e4 2830 pte_t entry;
1da177e4 2831 int anon = 0;
5b4e655e 2832 int charged = 0;
d08b3851 2833 struct page *dirty_page = NULL;
d0217ac0
NP
2834 struct vm_fault vmf;
2835 int ret;
a200ee18 2836 int page_mkwrite = 0;
54cb8821 2837
d0217ac0
NP
2838 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2839 vmf.pgoff = pgoff;
2840 vmf.flags = flags;
2841 vmf.page = NULL;
1da177e4 2842
3c18ddd1
NP
2843 ret = vma->vm_ops->fault(vma, &vmf);
2844 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2845 return ret;
1da177e4 2846
a3b947ea
AK
2847 if (unlikely(PageHWPoison(vmf.page))) {
2848 if (ret & VM_FAULT_LOCKED)
2849 unlock_page(vmf.page);
2850 return VM_FAULT_HWPOISON;
2851 }
2852
d00806b1 2853 /*
d0217ac0 2854 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2855 * locked.
2856 */
83c54070 2857 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2858 lock_page(vmf.page);
54cb8821 2859 else
d0217ac0 2860 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2861
1da177e4
LT
2862 /*
2863 * Should we do an early C-O-W break?
2864 */
d0217ac0 2865 page = vmf.page;
54cb8821 2866 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2867 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2868 anon = 1;
d00806b1 2869 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2870 ret = VM_FAULT_OOM;
54cb8821 2871 goto out;
d00806b1 2872 }
83c54070
NP
2873 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2874 vma, address);
d00806b1 2875 if (!page) {
d0217ac0 2876 ret = VM_FAULT_OOM;
54cb8821 2877 goto out;
d00806b1 2878 }
2c26fdd7 2879 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
2880 ret = VM_FAULT_OOM;
2881 page_cache_release(page);
2882 goto out;
2883 }
2884 charged = 1;
b291f000
NP
2885 /*
2886 * Don't let another task, with possibly unlocked vma,
2887 * keep the mlocked page.
2888 */
2889 if (vma->vm_flags & VM_LOCKED)
2890 clear_page_mlock(vmf.page);
d0217ac0 2891 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2892 __SetPageUptodate(page);
9637a5ef 2893 } else {
54cb8821
NP
2894 /*
2895 * If the page will be shareable, see if the backing
9637a5ef 2896 * address space wants to know that the page is about
54cb8821
NP
2897 * to become writable
2898 */
69676147 2899 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2900 int tmp;
2901
69676147 2902 unlock_page(page);
b827e496 2903 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
2904 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2905 if (unlikely(tmp &
2906 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2907 ret = tmp;
b827e496 2908 goto unwritable_page;
d0217ac0 2909 }
b827e496
NP
2910 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2911 lock_page(page);
2912 if (!page->mapping) {
2913 ret = 0; /* retry the fault */
2914 unlock_page(page);
2915 goto unwritable_page;
2916 }
2917 } else
2918 VM_BUG_ON(!PageLocked(page));
a200ee18 2919 page_mkwrite = 1;
9637a5ef
DH
2920 }
2921 }
54cb8821 2922
1da177e4
LT
2923 }
2924
8f4e2101 2925 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2926
2927 /*
2928 * This silly early PAGE_DIRTY setting removes a race
2929 * due to the bad i386 page protection. But it's valid
2930 * for other architectures too.
2931 *
30c9f3a9 2932 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
2933 * an exclusive copy of the page, or this is a shared mapping,
2934 * so we can make it writable and dirty to avoid having to
2935 * handle that later.
2936 */
2937 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 2938 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2939 flush_icache_page(vma, page);
2940 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2941 if (flags & FAULT_FLAG_WRITE)
1da177e4 2942 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2943 if (anon) {
34e55232 2944 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 2945 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2946 } else {
34e55232 2947 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 2948 page_add_file_rmap(page);
54cb8821 2949 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2950 dirty_page = page;
d08b3851
PZ
2951 get_page(dirty_page);
2952 }
4294621f 2953 }
64d6519d 2954 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2955
2956 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 2957 update_mmu_cache(vma, address, page_table);
1da177e4 2958 } else {
5b4e655e
KH
2959 if (charged)
2960 mem_cgroup_uncharge_page(page);
d00806b1
NP
2961 if (anon)
2962 page_cache_release(page);
2963 else
54cb8821 2964 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2965 }
2966
8f4e2101 2967 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2968
2969out:
b827e496
NP
2970 if (dirty_page) {
2971 struct address_space *mapping = page->mapping;
8f7b3d15 2972
b827e496
NP
2973 if (set_page_dirty(dirty_page))
2974 page_mkwrite = 1;
2975 unlock_page(dirty_page);
d08b3851 2976 put_page(dirty_page);
b827e496
NP
2977 if (page_mkwrite && mapping) {
2978 /*
2979 * Some device drivers do not set page.mapping but still
2980 * dirty their pages
2981 */
2982 balance_dirty_pages_ratelimited(mapping);
2983 }
2984
2985 /* file_update_time outside page_lock */
2986 if (vma->vm_file)
2987 file_update_time(vma->vm_file);
2988 } else {
2989 unlock_page(vmf.page);
2990 if (anon)
2991 page_cache_release(vmf.page);
d08b3851 2992 }
d00806b1 2993
83c54070 2994 return ret;
b827e496
NP
2995
2996unwritable_page:
2997 page_cache_release(page);
2998 return ret;
54cb8821 2999}
d00806b1 3000
54cb8821
NP
3001static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3002 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3003 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3004{
3005 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3006 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3007
16abfa08
HD
3008 pte_unmap(page_table);
3009 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3010}
3011
1da177e4
LT
3012/*
3013 * Fault of a previously existing named mapping. Repopulate the pte
3014 * from the encoded file_pte if possible. This enables swappable
3015 * nonlinear vmas.
8f4e2101
HD
3016 *
3017 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3018 * but allow concurrent faults), and pte mapped but not yet locked.
3019 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3020 */
d0217ac0 3021static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3022 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3023 unsigned int flags, pte_t orig_pte)
1da177e4 3024{
65500d23 3025 pgoff_t pgoff;
1da177e4 3026
30c9f3a9
LT
3027 flags |= FAULT_FLAG_NONLINEAR;
3028
4c21e2f2 3029 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3030 return 0;
1da177e4 3031
2509ef26 3032 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3033 /*
3034 * Page table corrupted: show pte and kill process.
3035 */
3dc14741 3036 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3037 return VM_FAULT_SIGBUS;
65500d23 3038 }
65500d23
HD
3039
3040 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3041 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3042}
3043
3044/*
3045 * These routines also need to handle stuff like marking pages dirty
3046 * and/or accessed for architectures that don't do it in hardware (most
3047 * RISC architectures). The early dirtying is also good on the i386.
3048 *
3049 * There is also a hook called "update_mmu_cache()" that architectures
3050 * with external mmu caches can use to update those (ie the Sparc or
3051 * PowerPC hashed page tables that act as extended TLBs).
3052 *
c74df32c
HD
3053 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3054 * but allow concurrent faults), and pte mapped but not yet locked.
3055 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
3056 */
3057static inline int handle_pte_fault(struct mm_struct *mm,
65500d23 3058 struct vm_area_struct *vma, unsigned long address,
30c9f3a9 3059 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3060{
3061 pte_t entry;
8f4e2101 3062 spinlock_t *ptl;
1da177e4 3063
8dab5241 3064 entry = *pte;
1da177e4 3065 if (!pte_present(entry)) {
65500d23 3066 if (pte_none(entry)) {
f4b81804 3067 if (vma->vm_ops) {
3c18ddd1 3068 if (likely(vma->vm_ops->fault))
54cb8821 3069 return do_linear_fault(mm, vma, address,
30c9f3a9 3070 pte, pmd, flags, entry);
f4b81804
JS
3071 }
3072 return do_anonymous_page(mm, vma, address,
30c9f3a9 3073 pte, pmd, flags);
65500d23 3074 }
1da177e4 3075 if (pte_file(entry))
d0217ac0 3076 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3077 pte, pmd, flags, entry);
65500d23 3078 return do_swap_page(mm, vma, address,
30c9f3a9 3079 pte, pmd, flags, entry);
1da177e4
LT
3080 }
3081
4c21e2f2 3082 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3083 spin_lock(ptl);
3084 if (unlikely(!pte_same(*pte, entry)))
3085 goto unlock;
30c9f3a9 3086 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3087 if (!pte_write(entry))
8f4e2101
HD
3088 return do_wp_page(mm, vma, address,
3089 pte, pmd, ptl, entry);
1da177e4
LT
3090 entry = pte_mkdirty(entry);
3091 }
3092 entry = pte_mkyoung(entry);
30c9f3a9 3093 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3094 update_mmu_cache(vma, address, pte);
1a44e149
AA
3095 } else {
3096 /*
3097 * This is needed only for protection faults but the arch code
3098 * is not yet telling us if this is a protection fault or not.
3099 * This still avoids useless tlb flushes for .text page faults
3100 * with threads.
3101 */
30c9f3a9 3102 if (flags & FAULT_FLAG_WRITE)
1a44e149
AA
3103 flush_tlb_page(vma, address);
3104 }
8f4e2101
HD
3105unlock:
3106 pte_unmap_unlock(pte, ptl);
83c54070 3107 return 0;
1da177e4
LT
3108}
3109
3110/*
3111 * By the time we get here, we already hold the mm semaphore
3112 */
83c54070 3113int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3114 unsigned long address, unsigned int flags)
1da177e4
LT
3115{
3116 pgd_t *pgd;
3117 pud_t *pud;
3118 pmd_t *pmd;
3119 pte_t *pte;
3120
3121 __set_current_state(TASK_RUNNING);
3122
f8891e5e 3123 count_vm_event(PGFAULT);
1da177e4 3124
34e55232
KH
3125 /* do counter updates before entering really critical section. */
3126 check_sync_rss_stat(current);
3127
ac9b9c66 3128 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3129 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3130
1da177e4 3131 pgd = pgd_offset(mm, address);
1da177e4
LT
3132 pud = pud_alloc(mm, pgd, address);
3133 if (!pud)
c74df32c 3134 return VM_FAULT_OOM;
1da177e4
LT
3135 pmd = pmd_alloc(mm, pud, address);
3136 if (!pmd)
c74df32c 3137 return VM_FAULT_OOM;
1da177e4
LT
3138 pte = pte_alloc_map(mm, pmd, address);
3139 if (!pte)
c74df32c 3140 return VM_FAULT_OOM;
1da177e4 3141
30c9f3a9 3142 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3143}
3144
3145#ifndef __PAGETABLE_PUD_FOLDED
3146/*
3147 * Allocate page upper directory.
872fec16 3148 * We've already handled the fast-path in-line.
1da177e4 3149 */
1bb3630e 3150int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3151{
c74df32c
HD
3152 pud_t *new = pud_alloc_one(mm, address);
3153 if (!new)
1bb3630e 3154 return -ENOMEM;
1da177e4 3155
362a61ad
NP
3156 smp_wmb(); /* See comment in __pte_alloc */
3157
872fec16 3158 spin_lock(&mm->page_table_lock);
1bb3630e 3159 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3160 pud_free(mm, new);
1bb3630e
HD
3161 else
3162 pgd_populate(mm, pgd, new);
c74df32c 3163 spin_unlock(&mm->page_table_lock);
1bb3630e 3164 return 0;
1da177e4
LT
3165}
3166#endif /* __PAGETABLE_PUD_FOLDED */
3167
3168#ifndef __PAGETABLE_PMD_FOLDED
3169/*
3170 * Allocate page middle directory.
872fec16 3171 * We've already handled the fast-path in-line.
1da177e4 3172 */
1bb3630e 3173int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3174{
c74df32c
HD
3175 pmd_t *new = pmd_alloc_one(mm, address);
3176 if (!new)
1bb3630e 3177 return -ENOMEM;
1da177e4 3178
362a61ad
NP
3179 smp_wmb(); /* See comment in __pte_alloc */
3180
872fec16 3181 spin_lock(&mm->page_table_lock);
1da177e4 3182#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3183 if (pud_present(*pud)) /* Another has populated it */
5e541973 3184 pmd_free(mm, new);
1bb3630e
HD
3185 else
3186 pud_populate(mm, pud, new);
1da177e4 3187#else
1bb3630e 3188 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3189 pmd_free(mm, new);
1bb3630e
HD
3190 else
3191 pgd_populate(mm, pud, new);
1da177e4 3192#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3193 spin_unlock(&mm->page_table_lock);
1bb3630e 3194 return 0;
e0f39591 3195}
1da177e4
LT
3196#endif /* __PAGETABLE_PMD_FOLDED */
3197
3198int make_pages_present(unsigned long addr, unsigned long end)
3199{
3200 int ret, len, write;
3201 struct vm_area_struct * vma;
3202
3203 vma = find_vma(current->mm, addr);
3204 if (!vma)
a477097d 3205 return -ENOMEM;
1da177e4 3206 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
3207 BUG_ON(addr >= end);
3208 BUG_ON(end > vma->vm_end);
68e116a3 3209 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3210 ret = get_user_pages(current, current->mm, addr,
3211 len, write, 0, NULL, NULL);
c11d69d8 3212 if (ret < 0)
1da177e4 3213 return ret;
9978ad58 3214 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3215}
3216
1da177e4
LT
3217#if !defined(__HAVE_ARCH_GATE_AREA)
3218
3219#if defined(AT_SYSINFO_EHDR)
5ce7852c 3220static struct vm_area_struct gate_vma;
1da177e4
LT
3221
3222static int __init gate_vma_init(void)
3223{
3224 gate_vma.vm_mm = NULL;
3225 gate_vma.vm_start = FIXADDR_USER_START;
3226 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3227 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3228 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3229 /*
3230 * Make sure the vDSO gets into every core dump.
3231 * Dumping its contents makes post-mortem fully interpretable later
3232 * without matching up the same kernel and hardware config to see
3233 * what PC values meant.
3234 */
3235 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3236 return 0;
3237}
3238__initcall(gate_vma_init);
3239#endif
3240
3241struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3242{
3243#ifdef AT_SYSINFO_EHDR
3244 return &gate_vma;
3245#else
3246 return NULL;
3247#endif
3248}
3249
3250int in_gate_area_no_task(unsigned long addr)
3251{
3252#ifdef AT_SYSINFO_EHDR
3253 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3254 return 1;
3255#endif
3256 return 0;
3257}
3258
3259#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3260
f8ad0f49
JW
3261static int follow_pte(struct mm_struct *mm, unsigned long address,
3262 pte_t **ptepp, spinlock_t **ptlp)
3263{
3264 pgd_t *pgd;
3265 pud_t *pud;
3266 pmd_t *pmd;
3267 pte_t *ptep;
3268
3269 pgd = pgd_offset(mm, address);
3270 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3271 goto out;
3272
3273 pud = pud_offset(pgd, address);
3274 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3275 goto out;
3276
3277 pmd = pmd_offset(pud, address);
3278 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3279 goto out;
3280
3281 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3282 if (pmd_huge(*pmd))
3283 goto out;
3284
3285 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3286 if (!ptep)
3287 goto out;
3288 if (!pte_present(*ptep))
3289 goto unlock;
3290 *ptepp = ptep;
3291 return 0;
3292unlock:
3293 pte_unmap_unlock(ptep, *ptlp);
3294out:
3295 return -EINVAL;
3296}
3297
3b6748e2
JW
3298/**
3299 * follow_pfn - look up PFN at a user virtual address
3300 * @vma: memory mapping
3301 * @address: user virtual address
3302 * @pfn: location to store found PFN
3303 *
3304 * Only IO mappings and raw PFN mappings are allowed.
3305 *
3306 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3307 */
3308int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3309 unsigned long *pfn)
3310{
3311 int ret = -EINVAL;
3312 spinlock_t *ptl;
3313 pte_t *ptep;
3314
3315 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3316 return ret;
3317
3318 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3319 if (ret)
3320 return ret;
3321 *pfn = pte_pfn(*ptep);
3322 pte_unmap_unlock(ptep, ptl);
3323 return 0;
3324}
3325EXPORT_SYMBOL(follow_pfn);
3326
28b2ee20 3327#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3328int follow_phys(struct vm_area_struct *vma,
3329 unsigned long address, unsigned int flags,
3330 unsigned long *prot, resource_size_t *phys)
28b2ee20 3331{
03668a4d 3332 int ret = -EINVAL;
28b2ee20
RR
3333 pte_t *ptep, pte;
3334 spinlock_t *ptl;
28b2ee20 3335
d87fe660 3336 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3337 goto out;
28b2ee20 3338
03668a4d 3339 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3340 goto out;
28b2ee20 3341 pte = *ptep;
03668a4d 3342
28b2ee20
RR
3343 if ((flags & FOLL_WRITE) && !pte_write(pte))
3344 goto unlock;
28b2ee20
RR
3345
3346 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3347 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3348
03668a4d 3349 ret = 0;
28b2ee20
RR
3350unlock:
3351 pte_unmap_unlock(ptep, ptl);
3352out:
d87fe660 3353 return ret;
28b2ee20
RR
3354}
3355
3356int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3357 void *buf, int len, int write)
3358{
3359 resource_size_t phys_addr;
3360 unsigned long prot = 0;
2bc7273b 3361 void __iomem *maddr;
28b2ee20
RR
3362 int offset = addr & (PAGE_SIZE-1);
3363
d87fe660 3364 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3365 return -EINVAL;
3366
3367 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3368 if (write)
3369 memcpy_toio(maddr + offset, buf, len);
3370 else
3371 memcpy_fromio(buf, maddr + offset, len);
3372 iounmap(maddr);
3373
3374 return len;
3375}
3376#endif
3377
0ec76a11
DH
3378/*
3379 * Access another process' address space.
3380 * Source/target buffer must be kernel space,
3381 * Do not walk the page table directly, use get_user_pages
3382 */
3383int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3384{
3385 struct mm_struct *mm;
3386 struct vm_area_struct *vma;
0ec76a11
DH
3387 void *old_buf = buf;
3388
3389 mm = get_task_mm(tsk);
3390 if (!mm)
3391 return 0;
3392
3393 down_read(&mm->mmap_sem);
183ff22b 3394 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3395 while (len) {
3396 int bytes, ret, offset;
3397 void *maddr;
28b2ee20 3398 struct page *page = NULL;
0ec76a11
DH
3399
3400 ret = get_user_pages(tsk, mm, addr, 1,
3401 write, 1, &page, &vma);
28b2ee20
RR
3402 if (ret <= 0) {
3403 /*
3404 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3405 * we can access using slightly different code.
3406 */
3407#ifdef CONFIG_HAVE_IOREMAP_PROT
3408 vma = find_vma(mm, addr);
3409 if (!vma)
3410 break;
3411 if (vma->vm_ops && vma->vm_ops->access)
3412 ret = vma->vm_ops->access(vma, addr, buf,
3413 len, write);
3414 if (ret <= 0)
3415#endif
3416 break;
3417 bytes = ret;
0ec76a11 3418 } else {
28b2ee20
RR
3419 bytes = len;
3420 offset = addr & (PAGE_SIZE-1);
3421 if (bytes > PAGE_SIZE-offset)
3422 bytes = PAGE_SIZE-offset;
3423
3424 maddr = kmap(page);
3425 if (write) {
3426 copy_to_user_page(vma, page, addr,
3427 maddr + offset, buf, bytes);
3428 set_page_dirty_lock(page);
3429 } else {
3430 copy_from_user_page(vma, page, addr,
3431 buf, maddr + offset, bytes);
3432 }
3433 kunmap(page);
3434 page_cache_release(page);
0ec76a11 3435 }
0ec76a11
DH
3436 len -= bytes;
3437 buf += bytes;
3438 addr += bytes;
3439 }
3440 up_read(&mm->mmap_sem);
3441 mmput(mm);
3442
3443 return buf - old_buf;
3444}
03252919
AK
3445
3446/*
3447 * Print the name of a VMA.
3448 */
3449void print_vma_addr(char *prefix, unsigned long ip)
3450{
3451 struct mm_struct *mm = current->mm;
3452 struct vm_area_struct *vma;
3453
e8bff74a
IM
3454 /*
3455 * Do not print if we are in atomic
3456 * contexts (in exception stacks, etc.):
3457 */
3458 if (preempt_count())
3459 return;
3460
03252919
AK
3461 down_read(&mm->mmap_sem);
3462 vma = find_vma(mm, ip);
3463 if (vma && vma->vm_file) {
3464 struct file *f = vma->vm_file;
3465 char *buf = (char *)__get_free_page(GFP_KERNEL);
3466 if (buf) {
3467 char *p, *s;
3468
cf28b486 3469 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3470 if (IS_ERR(p))
3471 p = "?";
3472 s = strrchr(p, '/');
3473 if (s)
3474 p = s+1;
3475 printk("%s%s[%lx+%lx]", prefix, p,
3476 vma->vm_start,
3477 vma->vm_end - vma->vm_start);
3478 free_page((unsigned long)buf);
3479 }
3480 }
3481 up_read(&current->mm->mmap_sem);
3482}
3ee1afa3
NP
3483
3484#ifdef CONFIG_PROVE_LOCKING
3485void might_fault(void)
3486{
95156f00
PZ
3487 /*
3488 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3489 * holding the mmap_sem, this is safe because kernel memory doesn't
3490 * get paged out, therefore we'll never actually fault, and the
3491 * below annotations will generate false positives.
3492 */
3493 if (segment_eq(get_fs(), KERNEL_DS))
3494 return;
3495
3ee1afa3
NP
3496 might_sleep();
3497 /*
3498 * it would be nicer only to annotate paths which are not under
3499 * pagefault_disable, however that requires a larger audit and
3500 * providing helpers like get_user_atomic.
3501 */
3502 if (!in_atomic() && current->mm)
3503 might_lock_read(&current->mm->mmap_sem);
3504}
3505EXPORT_SYMBOL(might_fault);
3506#endif