MAINTAINERS: fixup Simtec support email entries
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
6a46079c
AK
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
6a46079c
AK
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
478c5ffc 41#include <linux/kernel-page-flags.h>
6a46079c 42#include <linux/sched.h>
01e00f88 43#include <linux/ksm.h>
6a46079c
AK
44#include <linux/rmap.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
facb6011
AK
48#include <linux/migrate.h>
49#include <linux/page-isolation.h>
50#include <linux/suspend.h>
5a0e3ad6 51#include <linux/slab.h>
bf998156 52#include <linux/swapops.h>
7af446a8 53#include <linux/hugetlb.h>
20d6c96b 54#include <linux/memory_hotplug.h>
6a46079c
AK
55#include "internal.h"
56
57int sysctl_memory_failure_early_kill __read_mostly = 0;
58
59int sysctl_memory_failure_recovery __read_mostly = 1;
60
61atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
62
27df5068
AK
63#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
64
1bfe5feb 65u32 hwpoison_filter_enable = 0;
7c116f2b
WF
66u32 hwpoison_filter_dev_major = ~0U;
67u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
68u64 hwpoison_filter_flags_mask;
69u64 hwpoison_filter_flags_value;
1bfe5feb 70EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
71EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
72EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
73EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
74EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
75
76static int hwpoison_filter_dev(struct page *p)
77{
78 struct address_space *mapping;
79 dev_t dev;
80
81 if (hwpoison_filter_dev_major == ~0U &&
82 hwpoison_filter_dev_minor == ~0U)
83 return 0;
84
85 /*
1c80b990 86 * page_mapping() does not accept slab pages.
7c116f2b
WF
87 */
88 if (PageSlab(p))
89 return -EINVAL;
90
91 mapping = page_mapping(p);
92 if (mapping == NULL || mapping->host == NULL)
93 return -EINVAL;
94
95 dev = mapping->host->i_sb->s_dev;
96 if (hwpoison_filter_dev_major != ~0U &&
97 hwpoison_filter_dev_major != MAJOR(dev))
98 return -EINVAL;
99 if (hwpoison_filter_dev_minor != ~0U &&
100 hwpoison_filter_dev_minor != MINOR(dev))
101 return -EINVAL;
102
103 return 0;
104}
105
478c5ffc
WF
106static int hwpoison_filter_flags(struct page *p)
107{
108 if (!hwpoison_filter_flags_mask)
109 return 0;
110
111 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
112 hwpoison_filter_flags_value)
113 return 0;
114 else
115 return -EINVAL;
116}
117
4fd466eb
AK
118/*
119 * This allows stress tests to limit test scope to a collection of tasks
120 * by putting them under some memcg. This prevents killing unrelated/important
121 * processes such as /sbin/init. Note that the target task may share clean
122 * pages with init (eg. libc text), which is harmless. If the target task
123 * share _dirty_ pages with another task B, the test scheme must make sure B
124 * is also included in the memcg. At last, due to race conditions this filter
125 * can only guarantee that the page either belongs to the memcg tasks, or is
126 * a freed page.
127 */
128#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
129u64 hwpoison_filter_memcg;
130EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
131static int hwpoison_filter_task(struct page *p)
132{
133 struct mem_cgroup *mem;
134 struct cgroup_subsys_state *css;
135 unsigned long ino;
136
137 if (!hwpoison_filter_memcg)
138 return 0;
139
140 mem = try_get_mem_cgroup_from_page(p);
141 if (!mem)
142 return -EINVAL;
143
144 css = mem_cgroup_css(mem);
145 /* root_mem_cgroup has NULL dentries */
146 if (!css->cgroup->dentry)
147 return -EINVAL;
148
149 ino = css->cgroup->dentry->d_inode->i_ino;
150 css_put(css);
151
152 if (ino != hwpoison_filter_memcg)
153 return -EINVAL;
154
155 return 0;
156}
157#else
158static int hwpoison_filter_task(struct page *p) { return 0; }
159#endif
160
7c116f2b
WF
161int hwpoison_filter(struct page *p)
162{
1bfe5feb
HL
163 if (!hwpoison_filter_enable)
164 return 0;
165
7c116f2b
WF
166 if (hwpoison_filter_dev(p))
167 return -EINVAL;
168
478c5ffc
WF
169 if (hwpoison_filter_flags(p))
170 return -EINVAL;
171
4fd466eb
AK
172 if (hwpoison_filter_task(p))
173 return -EINVAL;
174
7c116f2b
WF
175 return 0;
176}
27df5068
AK
177#else
178int hwpoison_filter(struct page *p)
179{
180 return 0;
181}
182#endif
183
7c116f2b
WF
184EXPORT_SYMBOL_GPL(hwpoison_filter);
185
6a46079c
AK
186/*
187 * Send all the processes who have the page mapped an ``action optional''
188 * signal.
189 */
190static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
0d9ee6a2 191 unsigned long pfn, struct page *page)
6a46079c
AK
192{
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_code = BUS_MCEERR_AO;
202 si.si_addr = (void *)addr;
203#ifdef __ARCH_SI_TRAPNO
204 si.si_trapno = trapno;
205#endif
37c2ac78 206 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
6a46079c
AK
207 /*
208 * Don't use force here, it's convenient if the signal
209 * can be temporarily blocked.
210 * This could cause a loop when the user sets SIGBUS
211 * to SIG_IGN, but hopefully noone will do that?
212 */
213 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
214 if (ret < 0)
215 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
216 t->comm, t->pid, ret);
217 return ret;
218}
219
588f9ce6
AK
220/*
221 * When a unknown page type is encountered drain as many buffers as possible
222 * in the hope to turn the page into a LRU or free page, which we can handle.
223 */
facb6011 224void shake_page(struct page *p, int access)
588f9ce6
AK
225{
226 if (!PageSlab(p)) {
227 lru_add_drain_all();
228 if (PageLRU(p))
229 return;
230 drain_all_pages();
231 if (PageLRU(p) || is_free_buddy_page(p))
232 return;
233 }
facb6011 234
588f9ce6 235 /*
facb6011
AK
236 * Only all shrink_slab here (which would also
237 * shrink other caches) if access is not potentially fatal.
588f9ce6 238 */
facb6011
AK
239 if (access) {
240 int nr;
241 do {
242 nr = shrink_slab(1000, GFP_KERNEL, 1000);
47f43e7e 243 if (page_count(p) == 1)
facb6011
AK
244 break;
245 } while (nr > 10);
246 }
588f9ce6
AK
247}
248EXPORT_SYMBOL_GPL(shake_page);
249
6a46079c
AK
250/*
251 * Kill all processes that have a poisoned page mapped and then isolate
252 * the page.
253 *
254 * General strategy:
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
259 *
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
262 * running processes.
263 *
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
267 *
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
270 */
271
272struct to_kill {
273 struct list_head nd;
274 struct task_struct *tsk;
275 unsigned long addr;
9033ae16 276 char addr_valid;
6a46079c
AK
277};
278
279/*
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do. We just print a message and ignore otherwise.
282 */
283
284/*
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
288 */
289static void add_to_kill(struct task_struct *tsk, struct page *p,
290 struct vm_area_struct *vma,
291 struct list_head *to_kill,
292 struct to_kill **tkc)
293{
294 struct to_kill *tk;
295
296 if (*tkc) {
297 tk = *tkc;
298 *tkc = NULL;
299 } else {
300 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301 if (!tk) {
302 printk(KERN_ERR
303 "MCE: Out of memory while machine check handling\n");
304 return;
305 }
306 }
307 tk->addr = page_address_in_vma(p, vma);
308 tk->addr_valid = 1;
309
310 /*
311 * In theory we don't have to kill when the page was
312 * munmaped. But it could be also a mremap. Since that's
313 * likely very rare kill anyways just out of paranoia, but use
314 * a SIGKILL because the error is not contained anymore.
315 */
316 if (tk->addr == -EFAULT) {
fb46e735 317 pr_info("MCE: Unable to find user space address %lx in %s\n",
6a46079c
AK
318 page_to_pfn(p), tsk->comm);
319 tk->addr_valid = 0;
320 }
321 get_task_struct(tsk);
322 tk->tsk = tsk;
323 list_add_tail(&tk->nd, to_kill);
324}
325
326/*
327 * Kill the processes that have been collected earlier.
328 *
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
332 * wrong earlier.
333 */
334static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
0d9ee6a2 335 int fail, struct page *page, unsigned long pfn)
6a46079c
AK
336{
337 struct to_kill *tk, *next;
338
339 list_for_each_entry_safe (tk, next, to_kill, nd) {
340 if (doit) {
341 /*
af901ca1 342 * In case something went wrong with munmapping
6a46079c
AK
343 * make sure the process doesn't catch the
344 * signal and then access the memory. Just kill it.
6a46079c
AK
345 */
346 if (fail || tk->addr_valid == 0) {
347 printk(KERN_ERR
348 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
349 pfn, tk->tsk->comm, tk->tsk->pid);
350 force_sig(SIGKILL, tk->tsk);
351 }
352
353 /*
354 * In theory the process could have mapped
355 * something else on the address in-between. We could
356 * check for that, but we need to tell the
357 * process anyways.
358 */
359 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
0d9ee6a2 360 pfn, page) < 0)
6a46079c
AK
361 printk(KERN_ERR
362 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
363 pfn, tk->tsk->comm, tk->tsk->pid);
364 }
365 put_task_struct(tk->tsk);
366 kfree(tk);
367 }
368}
369
370static int task_early_kill(struct task_struct *tsk)
371{
372 if (!tsk->mm)
373 return 0;
374 if (tsk->flags & PF_MCE_PROCESS)
375 return !!(tsk->flags & PF_MCE_EARLY);
376 return sysctl_memory_failure_early_kill;
377}
378
379/*
380 * Collect processes when the error hit an anonymous page.
381 */
382static void collect_procs_anon(struct page *page, struct list_head *to_kill,
383 struct to_kill **tkc)
384{
385 struct vm_area_struct *vma;
386 struct task_struct *tsk;
387 struct anon_vma *av;
388
91600e9e 389 if (!PageHuge(page) && unlikely(split_huge_page(page)))
3f04f62f 390 return;
6a46079c
AK
391 read_lock(&tasklist_lock);
392 av = page_lock_anon_vma(page);
393 if (av == NULL) /* Not actually mapped anymore */
394 goto out;
395 for_each_process (tsk) {
5beb4930
RR
396 struct anon_vma_chain *vmac;
397
6a46079c
AK
398 if (!task_early_kill(tsk))
399 continue;
5beb4930
RR
400 list_for_each_entry(vmac, &av->head, same_anon_vma) {
401 vma = vmac->vma;
6a46079c
AK
402 if (!page_mapped_in_vma(page, vma))
403 continue;
404 if (vma->vm_mm == tsk->mm)
405 add_to_kill(tsk, page, vma, to_kill, tkc);
406 }
407 }
408 page_unlock_anon_vma(av);
409out:
410 read_unlock(&tasklist_lock);
411}
412
413/*
414 * Collect processes when the error hit a file mapped page.
415 */
416static void collect_procs_file(struct page *page, struct list_head *to_kill,
417 struct to_kill **tkc)
418{
419 struct vm_area_struct *vma;
420 struct task_struct *tsk;
421 struct prio_tree_iter iter;
422 struct address_space *mapping = page->mapping;
423
424 /*
425 * A note on the locking order between the two locks.
426 * We don't rely on this particular order.
427 * If you have some other code that needs a different order
428 * feel free to switch them around. Or add a reverse link
429 * from mm_struct to task_struct, then this could be all
430 * done without taking tasklist_lock and looping over all tasks.
431 */
432
433 read_lock(&tasklist_lock);
434 spin_lock(&mapping->i_mmap_lock);
435 for_each_process(tsk) {
436 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
437
438 if (!task_early_kill(tsk))
439 continue;
440
441 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
442 pgoff) {
443 /*
444 * Send early kill signal to tasks where a vma covers
445 * the page but the corrupted page is not necessarily
446 * mapped it in its pte.
447 * Assume applications who requested early kill want
448 * to be informed of all such data corruptions.
449 */
450 if (vma->vm_mm == tsk->mm)
451 add_to_kill(tsk, page, vma, to_kill, tkc);
452 }
453 }
454 spin_unlock(&mapping->i_mmap_lock);
455 read_unlock(&tasklist_lock);
456}
457
458/*
459 * Collect the processes who have the corrupted page mapped to kill.
460 * This is done in two steps for locking reasons.
461 * First preallocate one tokill structure outside the spin locks,
462 * so that we can kill at least one process reasonably reliable.
463 */
464static void collect_procs(struct page *page, struct list_head *tokill)
465{
466 struct to_kill *tk;
467
468 if (!page->mapping)
469 return;
470
471 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
472 if (!tk)
473 return;
474 if (PageAnon(page))
475 collect_procs_anon(page, tokill, &tk);
476 else
477 collect_procs_file(page, tokill, &tk);
478 kfree(tk);
479}
480
481/*
482 * Error handlers for various types of pages.
483 */
484
485enum outcome {
d95ea51e
WF
486 IGNORED, /* Error: cannot be handled */
487 FAILED, /* Error: handling failed */
6a46079c 488 DELAYED, /* Will be handled later */
6a46079c
AK
489 RECOVERED, /* Successfully recovered */
490};
491
492static const char *action_name[] = {
d95ea51e 493 [IGNORED] = "Ignored",
6a46079c
AK
494 [FAILED] = "Failed",
495 [DELAYED] = "Delayed",
6a46079c
AK
496 [RECOVERED] = "Recovered",
497};
498
dc2a1cbf
WF
499/*
500 * XXX: It is possible that a page is isolated from LRU cache,
501 * and then kept in swap cache or failed to remove from page cache.
502 * The page count will stop it from being freed by unpoison.
503 * Stress tests should be aware of this memory leak problem.
504 */
505static int delete_from_lru_cache(struct page *p)
506{
507 if (!isolate_lru_page(p)) {
508 /*
509 * Clear sensible page flags, so that the buddy system won't
510 * complain when the page is unpoison-and-freed.
511 */
512 ClearPageActive(p);
513 ClearPageUnevictable(p);
514 /*
515 * drop the page count elevated by isolate_lru_page()
516 */
517 page_cache_release(p);
518 return 0;
519 }
520 return -EIO;
521}
522
6a46079c
AK
523/*
524 * Error hit kernel page.
525 * Do nothing, try to be lucky and not touch this instead. For a few cases we
526 * could be more sophisticated.
527 */
528static int me_kernel(struct page *p, unsigned long pfn)
6a46079c
AK
529{
530 return IGNORED;
531}
532
533/*
534 * Page in unknown state. Do nothing.
535 */
536static int me_unknown(struct page *p, unsigned long pfn)
537{
538 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
539 return FAILED;
540}
541
6a46079c
AK
542/*
543 * Clean (or cleaned) page cache page.
544 */
545static int me_pagecache_clean(struct page *p, unsigned long pfn)
546{
547 int err;
548 int ret = FAILED;
549 struct address_space *mapping;
550
dc2a1cbf
WF
551 delete_from_lru_cache(p);
552
6a46079c
AK
553 /*
554 * For anonymous pages we're done the only reference left
555 * should be the one m_f() holds.
556 */
557 if (PageAnon(p))
558 return RECOVERED;
559
560 /*
561 * Now truncate the page in the page cache. This is really
562 * more like a "temporary hole punch"
563 * Don't do this for block devices when someone else
564 * has a reference, because it could be file system metadata
565 * and that's not safe to truncate.
566 */
567 mapping = page_mapping(p);
568 if (!mapping) {
569 /*
570 * Page has been teared down in the meanwhile
571 */
572 return FAILED;
573 }
574
575 /*
576 * Truncation is a bit tricky. Enable it per file system for now.
577 *
578 * Open: to take i_mutex or not for this? Right now we don't.
579 */
580 if (mapping->a_ops->error_remove_page) {
581 err = mapping->a_ops->error_remove_page(mapping, p);
582 if (err != 0) {
583 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
584 pfn, err);
585 } else if (page_has_private(p) &&
586 !try_to_release_page(p, GFP_NOIO)) {
fb46e735 587 pr_info("MCE %#lx: failed to release buffers\n", pfn);
6a46079c
AK
588 } else {
589 ret = RECOVERED;
590 }
591 } else {
592 /*
593 * If the file system doesn't support it just invalidate
594 * This fails on dirty or anything with private pages
595 */
596 if (invalidate_inode_page(p))
597 ret = RECOVERED;
598 else
599 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
600 pfn);
601 }
602 return ret;
603}
604
605/*
606 * Dirty cache page page
607 * Issues: when the error hit a hole page the error is not properly
608 * propagated.
609 */
610static int me_pagecache_dirty(struct page *p, unsigned long pfn)
611{
612 struct address_space *mapping = page_mapping(p);
613
614 SetPageError(p);
615 /* TBD: print more information about the file. */
616 if (mapping) {
617 /*
618 * IO error will be reported by write(), fsync(), etc.
619 * who check the mapping.
620 * This way the application knows that something went
621 * wrong with its dirty file data.
622 *
623 * There's one open issue:
624 *
625 * The EIO will be only reported on the next IO
626 * operation and then cleared through the IO map.
627 * Normally Linux has two mechanisms to pass IO error
628 * first through the AS_EIO flag in the address space
629 * and then through the PageError flag in the page.
630 * Since we drop pages on memory failure handling the
631 * only mechanism open to use is through AS_AIO.
632 *
633 * This has the disadvantage that it gets cleared on
634 * the first operation that returns an error, while
635 * the PageError bit is more sticky and only cleared
636 * when the page is reread or dropped. If an
637 * application assumes it will always get error on
638 * fsync, but does other operations on the fd before
639 * and the page is dropped inbetween then the error
640 * will not be properly reported.
641 *
642 * This can already happen even without hwpoisoned
643 * pages: first on metadata IO errors (which only
644 * report through AS_EIO) or when the page is dropped
645 * at the wrong time.
646 *
647 * So right now we assume that the application DTRT on
648 * the first EIO, but we're not worse than other parts
649 * of the kernel.
650 */
651 mapping_set_error(mapping, EIO);
652 }
653
654 return me_pagecache_clean(p, pfn);
655}
656
657/*
658 * Clean and dirty swap cache.
659 *
660 * Dirty swap cache page is tricky to handle. The page could live both in page
661 * cache and swap cache(ie. page is freshly swapped in). So it could be
662 * referenced concurrently by 2 types of PTEs:
663 * normal PTEs and swap PTEs. We try to handle them consistently by calling
664 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
665 * and then
666 * - clear dirty bit to prevent IO
667 * - remove from LRU
668 * - but keep in the swap cache, so that when we return to it on
669 * a later page fault, we know the application is accessing
670 * corrupted data and shall be killed (we installed simple
671 * interception code in do_swap_page to catch it).
672 *
673 * Clean swap cache pages can be directly isolated. A later page fault will
674 * bring in the known good data from disk.
675 */
676static int me_swapcache_dirty(struct page *p, unsigned long pfn)
677{
6a46079c
AK
678 ClearPageDirty(p);
679 /* Trigger EIO in shmem: */
680 ClearPageUptodate(p);
681
dc2a1cbf
WF
682 if (!delete_from_lru_cache(p))
683 return DELAYED;
684 else
685 return FAILED;
6a46079c
AK
686}
687
688static int me_swapcache_clean(struct page *p, unsigned long pfn)
689{
6a46079c 690 delete_from_swap_cache(p);
e43c3afb 691
dc2a1cbf
WF
692 if (!delete_from_lru_cache(p))
693 return RECOVERED;
694 else
695 return FAILED;
6a46079c
AK
696}
697
698/*
699 * Huge pages. Needs work.
700 * Issues:
93f70f90
NH
701 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
702 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
703 */
704static int me_huge_page(struct page *p, unsigned long pfn)
705{
6de2b1aa 706 int res = 0;
93f70f90
NH
707 struct page *hpage = compound_head(p);
708 /*
709 * We can safely recover from error on free or reserved (i.e.
710 * not in-use) hugepage by dequeuing it from freelist.
711 * To check whether a hugepage is in-use or not, we can't use
712 * page->lru because it can be used in other hugepage operations,
713 * such as __unmap_hugepage_range() and gather_surplus_pages().
714 * So instead we use page_mapping() and PageAnon().
715 * We assume that this function is called with page lock held,
716 * so there is no race between isolation and mapping/unmapping.
717 */
718 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
719 res = dequeue_hwpoisoned_huge_page(hpage);
720 if (!res)
721 return RECOVERED;
93f70f90
NH
722 }
723 return DELAYED;
6a46079c
AK
724}
725
726/*
727 * Various page states we can handle.
728 *
729 * A page state is defined by its current page->flags bits.
730 * The table matches them in order and calls the right handler.
731 *
732 * This is quite tricky because we can access page at any time
733 * in its live cycle, so all accesses have to be extremly careful.
734 *
735 * This is not complete. More states could be added.
736 * For any missing state don't attempt recovery.
737 */
738
739#define dirty (1UL << PG_dirty)
740#define sc (1UL << PG_swapcache)
741#define unevict (1UL << PG_unevictable)
742#define mlock (1UL << PG_mlocked)
743#define writeback (1UL << PG_writeback)
744#define lru (1UL << PG_lru)
745#define swapbacked (1UL << PG_swapbacked)
746#define head (1UL << PG_head)
747#define tail (1UL << PG_tail)
748#define compound (1UL << PG_compound)
749#define slab (1UL << PG_slab)
6a46079c
AK
750#define reserved (1UL << PG_reserved)
751
752static struct page_state {
753 unsigned long mask;
754 unsigned long res;
755 char *msg;
756 int (*action)(struct page *p, unsigned long pfn);
757} error_states[] = {
d95ea51e 758 { reserved, reserved, "reserved kernel", me_kernel },
95d01fc6
WF
759 /*
760 * free pages are specially detected outside this table:
761 * PG_buddy pages only make a small fraction of all free pages.
762 */
6a46079c
AK
763
764 /*
765 * Could in theory check if slab page is free or if we can drop
766 * currently unused objects without touching them. But just
767 * treat it as standard kernel for now.
768 */
769 { slab, slab, "kernel slab", me_kernel },
770
771#ifdef CONFIG_PAGEFLAGS_EXTENDED
772 { head, head, "huge", me_huge_page },
773 { tail, tail, "huge", me_huge_page },
774#else
775 { compound, compound, "huge", me_huge_page },
776#endif
777
778 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
779 { sc|dirty, sc, "swapcache", me_swapcache_clean },
780
781 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
782 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
783
6a46079c
AK
784 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
785 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
6a46079c
AK
786
787 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
788 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
6a46079c
AK
789
790 /*
791 * Catchall entry: must be at end.
792 */
793 { 0, 0, "unknown page state", me_unknown },
794};
795
2326c467
AK
796#undef dirty
797#undef sc
798#undef unevict
799#undef mlock
800#undef writeback
801#undef lru
802#undef swapbacked
803#undef head
804#undef tail
805#undef compound
806#undef slab
807#undef reserved
808
6a46079c
AK
809static void action_result(unsigned long pfn, char *msg, int result)
810{
a7560fc8 811 struct page *page = pfn_to_page(pfn);
6a46079c
AK
812
813 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
814 pfn,
a7560fc8 815 PageDirty(page) ? "dirty " : "",
6a46079c
AK
816 msg, action_name[result]);
817}
818
819static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 820 unsigned long pfn)
6a46079c
AK
821{
822 int result;
7456b040 823 int count;
6a46079c
AK
824
825 result = ps->action(p, pfn);
826 action_result(pfn, ps->msg, result);
7456b040 827
bd1ce5f9 828 count = page_count(p) - 1;
138ce286
WF
829 if (ps->action == me_swapcache_dirty && result == DELAYED)
830 count--;
831 if (count != 0) {
6a46079c
AK
832 printk(KERN_ERR
833 "MCE %#lx: %s page still referenced by %d users\n",
7456b040 834 pfn, ps->msg, count);
138ce286
WF
835 result = FAILED;
836 }
6a46079c
AK
837
838 /* Could do more checks here if page looks ok */
839 /*
840 * Could adjust zone counters here to correct for the missing page.
841 */
842
138ce286 843 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
6a46079c
AK
844}
845
6a46079c
AK
846/*
847 * Do all that is necessary to remove user space mappings. Unmap
848 * the pages and send SIGBUS to the processes if the data was dirty.
849 */
1668bfd5 850static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
6a46079c
AK
851 int trapno)
852{
853 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
854 struct address_space *mapping;
855 LIST_HEAD(tokill);
856 int ret;
6a46079c 857 int kill = 1;
7af446a8 858 struct page *hpage = compound_head(p);
6a46079c 859
1668bfd5
WF
860 if (PageReserved(p) || PageSlab(p))
861 return SWAP_SUCCESS;
6a46079c 862
6a46079c
AK
863 /*
864 * This check implies we don't kill processes if their pages
865 * are in the swap cache early. Those are always late kills.
866 */
7af446a8 867 if (!page_mapped(hpage))
1668bfd5
WF
868 return SWAP_SUCCESS;
869
7af446a8 870 if (PageKsm(p))
1668bfd5 871 return SWAP_FAIL;
6a46079c
AK
872
873 if (PageSwapCache(p)) {
874 printk(KERN_ERR
875 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
876 ttu |= TTU_IGNORE_HWPOISON;
877 }
878
879 /*
880 * Propagate the dirty bit from PTEs to struct page first, because we
881 * need this to decide if we should kill or just drop the page.
db0480b3
WF
882 * XXX: the dirty test could be racy: set_page_dirty() may not always
883 * be called inside page lock (it's recommended but not enforced).
6a46079c 884 */
7af446a8
NH
885 mapping = page_mapping(hpage);
886 if (!PageDirty(hpage) && mapping &&
887 mapping_cap_writeback_dirty(mapping)) {
888 if (page_mkclean(hpage)) {
889 SetPageDirty(hpage);
6a46079c
AK
890 } else {
891 kill = 0;
892 ttu |= TTU_IGNORE_HWPOISON;
893 printk(KERN_INFO
894 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
895 pfn);
896 }
897 }
898
899 /*
900 * First collect all the processes that have the page
901 * mapped in dirty form. This has to be done before try_to_unmap,
902 * because ttu takes the rmap data structures down.
903 *
904 * Error handling: We ignore errors here because
905 * there's nothing that can be done.
906 */
907 if (kill)
7af446a8 908 collect_procs(hpage, &tokill);
6a46079c 909
a08c80eb 910 ret = try_to_unmap(hpage, ttu);
6a46079c
AK
911 if (ret != SWAP_SUCCESS)
912 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
7af446a8 913 pfn, page_mapcount(hpage));
6a46079c
AK
914
915 /*
916 * Now that the dirty bit has been propagated to the
917 * struct page and all unmaps done we can decide if
918 * killing is needed or not. Only kill when the page
919 * was dirty, otherwise the tokill list is merely
920 * freed. When there was a problem unmapping earlier
921 * use a more force-full uncatchable kill to prevent
922 * any accesses to the poisoned memory.
923 */
7af446a8 924 kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
0d9ee6a2 925 ret != SWAP_SUCCESS, p, pfn);
1668bfd5
WF
926
927 return ret;
6a46079c
AK
928}
929
7013febc
NH
930static void set_page_hwpoison_huge_page(struct page *hpage)
931{
932 int i;
37c2ac78 933 int nr_pages = 1 << compound_trans_order(hpage);
7013febc
NH
934 for (i = 0; i < nr_pages; i++)
935 SetPageHWPoison(hpage + i);
936}
937
938static void clear_page_hwpoison_huge_page(struct page *hpage)
939{
940 int i;
37c2ac78 941 int nr_pages = 1 << compound_trans_order(hpage);
7013febc
NH
942 for (i = 0; i < nr_pages; i++)
943 ClearPageHWPoison(hpage + i);
944}
945
82ba011b 946int __memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
947{
948 struct page_state *ps;
949 struct page *p;
7af446a8 950 struct page *hpage;
6a46079c 951 int res;
c9fbdd5f 952 unsigned int nr_pages;
6a46079c
AK
953
954 if (!sysctl_memory_failure_recovery)
955 panic("Memory failure from trap %d on page %lx", trapno, pfn);
956
957 if (!pfn_valid(pfn)) {
a7560fc8
WF
958 printk(KERN_ERR
959 "MCE %#lx: memory outside kernel control\n",
960 pfn);
961 return -ENXIO;
6a46079c
AK
962 }
963
964 p = pfn_to_page(pfn);
7af446a8 965 hpage = compound_head(p);
6a46079c 966 if (TestSetPageHWPoison(p)) {
d95ea51e 967 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
968 return 0;
969 }
970
37c2ac78 971 nr_pages = 1 << compound_trans_order(hpage);
c9fbdd5f 972 atomic_long_add(nr_pages, &mce_bad_pages);
6a46079c
AK
973
974 /*
975 * We need/can do nothing about count=0 pages.
976 * 1) it's a free page, and therefore in safe hand:
977 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
978 * 2) it's a free hugepage, which is also safe:
979 * an affected hugepage will be dequeued from hugepage freelist,
980 * so there's no concern about reusing it ever after.
981 * 3) it's part of a non-compound high order page.
6a46079c
AK
982 * Implies some kernel user: cannot stop them from
983 * R/W the page; let's pray that the page has been
984 * used and will be freed some time later.
985 * In fact it's dangerous to directly bump up page count from 0,
986 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
987 */
82ba011b 988 if (!(flags & MF_COUNT_INCREASED) &&
7af446a8 989 !get_page_unless_zero(hpage)) {
8d22ba1b
WF
990 if (is_free_buddy_page(p)) {
991 action_result(pfn, "free buddy", DELAYED);
992 return 0;
8c6c2ecb
NH
993 } else if (PageHuge(hpage)) {
994 /*
995 * Check "just unpoisoned", "filter hit", and
996 * "race with other subpage."
997 */
998 lock_page_nosync(hpage);
999 if (!PageHWPoison(hpage)
1000 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1001 || (p != hpage && TestSetPageHWPoison(hpage))) {
1002 atomic_long_sub(nr_pages, &mce_bad_pages);
1003 return 0;
1004 }
1005 set_page_hwpoison_huge_page(hpage);
1006 res = dequeue_hwpoisoned_huge_page(hpage);
1007 action_result(pfn, "free huge",
1008 res ? IGNORED : DELAYED);
1009 unlock_page(hpage);
1010 return res;
8d22ba1b
WF
1011 } else {
1012 action_result(pfn, "high order kernel", IGNORED);
1013 return -EBUSY;
1014 }
6a46079c
AK
1015 }
1016
e43c3afb
WF
1017 /*
1018 * We ignore non-LRU pages for good reasons.
1019 * - PG_locked is only well defined for LRU pages and a few others
1020 * - to avoid races with __set_page_locked()
1021 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1022 * The check (unnecessarily) ignores LRU pages being isolated and
1023 * walked by the page reclaim code, however that's not a big loss.
1024 */
7af446a8 1025 if (!PageLRU(p) && !PageHuge(p))
facb6011 1026 shake_page(p, 0);
7af446a8 1027 if (!PageLRU(p) && !PageHuge(p)) {
0474a60e
AK
1028 /*
1029 * shake_page could have turned it free.
1030 */
1031 if (is_free_buddy_page(p)) {
1032 action_result(pfn, "free buddy, 2nd try", DELAYED);
1033 return 0;
1034 }
e43c3afb
WF
1035 action_result(pfn, "non LRU", IGNORED);
1036 put_page(p);
1037 return -EBUSY;
1038 }
e43c3afb 1039
6a46079c
AK
1040 /*
1041 * Lock the page and wait for writeback to finish.
1042 * It's very difficult to mess with pages currently under IO
1043 * and in many cases impossible, so we just avoid it here.
1044 */
7af446a8 1045 lock_page_nosync(hpage);
847ce401
WF
1046
1047 /*
1048 * unpoison always clear PG_hwpoison inside page lock
1049 */
1050 if (!PageHWPoison(p)) {
d95ea51e 1051 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
847ce401
WF
1052 res = 0;
1053 goto out;
1054 }
7c116f2b
WF
1055 if (hwpoison_filter(p)) {
1056 if (TestClearPageHWPoison(p))
c9fbdd5f 1057 atomic_long_sub(nr_pages, &mce_bad_pages);
7af446a8
NH
1058 unlock_page(hpage);
1059 put_page(hpage);
7c116f2b
WF
1060 return 0;
1061 }
847ce401 1062
7013febc
NH
1063 /*
1064 * For error on the tail page, we should set PG_hwpoison
1065 * on the head page to show that the hugepage is hwpoisoned
1066 */
1067 if (PageTail(p) && TestSetPageHWPoison(hpage)) {
1068 action_result(pfn, "hugepage already hardware poisoned",
1069 IGNORED);
1070 unlock_page(hpage);
1071 put_page(hpage);
1072 return 0;
1073 }
1074 /*
1075 * Set PG_hwpoison on all pages in an error hugepage,
1076 * because containment is done in hugepage unit for now.
1077 * Since we have done TestSetPageHWPoison() for the head page with
1078 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1079 */
1080 if (PageHuge(p))
1081 set_page_hwpoison_huge_page(hpage);
1082
6a46079c
AK
1083 wait_on_page_writeback(p);
1084
1085 /*
1086 * Now take care of user space mappings.
1668bfd5 1087 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
6a46079c 1088 */
1668bfd5
WF
1089 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1090 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1091 res = -EBUSY;
1092 goto out;
1093 }
6a46079c
AK
1094
1095 /*
1096 * Torn down by someone else?
1097 */
dc2a1cbf 1098 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
6a46079c 1099 action_result(pfn, "already truncated LRU", IGNORED);
d95ea51e 1100 res = -EBUSY;
6a46079c
AK
1101 goto out;
1102 }
1103
1104 res = -EBUSY;
1105 for (ps = error_states;; ps++) {
dc2a1cbf 1106 if ((p->flags & ps->mask) == ps->res) {
bd1ce5f9 1107 res = page_action(ps, p, pfn);
6a46079c
AK
1108 break;
1109 }
1110 }
1111out:
7af446a8 1112 unlock_page(hpage);
6a46079c
AK
1113 return res;
1114}
1115EXPORT_SYMBOL_GPL(__memory_failure);
1116
1117/**
1118 * memory_failure - Handle memory failure of a page.
1119 * @pfn: Page Number of the corrupted page
1120 * @trapno: Trap number reported in the signal to user space.
1121 *
1122 * This function is called by the low level machine check code
1123 * of an architecture when it detects hardware memory corruption
1124 * of a page. It tries its best to recover, which includes
1125 * dropping pages, killing processes etc.
1126 *
1127 * The function is primarily of use for corruptions that
1128 * happen outside the current execution context (e.g. when
1129 * detected by a background scrubber)
1130 *
1131 * Must run in process context (e.g. a work queue) with interrupts
1132 * enabled and no spinlocks hold.
1133 */
1134void memory_failure(unsigned long pfn, int trapno)
1135{
1136 __memory_failure(pfn, trapno, 0);
1137}
847ce401
WF
1138
1139/**
1140 * unpoison_memory - Unpoison a previously poisoned page
1141 * @pfn: Page number of the to be unpoisoned page
1142 *
1143 * Software-unpoison a page that has been poisoned by
1144 * memory_failure() earlier.
1145 *
1146 * This is only done on the software-level, so it only works
1147 * for linux injected failures, not real hardware failures
1148 *
1149 * Returns 0 for success, otherwise -errno.
1150 */
1151int unpoison_memory(unsigned long pfn)
1152{
1153 struct page *page;
1154 struct page *p;
1155 int freeit = 0;
c9fbdd5f 1156 unsigned int nr_pages;
847ce401
WF
1157
1158 if (!pfn_valid(pfn))
1159 return -ENXIO;
1160
1161 p = pfn_to_page(pfn);
1162 page = compound_head(p);
1163
1164 if (!PageHWPoison(p)) {
fb46e735 1165 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
847ce401
WF
1166 return 0;
1167 }
1168
37c2ac78 1169 nr_pages = 1 << compound_trans_order(page);
c9fbdd5f 1170
847ce401 1171 if (!get_page_unless_zero(page)) {
8c6c2ecb
NH
1172 /*
1173 * Since HWPoisoned hugepage should have non-zero refcount,
1174 * race between memory failure and unpoison seems to happen.
1175 * In such case unpoison fails and memory failure runs
1176 * to the end.
1177 */
1178 if (PageHuge(page)) {
1179 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1180 return 0;
1181 }
847ce401 1182 if (TestClearPageHWPoison(p))
c9fbdd5f 1183 atomic_long_sub(nr_pages, &mce_bad_pages);
fb46e735 1184 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
847ce401
WF
1185 return 0;
1186 }
1187
1188 lock_page_nosync(page);
1189 /*
1190 * This test is racy because PG_hwpoison is set outside of page lock.
1191 * That's acceptable because that won't trigger kernel panic. Instead,
1192 * the PG_hwpoison page will be caught and isolated on the entrance to
1193 * the free buddy page pool.
1194 */
c9fbdd5f 1195 if (TestClearPageHWPoison(page)) {
fb46e735 1196 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
c9fbdd5f 1197 atomic_long_sub(nr_pages, &mce_bad_pages);
847ce401 1198 freeit = 1;
6a90181c
NH
1199 if (PageHuge(page))
1200 clear_page_hwpoison_huge_page(page);
847ce401
WF
1201 }
1202 unlock_page(page);
1203
1204 put_page(page);
1205 if (freeit)
1206 put_page(page);
1207
1208 return 0;
1209}
1210EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1211
1212static struct page *new_page(struct page *p, unsigned long private, int **x)
1213{
12686d15 1214 int nid = page_to_nid(p);
d950b958
NH
1215 if (PageHuge(p))
1216 return alloc_huge_page_node(page_hstate(compound_head(p)),
1217 nid);
1218 else
1219 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1220}
1221
1222/*
1223 * Safely get reference count of an arbitrary page.
1224 * Returns 0 for a free page, -EIO for a zero refcount page
1225 * that is not free, and 1 for any other page type.
1226 * For 1 the page is returned with increased page count, otherwise not.
1227 */
1228static int get_any_page(struct page *p, unsigned long pfn, int flags)
1229{
1230 int ret;
1231
1232 if (flags & MF_COUNT_INCREASED)
1233 return 1;
1234
1235 /*
20d6c96b 1236 * The lock_memory_hotplug prevents a race with memory hotplug.
facb6011
AK
1237 * This is a big hammer, a better would be nicer.
1238 */
20d6c96b 1239 lock_memory_hotplug();
facb6011
AK
1240
1241 /*
1242 * Isolate the page, so that it doesn't get reallocated if it
1243 * was free.
1244 */
1245 set_migratetype_isolate(p);
d950b958
NH
1246 /*
1247 * When the target page is a free hugepage, just remove it
1248 * from free hugepage list.
1249 */
facb6011 1250 if (!get_page_unless_zero(compound_head(p))) {
d950b958 1251 if (PageHuge(p)) {
46e387bb 1252 pr_info("get_any_page: %#lx free huge page\n", pfn);
d950b958
NH
1253 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1254 } else if (is_free_buddy_page(p)) {
fb46e735 1255 pr_info("get_any_page: %#lx free buddy page\n", pfn);
facb6011
AK
1256 /* Set hwpoison bit while page is still isolated */
1257 SetPageHWPoison(p);
1258 ret = 0;
1259 } else {
fb46e735 1260 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
facb6011
AK
1261 pfn, p->flags);
1262 ret = -EIO;
1263 }
1264 } else {
1265 /* Not a free page */
1266 ret = 1;
1267 }
1268 unset_migratetype_isolate(p);
20d6c96b 1269 unlock_memory_hotplug();
facb6011
AK
1270 return ret;
1271}
1272
d950b958
NH
1273static int soft_offline_huge_page(struct page *page, int flags)
1274{
1275 int ret;
1276 unsigned long pfn = page_to_pfn(page);
1277 struct page *hpage = compound_head(page);
1278 LIST_HEAD(pagelist);
1279
1280 ret = get_any_page(page, pfn, flags);
1281 if (ret < 0)
1282 return ret;
1283 if (ret == 0)
1284 goto done;
1285
1286 if (PageHWPoison(hpage)) {
1287 put_page(hpage);
1288 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1289 return -EBUSY;
1290 }
1291
1292 /* Keep page count to indicate a given hugepage is isolated. */
1293
1294 list_add(&hpage->lru, &pagelist);
77f1fe6b
MG
1295 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1296 true);
d950b958 1297 if (ret) {
48db54ee
MK
1298 struct page *page1, *page2;
1299 list_for_each_entry_safe(page1, page2, &pagelist, lru)
1300 put_page(page1);
1301
d950b958
NH
1302 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1303 pfn, ret, page->flags);
1304 if (ret > 0)
1305 ret = -EIO;
1306 return ret;
1307 }
1308done:
1309 if (!PageHWPoison(hpage))
37c2ac78 1310 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
d950b958
NH
1311 set_page_hwpoison_huge_page(hpage);
1312 dequeue_hwpoisoned_huge_page(hpage);
1313 /* keep elevated page count for bad page */
1314 return ret;
1315}
1316
facb6011
AK
1317/**
1318 * soft_offline_page - Soft offline a page.
1319 * @page: page to offline
1320 * @flags: flags. Same as memory_failure().
1321 *
1322 * Returns 0 on success, otherwise negated errno.
1323 *
1324 * Soft offline a page, by migration or invalidation,
1325 * without killing anything. This is for the case when
1326 * a page is not corrupted yet (so it's still valid to access),
1327 * but has had a number of corrected errors and is better taken
1328 * out.
1329 *
1330 * The actual policy on when to do that is maintained by
1331 * user space.
1332 *
1333 * This should never impact any application or cause data loss,
1334 * however it might take some time.
1335 *
1336 * This is not a 100% solution for all memory, but tries to be
1337 * ``good enough'' for the majority of memory.
1338 */
1339int soft_offline_page(struct page *page, int flags)
1340{
1341 int ret;
1342 unsigned long pfn = page_to_pfn(page);
1343
d950b958
NH
1344 if (PageHuge(page))
1345 return soft_offline_huge_page(page, flags);
1346
facb6011
AK
1347 ret = get_any_page(page, pfn, flags);
1348 if (ret < 0)
1349 return ret;
1350 if (ret == 0)
1351 goto done;
1352
1353 /*
1354 * Page cache page we can handle?
1355 */
1356 if (!PageLRU(page)) {
1357 /*
1358 * Try to free it.
1359 */
1360 put_page(page);
1361 shake_page(page, 1);
1362
1363 /*
1364 * Did it turn free?
1365 */
1366 ret = get_any_page(page, pfn, 0);
1367 if (ret < 0)
1368 return ret;
1369 if (ret == 0)
1370 goto done;
1371 }
1372 if (!PageLRU(page)) {
fb46e735 1373 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
facb6011
AK
1374 pfn, page->flags);
1375 return -EIO;
1376 }
1377
1378 lock_page(page);
1379 wait_on_page_writeback(page);
1380
1381 /*
1382 * Synchronized using the page lock with memory_failure()
1383 */
1384 if (PageHWPoison(page)) {
1385 unlock_page(page);
1386 put_page(page);
fb46e735 1387 pr_info("soft offline: %#lx page already poisoned\n", pfn);
facb6011
AK
1388 return -EBUSY;
1389 }
1390
1391 /*
1392 * Try to invalidate first. This should work for
1393 * non dirty unmapped page cache pages.
1394 */
1395 ret = invalidate_inode_page(page);
1396 unlock_page(page);
1397
1398 /*
1399 * Drop count because page migration doesn't like raised
1400 * counts. The page could get re-allocated, but if it becomes
1401 * LRU the isolation will just fail.
1402 * RED-PEN would be better to keep it isolated here, but we
1403 * would need to fix isolation locking first.
1404 */
1405 put_page(page);
1406 if (ret == 1) {
1407 ret = 0;
fb46e735 1408 pr_info("soft_offline: %#lx: invalidated\n", pfn);
facb6011
AK
1409 goto done;
1410 }
1411
1412 /*
1413 * Simple invalidation didn't work.
1414 * Try to migrate to a new page instead. migrate.c
1415 * handles a large number of cases for us.
1416 */
1417 ret = isolate_lru_page(page);
1418 if (!ret) {
1419 LIST_HEAD(pagelist);
1420
1421 list_add(&page->lru, &pagelist);
77f1fe6b
MG
1422 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1423 0, true);
facb6011 1424 if (ret) {
57fc4a5e 1425 putback_lru_pages(&pagelist);
fb46e735 1426 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
facb6011
AK
1427 pfn, ret, page->flags);
1428 if (ret > 0)
1429 ret = -EIO;
1430 }
1431 } else {
fb46e735 1432 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
facb6011
AK
1433 pfn, ret, page_count(page), page->flags);
1434 }
1435 if (ret)
1436 return ret;
1437
1438done:
1439 atomic_long_add(1, &mce_bad_pages);
1440 SetPageHWPoison(page);
1441 /* keep elevated page count for bad page */
1442 return ret;
1443}
bf998156 1444
bbeb3406
HY
1445/*
1446 * The caller must hold current->mm->mmap_sem in read mode.
1447 */
bf998156
HY
1448int is_hwpoison_address(unsigned long addr)
1449{
1450 pgd_t *pgdp;
1451 pud_t pud, *pudp;
1452 pmd_t pmd, *pmdp;
1453 pte_t pte, *ptep;
1454 swp_entry_t entry;
1455
1456 pgdp = pgd_offset(current->mm, addr);
1457 if (!pgd_present(*pgdp))
1458 return 0;
1459 pudp = pud_offset(pgdp, addr);
1460 pud = *pudp;
1461 if (!pud_present(pud) || pud_large(pud))
1462 return 0;
1463 pmdp = pmd_offset(pudp, addr);
1464 pmd = *pmdp;
1465 if (!pmd_present(pmd) || pmd_large(pmd))
1466 return 0;
1467 ptep = pte_offset_map(pmdp, addr);
1468 pte = *ptep;
1469 pte_unmap(ptep);
1470 if (!is_swap_pte(pte))
1471 return 0;
1472 entry = pte_to_swp_entry(pte);
1473 return is_hwpoison_entry(entry);
1474}
1475EXPORT_SYMBOL_GPL(is_hwpoison_address);