cgroup, cpuset: replace cpuset_post_attach_flush() with cgroup_subsys->post_attach...
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
a181b0e8 79#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 80static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 81struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
af7c4b0e
JW
90static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
b070e65c 93 "rss_huge",
af7c4b0e 94 "mapped_file",
c4843a75 95 "dirty",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
af7c4b0e
JW
100static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105};
106
58cf188e
SZ
107static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113};
114
a0db00fc
KS
115#define THRESHOLDS_EVENTS_TARGET 128
116#define SOFTLIMIT_EVENTS_TARGET 1024
117#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 118
bb4cc1a8
AM
119/*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127};
128
129struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131};
132
133struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135};
136
137static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
9490ff27
KH
139/* for OOM */
140struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143};
2e72b634 144
79bd9814
TH
145/*
146 * cgroup_event represents events which userspace want to receive.
147 */
3bc942f3 148struct mem_cgroup_event {
79bd9814 149 /*
59b6f873 150 * memcg which the event belongs to.
79bd9814 151 */
59b6f873 152 struct mem_cgroup *memcg;
79bd9814
TH
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
fba94807
TH
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
59b6f873 166 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 167 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
59b6f873 173 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 174 struct eventfd_ctx *eventfd);
79bd9814
TH
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183};
184
c0ff4b85
R
185static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 187
7dc74be0
DN
188/* Stuffs for move charges at task migration. */
189/*
1dfab5ab 190 * Types of charges to be moved.
7dc74be0 191 */
1dfab5ab
JW
192#define MOVE_ANON 0x1U
193#define MOVE_FILE 0x2U
194#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 195
4ffef5fe
DN
196/* "mc" and its members are protected by cgroup_mutex */
197static struct move_charge_struct {
b1dd693e 198 spinlock_t lock; /* for from, to */
4ffef5fe
DN
199 struct mem_cgroup *from;
200 struct mem_cgroup *to;
1dfab5ab 201 unsigned long flags;
4ffef5fe 202 unsigned long precharge;
854ffa8d 203 unsigned long moved_charge;
483c30b5 204 unsigned long moved_swap;
8033b97c
DN
205 struct task_struct *moving_task; /* a task moving charges */
206 wait_queue_head_t waitq; /* a waitq for other context */
207} mc = {
2bd9bb20 208 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
209 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
210};
4ffef5fe 211
4e416953
BS
212/*
213 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
214 * limit reclaim to prevent infinite loops, if they ever occur.
215 */
a0db00fc 216#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 217#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 218
217bc319
KH
219enum charge_type {
220 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 221 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 222 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 223 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
224 NR_CHARGE_TYPE,
225};
226
8c7c6e34 227/* for encoding cft->private value on file */
86ae53e1
GC
228enum res_type {
229 _MEM,
230 _MEMSWAP,
231 _OOM_TYPE,
510fc4e1 232 _KMEM,
86ae53e1
GC
233};
234
a0db00fc
KS
235#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
236#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 237#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
238/* Used for OOM nofiier */
239#define OOM_CONTROL (0)
8c7c6e34 240
0999821b
GC
241/*
242 * The memcg_create_mutex will be held whenever a new cgroup is created.
243 * As a consequence, any change that needs to protect against new child cgroups
244 * appearing has to hold it as well.
245 */
246static DEFINE_MUTEX(memcg_create_mutex);
247
70ddf637
AV
248/* Some nice accessors for the vmpressure. */
249struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250{
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254}
255
256struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257{
258 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259}
260
7ffc0edc
MH
261static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262{
263 return (memcg == root_mem_cgroup);
264}
265
4219b2da
LZ
266/*
267 * We restrict the id in the range of [1, 65535], so it can fit into
268 * an unsigned short.
269 */
270#define MEM_CGROUP_ID_MAX USHRT_MAX
271
34c00c31
LZ
272static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273{
15a4c835 274 return memcg->css.id;
34c00c31
LZ
275}
276
adbe427b
VD
277/*
278 * A helper function to get mem_cgroup from ID. must be called under
279 * rcu_read_lock(). The caller is responsible for calling
280 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
281 * refcnt from swap can be called against removed memcg.)
282 */
34c00c31
LZ
283static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284{
285 struct cgroup_subsys_state *css;
286
7d699ddb 287 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
288 return mem_cgroup_from_css(css);
289}
290
e1aab161 291/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 292#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 293
e1aab161
GC
294void sock_update_memcg(struct sock *sk)
295{
376be5ff 296 if (mem_cgroup_sockets_enabled) {
e1aab161 297 struct mem_cgroup *memcg;
3f134619 298 struct cg_proto *cg_proto;
e1aab161
GC
299
300 BUG_ON(!sk->sk_prot->proto_cgroup);
301
f3f511e1
GC
302 /* Socket cloning can throw us here with sk_cgrp already
303 * filled. It won't however, necessarily happen from
304 * process context. So the test for root memcg given
305 * the current task's memcg won't help us in this case.
306 *
307 * Respecting the original socket's memcg is a better
308 * decision in this case.
309 */
310 if (sk->sk_cgrp) {
311 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 312 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
313 return;
314 }
315
e1aab161
GC
316 rcu_read_lock();
317 memcg = mem_cgroup_from_task(current);
3f134619 318 cg_proto = sk->sk_prot->proto_cgroup(memcg);
e752eb68 319 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
ec903c0c 320 css_tryget_online(&memcg->css)) {
3f134619 321 sk->sk_cgrp = cg_proto;
e1aab161
GC
322 }
323 rcu_read_unlock();
324 }
325}
326EXPORT_SYMBOL(sock_update_memcg);
327
328void sock_release_memcg(struct sock *sk)
329{
376be5ff 330 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
331 struct mem_cgroup *memcg;
332 WARN_ON(!sk->sk_cgrp->memcg);
333 memcg = sk->sk_cgrp->memcg;
5347e5ae 334 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
335 }
336}
d1a4c0b3
GC
337
338struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339{
340 if (!memcg || mem_cgroup_is_root(memcg))
341 return NULL;
342
2e685cad 343 return &memcg->tcp_mem;
d1a4c0b3
GC
344}
345EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 346
3f134619
GC
347#endif
348
a8964b9b 349#ifdef CONFIG_MEMCG_KMEM
55007d84 350/*
f7ce3190 351 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
55007d84 357 *
dbcf73e2
VD
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
55007d84 360 */
dbcf73e2
VD
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
749c5415 363
05257a1a
VD
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
55007d84
GC
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
b8627835 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
b8627835 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 391
d7f25f8a
GC
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
a8964b9b 398struct static_key memcg_kmem_enabled_key;
d7f25f8a 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 400
a8964b9b
GC
401#endif /* CONFIG_MEMCG_KMEM */
402
f64c3f54 403static struct mem_cgroup_per_zone *
e231875b 404mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 405{
e231875b
JZ
406 int nid = zone_to_nid(zone);
407 int zid = zone_idx(zone);
408
54f72fe0 409 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
410}
411
ad7fa852
TH
412/**
413 * mem_cgroup_css_from_page - css of the memcg associated with a page
414 * @page: page of interest
415 *
416 * If memcg is bound to the default hierarchy, css of the memcg associated
417 * with @page is returned. The returned css remains associated with @page
418 * until it is released.
419 *
420 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
421 * is returned.
422 *
423 * XXX: The above description of behavior on the default hierarchy isn't
424 * strictly true yet as replace_page_cache_page() can modify the
425 * association before @page is released even on the default hierarchy;
426 * however, the current and planned usages don't mix the the two functions
427 * and replace_page_cache_page() will soon be updated to make the invariant
428 * actually true.
429 */
430struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431{
432 struct mem_cgroup *memcg;
433
434 rcu_read_lock();
435
436 memcg = page->mem_cgroup;
437
9e10a130 438 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
439 memcg = root_mem_cgroup;
440
441 rcu_read_unlock();
442 return &memcg->css;
443}
444
2fc04524
VD
445/**
446 * page_cgroup_ino - return inode number of the memcg a page is charged to
447 * @page: the page
448 *
449 * Look up the closest online ancestor of the memory cgroup @page is charged to
450 * and return its inode number or 0 if @page is not charged to any cgroup. It
451 * is safe to call this function without holding a reference to @page.
452 *
453 * Note, this function is inherently racy, because there is nothing to prevent
454 * the cgroup inode from getting torn down and potentially reallocated a moment
455 * after page_cgroup_ino() returns, so it only should be used by callers that
456 * do not care (such as procfs interfaces).
457 */
458ino_t page_cgroup_ino(struct page *page)
459{
460 struct mem_cgroup *memcg;
461 unsigned long ino = 0;
462
463 rcu_read_lock();
464 memcg = READ_ONCE(page->mem_cgroup);
465 while (memcg && !(memcg->css.flags & CSS_ONLINE))
466 memcg = parent_mem_cgroup(memcg);
467 if (memcg)
468 ino = cgroup_ino(memcg->css.cgroup);
469 rcu_read_unlock();
470 return ino;
471}
472
f64c3f54 473static struct mem_cgroup_per_zone *
e231875b 474mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 475{
97a6c37b
JW
476 int nid = page_to_nid(page);
477 int zid = page_zonenum(page);
f64c3f54 478
e231875b 479 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
480}
481
bb4cc1a8
AM
482static struct mem_cgroup_tree_per_zone *
483soft_limit_tree_node_zone(int nid, int zid)
484{
485 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
486}
487
488static struct mem_cgroup_tree_per_zone *
489soft_limit_tree_from_page(struct page *page)
490{
491 int nid = page_to_nid(page);
492 int zid = page_zonenum(page);
493
494 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
495}
496
cf2c8127
JW
497static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 499 unsigned long new_usage_in_excess)
bb4cc1a8
AM
500{
501 struct rb_node **p = &mctz->rb_root.rb_node;
502 struct rb_node *parent = NULL;
503 struct mem_cgroup_per_zone *mz_node;
504
505 if (mz->on_tree)
506 return;
507
508 mz->usage_in_excess = new_usage_in_excess;
509 if (!mz->usage_in_excess)
510 return;
511 while (*p) {
512 parent = *p;
513 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
514 tree_node);
515 if (mz->usage_in_excess < mz_node->usage_in_excess)
516 p = &(*p)->rb_left;
517 /*
518 * We can't avoid mem cgroups that are over their soft
519 * limit by the same amount
520 */
521 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
522 p = &(*p)->rb_right;
523 }
524 rb_link_node(&mz->tree_node, parent, p);
525 rb_insert_color(&mz->tree_node, &mctz->rb_root);
526 mz->on_tree = true;
527}
528
cf2c8127
JW
529static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
531{
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536}
537
cf2c8127
JW
538static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
539 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 540{
0a31bc97
JW
541 unsigned long flags;
542
543 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 544 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 545 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
546}
547
3e32cb2e
JW
548static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
549{
550 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 551 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
552 unsigned long excess = 0;
553
554 if (nr_pages > soft_limit)
555 excess = nr_pages - soft_limit;
556
557 return excess;
558}
bb4cc1a8
AM
559
560static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
561{
3e32cb2e 562 unsigned long excess;
bb4cc1a8
AM
563 struct mem_cgroup_per_zone *mz;
564 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 565
e231875b 566 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
567 /*
568 * Necessary to update all ancestors when hierarchy is used.
569 * because their event counter is not touched.
570 */
571 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 572 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 573 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
574 /*
575 * We have to update the tree if mz is on RB-tree or
576 * mem is over its softlimit.
577 */
578 if (excess || mz->on_tree) {
0a31bc97
JW
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
582 /* if on-tree, remove it */
583 if (mz->on_tree)
cf2c8127 584 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
585 /*
586 * Insert again. mz->usage_in_excess will be updated.
587 * If excess is 0, no tree ops.
588 */
cf2c8127 589 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 590 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
591 }
592 }
593}
594
595static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
596{
bb4cc1a8 597 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
598 struct mem_cgroup_per_zone *mz;
599 int nid, zid;
bb4cc1a8 600
e231875b
JZ
601 for_each_node(nid) {
602 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
603 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
604 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 605 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
606 }
607 }
608}
609
610static struct mem_cgroup_per_zone *
611__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
612{
613 struct rb_node *rightmost = NULL;
614 struct mem_cgroup_per_zone *mz;
615
616retry:
617 mz = NULL;
618 rightmost = rb_last(&mctz->rb_root);
619 if (!rightmost)
620 goto done; /* Nothing to reclaim from */
621
622 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
623 /*
624 * Remove the node now but someone else can add it back,
625 * we will to add it back at the end of reclaim to its correct
626 * position in the tree.
627 */
cf2c8127 628 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 629 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 630 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
631 goto retry;
632done:
633 return mz;
634}
635
636static struct mem_cgroup_per_zone *
637mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638{
639 struct mem_cgroup_per_zone *mz;
640
0a31bc97 641 spin_lock_irq(&mctz->lock);
bb4cc1a8 642 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 643 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
644 return mz;
645}
646
711d3d2c 647/*
484ebb3b
GT
648 * Return page count for single (non recursive) @memcg.
649 *
711d3d2c
KH
650 * Implementation Note: reading percpu statistics for memcg.
651 *
652 * Both of vmstat[] and percpu_counter has threshold and do periodic
653 * synchronization to implement "quick" read. There are trade-off between
654 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 655 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
656 *
657 * But this _read() function is used for user interface now. The user accounts
658 * memory usage by memory cgroup and he _always_ requires exact value because
659 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
660 * have to visit all online cpus and make sum. So, for now, unnecessary
661 * synchronization is not implemented. (just implemented for cpu hotplug)
662 *
663 * If there are kernel internal actions which can make use of some not-exact
664 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 665 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
666 * implemented.
667 */
484ebb3b
GT
668static unsigned long
669mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 670{
7a159cc9 671 long val = 0;
c62b1a3b 672 int cpu;
c62b1a3b 673
484ebb3b 674 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 675 for_each_possible_cpu(cpu)
c0ff4b85 676 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
677 /*
678 * Summing races with updates, so val may be negative. Avoid exposing
679 * transient negative values.
680 */
681 if (val < 0)
682 val = 0;
c62b1a3b
KH
683 return val;
684}
685
c0ff4b85 686static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
687 enum mem_cgroup_events_index idx)
688{
689 unsigned long val = 0;
690 int cpu;
691
733a572e 692 for_each_possible_cpu(cpu)
c0ff4b85 693 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
694 return val;
695}
696
c0ff4b85 697static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 698 struct page *page,
0a31bc97 699 int nr_pages)
d52aa412 700{
b2402857
KH
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
0a31bc97 705 if (PageAnon(page))
b2402857 706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 707 nr_pages);
d52aa412 708 else
b2402857 709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 710 nr_pages);
55e462b0 711
b070e65c
DR
712 if (PageTransHuge(page))
713 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
714 nr_pages);
715
e401f176
KH
716 /* pagein of a big page is an event. So, ignore page size */
717 if (nr_pages > 0)
c0ff4b85 718 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 719 else {
c0ff4b85 720 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
721 nr_pages = -nr_pages; /* for event */
722 }
e401f176 723
13114716 724 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
725}
726
e231875b
JZ
727static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid,
729 unsigned int lru_mask)
bb2a0de9 730{
e231875b 731 unsigned long nr = 0;
889976db
YH
732 int zid;
733
e231875b 734 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 735
e231875b
JZ
736 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
737 struct mem_cgroup_per_zone *mz;
738 enum lru_list lru;
739
740 for_each_lru(lru) {
741 if (!(BIT(lru) & lru_mask))
742 continue;
743 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
744 nr += mz->lru_size[lru];
745 }
746 }
747 return nr;
889976db 748}
bb2a0de9 749
c0ff4b85 750static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 751 unsigned int lru_mask)
6d12e2d8 752{
e231875b 753 unsigned long nr = 0;
889976db 754 int nid;
6d12e2d8 755
31aaea4a 756 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
757 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
758 return nr;
d52aa412
KH
759}
760
f53d7ce3
JW
761static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 enum mem_cgroup_events_target target)
7a159cc9
JW
763{
764 unsigned long val, next;
765
13114716 766 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 767 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 768 /* from time_after() in jiffies.h */
f53d7ce3
JW
769 if ((long)next - (long)val < 0) {
770 switch (target) {
771 case MEM_CGROUP_TARGET_THRESH:
772 next = val + THRESHOLDS_EVENTS_TARGET;
773 break;
bb4cc1a8
AM
774 case MEM_CGROUP_TARGET_SOFTLIMIT:
775 next = val + SOFTLIMIT_EVENTS_TARGET;
776 break;
f53d7ce3
JW
777 case MEM_CGROUP_TARGET_NUMAINFO:
778 next = val + NUMAINFO_EVENTS_TARGET;
779 break;
780 default:
781 break;
782 }
783 __this_cpu_write(memcg->stat->targets[target], next);
784 return true;
7a159cc9 785 }
f53d7ce3 786 return false;
d2265e6f
KH
787}
788
789/*
790 * Check events in order.
791 *
792 */
c0ff4b85 793static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
794{
795 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
796 if (unlikely(mem_cgroup_event_ratelimit(memcg,
797 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 798 bool do_softlimit;
82b3f2a7 799 bool do_numainfo __maybe_unused;
f53d7ce3 800
bb4cc1a8
AM
801 do_softlimit = mem_cgroup_event_ratelimit(memcg,
802 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
803#if MAX_NUMNODES > 1
804 do_numainfo = mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_NUMAINFO);
806#endif
c0ff4b85 807 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
808 if (unlikely(do_softlimit))
809 mem_cgroup_update_tree(memcg, page);
453a9bf3 810#if MAX_NUMNODES > 1
f53d7ce3 811 if (unlikely(do_numainfo))
c0ff4b85 812 atomic_inc(&memcg->numainfo_events);
453a9bf3 813#endif
0a31bc97 814 }
d2265e6f
KH
815}
816
cf475ad2 817struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 818{
31a78f23
BS
819 /*
820 * mm_update_next_owner() may clear mm->owner to NULL
821 * if it races with swapoff, page migration, etc.
822 * So this can be called with p == NULL.
823 */
824 if (unlikely(!p))
825 return NULL;
826
073219e9 827 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 828}
33398cf2 829EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 830
df381975 831static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 832{
c0ff4b85 833 struct mem_cgroup *memcg = NULL;
0b7f569e 834
54595fe2
KH
835 rcu_read_lock();
836 do {
6f6acb00
MH
837 /*
838 * Page cache insertions can happen withou an
839 * actual mm context, e.g. during disk probing
840 * on boot, loopback IO, acct() writes etc.
841 */
842 if (unlikely(!mm))
df381975 843 memcg = root_mem_cgroup;
6f6acb00
MH
844 else {
845 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
846 if (unlikely(!memcg))
847 memcg = root_mem_cgroup;
848 }
ec903c0c 849 } while (!css_tryget_online(&memcg->css));
54595fe2 850 rcu_read_unlock();
c0ff4b85 851 return memcg;
54595fe2
KH
852}
853
5660048c
JW
854/**
855 * mem_cgroup_iter - iterate over memory cgroup hierarchy
856 * @root: hierarchy root
857 * @prev: previously returned memcg, NULL on first invocation
858 * @reclaim: cookie for shared reclaim walks, NULL for full walks
859 *
860 * Returns references to children of the hierarchy below @root, or
861 * @root itself, or %NULL after a full round-trip.
862 *
863 * Caller must pass the return value in @prev on subsequent
864 * invocations for reference counting, or use mem_cgroup_iter_break()
865 * to cancel a hierarchy walk before the round-trip is complete.
866 *
867 * Reclaimers can specify a zone and a priority level in @reclaim to
868 * divide up the memcgs in the hierarchy among all concurrent
869 * reclaimers operating on the same zone and priority.
870 */
694fbc0f 871struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 872 struct mem_cgroup *prev,
694fbc0f 873 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 874{
33398cf2 875 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 876 struct cgroup_subsys_state *css = NULL;
9f3a0d09 877 struct mem_cgroup *memcg = NULL;
5ac8fb31 878 struct mem_cgroup *pos = NULL;
711d3d2c 879
694fbc0f
AM
880 if (mem_cgroup_disabled())
881 return NULL;
5660048c 882
9f3a0d09
JW
883 if (!root)
884 root = root_mem_cgroup;
7d74b06f 885
9f3a0d09 886 if (prev && !reclaim)
5ac8fb31 887 pos = prev;
14067bb3 888
9f3a0d09
JW
889 if (!root->use_hierarchy && root != root_mem_cgroup) {
890 if (prev)
5ac8fb31 891 goto out;
694fbc0f 892 return root;
9f3a0d09 893 }
14067bb3 894
542f85f9 895 rcu_read_lock();
5f578161 896
5ac8fb31
JW
897 if (reclaim) {
898 struct mem_cgroup_per_zone *mz;
899
900 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
901 iter = &mz->iter[reclaim->priority];
902
903 if (prev && reclaim->generation != iter->generation)
904 goto out_unlock;
905
6df38689 906 while (1) {
4db0c3c2 907 pos = READ_ONCE(iter->position);
6df38689
VD
908 if (!pos || css_tryget(&pos->css))
909 break;
5ac8fb31 910 /*
6df38689
VD
911 * css reference reached zero, so iter->position will
912 * be cleared by ->css_released. However, we should not
913 * rely on this happening soon, because ->css_released
914 * is called from a work queue, and by busy-waiting we
915 * might block it. So we clear iter->position right
916 * away.
5ac8fb31 917 */
6df38689
VD
918 (void)cmpxchg(&iter->position, pos, NULL);
919 }
5ac8fb31
JW
920 }
921
922 if (pos)
923 css = &pos->css;
924
925 for (;;) {
926 css = css_next_descendant_pre(css, &root->css);
927 if (!css) {
928 /*
929 * Reclaimers share the hierarchy walk, and a
930 * new one might jump in right at the end of
931 * the hierarchy - make sure they see at least
932 * one group and restart from the beginning.
933 */
934 if (!prev)
935 continue;
936 break;
527a5ec9 937 }
7d74b06f 938
5ac8fb31
JW
939 /*
940 * Verify the css and acquire a reference. The root
941 * is provided by the caller, so we know it's alive
942 * and kicking, and don't take an extra reference.
943 */
944 memcg = mem_cgroup_from_css(css);
14067bb3 945
5ac8fb31
JW
946 if (css == &root->css)
947 break;
14067bb3 948
b2052564 949 if (css_tryget(css)) {
5ac8fb31
JW
950 /*
951 * Make sure the memcg is initialized:
952 * mem_cgroup_css_online() orders the the
953 * initialization against setting the flag.
954 */
955 if (smp_load_acquire(&memcg->initialized))
956 break;
542f85f9 957
5ac8fb31 958 css_put(css);
527a5ec9 959 }
9f3a0d09 960
5ac8fb31 961 memcg = NULL;
9f3a0d09 962 }
5ac8fb31
JW
963
964 if (reclaim) {
5ac8fb31 965 /*
6df38689
VD
966 * The position could have already been updated by a competing
967 * thread, so check that the value hasn't changed since we read
968 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 969 */
6df38689
VD
970 (void)cmpxchg(&iter->position, pos, memcg);
971
5ac8fb31
JW
972 if (pos)
973 css_put(&pos->css);
974
975 if (!memcg)
976 iter->generation++;
977 else if (!prev)
978 reclaim->generation = iter->generation;
9f3a0d09 979 }
5ac8fb31 980
542f85f9
MH
981out_unlock:
982 rcu_read_unlock();
5ac8fb31 983out:
c40046f3
MH
984 if (prev && prev != root)
985 css_put(&prev->css);
986
9f3a0d09 987 return memcg;
14067bb3 988}
7d74b06f 989
5660048c
JW
990/**
991 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
992 * @root: hierarchy root
993 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
994 */
995void mem_cgroup_iter_break(struct mem_cgroup *root,
996 struct mem_cgroup *prev)
9f3a0d09
JW
997{
998 if (!root)
999 root = root_mem_cgroup;
1000 if (prev && prev != root)
1001 css_put(&prev->css);
1002}
7d74b06f 1003
6df38689
VD
1004static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1005{
1006 struct mem_cgroup *memcg = dead_memcg;
1007 struct mem_cgroup_reclaim_iter *iter;
1008 struct mem_cgroup_per_zone *mz;
1009 int nid, zid;
1010 int i;
1011
1012 while ((memcg = parent_mem_cgroup(memcg))) {
1013 for_each_node(nid) {
1014 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1015 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1016 for (i = 0; i <= DEF_PRIORITY; i++) {
1017 iter = &mz->iter[i];
1018 cmpxchg(&iter->position,
1019 dead_memcg, NULL);
1020 }
1021 }
1022 }
1023 }
1024}
1025
9f3a0d09
JW
1026/*
1027 * Iteration constructs for visiting all cgroups (under a tree). If
1028 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1029 * be used for reference counting.
1030 */
1031#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1032 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1033 iter != NULL; \
527a5ec9 1034 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1035
9f3a0d09 1036#define for_each_mem_cgroup(iter) \
527a5ec9 1037 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1038 iter != NULL; \
527a5ec9 1039 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1040
925b7673
JW
1041/**
1042 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1043 * @zone: zone of the wanted lruvec
fa9add64 1044 * @memcg: memcg of the wanted lruvec
925b7673
JW
1045 *
1046 * Returns the lru list vector holding pages for the given @zone and
1047 * @mem. This can be the global zone lruvec, if the memory controller
1048 * is disabled.
1049 */
1050struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1051 struct mem_cgroup *memcg)
1052{
1053 struct mem_cgroup_per_zone *mz;
bea8c150 1054 struct lruvec *lruvec;
925b7673 1055
bea8c150
HD
1056 if (mem_cgroup_disabled()) {
1057 lruvec = &zone->lruvec;
1058 goto out;
1059 }
925b7673 1060
e231875b 1061 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1062 lruvec = &mz->lruvec;
1063out:
1064 /*
1065 * Since a node can be onlined after the mem_cgroup was created,
1066 * we have to be prepared to initialize lruvec->zone here;
1067 * and if offlined then reonlined, we need to reinitialize it.
1068 */
1069 if (unlikely(lruvec->zone != zone))
1070 lruvec->zone = zone;
1071 return lruvec;
925b7673
JW
1072}
1073
925b7673 1074/**
dfe0e773 1075 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1076 * @page: the page
fa9add64 1077 * @zone: zone of the page
dfe0e773
JW
1078 *
1079 * This function is only safe when following the LRU page isolation
1080 * and putback protocol: the LRU lock must be held, and the page must
1081 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1082 */
fa9add64 1083struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1084{
08e552c6 1085 struct mem_cgroup_per_zone *mz;
925b7673 1086 struct mem_cgroup *memcg;
bea8c150 1087 struct lruvec *lruvec;
6d12e2d8 1088
bea8c150
HD
1089 if (mem_cgroup_disabled()) {
1090 lruvec = &zone->lruvec;
1091 goto out;
1092 }
925b7673 1093
1306a85a 1094 memcg = page->mem_cgroup;
7512102c 1095 /*
dfe0e773 1096 * Swapcache readahead pages are added to the LRU - and
29833315 1097 * possibly migrated - before they are charged.
7512102c 1098 */
29833315
JW
1099 if (!memcg)
1100 memcg = root_mem_cgroup;
7512102c 1101
e231875b 1102 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1103 lruvec = &mz->lruvec;
1104out:
1105 /*
1106 * Since a node can be onlined after the mem_cgroup was created,
1107 * we have to be prepared to initialize lruvec->zone here;
1108 * and if offlined then reonlined, we need to reinitialize it.
1109 */
1110 if (unlikely(lruvec->zone != zone))
1111 lruvec->zone = zone;
1112 return lruvec;
08e552c6 1113}
b69408e8 1114
925b7673 1115/**
fa9add64
HD
1116 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1117 * @lruvec: mem_cgroup per zone lru vector
1118 * @lru: index of lru list the page is sitting on
1119 * @nr_pages: positive when adding or negative when removing
925b7673 1120 *
fa9add64
HD
1121 * This function must be called when a page is added to or removed from an
1122 * lru list.
3f58a829 1123 */
fa9add64
HD
1124void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1125 int nr_pages)
3f58a829
MK
1126{
1127 struct mem_cgroup_per_zone *mz;
fa9add64 1128 unsigned long *lru_size;
3f58a829
MK
1129
1130 if (mem_cgroup_disabled())
1131 return;
1132
fa9add64
HD
1133 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1134 lru_size = mz->lru_size + lru;
1135 *lru_size += nr_pages;
1136 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1137}
544122e5 1138
2314b42d 1139bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1140{
2314b42d 1141 struct mem_cgroup *task_memcg;
158e0a2d 1142 struct task_struct *p;
ffbdccf5 1143 bool ret;
4c4a2214 1144
158e0a2d 1145 p = find_lock_task_mm(task);
de077d22 1146 if (p) {
2314b42d 1147 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1148 task_unlock(p);
1149 } else {
1150 /*
1151 * All threads may have already detached their mm's, but the oom
1152 * killer still needs to detect if they have already been oom
1153 * killed to prevent needlessly killing additional tasks.
1154 */
ffbdccf5 1155 rcu_read_lock();
2314b42d
JW
1156 task_memcg = mem_cgroup_from_task(task);
1157 css_get(&task_memcg->css);
ffbdccf5 1158 rcu_read_unlock();
de077d22 1159 }
2314b42d
JW
1160 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1161 css_put(&task_memcg->css);
4c4a2214
DR
1162 return ret;
1163}
1164
3e32cb2e 1165#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1166 container_of(counter, struct mem_cgroup, member)
1167
19942822 1168/**
9d11ea9f 1169 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1170 * @memcg: the memory cgroup
19942822 1171 *
9d11ea9f 1172 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1173 * pages.
19942822 1174 */
c0ff4b85 1175static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1176{
3e32cb2e
JW
1177 unsigned long margin = 0;
1178 unsigned long count;
1179 unsigned long limit;
9d11ea9f 1180
3e32cb2e 1181 count = page_counter_read(&memcg->memory);
4db0c3c2 1182 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1183 if (count < limit)
1184 margin = limit - count;
1185
1186 if (do_swap_account) {
1187 count = page_counter_read(&memcg->memsw);
4db0c3c2 1188 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1189 if (count <= limit)
1190 margin = min(margin, limit - count);
1191 }
1192
1193 return margin;
19942822
JW
1194}
1195
32047e2a 1196/*
bdcbb659 1197 * A routine for checking "mem" is under move_account() or not.
32047e2a 1198 *
bdcbb659
QH
1199 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1200 * moving cgroups. This is for waiting at high-memory pressure
1201 * caused by "move".
32047e2a 1202 */
c0ff4b85 1203static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1204{
2bd9bb20
KH
1205 struct mem_cgroup *from;
1206 struct mem_cgroup *to;
4b534334 1207 bool ret = false;
2bd9bb20
KH
1208 /*
1209 * Unlike task_move routines, we access mc.to, mc.from not under
1210 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1211 */
1212 spin_lock(&mc.lock);
1213 from = mc.from;
1214 to = mc.to;
1215 if (!from)
1216 goto unlock;
3e92041d 1217
2314b42d
JW
1218 ret = mem_cgroup_is_descendant(from, memcg) ||
1219 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1220unlock:
1221 spin_unlock(&mc.lock);
4b534334
KH
1222 return ret;
1223}
1224
c0ff4b85 1225static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1226{
1227 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1228 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1229 DEFINE_WAIT(wait);
1230 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1231 /* moving charge context might have finished. */
1232 if (mc.moving_task)
1233 schedule();
1234 finish_wait(&mc.waitq, &wait);
1235 return true;
1236 }
1237 }
1238 return false;
1239}
1240
58cf188e 1241#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1242/**
58cf188e 1243 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1244 * @memcg: The memory cgroup that went over limit
1245 * @p: Task that is going to be killed
1246 *
1247 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1248 * enabled
1249 */
1250void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1251{
e61734c5 1252 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1253 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1254 struct mem_cgroup *iter;
1255 unsigned int i;
e222432b 1256
08088cb9 1257 mutex_lock(&oom_info_lock);
e222432b
BS
1258 rcu_read_lock();
1259
2415b9f5
BV
1260 if (p) {
1261 pr_info("Task in ");
1262 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1263 pr_cont(" killed as a result of limit of ");
1264 } else {
1265 pr_info("Memory limit reached of cgroup ");
1266 }
1267
e61734c5 1268 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1269 pr_cont("\n");
e222432b 1270
e222432b
BS
1271 rcu_read_unlock();
1272
3e32cb2e
JW
1273 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1274 K((u64)page_counter_read(&memcg->memory)),
1275 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1276 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1277 K((u64)page_counter_read(&memcg->memsw)),
1278 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1279 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1280 K((u64)page_counter_read(&memcg->kmem)),
1281 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1282
1283 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1284 pr_info("Memory cgroup stats for ");
1285 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1286 pr_cont(":");
1287
1288 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1289 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1290 continue;
484ebb3b 1291 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1292 K(mem_cgroup_read_stat(iter, i)));
1293 }
1294
1295 for (i = 0; i < NR_LRU_LISTS; i++)
1296 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1297 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1298
1299 pr_cont("\n");
1300 }
08088cb9 1301 mutex_unlock(&oom_info_lock);
e222432b
BS
1302}
1303
81d39c20
KH
1304/*
1305 * This function returns the number of memcg under hierarchy tree. Returns
1306 * 1(self count) if no children.
1307 */
c0ff4b85 1308static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1309{
1310 int num = 0;
7d74b06f
KH
1311 struct mem_cgroup *iter;
1312
c0ff4b85 1313 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1314 num++;
81d39c20
KH
1315 return num;
1316}
1317
a63d83f4
DR
1318/*
1319 * Return the memory (and swap, if configured) limit for a memcg.
1320 */
3e32cb2e 1321static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1322{
3e32cb2e 1323 unsigned long limit;
f3e8eb70 1324
3e32cb2e 1325 limit = memcg->memory.limit;
9a5a8f19 1326 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1327 unsigned long memsw_limit;
9a5a8f19 1328
3e32cb2e
JW
1329 memsw_limit = memcg->memsw.limit;
1330 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1331 }
9a5a8f19 1332 return limit;
a63d83f4
DR
1333}
1334
0ccab5b1 1335static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1336 int order)
9cbb78bb 1337{
6e0fc46d
DR
1338 struct oom_control oc = {
1339 .zonelist = NULL,
1340 .nodemask = NULL,
1341 .gfp_mask = gfp_mask,
1342 .order = order,
6e0fc46d 1343 };
9cbb78bb
DR
1344 struct mem_cgroup *iter;
1345 unsigned long chosen_points = 0;
1346 unsigned long totalpages;
1347 unsigned int points = 0;
1348 struct task_struct *chosen = NULL;
1349
dc56401f
JW
1350 mutex_lock(&oom_lock);
1351
876aafbf 1352 /*
465adcf1
DR
1353 * If current has a pending SIGKILL or is exiting, then automatically
1354 * select it. The goal is to allow it to allocate so that it may
1355 * quickly exit and free its memory.
876aafbf 1356 */
d003f371 1357 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1358 mark_oom_victim(current);
dc56401f 1359 goto unlock;
876aafbf
DR
1360 }
1361
6e0fc46d 1362 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1363 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1364 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1365 struct css_task_iter it;
9cbb78bb
DR
1366 struct task_struct *task;
1367
72ec7029
TH
1368 css_task_iter_start(&iter->css, &it);
1369 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1370 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1371 case OOM_SCAN_SELECT:
1372 if (chosen)
1373 put_task_struct(chosen);
1374 chosen = task;
1375 chosen_points = ULONG_MAX;
1376 get_task_struct(chosen);
1377 /* fall through */
1378 case OOM_SCAN_CONTINUE:
1379 continue;
1380 case OOM_SCAN_ABORT:
72ec7029 1381 css_task_iter_end(&it);
9cbb78bb
DR
1382 mem_cgroup_iter_break(memcg, iter);
1383 if (chosen)
1384 put_task_struct(chosen);
dc56401f 1385 goto unlock;
9cbb78bb
DR
1386 case OOM_SCAN_OK:
1387 break;
1388 };
1389 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1390 if (!points || points < chosen_points)
1391 continue;
1392 /* Prefer thread group leaders for display purposes */
1393 if (points == chosen_points &&
1394 thread_group_leader(chosen))
1395 continue;
1396
1397 if (chosen)
1398 put_task_struct(chosen);
1399 chosen = task;
1400 chosen_points = points;
1401 get_task_struct(chosen);
9cbb78bb 1402 }
72ec7029 1403 css_task_iter_end(&it);
9cbb78bb
DR
1404 }
1405
dc56401f
JW
1406 if (chosen) {
1407 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1408 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1409 "Memory cgroup out of memory");
dc56401f
JW
1410 }
1411unlock:
1412 mutex_unlock(&oom_lock);
0ccab5b1 1413 return chosen;
9cbb78bb
DR
1414}
1415
ae6e71d3
MC
1416#if MAX_NUMNODES > 1
1417
4d0c066d
KH
1418/**
1419 * test_mem_cgroup_node_reclaimable
dad7557e 1420 * @memcg: the target memcg
4d0c066d
KH
1421 * @nid: the node ID to be checked.
1422 * @noswap : specify true here if the user wants flle only information.
1423 *
1424 * This function returns whether the specified memcg contains any
1425 * reclaimable pages on a node. Returns true if there are any reclaimable
1426 * pages in the node.
1427 */
c0ff4b85 1428static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1429 int nid, bool noswap)
1430{
c0ff4b85 1431 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1432 return true;
1433 if (noswap || !total_swap_pages)
1434 return false;
c0ff4b85 1435 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1436 return true;
1437 return false;
1438
1439}
889976db
YH
1440
1441/*
1442 * Always updating the nodemask is not very good - even if we have an empty
1443 * list or the wrong list here, we can start from some node and traverse all
1444 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1445 *
1446 */
c0ff4b85 1447static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1448{
1449 int nid;
453a9bf3
KH
1450 /*
1451 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1452 * pagein/pageout changes since the last update.
1453 */
c0ff4b85 1454 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1455 return;
c0ff4b85 1456 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1457 return;
1458
889976db 1459 /* make a nodemask where this memcg uses memory from */
31aaea4a 1460 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1461
31aaea4a 1462 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1463
c0ff4b85
R
1464 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1465 node_clear(nid, memcg->scan_nodes);
889976db 1466 }
453a9bf3 1467
c0ff4b85
R
1468 atomic_set(&memcg->numainfo_events, 0);
1469 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1470}
1471
1472/*
1473 * Selecting a node where we start reclaim from. Because what we need is just
1474 * reducing usage counter, start from anywhere is O,K. Considering
1475 * memory reclaim from current node, there are pros. and cons.
1476 *
1477 * Freeing memory from current node means freeing memory from a node which
1478 * we'll use or we've used. So, it may make LRU bad. And if several threads
1479 * hit limits, it will see a contention on a node. But freeing from remote
1480 * node means more costs for memory reclaim because of memory latency.
1481 *
1482 * Now, we use round-robin. Better algorithm is welcomed.
1483 */
c0ff4b85 1484int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1485{
1486 int node;
1487
c0ff4b85
R
1488 mem_cgroup_may_update_nodemask(memcg);
1489 node = memcg->last_scanned_node;
889976db 1490
c0ff4b85 1491 node = next_node(node, memcg->scan_nodes);
889976db 1492 if (node == MAX_NUMNODES)
c0ff4b85 1493 node = first_node(memcg->scan_nodes);
889976db
YH
1494 /*
1495 * We call this when we hit limit, not when pages are added to LRU.
1496 * No LRU may hold pages because all pages are UNEVICTABLE or
1497 * memcg is too small and all pages are not on LRU. In that case,
1498 * we use curret node.
1499 */
1500 if (unlikely(node == MAX_NUMNODES))
1501 node = numa_node_id();
1502
c0ff4b85 1503 memcg->last_scanned_node = node;
889976db
YH
1504 return node;
1505}
889976db 1506#else
c0ff4b85 1507int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1508{
1509 return 0;
1510}
1511#endif
1512
0608f43d
AM
1513static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1514 struct zone *zone,
1515 gfp_t gfp_mask,
1516 unsigned long *total_scanned)
1517{
1518 struct mem_cgroup *victim = NULL;
1519 int total = 0;
1520 int loop = 0;
1521 unsigned long excess;
1522 unsigned long nr_scanned;
1523 struct mem_cgroup_reclaim_cookie reclaim = {
1524 .zone = zone,
1525 .priority = 0,
1526 };
1527
3e32cb2e 1528 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1529
1530 while (1) {
1531 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1532 if (!victim) {
1533 loop++;
1534 if (loop >= 2) {
1535 /*
1536 * If we have not been able to reclaim
1537 * anything, it might because there are
1538 * no reclaimable pages under this hierarchy
1539 */
1540 if (!total)
1541 break;
1542 /*
1543 * We want to do more targeted reclaim.
1544 * excess >> 2 is not to excessive so as to
1545 * reclaim too much, nor too less that we keep
1546 * coming back to reclaim from this cgroup
1547 */
1548 if (total >= (excess >> 2) ||
1549 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1550 break;
1551 }
1552 continue;
1553 }
0608f43d
AM
1554 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1555 zone, &nr_scanned);
1556 *total_scanned += nr_scanned;
3e32cb2e 1557 if (!soft_limit_excess(root_memcg))
0608f43d 1558 break;
6d61ef40 1559 }
0608f43d
AM
1560 mem_cgroup_iter_break(root_memcg, victim);
1561 return total;
6d61ef40
BS
1562}
1563
0056f4e6
JW
1564#ifdef CONFIG_LOCKDEP
1565static struct lockdep_map memcg_oom_lock_dep_map = {
1566 .name = "memcg_oom_lock",
1567};
1568#endif
1569
fb2a6fc5
JW
1570static DEFINE_SPINLOCK(memcg_oom_lock);
1571
867578cb
KH
1572/*
1573 * Check OOM-Killer is already running under our hierarchy.
1574 * If someone is running, return false.
1575 */
fb2a6fc5 1576static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1577{
79dfdacc 1578 struct mem_cgroup *iter, *failed = NULL;
a636b327 1579
fb2a6fc5
JW
1580 spin_lock(&memcg_oom_lock);
1581
9f3a0d09 1582 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1583 if (iter->oom_lock) {
79dfdacc
MH
1584 /*
1585 * this subtree of our hierarchy is already locked
1586 * so we cannot give a lock.
1587 */
79dfdacc 1588 failed = iter;
9f3a0d09
JW
1589 mem_cgroup_iter_break(memcg, iter);
1590 break;
23751be0
JW
1591 } else
1592 iter->oom_lock = true;
7d74b06f 1593 }
867578cb 1594
fb2a6fc5
JW
1595 if (failed) {
1596 /*
1597 * OK, we failed to lock the whole subtree so we have
1598 * to clean up what we set up to the failing subtree
1599 */
1600 for_each_mem_cgroup_tree(iter, memcg) {
1601 if (iter == failed) {
1602 mem_cgroup_iter_break(memcg, iter);
1603 break;
1604 }
1605 iter->oom_lock = false;
79dfdacc 1606 }
0056f4e6
JW
1607 } else
1608 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1609
1610 spin_unlock(&memcg_oom_lock);
1611
1612 return !failed;
a636b327 1613}
0b7f569e 1614
fb2a6fc5 1615static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1616{
7d74b06f
KH
1617 struct mem_cgroup *iter;
1618
fb2a6fc5 1619 spin_lock(&memcg_oom_lock);
0056f4e6 1620 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1621 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1622 iter->oom_lock = false;
fb2a6fc5 1623 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1624}
1625
c0ff4b85 1626static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1627{
1628 struct mem_cgroup *iter;
1629
c2b42d3c 1630 spin_lock(&memcg_oom_lock);
c0ff4b85 1631 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1632 iter->under_oom++;
1633 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1634}
1635
c0ff4b85 1636static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1637{
1638 struct mem_cgroup *iter;
1639
867578cb
KH
1640 /*
1641 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1642 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1643 */
c2b42d3c 1644 spin_lock(&memcg_oom_lock);
c0ff4b85 1645 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1646 if (iter->under_oom > 0)
1647 iter->under_oom--;
1648 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1649}
1650
867578cb
KH
1651static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1652
dc98df5a 1653struct oom_wait_info {
d79154bb 1654 struct mem_cgroup *memcg;
dc98df5a
KH
1655 wait_queue_t wait;
1656};
1657
1658static int memcg_oom_wake_function(wait_queue_t *wait,
1659 unsigned mode, int sync, void *arg)
1660{
d79154bb
HD
1661 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1662 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1663 struct oom_wait_info *oom_wait_info;
1664
1665 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1666 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1667
2314b42d
JW
1668 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1669 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1670 return 0;
dc98df5a
KH
1671 return autoremove_wake_function(wait, mode, sync, arg);
1672}
1673
c0ff4b85 1674static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1675{
c2b42d3c
TH
1676 /*
1677 * For the following lockless ->under_oom test, the only required
1678 * guarantee is that it must see the state asserted by an OOM when
1679 * this function is called as a result of userland actions
1680 * triggered by the notification of the OOM. This is trivially
1681 * achieved by invoking mem_cgroup_mark_under_oom() before
1682 * triggering notification.
1683 */
1684 if (memcg && memcg->under_oom)
f4b90b70 1685 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1686}
1687
3812c8c8 1688static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1689{
626ebc41 1690 if (!current->memcg_may_oom)
3812c8c8 1691 return;
867578cb 1692 /*
49426420
JW
1693 * We are in the middle of the charge context here, so we
1694 * don't want to block when potentially sitting on a callstack
1695 * that holds all kinds of filesystem and mm locks.
1696 *
1697 * Also, the caller may handle a failed allocation gracefully
1698 * (like optional page cache readahead) and so an OOM killer
1699 * invocation might not even be necessary.
1700 *
1701 * That's why we don't do anything here except remember the
1702 * OOM context and then deal with it at the end of the page
1703 * fault when the stack is unwound, the locks are released,
1704 * and when we know whether the fault was overall successful.
867578cb 1705 */
49426420 1706 css_get(&memcg->css);
626ebc41
TH
1707 current->memcg_in_oom = memcg;
1708 current->memcg_oom_gfp_mask = mask;
1709 current->memcg_oom_order = order;
3812c8c8
JW
1710}
1711
1712/**
1713 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1714 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1715 *
49426420
JW
1716 * This has to be called at the end of a page fault if the memcg OOM
1717 * handler was enabled.
3812c8c8 1718 *
49426420 1719 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1720 * sleep on a waitqueue until the userspace task resolves the
1721 * situation. Sleeping directly in the charge context with all kinds
1722 * of locks held is not a good idea, instead we remember an OOM state
1723 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1724 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1725 *
1726 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1727 * completed, %false otherwise.
3812c8c8 1728 */
49426420 1729bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1730{
626ebc41 1731 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1732 struct oom_wait_info owait;
49426420 1733 bool locked;
3812c8c8
JW
1734
1735 /* OOM is global, do not handle */
3812c8c8 1736 if (!memcg)
49426420 1737 return false;
3812c8c8 1738
c32b3cbe 1739 if (!handle || oom_killer_disabled)
49426420 1740 goto cleanup;
3812c8c8
JW
1741
1742 owait.memcg = memcg;
1743 owait.wait.flags = 0;
1744 owait.wait.func = memcg_oom_wake_function;
1745 owait.wait.private = current;
1746 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1747
3812c8c8 1748 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1749 mem_cgroup_mark_under_oom(memcg);
1750
1751 locked = mem_cgroup_oom_trylock(memcg);
1752
1753 if (locked)
1754 mem_cgroup_oom_notify(memcg);
1755
1756 if (locked && !memcg->oom_kill_disable) {
1757 mem_cgroup_unmark_under_oom(memcg);
1758 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1759 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1760 current->memcg_oom_order);
49426420 1761 } else {
3812c8c8 1762 schedule();
49426420
JW
1763 mem_cgroup_unmark_under_oom(memcg);
1764 finish_wait(&memcg_oom_waitq, &owait.wait);
1765 }
1766
1767 if (locked) {
fb2a6fc5
JW
1768 mem_cgroup_oom_unlock(memcg);
1769 /*
1770 * There is no guarantee that an OOM-lock contender
1771 * sees the wakeups triggered by the OOM kill
1772 * uncharges. Wake any sleepers explicitely.
1773 */
1774 memcg_oom_recover(memcg);
1775 }
49426420 1776cleanup:
626ebc41 1777 current->memcg_in_oom = NULL;
3812c8c8 1778 css_put(&memcg->css);
867578cb 1779 return true;
0b7f569e
KH
1780}
1781
d7365e78
JW
1782/**
1783 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1784 * @page: page that is going to change accounted state
32047e2a 1785 *
d7365e78
JW
1786 * This function must mark the beginning of an accounted page state
1787 * change to prevent double accounting when the page is concurrently
1788 * being moved to another memcg:
32047e2a 1789 *
6de22619 1790 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1791 * if (TestClearPageState(page))
1792 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1793 * mem_cgroup_end_page_stat(memcg);
d69b042f 1794 */
6de22619 1795struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1796{
1797 struct mem_cgroup *memcg;
6de22619 1798 unsigned long flags;
89c06bd5 1799
6de22619
JW
1800 /*
1801 * The RCU lock is held throughout the transaction. The fast
1802 * path can get away without acquiring the memcg->move_lock
1803 * because page moving starts with an RCU grace period.
1804 *
1805 * The RCU lock also protects the memcg from being freed when
1806 * the page state that is going to change is the only thing
1807 * preventing the page from being uncharged.
1808 * E.g. end-writeback clearing PageWriteback(), which allows
1809 * migration to go ahead and uncharge the page before the
1810 * account transaction might be complete.
1811 */
d7365e78
JW
1812 rcu_read_lock();
1813
1814 if (mem_cgroup_disabled())
1815 return NULL;
89c06bd5 1816again:
1306a85a 1817 memcg = page->mem_cgroup;
29833315 1818 if (unlikely(!memcg))
d7365e78
JW
1819 return NULL;
1820
bdcbb659 1821 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1822 return memcg;
89c06bd5 1823
6de22619 1824 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1825 if (memcg != page->mem_cgroup) {
6de22619 1826 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1827 goto again;
1828 }
6de22619
JW
1829
1830 /*
1831 * When charge migration first begins, we can have locked and
1832 * unlocked page stat updates happening concurrently. Track
1833 * the task who has the lock for mem_cgroup_end_page_stat().
1834 */
1835 memcg->move_lock_task = current;
1836 memcg->move_lock_flags = flags;
d7365e78
JW
1837
1838 return memcg;
89c06bd5 1839}
c4843a75 1840EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1841
d7365e78
JW
1842/**
1843 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1844 * @memcg: the memcg that was accounted against
d7365e78 1845 */
6de22619 1846void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1847{
6de22619
JW
1848 if (memcg && memcg->move_lock_task == current) {
1849 unsigned long flags = memcg->move_lock_flags;
1850
1851 memcg->move_lock_task = NULL;
1852 memcg->move_lock_flags = 0;
1853
1854 spin_unlock_irqrestore(&memcg->move_lock, flags);
1855 }
89c06bd5 1856
d7365e78 1857 rcu_read_unlock();
89c06bd5 1858}
c4843a75 1859EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1860
cdec2e42
KH
1861/*
1862 * size of first charge trial. "32" comes from vmscan.c's magic value.
1863 * TODO: maybe necessary to use big numbers in big irons.
1864 */
7ec99d62 1865#define CHARGE_BATCH 32U
cdec2e42
KH
1866struct memcg_stock_pcp {
1867 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1868 unsigned int nr_pages;
cdec2e42 1869 struct work_struct work;
26fe6168 1870 unsigned long flags;
a0db00fc 1871#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1872};
1873static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1874static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1875
a0956d54
SS
1876/**
1877 * consume_stock: Try to consume stocked charge on this cpu.
1878 * @memcg: memcg to consume from.
1879 * @nr_pages: how many pages to charge.
1880 *
1881 * The charges will only happen if @memcg matches the current cpu's memcg
1882 * stock, and at least @nr_pages are available in that stock. Failure to
1883 * service an allocation will refill the stock.
1884 *
1885 * returns true if successful, false otherwise.
cdec2e42 1886 */
a0956d54 1887static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1888{
1889 struct memcg_stock_pcp *stock;
3e32cb2e 1890 bool ret = false;
cdec2e42 1891
a0956d54 1892 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1893 return ret;
a0956d54 1894
cdec2e42 1895 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1896 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1897 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1898 ret = true;
1899 }
cdec2e42
KH
1900 put_cpu_var(memcg_stock);
1901 return ret;
1902}
1903
1904/*
3e32cb2e 1905 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1906 */
1907static void drain_stock(struct memcg_stock_pcp *stock)
1908{
1909 struct mem_cgroup *old = stock->cached;
1910
11c9ea4e 1911 if (stock->nr_pages) {
3e32cb2e 1912 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 1913 if (do_swap_account)
3e32cb2e 1914 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1915 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1916 stock->nr_pages = 0;
cdec2e42
KH
1917 }
1918 stock->cached = NULL;
cdec2e42
KH
1919}
1920
1921/*
1922 * This must be called under preempt disabled or must be called by
1923 * a thread which is pinned to local cpu.
1924 */
1925static void drain_local_stock(struct work_struct *dummy)
1926{
7c8e0181 1927 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1928 drain_stock(stock);
26fe6168 1929 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1930}
1931
1932/*
3e32cb2e 1933 * Cache charges(val) to local per_cpu area.
320cc51d 1934 * This will be consumed by consume_stock() function, later.
cdec2e42 1935 */
c0ff4b85 1936static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1937{
1938 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1939
c0ff4b85 1940 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1941 drain_stock(stock);
c0ff4b85 1942 stock->cached = memcg;
cdec2e42 1943 }
11c9ea4e 1944 stock->nr_pages += nr_pages;
cdec2e42
KH
1945 put_cpu_var(memcg_stock);
1946}
1947
1948/*
c0ff4b85 1949 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1950 * of the hierarchy under it.
cdec2e42 1951 */
6d3d6aa2 1952static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1953{
26fe6168 1954 int cpu, curcpu;
d38144b7 1955
6d3d6aa2
JW
1956 /* If someone's already draining, avoid adding running more workers. */
1957 if (!mutex_trylock(&percpu_charge_mutex))
1958 return;
cdec2e42 1959 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1960 get_online_cpus();
5af12d0e 1961 curcpu = get_cpu();
cdec2e42
KH
1962 for_each_online_cpu(cpu) {
1963 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1964 struct mem_cgroup *memcg;
26fe6168 1965
c0ff4b85
R
1966 memcg = stock->cached;
1967 if (!memcg || !stock->nr_pages)
26fe6168 1968 continue;
2314b42d 1969 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1970 continue;
d1a05b69
MH
1971 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1972 if (cpu == curcpu)
1973 drain_local_stock(&stock->work);
1974 else
1975 schedule_work_on(cpu, &stock->work);
1976 }
cdec2e42 1977 }
5af12d0e 1978 put_cpu();
f894ffa8 1979 put_online_cpus();
9f50fad6 1980 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1981}
1982
0db0628d 1983static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1984 unsigned long action,
1985 void *hcpu)
1986{
1987 int cpu = (unsigned long)hcpu;
1988 struct memcg_stock_pcp *stock;
1989
619d094b 1990 if (action == CPU_ONLINE)
1489ebad 1991 return NOTIFY_OK;
1489ebad 1992
d833049b 1993 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1994 return NOTIFY_OK;
711d3d2c 1995
cdec2e42
KH
1996 stock = &per_cpu(memcg_stock, cpu);
1997 drain_stock(stock);
1998 return NOTIFY_OK;
1999}
2000
b23afb93
TH
2001/*
2002 * Scheduled by try_charge() to be executed from the userland return path
2003 * and reclaims memory over the high limit.
2004 */
2005void mem_cgroup_handle_over_high(void)
2006{
2007 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2008 struct mem_cgroup *memcg, *pos;
2009
2010 if (likely(!nr_pages))
2011 return;
2012
2013 pos = memcg = get_mem_cgroup_from_mm(current->mm);
2014
2015 do {
2016 if (page_counter_read(&pos->memory) <= pos->high)
2017 continue;
2018 mem_cgroup_events(pos, MEMCG_HIGH, 1);
2019 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2020 } while ((pos = parent_mem_cgroup(pos)));
2021
2022 css_put(&memcg->css);
2023 current->memcg_nr_pages_over_high = 0;
2024}
2025
00501b53
JW
2026static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2027 unsigned int nr_pages)
8a9f3ccd 2028{
7ec99d62 2029 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2030 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2031 struct mem_cgroup *mem_over_limit;
3e32cb2e 2032 struct page_counter *counter;
6539cc05 2033 unsigned long nr_reclaimed;
b70a2a21
JW
2034 bool may_swap = true;
2035 bool drained = false;
a636b327 2036
ce00a967 2037 if (mem_cgroup_is_root(memcg))
10d53c74 2038 return 0;
6539cc05 2039retry:
b6b6cc72 2040 if (consume_stock(memcg, nr_pages))
10d53c74 2041 return 0;
8a9f3ccd 2042
3fbe7244 2043 if (!do_swap_account ||
6071ca52
JW
2044 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2045 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2046 goto done_restock;
3fbe7244 2047 if (do_swap_account)
3e32cb2e
JW
2048 page_counter_uncharge(&memcg->memsw, batch);
2049 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2050 } else {
3e32cb2e 2051 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2052 may_swap = false;
3fbe7244 2053 }
7a81b88c 2054
6539cc05
JW
2055 if (batch > nr_pages) {
2056 batch = nr_pages;
2057 goto retry;
2058 }
6d61ef40 2059
06b078fc
JW
2060 /*
2061 * Unlike in global OOM situations, memcg is not in a physical
2062 * memory shortage. Allow dying and OOM-killed tasks to
2063 * bypass the last charges so that they can exit quickly and
2064 * free their memory.
2065 */
2066 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2067 fatal_signal_pending(current) ||
2068 current->flags & PF_EXITING))
10d53c74 2069 goto force;
06b078fc
JW
2070
2071 if (unlikely(task_in_memcg_oom(current)))
2072 goto nomem;
2073
d0164adc 2074 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2075 goto nomem;
4b534334 2076
241994ed
JW
2077 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2078
b70a2a21
JW
2079 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2080 gfp_mask, may_swap);
6539cc05 2081
61e02c74 2082 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2083 goto retry;
28c34c29 2084
b70a2a21 2085 if (!drained) {
6d3d6aa2 2086 drain_all_stock(mem_over_limit);
b70a2a21
JW
2087 drained = true;
2088 goto retry;
2089 }
2090
28c34c29
JW
2091 if (gfp_mask & __GFP_NORETRY)
2092 goto nomem;
6539cc05
JW
2093 /*
2094 * Even though the limit is exceeded at this point, reclaim
2095 * may have been able to free some pages. Retry the charge
2096 * before killing the task.
2097 *
2098 * Only for regular pages, though: huge pages are rather
2099 * unlikely to succeed so close to the limit, and we fall back
2100 * to regular pages anyway in case of failure.
2101 */
61e02c74 2102 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2103 goto retry;
2104 /*
2105 * At task move, charge accounts can be doubly counted. So, it's
2106 * better to wait until the end of task_move if something is going on.
2107 */
2108 if (mem_cgroup_wait_acct_move(mem_over_limit))
2109 goto retry;
2110
9b130619
JW
2111 if (nr_retries--)
2112 goto retry;
2113
06b078fc 2114 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2115 goto force;
06b078fc 2116
6539cc05 2117 if (fatal_signal_pending(current))
10d53c74 2118 goto force;
6539cc05 2119
241994ed
JW
2120 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2121
3608de07
JM
2122 mem_cgroup_oom(mem_over_limit, gfp_mask,
2123 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2124nomem:
6d1fdc48 2125 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2126 return -ENOMEM;
10d53c74
TH
2127force:
2128 /*
2129 * The allocation either can't fail or will lead to more memory
2130 * being freed very soon. Allow memory usage go over the limit
2131 * temporarily by force charging it.
2132 */
2133 page_counter_charge(&memcg->memory, nr_pages);
2134 if (do_swap_account)
2135 page_counter_charge(&memcg->memsw, nr_pages);
2136 css_get_many(&memcg->css, nr_pages);
2137
2138 return 0;
6539cc05
JW
2139
2140done_restock:
e8ea14cc 2141 css_get_many(&memcg->css, batch);
6539cc05
JW
2142 if (batch > nr_pages)
2143 refill_stock(memcg, batch - nr_pages);
b23afb93 2144
241994ed 2145 /*
b23afb93
TH
2146 * If the hierarchy is above the normal consumption range, schedule
2147 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2148 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2149 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2150 * not recorded as it most likely matches current's and won't
2151 * change in the meantime. As high limit is checked again before
2152 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2153 */
2154 do {
b23afb93 2155 if (page_counter_read(&memcg->memory) > memcg->high) {
9516a18a 2156 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2157 set_notify_resume(current);
2158 break;
2159 }
241994ed 2160 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2161
2162 return 0;
7a81b88c 2163}
8a9f3ccd 2164
00501b53 2165static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2166{
ce00a967
JW
2167 if (mem_cgroup_is_root(memcg))
2168 return;
2169
3e32cb2e 2170 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2171 if (do_swap_account)
3e32cb2e 2172 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2173
e8ea14cc 2174 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2175}
2176
0a31bc97
JW
2177static void lock_page_lru(struct page *page, int *isolated)
2178{
2179 struct zone *zone = page_zone(page);
2180
2181 spin_lock_irq(&zone->lru_lock);
2182 if (PageLRU(page)) {
2183 struct lruvec *lruvec;
2184
2185 lruvec = mem_cgroup_page_lruvec(page, zone);
2186 ClearPageLRU(page);
2187 del_page_from_lru_list(page, lruvec, page_lru(page));
2188 *isolated = 1;
2189 } else
2190 *isolated = 0;
2191}
2192
2193static void unlock_page_lru(struct page *page, int isolated)
2194{
2195 struct zone *zone = page_zone(page);
2196
2197 if (isolated) {
2198 struct lruvec *lruvec;
2199
2200 lruvec = mem_cgroup_page_lruvec(page, zone);
2201 VM_BUG_ON_PAGE(PageLRU(page), page);
2202 SetPageLRU(page);
2203 add_page_to_lru_list(page, lruvec, page_lru(page));
2204 }
2205 spin_unlock_irq(&zone->lru_lock);
2206}
2207
00501b53 2208static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2209 bool lrucare)
7a81b88c 2210{
0a31bc97 2211 int isolated;
9ce70c02 2212
1306a85a 2213 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2214
2215 /*
2216 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2217 * may already be on some other mem_cgroup's LRU. Take care of it.
2218 */
0a31bc97
JW
2219 if (lrucare)
2220 lock_page_lru(page, &isolated);
9ce70c02 2221
0a31bc97
JW
2222 /*
2223 * Nobody should be changing or seriously looking at
1306a85a 2224 * page->mem_cgroup at this point:
0a31bc97
JW
2225 *
2226 * - the page is uncharged
2227 *
2228 * - the page is off-LRU
2229 *
2230 * - an anonymous fault has exclusive page access, except for
2231 * a locked page table
2232 *
2233 * - a page cache insertion, a swapin fault, or a migration
2234 * have the page locked
2235 */
1306a85a 2236 page->mem_cgroup = memcg;
9ce70c02 2237
0a31bc97
JW
2238 if (lrucare)
2239 unlock_page_lru(page, isolated);
7a81b88c 2240}
66e1707b 2241
7ae1e1d0 2242#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2243static int memcg_alloc_cache_id(void)
55007d84 2244{
f3bb3043
VD
2245 int id, size;
2246 int err;
2247
dbcf73e2 2248 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2249 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2250 if (id < 0)
2251 return id;
55007d84 2252
dbcf73e2 2253 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2254 return id;
2255
2256 /*
2257 * There's no space for the new id in memcg_caches arrays,
2258 * so we have to grow them.
2259 */
05257a1a 2260 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2261
2262 size = 2 * (id + 1);
55007d84
GC
2263 if (size < MEMCG_CACHES_MIN_SIZE)
2264 size = MEMCG_CACHES_MIN_SIZE;
2265 else if (size > MEMCG_CACHES_MAX_SIZE)
2266 size = MEMCG_CACHES_MAX_SIZE;
2267
f3bb3043 2268 err = memcg_update_all_caches(size);
60d3fd32
VD
2269 if (!err)
2270 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2271 if (!err)
2272 memcg_nr_cache_ids = size;
2273
2274 up_write(&memcg_cache_ids_sem);
2275
f3bb3043 2276 if (err) {
dbcf73e2 2277 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2278 return err;
2279 }
2280 return id;
2281}
2282
2283static void memcg_free_cache_id(int id)
2284{
dbcf73e2 2285 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2286}
2287
d5b3cf71 2288struct memcg_kmem_cache_create_work {
5722d094
VD
2289 struct mem_cgroup *memcg;
2290 struct kmem_cache *cachep;
2291 struct work_struct work;
2292};
2293
d5b3cf71 2294static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2295{
d5b3cf71
VD
2296 struct memcg_kmem_cache_create_work *cw =
2297 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2298 struct mem_cgroup *memcg = cw->memcg;
2299 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2300
d5b3cf71 2301 memcg_create_kmem_cache(memcg, cachep);
bd673145 2302
5722d094 2303 css_put(&memcg->css);
d7f25f8a
GC
2304 kfree(cw);
2305}
2306
2307/*
2308 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2309 */
d5b3cf71
VD
2310static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2311 struct kmem_cache *cachep)
d7f25f8a 2312{
d5b3cf71 2313 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2314
776ed0f0 2315 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2316 if (!cw)
d7f25f8a 2317 return;
8135be5a
VD
2318
2319 css_get(&memcg->css);
d7f25f8a
GC
2320
2321 cw->memcg = memcg;
2322 cw->cachep = cachep;
d5b3cf71 2323 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2324
d7f25f8a
GC
2325 schedule_work(&cw->work);
2326}
2327
d5b3cf71
VD
2328static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2329 struct kmem_cache *cachep)
0e9d92f2
GC
2330{
2331 /*
2332 * We need to stop accounting when we kmalloc, because if the
2333 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2334 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2335 *
2336 * However, it is better to enclose the whole function. Depending on
2337 * the debugging options enabled, INIT_WORK(), for instance, can
2338 * trigger an allocation. This too, will make us recurse. Because at
2339 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2340 * the safest choice is to do it like this, wrapping the whole function.
2341 */
6f185c29 2342 current->memcg_kmem_skip_account = 1;
d5b3cf71 2343 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2344 current->memcg_kmem_skip_account = 0;
0e9d92f2 2345}
c67a8a68 2346
d7f25f8a
GC
2347/*
2348 * Return the kmem_cache we're supposed to use for a slab allocation.
2349 * We try to use the current memcg's version of the cache.
2350 *
2351 * If the cache does not exist yet, if we are the first user of it,
2352 * we either create it immediately, if possible, or create it asynchronously
2353 * in a workqueue.
2354 * In the latter case, we will let the current allocation go through with
2355 * the original cache.
2356 *
2357 * Can't be called in interrupt context or from kernel threads.
2358 * This function needs to be called with rcu_read_lock() held.
2359 */
056b7cce 2360struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2361{
2362 struct mem_cgroup *memcg;
959c8963 2363 struct kmem_cache *memcg_cachep;
2a4db7eb 2364 int kmemcg_id;
d7f25f8a 2365
f7ce3190 2366 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2367
9d100c5e 2368 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2369 return cachep;
2370
8135be5a 2371 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2372 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2373 if (kmemcg_id < 0)
ca0dde97 2374 goto out;
d7f25f8a 2375
2a4db7eb 2376 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2377 if (likely(memcg_cachep))
2378 return memcg_cachep;
ca0dde97
LZ
2379
2380 /*
2381 * If we are in a safe context (can wait, and not in interrupt
2382 * context), we could be be predictable and return right away.
2383 * This would guarantee that the allocation being performed
2384 * already belongs in the new cache.
2385 *
2386 * However, there are some clashes that can arrive from locking.
2387 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2388 * memcg_create_kmem_cache, this means no further allocation
2389 * could happen with the slab_mutex held. So it's better to
2390 * defer everything.
ca0dde97 2391 */
d5b3cf71 2392 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2393out:
8135be5a 2394 css_put(&memcg->css);
ca0dde97 2395 return cachep;
d7f25f8a 2396}
d7f25f8a 2397
8135be5a
VD
2398void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2399{
2400 if (!is_root_cache(cachep))
f7ce3190 2401 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2402}
2403
f3ccb2c4
VD
2404int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2405 struct mem_cgroup *memcg)
7ae1e1d0 2406{
f3ccb2c4
VD
2407 unsigned int nr_pages = 1 << order;
2408 struct page_counter *counter;
7ae1e1d0
GC
2409 int ret;
2410
f3ccb2c4 2411 if (!memcg_kmem_is_active(memcg))
d05e83a6 2412 return 0;
6d42c232 2413
6071ca52
JW
2414 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2415 return -ENOMEM;
7ae1e1d0 2416
f3ccb2c4
VD
2417 ret = try_charge(memcg, gfp, nr_pages);
2418 if (ret) {
2419 page_counter_uncharge(&memcg->kmem, nr_pages);
2420 return ret;
7ae1e1d0
GC
2421 }
2422
f3ccb2c4 2423 page->mem_cgroup = memcg;
7ae1e1d0 2424
f3ccb2c4 2425 return 0;
7ae1e1d0
GC
2426}
2427
f3ccb2c4 2428int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2429{
f3ccb2c4
VD
2430 struct mem_cgroup *memcg;
2431 int ret;
7ae1e1d0 2432
f3ccb2c4
VD
2433 memcg = get_mem_cgroup_from_mm(current->mm);
2434 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2435 css_put(&memcg->css);
d05e83a6 2436 return ret;
7ae1e1d0
GC
2437}
2438
d05e83a6 2439void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2440{
1306a85a 2441 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2442 unsigned int nr_pages = 1 << order;
7ae1e1d0 2443
7ae1e1d0
GC
2444 if (!memcg)
2445 return;
2446
309381fe 2447 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2448
f3ccb2c4
VD
2449 page_counter_uncharge(&memcg->kmem, nr_pages);
2450 page_counter_uncharge(&memcg->memory, nr_pages);
2451 if (do_swap_account)
2452 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2453
1306a85a 2454 page->mem_cgroup = NULL;
f3ccb2c4 2455 css_put_many(&memcg->css, nr_pages);
60d3fd32 2456}
7ae1e1d0
GC
2457#endif /* CONFIG_MEMCG_KMEM */
2458
ca3e0214
KH
2459#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2460
ca3e0214
KH
2461/*
2462 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2463 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2464 * charge/uncharge will be never happen and move_account() is done under
2465 * compound_lock(), so we don't have to take care of races.
ca3e0214 2466 */
e94c8a9c 2467void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2468{
e94c8a9c 2469 int i;
ca3e0214 2470
3d37c4a9
KH
2471 if (mem_cgroup_disabled())
2472 return;
b070e65c 2473
29833315 2474 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2475 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2476
1306a85a 2477 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2478 HPAGE_PMD_NR);
ca3e0214 2479}
12d27107 2480#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2481
c255a458 2482#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2483static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2484 bool charge)
d13d1443 2485{
0a31bc97
JW
2486 int val = (charge) ? 1 : -1;
2487 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2488}
02491447
DN
2489
2490/**
2491 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2492 * @entry: swap entry to be moved
2493 * @from: mem_cgroup which the entry is moved from
2494 * @to: mem_cgroup which the entry is moved to
2495 *
2496 * It succeeds only when the swap_cgroup's record for this entry is the same
2497 * as the mem_cgroup's id of @from.
2498 *
2499 * Returns 0 on success, -EINVAL on failure.
2500 *
3e32cb2e 2501 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2502 * both res and memsw, and called css_get().
2503 */
2504static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2505 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2506{
2507 unsigned short old_id, new_id;
2508
34c00c31
LZ
2509 old_id = mem_cgroup_id(from);
2510 new_id = mem_cgroup_id(to);
02491447
DN
2511
2512 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2513 mem_cgroup_swap_statistics(from, false);
483c30b5 2514 mem_cgroup_swap_statistics(to, true);
02491447
DN
2515 return 0;
2516 }
2517 return -EINVAL;
2518}
2519#else
2520static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2521 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2522{
2523 return -EINVAL;
2524}
8c7c6e34 2525#endif
d13d1443 2526
3e32cb2e 2527static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2528
d38d2a75 2529static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2530 unsigned long limit)
628f4235 2531{
3e32cb2e
JW
2532 unsigned long curusage;
2533 unsigned long oldusage;
2534 bool enlarge = false;
81d39c20 2535 int retry_count;
3e32cb2e 2536 int ret;
81d39c20
KH
2537
2538 /*
2539 * For keeping hierarchical_reclaim simple, how long we should retry
2540 * is depends on callers. We set our retry-count to be function
2541 * of # of children which we should visit in this loop.
2542 */
3e32cb2e
JW
2543 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2544 mem_cgroup_count_children(memcg);
81d39c20 2545
3e32cb2e 2546 oldusage = page_counter_read(&memcg->memory);
628f4235 2547
3e32cb2e 2548 do {
628f4235
KH
2549 if (signal_pending(current)) {
2550 ret = -EINTR;
2551 break;
2552 }
3e32cb2e
JW
2553
2554 mutex_lock(&memcg_limit_mutex);
2555 if (limit > memcg->memsw.limit) {
2556 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2557 ret = -EINVAL;
628f4235
KH
2558 break;
2559 }
3e32cb2e
JW
2560 if (limit > memcg->memory.limit)
2561 enlarge = true;
2562 ret = page_counter_limit(&memcg->memory, limit);
2563 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2564
2565 if (!ret)
2566 break;
2567
b70a2a21
JW
2568 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2569
3e32cb2e 2570 curusage = page_counter_read(&memcg->memory);
81d39c20 2571 /* Usage is reduced ? */
f894ffa8 2572 if (curusage >= oldusage)
81d39c20
KH
2573 retry_count--;
2574 else
2575 oldusage = curusage;
3e32cb2e
JW
2576 } while (retry_count);
2577
3c11ecf4
KH
2578 if (!ret && enlarge)
2579 memcg_oom_recover(memcg);
14797e23 2580
8c7c6e34
KH
2581 return ret;
2582}
2583
338c8431 2584static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2585 unsigned long limit)
8c7c6e34 2586{
3e32cb2e
JW
2587 unsigned long curusage;
2588 unsigned long oldusage;
2589 bool enlarge = false;
81d39c20 2590 int retry_count;
3e32cb2e 2591 int ret;
8c7c6e34 2592
81d39c20 2593 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2594 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2595 mem_cgroup_count_children(memcg);
2596
2597 oldusage = page_counter_read(&memcg->memsw);
2598
2599 do {
8c7c6e34
KH
2600 if (signal_pending(current)) {
2601 ret = -EINTR;
2602 break;
2603 }
3e32cb2e
JW
2604
2605 mutex_lock(&memcg_limit_mutex);
2606 if (limit < memcg->memory.limit) {
2607 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2608 ret = -EINVAL;
8c7c6e34
KH
2609 break;
2610 }
3e32cb2e
JW
2611 if (limit > memcg->memsw.limit)
2612 enlarge = true;
2613 ret = page_counter_limit(&memcg->memsw, limit);
2614 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2615
2616 if (!ret)
2617 break;
2618
b70a2a21
JW
2619 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2620
3e32cb2e 2621 curusage = page_counter_read(&memcg->memsw);
81d39c20 2622 /* Usage is reduced ? */
8c7c6e34 2623 if (curusage >= oldusage)
628f4235 2624 retry_count--;
81d39c20
KH
2625 else
2626 oldusage = curusage;
3e32cb2e
JW
2627 } while (retry_count);
2628
3c11ecf4
KH
2629 if (!ret && enlarge)
2630 memcg_oom_recover(memcg);
3e32cb2e 2631
628f4235
KH
2632 return ret;
2633}
2634
0608f43d
AM
2635unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2636 gfp_t gfp_mask,
2637 unsigned long *total_scanned)
2638{
2639 unsigned long nr_reclaimed = 0;
2640 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2641 unsigned long reclaimed;
2642 int loop = 0;
2643 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2644 unsigned long excess;
0608f43d
AM
2645 unsigned long nr_scanned;
2646
2647 if (order > 0)
2648 return 0;
2649
2650 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2651 /*
2652 * This loop can run a while, specially if mem_cgroup's continuously
2653 * keep exceeding their soft limit and putting the system under
2654 * pressure
2655 */
2656 do {
2657 if (next_mz)
2658 mz = next_mz;
2659 else
2660 mz = mem_cgroup_largest_soft_limit_node(mctz);
2661 if (!mz)
2662 break;
2663
2664 nr_scanned = 0;
2665 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2666 gfp_mask, &nr_scanned);
2667 nr_reclaimed += reclaimed;
2668 *total_scanned += nr_scanned;
0a31bc97 2669 spin_lock_irq(&mctz->lock);
bc2f2e7f 2670 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2671
2672 /*
2673 * If we failed to reclaim anything from this memory cgroup
2674 * it is time to move on to the next cgroup
2675 */
2676 next_mz = NULL;
bc2f2e7f
VD
2677 if (!reclaimed)
2678 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2679
3e32cb2e 2680 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2681 /*
2682 * One school of thought says that we should not add
2683 * back the node to the tree if reclaim returns 0.
2684 * But our reclaim could return 0, simply because due
2685 * to priority we are exposing a smaller subset of
2686 * memory to reclaim from. Consider this as a longer
2687 * term TODO.
2688 */
2689 /* If excess == 0, no tree ops */
cf2c8127 2690 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2691 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2692 css_put(&mz->memcg->css);
2693 loop++;
2694 /*
2695 * Could not reclaim anything and there are no more
2696 * mem cgroups to try or we seem to be looping without
2697 * reclaiming anything.
2698 */
2699 if (!nr_reclaimed &&
2700 (next_mz == NULL ||
2701 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2702 break;
2703 } while (!nr_reclaimed);
2704 if (next_mz)
2705 css_put(&next_mz->memcg->css);
2706 return nr_reclaimed;
2707}
2708
ea280e7b
TH
2709/*
2710 * Test whether @memcg has children, dead or alive. Note that this
2711 * function doesn't care whether @memcg has use_hierarchy enabled and
2712 * returns %true if there are child csses according to the cgroup
2713 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2714 */
b5f99b53
GC
2715static inline bool memcg_has_children(struct mem_cgroup *memcg)
2716{
ea280e7b
TH
2717 bool ret;
2718
696ac172 2719 /*
ea280e7b
TH
2720 * The lock does not prevent addition or deletion of children, but
2721 * it prevents a new child from being initialized based on this
2722 * parent in css_online(), so it's enough to decide whether
2723 * hierarchically inherited attributes can still be changed or not.
696ac172 2724 */
ea280e7b
TH
2725 lockdep_assert_held(&memcg_create_mutex);
2726
2727 rcu_read_lock();
2728 ret = css_next_child(NULL, &memcg->css);
2729 rcu_read_unlock();
2730 return ret;
b5f99b53
GC
2731}
2732
c26251f9
MH
2733/*
2734 * Reclaims as many pages from the given memcg as possible and moves
2735 * the rest to the parent.
2736 *
2737 * Caller is responsible for holding css reference for memcg.
2738 */
2739static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2740{
2741 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2742
c1e862c1
KH
2743 /* we call try-to-free pages for make this cgroup empty */
2744 lru_add_drain_all();
f817ed48 2745 /* try to free all pages in this cgroup */
3e32cb2e 2746 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2747 int progress;
c1e862c1 2748
c26251f9
MH
2749 if (signal_pending(current))
2750 return -EINTR;
2751
b70a2a21
JW
2752 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2753 GFP_KERNEL, true);
c1e862c1 2754 if (!progress) {
f817ed48 2755 nr_retries--;
c1e862c1 2756 /* maybe some writeback is necessary */
8aa7e847 2757 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2758 }
f817ed48
KH
2759
2760 }
ab5196c2
MH
2761
2762 return 0;
cc847582
KH
2763}
2764
6770c64e
TH
2765static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2766 char *buf, size_t nbytes,
2767 loff_t off)
c1e862c1 2768{
6770c64e 2769 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2770
d8423011
MH
2771 if (mem_cgroup_is_root(memcg))
2772 return -EINVAL;
6770c64e 2773 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2774}
2775
182446d0
TH
2776static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2777 struct cftype *cft)
18f59ea7 2778{
182446d0 2779 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2780}
2781
182446d0
TH
2782static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2783 struct cftype *cft, u64 val)
18f59ea7
BS
2784{
2785 int retval = 0;
182446d0 2786 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2787 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2788
0999821b 2789 mutex_lock(&memcg_create_mutex);
567fb435
GC
2790
2791 if (memcg->use_hierarchy == val)
2792 goto out;
2793
18f59ea7 2794 /*
af901ca1 2795 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2796 * in the child subtrees. If it is unset, then the change can
2797 * occur, provided the current cgroup has no children.
2798 *
2799 * For the root cgroup, parent_mem is NULL, we allow value to be
2800 * set if there are no children.
2801 */
c0ff4b85 2802 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2803 (val == 1 || val == 0)) {
ea280e7b 2804 if (!memcg_has_children(memcg))
c0ff4b85 2805 memcg->use_hierarchy = val;
18f59ea7
BS
2806 else
2807 retval = -EBUSY;
2808 } else
2809 retval = -EINVAL;
567fb435
GC
2810
2811out:
0999821b 2812 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2813
2814 return retval;
2815}
2816
3e32cb2e
JW
2817static unsigned long tree_stat(struct mem_cgroup *memcg,
2818 enum mem_cgroup_stat_index idx)
ce00a967
JW
2819{
2820 struct mem_cgroup *iter;
484ebb3b 2821 unsigned long val = 0;
ce00a967 2822
ce00a967
JW
2823 for_each_mem_cgroup_tree(iter, memcg)
2824 val += mem_cgroup_read_stat(iter, idx);
2825
ce00a967
JW
2826 return val;
2827}
2828
6f646156 2829static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2830{
c12176d3 2831 unsigned long val;
ce00a967 2832
3e32cb2e
JW
2833 if (mem_cgroup_is_root(memcg)) {
2834 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2835 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2836 if (swap)
2837 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2838 } else {
ce00a967 2839 if (!swap)
3e32cb2e 2840 val = page_counter_read(&memcg->memory);
ce00a967 2841 else
3e32cb2e 2842 val = page_counter_read(&memcg->memsw);
ce00a967 2843 }
c12176d3 2844 return val;
ce00a967
JW
2845}
2846
3e32cb2e
JW
2847enum {
2848 RES_USAGE,
2849 RES_LIMIT,
2850 RES_MAX_USAGE,
2851 RES_FAILCNT,
2852 RES_SOFT_LIMIT,
2853};
ce00a967 2854
791badbd 2855static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2856 struct cftype *cft)
8cdea7c0 2857{
182446d0 2858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2859 struct page_counter *counter;
af36f906 2860
3e32cb2e 2861 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2862 case _MEM:
3e32cb2e
JW
2863 counter = &memcg->memory;
2864 break;
8c7c6e34 2865 case _MEMSWAP:
3e32cb2e
JW
2866 counter = &memcg->memsw;
2867 break;
510fc4e1 2868 case _KMEM:
3e32cb2e 2869 counter = &memcg->kmem;
510fc4e1 2870 break;
8c7c6e34
KH
2871 default:
2872 BUG();
8c7c6e34 2873 }
3e32cb2e
JW
2874
2875 switch (MEMFILE_ATTR(cft->private)) {
2876 case RES_USAGE:
2877 if (counter == &memcg->memory)
c12176d3 2878 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2879 if (counter == &memcg->memsw)
c12176d3 2880 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2881 return (u64)page_counter_read(counter) * PAGE_SIZE;
2882 case RES_LIMIT:
2883 return (u64)counter->limit * PAGE_SIZE;
2884 case RES_MAX_USAGE:
2885 return (u64)counter->watermark * PAGE_SIZE;
2886 case RES_FAILCNT:
2887 return counter->failcnt;
2888 case RES_SOFT_LIMIT:
2889 return (u64)memcg->soft_limit * PAGE_SIZE;
2890 default:
2891 BUG();
2892 }
8cdea7c0 2893}
510fc4e1 2894
510fc4e1 2895#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2896static int memcg_activate_kmem(struct mem_cgroup *memcg,
2897 unsigned long nr_pages)
d6441637
VD
2898{
2899 int err = 0;
2900 int memcg_id;
2901
2a4db7eb 2902 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2903 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2904 BUG_ON(memcg->kmem_acct_active);
d6441637 2905
510fc4e1
GC
2906 /*
2907 * For simplicity, we won't allow this to be disabled. It also can't
2908 * be changed if the cgroup has children already, or if tasks had
2909 * already joined.
2910 *
2911 * If tasks join before we set the limit, a person looking at
2912 * kmem.usage_in_bytes will have no way to determine when it took
2913 * place, which makes the value quite meaningless.
2914 *
2915 * After it first became limited, changes in the value of the limit are
2916 * of course permitted.
510fc4e1 2917 */
0999821b 2918 mutex_lock(&memcg_create_mutex);
27bd4dbb 2919 if (cgroup_is_populated(memcg->css.cgroup) ||
ea280e7b 2920 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2921 err = -EBUSY;
2922 mutex_unlock(&memcg_create_mutex);
2923 if (err)
2924 goto out;
510fc4e1 2925
f3bb3043 2926 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2927 if (memcg_id < 0) {
2928 err = memcg_id;
2929 goto out;
2930 }
2931
d6441637 2932 /*
900a38f0
VD
2933 * We couldn't have accounted to this cgroup, because it hasn't got
2934 * activated yet, so this should succeed.
d6441637 2935 */
3e32cb2e 2936 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2937 VM_BUG_ON(err);
2938
2939 static_key_slow_inc(&memcg_kmem_enabled_key);
2940 /*
900a38f0
VD
2941 * A memory cgroup is considered kmem-active as soon as it gets
2942 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2943 * guarantee no one starts accounting before all call sites are
2944 * patched.
2945 */
900a38f0 2946 memcg->kmemcg_id = memcg_id;
2788cf0c 2947 memcg->kmem_acct_activated = true;
2a4db7eb 2948 memcg->kmem_acct_active = true;
510fc4e1 2949out:
d6441637 2950 return err;
d6441637
VD
2951}
2952
d6441637 2953static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2954 unsigned long limit)
d6441637
VD
2955{
2956 int ret;
2957
3e32cb2e 2958 mutex_lock(&memcg_limit_mutex);
d6441637 2959 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2960 ret = memcg_activate_kmem(memcg, limit);
d6441637 2961 else
3e32cb2e
JW
2962 ret = page_counter_limit(&memcg->kmem, limit);
2963 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2964 return ret;
2965}
2966
55007d84 2967static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2968{
55007d84 2969 int ret = 0;
510fc4e1 2970 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2971
d6441637
VD
2972 if (!parent)
2973 return 0;
55007d84 2974
8c0145b6 2975 mutex_lock(&memcg_limit_mutex);
55007d84 2976 /*
d6441637
VD
2977 * If the parent cgroup is not kmem-active now, it cannot be activated
2978 * after this point, because it has at least one child already.
55007d84 2979 */
d6441637 2980 if (memcg_kmem_is_active(parent))
8c0145b6
VD
2981 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2982 mutex_unlock(&memcg_limit_mutex);
55007d84 2983 return ret;
510fc4e1 2984}
d6441637
VD
2985#else
2986static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2987 unsigned long limit)
d6441637
VD
2988{
2989 return -EINVAL;
2990}
6d043990 2991#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 2992
628f4235
KH
2993/*
2994 * The user of this function is...
2995 * RES_LIMIT.
2996 */
451af504
TH
2997static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2998 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2999{
451af504 3000 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3001 unsigned long nr_pages;
628f4235
KH
3002 int ret;
3003
451af504 3004 buf = strstrip(buf);
650c5e56 3005 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3006 if (ret)
3007 return ret;
af36f906 3008
3e32cb2e 3009 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3010 case RES_LIMIT:
4b3bde4c
BS
3011 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3012 ret = -EINVAL;
3013 break;
3014 }
3e32cb2e
JW
3015 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3016 case _MEM:
3017 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3018 break;
3e32cb2e
JW
3019 case _MEMSWAP:
3020 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3021 break;
3e32cb2e
JW
3022 case _KMEM:
3023 ret = memcg_update_kmem_limit(memcg, nr_pages);
3024 break;
3025 }
296c81d8 3026 break;
3e32cb2e
JW
3027 case RES_SOFT_LIMIT:
3028 memcg->soft_limit = nr_pages;
3029 ret = 0;
628f4235
KH
3030 break;
3031 }
451af504 3032 return ret ?: nbytes;
8cdea7c0
BS
3033}
3034
6770c64e
TH
3035static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3036 size_t nbytes, loff_t off)
c84872e1 3037{
6770c64e 3038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3039 struct page_counter *counter;
c84872e1 3040
3e32cb2e
JW
3041 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3042 case _MEM:
3043 counter = &memcg->memory;
3044 break;
3045 case _MEMSWAP:
3046 counter = &memcg->memsw;
3047 break;
3048 case _KMEM:
3049 counter = &memcg->kmem;
3050 break;
3051 default:
3052 BUG();
3053 }
af36f906 3054
3e32cb2e 3055 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3056 case RES_MAX_USAGE:
3e32cb2e 3057 page_counter_reset_watermark(counter);
29f2a4da
PE
3058 break;
3059 case RES_FAILCNT:
3e32cb2e 3060 counter->failcnt = 0;
29f2a4da 3061 break;
3e32cb2e
JW
3062 default:
3063 BUG();
29f2a4da 3064 }
f64c3f54 3065
6770c64e 3066 return nbytes;
c84872e1
PE
3067}
3068
182446d0 3069static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3070 struct cftype *cft)
3071{
182446d0 3072 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3073}
3074
02491447 3075#ifdef CONFIG_MMU
182446d0 3076static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3077 struct cftype *cft, u64 val)
3078{
182446d0 3079 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3080
1dfab5ab 3081 if (val & ~MOVE_MASK)
7dc74be0 3082 return -EINVAL;
ee5e8472 3083
7dc74be0 3084 /*
ee5e8472
GC
3085 * No kind of locking is needed in here, because ->can_attach() will
3086 * check this value once in the beginning of the process, and then carry
3087 * on with stale data. This means that changes to this value will only
3088 * affect task migrations starting after the change.
7dc74be0 3089 */
c0ff4b85 3090 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3091 return 0;
3092}
02491447 3093#else
182446d0 3094static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3095 struct cftype *cft, u64 val)
3096{
3097 return -ENOSYS;
3098}
3099#endif
7dc74be0 3100
406eb0c9 3101#ifdef CONFIG_NUMA
2da8ca82 3102static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3103{
25485de6
GT
3104 struct numa_stat {
3105 const char *name;
3106 unsigned int lru_mask;
3107 };
3108
3109 static const struct numa_stat stats[] = {
3110 { "total", LRU_ALL },
3111 { "file", LRU_ALL_FILE },
3112 { "anon", LRU_ALL_ANON },
3113 { "unevictable", BIT(LRU_UNEVICTABLE) },
3114 };
3115 const struct numa_stat *stat;
406eb0c9 3116 int nid;
25485de6 3117 unsigned long nr;
2da8ca82 3118 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3119
25485de6
GT
3120 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3121 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3122 seq_printf(m, "%s=%lu", stat->name, nr);
3123 for_each_node_state(nid, N_MEMORY) {
3124 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3125 stat->lru_mask);
3126 seq_printf(m, " N%d=%lu", nid, nr);
3127 }
3128 seq_putc(m, '\n');
406eb0c9 3129 }
406eb0c9 3130
071aee13
YH
3131 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3132 struct mem_cgroup *iter;
3133
3134 nr = 0;
3135 for_each_mem_cgroup_tree(iter, memcg)
3136 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3137 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3138 for_each_node_state(nid, N_MEMORY) {
3139 nr = 0;
3140 for_each_mem_cgroup_tree(iter, memcg)
3141 nr += mem_cgroup_node_nr_lru_pages(
3142 iter, nid, stat->lru_mask);
3143 seq_printf(m, " N%d=%lu", nid, nr);
3144 }
3145 seq_putc(m, '\n');
406eb0c9 3146 }
406eb0c9 3147
406eb0c9
YH
3148 return 0;
3149}
3150#endif /* CONFIG_NUMA */
3151
2da8ca82 3152static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3153{
2da8ca82 3154 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3155 unsigned long memory, memsw;
af7c4b0e
JW
3156 struct mem_cgroup *mi;
3157 unsigned int i;
406eb0c9 3158
0ca44b14
GT
3159 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3160 MEM_CGROUP_STAT_NSTATS);
3161 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3162 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3163 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3164
af7c4b0e 3165 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3166 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3167 continue;
484ebb3b 3168 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3169 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3170 }
7b854121 3171
af7c4b0e
JW
3172 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3173 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3174 mem_cgroup_read_events(memcg, i));
3175
3176 for (i = 0; i < NR_LRU_LISTS; i++)
3177 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3178 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3179
14067bb3 3180 /* Hierarchical information */
3e32cb2e
JW
3181 memory = memsw = PAGE_COUNTER_MAX;
3182 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3183 memory = min(memory, mi->memory.limit);
3184 memsw = min(memsw, mi->memsw.limit);
fee7b548 3185 }
3e32cb2e
JW
3186 seq_printf(m, "hierarchical_memory_limit %llu\n",
3187 (u64)memory * PAGE_SIZE);
3188 if (do_swap_account)
3189 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3190 (u64)memsw * PAGE_SIZE);
7f016ee8 3191
af7c4b0e 3192 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3193 unsigned long long val = 0;
af7c4b0e 3194
bff6bb83 3195 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3196 continue;
af7c4b0e
JW
3197 for_each_mem_cgroup_tree(mi, memcg)
3198 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3199 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3200 }
3201
3202 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3203 unsigned long long val = 0;
3204
3205 for_each_mem_cgroup_tree(mi, memcg)
3206 val += mem_cgroup_read_events(mi, i);
3207 seq_printf(m, "total_%s %llu\n",
3208 mem_cgroup_events_names[i], val);
3209 }
3210
3211 for (i = 0; i < NR_LRU_LISTS; i++) {
3212 unsigned long long val = 0;
3213
3214 for_each_mem_cgroup_tree(mi, memcg)
3215 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3216 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3217 }
14067bb3 3218
7f016ee8 3219#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3220 {
3221 int nid, zid;
3222 struct mem_cgroup_per_zone *mz;
89abfab1 3223 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3224 unsigned long recent_rotated[2] = {0, 0};
3225 unsigned long recent_scanned[2] = {0, 0};
3226
3227 for_each_online_node(nid)
3228 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3229 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3230 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3231
89abfab1
HD
3232 recent_rotated[0] += rstat->recent_rotated[0];
3233 recent_rotated[1] += rstat->recent_rotated[1];
3234 recent_scanned[0] += rstat->recent_scanned[0];
3235 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3236 }
78ccf5b5
JW
3237 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3238 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3239 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3240 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3241 }
3242#endif
3243
d2ceb9b7
KH
3244 return 0;
3245}
3246
182446d0
TH
3247static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3248 struct cftype *cft)
a7885eb8 3249{
182446d0 3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3251
1f4c025b 3252 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3253}
3254
182446d0
TH
3255static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3256 struct cftype *cft, u64 val)
a7885eb8 3257{
182446d0 3258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3259
3dae7fec 3260 if (val > 100)
a7885eb8
KM
3261 return -EINVAL;
3262
14208b0e 3263 if (css->parent)
3dae7fec
JW
3264 memcg->swappiness = val;
3265 else
3266 vm_swappiness = val;
068b38c1 3267
a7885eb8
KM
3268 return 0;
3269}
3270
2e72b634
KS
3271static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3272{
3273 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3274 unsigned long usage;
2e72b634
KS
3275 int i;
3276
3277 rcu_read_lock();
3278 if (!swap)
2c488db2 3279 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3280 else
2c488db2 3281 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3282
3283 if (!t)
3284 goto unlock;
3285
ce00a967 3286 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3287
3288 /*
748dad36 3289 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3290 * If it's not true, a threshold was crossed after last
3291 * call of __mem_cgroup_threshold().
3292 */
5407a562 3293 i = t->current_threshold;
2e72b634
KS
3294
3295 /*
3296 * Iterate backward over array of thresholds starting from
3297 * current_threshold and check if a threshold is crossed.
3298 * If none of thresholds below usage is crossed, we read
3299 * only one element of the array here.
3300 */
3301 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3302 eventfd_signal(t->entries[i].eventfd, 1);
3303
3304 /* i = current_threshold + 1 */
3305 i++;
3306
3307 /*
3308 * Iterate forward over array of thresholds starting from
3309 * current_threshold+1 and check if a threshold is crossed.
3310 * If none of thresholds above usage is crossed, we read
3311 * only one element of the array here.
3312 */
3313 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3314 eventfd_signal(t->entries[i].eventfd, 1);
3315
3316 /* Update current_threshold */
5407a562 3317 t->current_threshold = i - 1;
2e72b634
KS
3318unlock:
3319 rcu_read_unlock();
3320}
3321
3322static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3323{
ad4ca5f4
KS
3324 while (memcg) {
3325 __mem_cgroup_threshold(memcg, false);
3326 if (do_swap_account)
3327 __mem_cgroup_threshold(memcg, true);
3328
3329 memcg = parent_mem_cgroup(memcg);
3330 }
2e72b634
KS
3331}
3332
3333static int compare_thresholds(const void *a, const void *b)
3334{
3335 const struct mem_cgroup_threshold *_a = a;
3336 const struct mem_cgroup_threshold *_b = b;
3337
2bff24a3
GT
3338 if (_a->threshold > _b->threshold)
3339 return 1;
3340
3341 if (_a->threshold < _b->threshold)
3342 return -1;
3343
3344 return 0;
2e72b634
KS
3345}
3346
c0ff4b85 3347static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3348{
3349 struct mem_cgroup_eventfd_list *ev;
3350
2bcf2e92
MH
3351 spin_lock(&memcg_oom_lock);
3352
c0ff4b85 3353 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3354 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3355
3356 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3357 return 0;
3358}
3359
c0ff4b85 3360static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3361{
7d74b06f
KH
3362 struct mem_cgroup *iter;
3363
c0ff4b85 3364 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3365 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3366}
3367
59b6f873 3368static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3369 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3370{
2c488db2
KS
3371 struct mem_cgroup_thresholds *thresholds;
3372 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3373 unsigned long threshold;
3374 unsigned long usage;
2c488db2 3375 int i, size, ret;
2e72b634 3376
650c5e56 3377 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3378 if (ret)
3379 return ret;
3380
3381 mutex_lock(&memcg->thresholds_lock);
2c488db2 3382
05b84301 3383 if (type == _MEM) {
2c488db2 3384 thresholds = &memcg->thresholds;
ce00a967 3385 usage = mem_cgroup_usage(memcg, false);
05b84301 3386 } else if (type == _MEMSWAP) {
2c488db2 3387 thresholds = &memcg->memsw_thresholds;
ce00a967 3388 usage = mem_cgroup_usage(memcg, true);
05b84301 3389 } else
2e72b634
KS
3390 BUG();
3391
2e72b634 3392 /* Check if a threshold crossed before adding a new one */
2c488db2 3393 if (thresholds->primary)
2e72b634
KS
3394 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3395
2c488db2 3396 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3397
3398 /* Allocate memory for new array of thresholds */
2c488db2 3399 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3400 GFP_KERNEL);
2c488db2 3401 if (!new) {
2e72b634
KS
3402 ret = -ENOMEM;
3403 goto unlock;
3404 }
2c488db2 3405 new->size = size;
2e72b634
KS
3406
3407 /* Copy thresholds (if any) to new array */
2c488db2
KS
3408 if (thresholds->primary) {
3409 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3410 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3411 }
3412
2e72b634 3413 /* Add new threshold */
2c488db2
KS
3414 new->entries[size - 1].eventfd = eventfd;
3415 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3416
3417 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3418 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3419 compare_thresholds, NULL);
3420
3421 /* Find current threshold */
2c488db2 3422 new->current_threshold = -1;
2e72b634 3423 for (i = 0; i < size; i++) {
748dad36 3424 if (new->entries[i].threshold <= usage) {
2e72b634 3425 /*
2c488db2
KS
3426 * new->current_threshold will not be used until
3427 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3428 * it here.
3429 */
2c488db2 3430 ++new->current_threshold;
748dad36
SZ
3431 } else
3432 break;
2e72b634
KS
3433 }
3434
2c488db2
KS
3435 /* Free old spare buffer and save old primary buffer as spare */
3436 kfree(thresholds->spare);
3437 thresholds->spare = thresholds->primary;
3438
3439 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3440
907860ed 3441 /* To be sure that nobody uses thresholds */
2e72b634
KS
3442 synchronize_rcu();
3443
2e72b634
KS
3444unlock:
3445 mutex_unlock(&memcg->thresholds_lock);
3446
3447 return ret;
3448}
3449
59b6f873 3450static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3451 struct eventfd_ctx *eventfd, const char *args)
3452{
59b6f873 3453 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3454}
3455
59b6f873 3456static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3457 struct eventfd_ctx *eventfd, const char *args)
3458{
59b6f873 3459 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3460}
3461
59b6f873 3462static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3463 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3464{
2c488db2
KS
3465 struct mem_cgroup_thresholds *thresholds;
3466 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3467 unsigned long usage;
2c488db2 3468 int i, j, size;
2e72b634
KS
3469
3470 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3471
3472 if (type == _MEM) {
2c488db2 3473 thresholds = &memcg->thresholds;
ce00a967 3474 usage = mem_cgroup_usage(memcg, false);
05b84301 3475 } else if (type == _MEMSWAP) {
2c488db2 3476 thresholds = &memcg->memsw_thresholds;
ce00a967 3477 usage = mem_cgroup_usage(memcg, true);
05b84301 3478 } else
2e72b634
KS
3479 BUG();
3480
371528ca
AV
3481 if (!thresholds->primary)
3482 goto unlock;
3483
2e72b634
KS
3484 /* Check if a threshold crossed before removing */
3485 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3486
3487 /* Calculate new number of threshold */
2c488db2
KS
3488 size = 0;
3489 for (i = 0; i < thresholds->primary->size; i++) {
3490 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3491 size++;
3492 }
3493
2c488db2 3494 new = thresholds->spare;
907860ed 3495
2e72b634
KS
3496 /* Set thresholds array to NULL if we don't have thresholds */
3497 if (!size) {
2c488db2
KS
3498 kfree(new);
3499 new = NULL;
907860ed 3500 goto swap_buffers;
2e72b634
KS
3501 }
3502
2c488db2 3503 new->size = size;
2e72b634
KS
3504
3505 /* Copy thresholds and find current threshold */
2c488db2
KS
3506 new->current_threshold = -1;
3507 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3508 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3509 continue;
3510
2c488db2 3511 new->entries[j] = thresholds->primary->entries[i];
748dad36 3512 if (new->entries[j].threshold <= usage) {
2e72b634 3513 /*
2c488db2 3514 * new->current_threshold will not be used
2e72b634
KS
3515 * until rcu_assign_pointer(), so it's safe to increment
3516 * it here.
3517 */
2c488db2 3518 ++new->current_threshold;
2e72b634
KS
3519 }
3520 j++;
3521 }
3522
907860ed 3523swap_buffers:
2c488db2
KS
3524 /* Swap primary and spare array */
3525 thresholds->spare = thresholds->primary;
8c757763 3526
2c488db2 3527 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3528
907860ed 3529 /* To be sure that nobody uses thresholds */
2e72b634 3530 synchronize_rcu();
ececa3eb
MC
3531
3532 /* If all events are unregistered, free the spare array */
3533 if (!new) {
3534 kfree(thresholds->spare);
3535 thresholds->spare = NULL;
3536 }
371528ca 3537unlock:
2e72b634 3538 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3539}
c1e862c1 3540
59b6f873 3541static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3542 struct eventfd_ctx *eventfd)
3543{
59b6f873 3544 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3545}
3546
59b6f873 3547static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3548 struct eventfd_ctx *eventfd)
3549{
59b6f873 3550 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3551}
3552
59b6f873 3553static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3554 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3555{
9490ff27 3556 struct mem_cgroup_eventfd_list *event;
9490ff27 3557
9490ff27
KH
3558 event = kmalloc(sizeof(*event), GFP_KERNEL);
3559 if (!event)
3560 return -ENOMEM;
3561
1af8efe9 3562 spin_lock(&memcg_oom_lock);
9490ff27
KH
3563
3564 event->eventfd = eventfd;
3565 list_add(&event->list, &memcg->oom_notify);
3566
3567 /* already in OOM ? */
c2b42d3c 3568 if (memcg->under_oom)
9490ff27 3569 eventfd_signal(eventfd, 1);
1af8efe9 3570 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3571
3572 return 0;
3573}
3574
59b6f873 3575static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3576 struct eventfd_ctx *eventfd)
9490ff27 3577{
9490ff27 3578 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3579
1af8efe9 3580 spin_lock(&memcg_oom_lock);
9490ff27 3581
c0ff4b85 3582 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3583 if (ev->eventfd == eventfd) {
3584 list_del(&ev->list);
3585 kfree(ev);
3586 }
3587 }
3588
1af8efe9 3589 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3590}
3591
2da8ca82 3592static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3593{
2da8ca82 3594 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3595
791badbd 3596 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3597 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3598 return 0;
3599}
3600
182446d0 3601static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3602 struct cftype *cft, u64 val)
3603{
182446d0 3604 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3605
3606 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3607 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3608 return -EINVAL;
3609
c0ff4b85 3610 memcg->oom_kill_disable = val;
4d845ebf 3611 if (!val)
c0ff4b85 3612 memcg_oom_recover(memcg);
3dae7fec 3613
3c11ecf4
KH
3614 return 0;
3615}
3616
c255a458 3617#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3618static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3619{
55007d84
GC
3620 int ret;
3621
55007d84
GC
3622 ret = memcg_propagate_kmem(memcg);
3623 if (ret)
3624 return ret;
2633d7a0 3625
1d62e436 3626 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3627}
e5671dfa 3628
2a4db7eb
VD
3629static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3630{
2788cf0c
VD
3631 struct cgroup_subsys_state *css;
3632 struct mem_cgroup *parent, *child;
3633 int kmemcg_id;
3634
2a4db7eb
VD
3635 if (!memcg->kmem_acct_active)
3636 return;
3637
3638 /*
3639 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3640 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3641 * guarantees no cache will be created for this cgroup after we are
3642 * done (see memcg_create_kmem_cache()).
3643 */
3644 memcg->kmem_acct_active = false;
3645
3646 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3647
3648 kmemcg_id = memcg->kmemcg_id;
3649 BUG_ON(kmemcg_id < 0);
3650
3651 parent = parent_mem_cgroup(memcg);
3652 if (!parent)
3653 parent = root_mem_cgroup;
3654
3655 /*
3656 * Change kmemcg_id of this cgroup and all its descendants to the
3657 * parent's id, and then move all entries from this cgroup's list_lrus
3658 * to ones of the parent. After we have finished, all list_lrus
3659 * corresponding to this cgroup are guaranteed to remain empty. The
3660 * ordering is imposed by list_lru_node->lock taken by
3661 * memcg_drain_all_list_lrus().
3662 */
3663 css_for_each_descendant_pre(css, &memcg->css) {
3664 child = mem_cgroup_from_css(css);
3665 BUG_ON(child->kmemcg_id != kmemcg_id);
3666 child->kmemcg_id = parent->kmemcg_id;
3667 if (!memcg->use_hierarchy)
3668 break;
3669 }
3670 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3671
3672 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3673}
3674
10d5ebf4 3675static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3676{
f48b80a5
VD
3677 if (memcg->kmem_acct_activated) {
3678 memcg_destroy_kmem_caches(memcg);
3679 static_key_slow_dec(&memcg_kmem_enabled_key);
3680 WARN_ON(page_counter_read(&memcg->kmem));
3681 }
1d62e436 3682 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3683}
e5671dfa 3684#else
cbe128e3 3685static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3686{
3687 return 0;
3688}
d1a4c0b3 3689
2a4db7eb
VD
3690static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3691{
3692}
3693
10d5ebf4
LZ
3694static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3695{
3696}
e5671dfa
GC
3697#endif
3698
52ebea74
TH
3699#ifdef CONFIG_CGROUP_WRITEBACK
3700
3701struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3702{
3703 return &memcg->cgwb_list;
3704}
3705
841710aa
TH
3706static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3707{
3708 return wb_domain_init(&memcg->cgwb_domain, gfp);
3709}
3710
3711static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3712{
3713 wb_domain_exit(&memcg->cgwb_domain);
3714}
3715
2529bb3a
TH
3716static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3717{
3718 wb_domain_size_changed(&memcg->cgwb_domain);
3719}
3720
841710aa
TH
3721struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3722{
3723 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3724
3725 if (!memcg->css.parent)
3726 return NULL;
3727
3728 return &memcg->cgwb_domain;
3729}
3730
c2aa723a
TH
3731/**
3732 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3733 * @wb: bdi_writeback in question
c5edf9cd
TH
3734 * @pfilepages: out parameter for number of file pages
3735 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3736 * @pdirty: out parameter for number of dirty pages
3737 * @pwriteback: out parameter for number of pages under writeback
3738 *
c5edf9cd
TH
3739 * Determine the numbers of file, headroom, dirty, and writeback pages in
3740 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3741 * is a bit more involved.
c2aa723a 3742 *
c5edf9cd
TH
3743 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3744 * headroom is calculated as the lowest headroom of itself and the
3745 * ancestors. Note that this doesn't consider the actual amount of
3746 * available memory in the system. The caller should further cap
3747 * *@pheadroom accordingly.
c2aa723a 3748 */
c5edf9cd
TH
3749void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3750 unsigned long *pheadroom, unsigned long *pdirty,
3751 unsigned long *pwriteback)
c2aa723a
TH
3752{
3753 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3754 struct mem_cgroup *parent;
c2aa723a
TH
3755
3756 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3757
3758 /* this should eventually include NR_UNSTABLE_NFS */
3759 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3760 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3761 (1 << LRU_ACTIVE_FILE));
3762 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3763
c2aa723a
TH
3764 while ((parent = parent_mem_cgroup(memcg))) {
3765 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3766 unsigned long used = page_counter_read(&memcg->memory);
3767
c5edf9cd 3768 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3769 memcg = parent;
3770 }
c2aa723a
TH
3771}
3772
841710aa
TH
3773#else /* CONFIG_CGROUP_WRITEBACK */
3774
3775static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3776{
3777 return 0;
3778}
3779
3780static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3781{
3782}
3783
2529bb3a
TH
3784static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3785{
3786}
3787
52ebea74
TH
3788#endif /* CONFIG_CGROUP_WRITEBACK */
3789
3bc942f3
TH
3790/*
3791 * DO NOT USE IN NEW FILES.
3792 *
3793 * "cgroup.event_control" implementation.
3794 *
3795 * This is way over-engineered. It tries to support fully configurable
3796 * events for each user. Such level of flexibility is completely
3797 * unnecessary especially in the light of the planned unified hierarchy.
3798 *
3799 * Please deprecate this and replace with something simpler if at all
3800 * possible.
3801 */
3802
79bd9814
TH
3803/*
3804 * Unregister event and free resources.
3805 *
3806 * Gets called from workqueue.
3807 */
3bc942f3 3808static void memcg_event_remove(struct work_struct *work)
79bd9814 3809{
3bc942f3
TH
3810 struct mem_cgroup_event *event =
3811 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3812 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3813
3814 remove_wait_queue(event->wqh, &event->wait);
3815
59b6f873 3816 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3817
3818 /* Notify userspace the event is going away. */
3819 eventfd_signal(event->eventfd, 1);
3820
3821 eventfd_ctx_put(event->eventfd);
3822 kfree(event);
59b6f873 3823 css_put(&memcg->css);
79bd9814
TH
3824}
3825
3826/*
3827 * Gets called on POLLHUP on eventfd when user closes it.
3828 *
3829 * Called with wqh->lock held and interrupts disabled.
3830 */
3bc942f3
TH
3831static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3832 int sync, void *key)
79bd9814 3833{
3bc942f3
TH
3834 struct mem_cgroup_event *event =
3835 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3836 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3837 unsigned long flags = (unsigned long)key;
3838
3839 if (flags & POLLHUP) {
3840 /*
3841 * If the event has been detached at cgroup removal, we
3842 * can simply return knowing the other side will cleanup
3843 * for us.
3844 *
3845 * We can't race against event freeing since the other
3846 * side will require wqh->lock via remove_wait_queue(),
3847 * which we hold.
3848 */
fba94807 3849 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3850 if (!list_empty(&event->list)) {
3851 list_del_init(&event->list);
3852 /*
3853 * We are in atomic context, but cgroup_event_remove()
3854 * may sleep, so we have to call it in workqueue.
3855 */
3856 schedule_work(&event->remove);
3857 }
fba94807 3858 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3859 }
3860
3861 return 0;
3862}
3863
3bc942f3 3864static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3865 wait_queue_head_t *wqh, poll_table *pt)
3866{
3bc942f3
TH
3867 struct mem_cgroup_event *event =
3868 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3869
3870 event->wqh = wqh;
3871 add_wait_queue(wqh, &event->wait);
3872}
3873
3874/*
3bc942f3
TH
3875 * DO NOT USE IN NEW FILES.
3876 *
79bd9814
TH
3877 * Parse input and register new cgroup event handler.
3878 *
3879 * Input must be in format '<event_fd> <control_fd> <args>'.
3880 * Interpretation of args is defined by control file implementation.
3881 */
451af504
TH
3882static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3883 char *buf, size_t nbytes, loff_t off)
79bd9814 3884{
451af504 3885 struct cgroup_subsys_state *css = of_css(of);
fba94807 3886 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3887 struct mem_cgroup_event *event;
79bd9814
TH
3888 struct cgroup_subsys_state *cfile_css;
3889 unsigned int efd, cfd;
3890 struct fd efile;
3891 struct fd cfile;
fba94807 3892 const char *name;
79bd9814
TH
3893 char *endp;
3894 int ret;
3895
451af504
TH
3896 buf = strstrip(buf);
3897
3898 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3899 if (*endp != ' ')
3900 return -EINVAL;
451af504 3901 buf = endp + 1;
79bd9814 3902
451af504 3903 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3904 if ((*endp != ' ') && (*endp != '\0'))
3905 return -EINVAL;
451af504 3906 buf = endp + 1;
79bd9814
TH
3907
3908 event = kzalloc(sizeof(*event), GFP_KERNEL);
3909 if (!event)
3910 return -ENOMEM;
3911
59b6f873 3912 event->memcg = memcg;
79bd9814 3913 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3914 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3915 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3916 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3917
3918 efile = fdget(efd);
3919 if (!efile.file) {
3920 ret = -EBADF;
3921 goto out_kfree;
3922 }
3923
3924 event->eventfd = eventfd_ctx_fileget(efile.file);
3925 if (IS_ERR(event->eventfd)) {
3926 ret = PTR_ERR(event->eventfd);
3927 goto out_put_efile;
3928 }
3929
3930 cfile = fdget(cfd);
3931 if (!cfile.file) {
3932 ret = -EBADF;
3933 goto out_put_eventfd;
3934 }
3935
3936 /* the process need read permission on control file */
3937 /* AV: shouldn't we check that it's been opened for read instead? */
3938 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3939 if (ret < 0)
3940 goto out_put_cfile;
3941
fba94807
TH
3942 /*
3943 * Determine the event callbacks and set them in @event. This used
3944 * to be done via struct cftype but cgroup core no longer knows
3945 * about these events. The following is crude but the whole thing
3946 * is for compatibility anyway.
3bc942f3
TH
3947 *
3948 * DO NOT ADD NEW FILES.
fba94807 3949 */
b583043e 3950 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3951
3952 if (!strcmp(name, "memory.usage_in_bytes")) {
3953 event->register_event = mem_cgroup_usage_register_event;
3954 event->unregister_event = mem_cgroup_usage_unregister_event;
3955 } else if (!strcmp(name, "memory.oom_control")) {
3956 event->register_event = mem_cgroup_oom_register_event;
3957 event->unregister_event = mem_cgroup_oom_unregister_event;
3958 } else if (!strcmp(name, "memory.pressure_level")) {
3959 event->register_event = vmpressure_register_event;
3960 event->unregister_event = vmpressure_unregister_event;
3961 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3962 event->register_event = memsw_cgroup_usage_register_event;
3963 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3964 } else {
3965 ret = -EINVAL;
3966 goto out_put_cfile;
3967 }
3968
79bd9814 3969 /*
b5557c4c
TH
3970 * Verify @cfile should belong to @css. Also, remaining events are
3971 * automatically removed on cgroup destruction but the removal is
3972 * asynchronous, so take an extra ref on @css.
79bd9814 3973 */
b583043e 3974 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3975 &memory_cgrp_subsys);
79bd9814 3976 ret = -EINVAL;
5a17f543 3977 if (IS_ERR(cfile_css))
79bd9814 3978 goto out_put_cfile;
5a17f543
TH
3979 if (cfile_css != css) {
3980 css_put(cfile_css);
79bd9814 3981 goto out_put_cfile;
5a17f543 3982 }
79bd9814 3983
451af504 3984 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3985 if (ret)
3986 goto out_put_css;
3987
3988 efile.file->f_op->poll(efile.file, &event->pt);
3989
fba94807
TH
3990 spin_lock(&memcg->event_list_lock);
3991 list_add(&event->list, &memcg->event_list);
3992 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3993
3994 fdput(cfile);
3995 fdput(efile);
3996
451af504 3997 return nbytes;
79bd9814
TH
3998
3999out_put_css:
b5557c4c 4000 css_put(css);
79bd9814
TH
4001out_put_cfile:
4002 fdput(cfile);
4003out_put_eventfd:
4004 eventfd_ctx_put(event->eventfd);
4005out_put_efile:
4006 fdput(efile);
4007out_kfree:
4008 kfree(event);
4009
4010 return ret;
4011}
4012
241994ed 4013static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4014 {
0eea1030 4015 .name = "usage_in_bytes",
8c7c6e34 4016 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4017 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4018 },
c84872e1
PE
4019 {
4020 .name = "max_usage_in_bytes",
8c7c6e34 4021 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4022 .write = mem_cgroup_reset,
791badbd 4023 .read_u64 = mem_cgroup_read_u64,
c84872e1 4024 },
8cdea7c0 4025 {
0eea1030 4026 .name = "limit_in_bytes",
8c7c6e34 4027 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4028 .write = mem_cgroup_write,
791badbd 4029 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4030 },
296c81d8
BS
4031 {
4032 .name = "soft_limit_in_bytes",
4033 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4034 .write = mem_cgroup_write,
791badbd 4035 .read_u64 = mem_cgroup_read_u64,
296c81d8 4036 },
8cdea7c0
BS
4037 {
4038 .name = "failcnt",
8c7c6e34 4039 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4040 .write = mem_cgroup_reset,
791badbd 4041 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4042 },
d2ceb9b7
KH
4043 {
4044 .name = "stat",
2da8ca82 4045 .seq_show = memcg_stat_show,
d2ceb9b7 4046 },
c1e862c1
KH
4047 {
4048 .name = "force_empty",
6770c64e 4049 .write = mem_cgroup_force_empty_write,
c1e862c1 4050 },
18f59ea7
BS
4051 {
4052 .name = "use_hierarchy",
4053 .write_u64 = mem_cgroup_hierarchy_write,
4054 .read_u64 = mem_cgroup_hierarchy_read,
4055 },
79bd9814 4056 {
3bc942f3 4057 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4058 .write = memcg_write_event_control,
7dbdb199 4059 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4060 },
a7885eb8
KM
4061 {
4062 .name = "swappiness",
4063 .read_u64 = mem_cgroup_swappiness_read,
4064 .write_u64 = mem_cgroup_swappiness_write,
4065 },
7dc74be0
DN
4066 {
4067 .name = "move_charge_at_immigrate",
4068 .read_u64 = mem_cgroup_move_charge_read,
4069 .write_u64 = mem_cgroup_move_charge_write,
4070 },
9490ff27
KH
4071 {
4072 .name = "oom_control",
2da8ca82 4073 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4074 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4075 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4076 },
70ddf637
AV
4077 {
4078 .name = "pressure_level",
70ddf637 4079 },
406eb0c9
YH
4080#ifdef CONFIG_NUMA
4081 {
4082 .name = "numa_stat",
2da8ca82 4083 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4084 },
4085#endif
510fc4e1
GC
4086#ifdef CONFIG_MEMCG_KMEM
4087 {
4088 .name = "kmem.limit_in_bytes",
4089 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4090 .write = mem_cgroup_write,
791badbd 4091 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4092 },
4093 {
4094 .name = "kmem.usage_in_bytes",
4095 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4096 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4097 },
4098 {
4099 .name = "kmem.failcnt",
4100 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4101 .write = mem_cgroup_reset,
791badbd 4102 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4103 },
4104 {
4105 .name = "kmem.max_usage_in_bytes",
4106 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4107 .write = mem_cgroup_reset,
791badbd 4108 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4109 },
749c5415
GC
4110#ifdef CONFIG_SLABINFO
4111 {
4112 .name = "kmem.slabinfo",
b047501c
VD
4113 .seq_start = slab_start,
4114 .seq_next = slab_next,
4115 .seq_stop = slab_stop,
4116 .seq_show = memcg_slab_show,
749c5415
GC
4117 },
4118#endif
8c7c6e34 4119#endif
6bc10349 4120 { }, /* terminate */
af36f906 4121};
8c7c6e34 4122
c0ff4b85 4123static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4124{
4125 struct mem_cgroup_per_node *pn;
1ecaab2b 4126 struct mem_cgroup_per_zone *mz;
41e3355d 4127 int zone, tmp = node;
1ecaab2b
KH
4128 /*
4129 * This routine is called against possible nodes.
4130 * But it's BUG to call kmalloc() against offline node.
4131 *
4132 * TODO: this routine can waste much memory for nodes which will
4133 * never be onlined. It's better to use memory hotplug callback
4134 * function.
4135 */
41e3355d
KH
4136 if (!node_state(node, N_NORMAL_MEMORY))
4137 tmp = -1;
17295c88 4138 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4139 if (!pn)
4140 return 1;
1ecaab2b 4141
1ecaab2b
KH
4142 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4143 mz = &pn->zoneinfo[zone];
bea8c150 4144 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4145 mz->usage_in_excess = 0;
4146 mz->on_tree = false;
d79154bb 4147 mz->memcg = memcg;
1ecaab2b 4148 }
54f72fe0 4149 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4150 return 0;
4151}
4152
c0ff4b85 4153static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4154{
54f72fe0 4155 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4156}
4157
33327948
KH
4158static struct mem_cgroup *mem_cgroup_alloc(void)
4159{
d79154bb 4160 struct mem_cgroup *memcg;
8ff69e2c 4161 size_t size;
33327948 4162
8ff69e2c
VD
4163 size = sizeof(struct mem_cgroup);
4164 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4165
8ff69e2c 4166 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4167 if (!memcg)
e7bbcdf3
DC
4168 return NULL;
4169
d79154bb
HD
4170 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4171 if (!memcg->stat)
d2e61b8d 4172 goto out_free;
841710aa
TH
4173
4174 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4175 goto out_free_stat;
4176
d79154bb 4177 return memcg;
d2e61b8d 4178
841710aa
TH
4179out_free_stat:
4180 free_percpu(memcg->stat);
d2e61b8d 4181out_free:
8ff69e2c 4182 kfree(memcg);
d2e61b8d 4183 return NULL;
33327948
KH
4184}
4185
59927fb9 4186/*
c8b2a36f
GC
4187 * At destroying mem_cgroup, references from swap_cgroup can remain.
4188 * (scanning all at force_empty is too costly...)
4189 *
4190 * Instead of clearing all references at force_empty, we remember
4191 * the number of reference from swap_cgroup and free mem_cgroup when
4192 * it goes down to 0.
4193 *
4194 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4195 */
c8b2a36f
GC
4196
4197static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4198{
c8b2a36f 4199 int node;
59927fb9 4200
bb4cc1a8 4201 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4202
4203 for_each_node(node)
4204 free_mem_cgroup_per_zone_info(memcg, node);
4205
4206 free_percpu(memcg->stat);
841710aa 4207 memcg_wb_domain_exit(memcg);
8ff69e2c 4208 kfree(memcg);
59927fb9 4209}
3afe36b1 4210
7bcc1bb1
DN
4211/*
4212 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4213 */
e1aab161 4214struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4215{
3e32cb2e 4216 if (!memcg->memory.parent)
7bcc1bb1 4217 return NULL;
3e32cb2e 4218 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4219}
e1aab161 4220EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4221
0eb253e2 4222static struct cgroup_subsys_state * __ref
eb95419b 4223mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4224{
d142e3e6 4225 struct mem_cgroup *memcg;
04046e1a 4226 long error = -ENOMEM;
6d12e2d8 4227 int node;
8cdea7c0 4228
c0ff4b85
R
4229 memcg = mem_cgroup_alloc();
4230 if (!memcg)
04046e1a 4231 return ERR_PTR(error);
78fb7466 4232
3ed28fa1 4233 for_each_node(node)
c0ff4b85 4234 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4235 goto free_out;
f64c3f54 4236
c077719b 4237 /* root ? */
eb95419b 4238 if (parent_css == NULL) {
a41c58a6 4239 root_mem_cgroup = memcg;
56161634 4240 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4241 page_counter_init(&memcg->memory, NULL);
241994ed 4242 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4243 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4244 page_counter_init(&memcg->memsw, NULL);
4245 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4246 }
28dbc4b6 4247
d142e3e6
GC
4248 memcg->last_scanned_node = MAX_NUMNODES;
4249 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4250 memcg->move_charge_at_immigrate = 0;
4251 mutex_init(&memcg->thresholds_lock);
4252 spin_lock_init(&memcg->move_lock);
70ddf637 4253 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4254 INIT_LIST_HEAD(&memcg->event_list);
4255 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4256#ifdef CONFIG_MEMCG_KMEM
4257 memcg->kmemcg_id = -1;
900a38f0 4258#endif
52ebea74
TH
4259#ifdef CONFIG_CGROUP_WRITEBACK
4260 INIT_LIST_HEAD(&memcg->cgwb_list);
4261#endif
d142e3e6
GC
4262 return &memcg->css;
4263
4264free_out:
4265 __mem_cgroup_free(memcg);
4266 return ERR_PTR(error);
4267}
4268
4269static int
eb95419b 4270mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4271{
eb95419b 4272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4273 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4274 int ret;
d142e3e6 4275
15a4c835 4276 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4277 return -ENOSPC;
4278
63876986 4279 if (!parent)
d142e3e6
GC
4280 return 0;
4281
0999821b 4282 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4283
4284 memcg->use_hierarchy = parent->use_hierarchy;
4285 memcg->oom_kill_disable = parent->oom_kill_disable;
4286 memcg->swappiness = mem_cgroup_swappiness(parent);
4287
4288 if (parent->use_hierarchy) {
3e32cb2e 4289 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4290 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4291 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4292 page_counter_init(&memcg->memsw, &parent->memsw);
4293 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4294
7bcc1bb1 4295 /*
8d76a979
LZ
4296 * No need to take a reference to the parent because cgroup
4297 * core guarantees its existence.
7bcc1bb1 4298 */
18f59ea7 4299 } else {
3e32cb2e 4300 page_counter_init(&memcg->memory, NULL);
241994ed 4301 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4302 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4303 page_counter_init(&memcg->memsw, NULL);
4304 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4305 /*
4306 * Deeper hierachy with use_hierarchy == false doesn't make
4307 * much sense so let cgroup subsystem know about this
4308 * unfortunate state in our controller.
4309 */
d142e3e6 4310 if (parent != root_mem_cgroup)
073219e9 4311 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4312 }
0999821b 4313 mutex_unlock(&memcg_create_mutex);
d6441637 4314
2f7dd7a4
JW
4315 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4316 if (ret)
4317 return ret;
4318
4319 /*
4320 * Make sure the memcg is initialized: mem_cgroup_iter()
4321 * orders reading memcg->initialized against its callers
4322 * reading the memcg members.
4323 */
4324 smp_store_release(&memcg->initialized, 1);
4325
4326 return 0;
8cdea7c0
BS
4327}
4328
eb95419b 4329static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4330{
eb95419b 4331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4332 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4333
4334 /*
4335 * Unregister events and notify userspace.
4336 * Notify userspace about cgroup removing only after rmdir of cgroup
4337 * directory to avoid race between userspace and kernelspace.
4338 */
fba94807
TH
4339 spin_lock(&memcg->event_list_lock);
4340 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4341 list_del_init(&event->list);
4342 schedule_work(&event->remove);
4343 }
fba94807 4344 spin_unlock(&memcg->event_list_lock);
ec64f515 4345
33cb876e 4346 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4347
4348 memcg_deactivate_kmem(memcg);
52ebea74
TH
4349
4350 wb_memcg_offline(memcg);
df878fb0
KH
4351}
4352
6df38689
VD
4353static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4354{
4355 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4356
4357 invalidate_reclaim_iterators(memcg);
4358}
4359
eb95419b 4360static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4361{
eb95419b 4362 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4363
10d5ebf4 4364 memcg_destroy_kmem(memcg);
465939a1 4365 __mem_cgroup_free(memcg);
8cdea7c0
BS
4366}
4367
1ced953b
TH
4368/**
4369 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4370 * @css: the target css
4371 *
4372 * Reset the states of the mem_cgroup associated with @css. This is
4373 * invoked when the userland requests disabling on the default hierarchy
4374 * but the memcg is pinned through dependency. The memcg should stop
4375 * applying policies and should revert to the vanilla state as it may be
4376 * made visible again.
4377 *
4378 * The current implementation only resets the essential configurations.
4379 * This needs to be expanded to cover all the visible parts.
4380 */
4381static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4382{
4383 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4384
3e32cb2e
JW
4385 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4386 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4387 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4388 memcg->low = 0;
4389 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4390 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4391 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4392}
4393
02491447 4394#ifdef CONFIG_MMU
7dc74be0 4395/* Handlers for move charge at task migration. */
854ffa8d 4396static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4397{
05b84301 4398 int ret;
9476db97 4399
d0164adc
MG
4400 /* Try a single bulk charge without reclaim first, kswapd may wake */
4401 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4402 if (!ret) {
854ffa8d 4403 mc.precharge += count;
854ffa8d
DN
4404 return ret;
4405 }
9476db97
JW
4406
4407 /* Try charges one by one with reclaim */
854ffa8d 4408 while (count--) {
00501b53 4409 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4410 if (ret)
38c5d72f 4411 return ret;
854ffa8d 4412 mc.precharge++;
9476db97 4413 cond_resched();
854ffa8d 4414 }
9476db97 4415 return 0;
4ffef5fe
DN
4416}
4417
4418/**
8d32ff84 4419 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4420 * @vma: the vma the pte to be checked belongs
4421 * @addr: the address corresponding to the pte to be checked
4422 * @ptent: the pte to be checked
02491447 4423 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4424 *
4425 * Returns
4426 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4427 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4428 * move charge. if @target is not NULL, the page is stored in target->page
4429 * with extra refcnt got(Callers should handle it).
02491447
DN
4430 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4431 * target for charge migration. if @target is not NULL, the entry is stored
4432 * in target->ent.
4ffef5fe
DN
4433 *
4434 * Called with pte lock held.
4435 */
4ffef5fe
DN
4436union mc_target {
4437 struct page *page;
02491447 4438 swp_entry_t ent;
4ffef5fe
DN
4439};
4440
4ffef5fe 4441enum mc_target_type {
8d32ff84 4442 MC_TARGET_NONE = 0,
4ffef5fe 4443 MC_TARGET_PAGE,
02491447 4444 MC_TARGET_SWAP,
4ffef5fe
DN
4445};
4446
90254a65
DN
4447static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4448 unsigned long addr, pte_t ptent)
4ffef5fe 4449{
90254a65 4450 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4451
90254a65
DN
4452 if (!page || !page_mapped(page))
4453 return NULL;
4454 if (PageAnon(page)) {
1dfab5ab 4455 if (!(mc.flags & MOVE_ANON))
90254a65 4456 return NULL;
1dfab5ab
JW
4457 } else {
4458 if (!(mc.flags & MOVE_FILE))
4459 return NULL;
4460 }
90254a65
DN
4461 if (!get_page_unless_zero(page))
4462 return NULL;
4463
4464 return page;
4465}
4466
4b91355e 4467#ifdef CONFIG_SWAP
90254a65
DN
4468static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4469 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4470{
90254a65
DN
4471 struct page *page = NULL;
4472 swp_entry_t ent = pte_to_swp_entry(ptent);
4473
1dfab5ab 4474 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4475 return NULL;
4b91355e
KH
4476 /*
4477 * Because lookup_swap_cache() updates some statistics counter,
4478 * we call find_get_page() with swapper_space directly.
4479 */
33806f06 4480 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4481 if (do_swap_account)
4482 entry->val = ent.val;
4483
4484 return page;
4485}
4b91355e
KH
4486#else
4487static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4488 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4489{
4490 return NULL;
4491}
4492#endif
90254a65 4493
87946a72
DN
4494static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4495 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4496{
4497 struct page *page = NULL;
87946a72
DN
4498 struct address_space *mapping;
4499 pgoff_t pgoff;
4500
4501 if (!vma->vm_file) /* anonymous vma */
4502 return NULL;
1dfab5ab 4503 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4504 return NULL;
4505
87946a72 4506 mapping = vma->vm_file->f_mapping;
0661a336 4507 pgoff = linear_page_index(vma, addr);
87946a72
DN
4508
4509 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4510#ifdef CONFIG_SWAP
4511 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4512 if (shmem_mapping(mapping)) {
4513 page = find_get_entry(mapping, pgoff);
4514 if (radix_tree_exceptional_entry(page)) {
4515 swp_entry_t swp = radix_to_swp_entry(page);
4516 if (do_swap_account)
4517 *entry = swp;
4518 page = find_get_page(swap_address_space(swp), swp.val);
4519 }
4520 } else
4521 page = find_get_page(mapping, pgoff);
4522#else
4523 page = find_get_page(mapping, pgoff);
aa3b1895 4524#endif
87946a72
DN
4525 return page;
4526}
4527
b1b0deab
CG
4528/**
4529 * mem_cgroup_move_account - move account of the page
4530 * @page: the page
4531 * @nr_pages: number of regular pages (>1 for huge pages)
4532 * @from: mem_cgroup which the page is moved from.
4533 * @to: mem_cgroup which the page is moved to. @from != @to.
4534 *
4535 * The caller must confirm following.
4536 * - page is not on LRU (isolate_page() is useful.)
4537 * - compound_lock is held when nr_pages > 1
4538 *
4539 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4540 * from old cgroup.
4541 */
4542static int mem_cgroup_move_account(struct page *page,
4543 unsigned int nr_pages,
4544 struct mem_cgroup *from,
4545 struct mem_cgroup *to)
4546{
4547 unsigned long flags;
4548 int ret;
c4843a75 4549 bool anon;
b1b0deab
CG
4550
4551 VM_BUG_ON(from == to);
4552 VM_BUG_ON_PAGE(PageLRU(page), page);
4553 /*
4554 * The page is isolated from LRU. So, collapse function
4555 * will not handle this page. But page splitting can happen.
4556 * Do this check under compound_page_lock(). The caller should
4557 * hold it.
4558 */
4559 ret = -EBUSY;
4560 if (nr_pages > 1 && !PageTransHuge(page))
4561 goto out;
4562
4563 /*
45637bab
HD
4564 * Prevent mem_cgroup_replace_page() from looking at
4565 * page->mem_cgroup of its source page while we change it.
b1b0deab
CG
4566 */
4567 if (!trylock_page(page))
4568 goto out;
4569
4570 ret = -EINVAL;
4571 if (page->mem_cgroup != from)
4572 goto out_unlock;
4573
c4843a75
GT
4574 anon = PageAnon(page);
4575
b1b0deab
CG
4576 spin_lock_irqsave(&from->move_lock, flags);
4577
c4843a75 4578 if (!anon && page_mapped(page)) {
b1b0deab
CG
4579 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4580 nr_pages);
4581 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4582 nr_pages);
4583 }
4584
c4843a75
GT
4585 /*
4586 * move_lock grabbed above and caller set from->moving_account, so
4587 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4588 * So mapping should be stable for dirty pages.
4589 */
4590 if (!anon && PageDirty(page)) {
4591 struct address_space *mapping = page_mapping(page);
4592
4593 if (mapping_cap_account_dirty(mapping)) {
4594 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4595 nr_pages);
4596 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4597 nr_pages);
4598 }
4599 }
4600
b1b0deab
CG
4601 if (PageWriteback(page)) {
4602 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4603 nr_pages);
4604 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4605 nr_pages);
4606 }
4607
4608 /*
4609 * It is safe to change page->mem_cgroup here because the page
4610 * is referenced, charged, and isolated - we can't race with
4611 * uncharging, charging, migration, or LRU putback.
4612 */
4613
4614 /* caller should have done css_get */
4615 page->mem_cgroup = to;
4616 spin_unlock_irqrestore(&from->move_lock, flags);
4617
4618 ret = 0;
4619
4620 local_irq_disable();
4621 mem_cgroup_charge_statistics(to, page, nr_pages);
4622 memcg_check_events(to, page);
4623 mem_cgroup_charge_statistics(from, page, -nr_pages);
4624 memcg_check_events(from, page);
4625 local_irq_enable();
4626out_unlock:
4627 unlock_page(page);
4628out:
4629 return ret;
4630}
4631
8d32ff84 4632static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4633 unsigned long addr, pte_t ptent, union mc_target *target)
4634{
4635 struct page *page = NULL;
8d32ff84 4636 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4637 swp_entry_t ent = { .val = 0 };
4638
4639 if (pte_present(ptent))
4640 page = mc_handle_present_pte(vma, addr, ptent);
4641 else if (is_swap_pte(ptent))
4642 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4643 else if (pte_none(ptent))
87946a72 4644 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4645
4646 if (!page && !ent.val)
8d32ff84 4647 return ret;
02491447 4648 if (page) {
02491447 4649 /*
0a31bc97 4650 * Do only loose check w/o serialization.
1306a85a 4651 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4652 * not under LRU exclusion.
02491447 4653 */
1306a85a 4654 if (page->mem_cgroup == mc.from) {
02491447
DN
4655 ret = MC_TARGET_PAGE;
4656 if (target)
4657 target->page = page;
4658 }
4659 if (!ret || !target)
4660 put_page(page);
4661 }
90254a65
DN
4662 /* There is a swap entry and a page doesn't exist or isn't charged */
4663 if (ent.val && !ret &&
34c00c31 4664 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4665 ret = MC_TARGET_SWAP;
4666 if (target)
4667 target->ent = ent;
4ffef5fe 4668 }
4ffef5fe
DN
4669 return ret;
4670}
4671
12724850
NH
4672#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4673/*
4674 * We don't consider swapping or file mapped pages because THP does not
4675 * support them for now.
4676 * Caller should make sure that pmd_trans_huge(pmd) is true.
4677 */
4678static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4679 unsigned long addr, pmd_t pmd, union mc_target *target)
4680{
4681 struct page *page = NULL;
12724850
NH
4682 enum mc_target_type ret = MC_TARGET_NONE;
4683
4684 page = pmd_page(pmd);
309381fe 4685 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4686 if (!(mc.flags & MOVE_ANON))
12724850 4687 return ret;
1306a85a 4688 if (page->mem_cgroup == mc.from) {
12724850
NH
4689 ret = MC_TARGET_PAGE;
4690 if (target) {
4691 get_page(page);
4692 target->page = page;
4693 }
4694 }
4695 return ret;
4696}
4697#else
4698static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4699 unsigned long addr, pmd_t pmd, union mc_target *target)
4700{
4701 return MC_TARGET_NONE;
4702}
4703#endif
4704
4ffef5fe
DN
4705static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4706 unsigned long addr, unsigned long end,
4707 struct mm_walk *walk)
4708{
26bcd64a 4709 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4710 pte_t *pte;
4711 spinlock_t *ptl;
4712
bf929152 4713 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4714 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4715 mc.precharge += HPAGE_PMD_NR;
bf929152 4716 spin_unlock(ptl);
1a5a9906 4717 return 0;
12724850 4718 }
03319327 4719
45f83cef
AA
4720 if (pmd_trans_unstable(pmd))
4721 return 0;
4ffef5fe
DN
4722 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4723 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4724 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4725 mc.precharge++; /* increment precharge temporarily */
4726 pte_unmap_unlock(pte - 1, ptl);
4727 cond_resched();
4728
7dc74be0
DN
4729 return 0;
4730}
4731
4ffef5fe
DN
4732static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4733{
4734 unsigned long precharge;
4ffef5fe 4735
26bcd64a
NH
4736 struct mm_walk mem_cgroup_count_precharge_walk = {
4737 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4738 .mm = mm,
4739 };
dfe076b0 4740 down_read(&mm->mmap_sem);
26bcd64a 4741 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4742 up_read(&mm->mmap_sem);
4ffef5fe
DN
4743
4744 precharge = mc.precharge;
4745 mc.precharge = 0;
4746
4747 return precharge;
4748}
4749
4ffef5fe
DN
4750static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4751{
dfe076b0
DN
4752 unsigned long precharge = mem_cgroup_count_precharge(mm);
4753
4754 VM_BUG_ON(mc.moving_task);
4755 mc.moving_task = current;
4756 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4757}
4758
dfe076b0
DN
4759/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4760static void __mem_cgroup_clear_mc(void)
4ffef5fe 4761{
2bd9bb20
KH
4762 struct mem_cgroup *from = mc.from;
4763 struct mem_cgroup *to = mc.to;
4764
4ffef5fe 4765 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4766 if (mc.precharge) {
00501b53 4767 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4768 mc.precharge = 0;
4769 }
4770 /*
4771 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4772 * we must uncharge here.
4773 */
4774 if (mc.moved_charge) {
00501b53 4775 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4776 mc.moved_charge = 0;
4ffef5fe 4777 }
483c30b5
DN
4778 /* we must fixup refcnts and charges */
4779 if (mc.moved_swap) {
483c30b5 4780 /* uncharge swap account from the old cgroup */
ce00a967 4781 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4782 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4783
05b84301 4784 /*
3e32cb2e
JW
4785 * we charged both to->memory and to->memsw, so we
4786 * should uncharge to->memory.
05b84301 4787 */
ce00a967 4788 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4789 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4790
e8ea14cc 4791 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4792
4050377b 4793 /* we've already done css_get(mc.to) */
483c30b5
DN
4794 mc.moved_swap = 0;
4795 }
dfe076b0
DN
4796 memcg_oom_recover(from);
4797 memcg_oom_recover(to);
4798 wake_up_all(&mc.waitq);
4799}
4800
4801static void mem_cgroup_clear_mc(void)
4802{
dfe076b0
DN
4803 /*
4804 * we must clear moving_task before waking up waiters at the end of
4805 * task migration.
4806 */
4807 mc.moving_task = NULL;
4808 __mem_cgroup_clear_mc();
2bd9bb20 4809 spin_lock(&mc.lock);
4ffef5fe
DN
4810 mc.from = NULL;
4811 mc.to = NULL;
2bd9bb20 4812 spin_unlock(&mc.lock);
4ffef5fe
DN
4813}
4814
1f7dd3e5 4815static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4816{
1f7dd3e5
TH
4817 struct cgroup_subsys_state *css;
4818 struct mem_cgroup *memcg;
9f2115f9 4819 struct mem_cgroup *from;
4530eddb 4820 struct task_struct *leader, *p;
9f2115f9 4821 struct mm_struct *mm;
1dfab5ab 4822 unsigned long move_flags;
9f2115f9 4823 int ret = 0;
7dc74be0 4824
1f7dd3e5
TH
4825 /* charge immigration isn't supported on the default hierarchy */
4826 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4827 return 0;
4828
4530eddb
TH
4829 /*
4830 * Multi-process migrations only happen on the default hierarchy
4831 * where charge immigration is not used. Perform charge
4832 * immigration if @tset contains a leader and whine if there are
4833 * multiple.
4834 */
4835 p = NULL;
1f7dd3e5 4836 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4837 WARN_ON_ONCE(p);
4838 p = leader;
1f7dd3e5 4839 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4840 }
4841 if (!p)
4842 return 0;
4843
1f7dd3e5
TH
4844 /*
4845 * We are now commited to this value whatever it is. Changes in this
4846 * tunable will only affect upcoming migrations, not the current one.
4847 * So we need to save it, and keep it going.
4848 */
4849 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4850 if (!move_flags)
4851 return 0;
4852
9f2115f9
TH
4853 from = mem_cgroup_from_task(p);
4854
4855 VM_BUG_ON(from == memcg);
4856
4857 mm = get_task_mm(p);
4858 if (!mm)
4859 return 0;
4860 /* We move charges only when we move a owner of the mm */
4861 if (mm->owner == p) {
4862 VM_BUG_ON(mc.from);
4863 VM_BUG_ON(mc.to);
4864 VM_BUG_ON(mc.precharge);
4865 VM_BUG_ON(mc.moved_charge);
4866 VM_BUG_ON(mc.moved_swap);
4867
4868 spin_lock(&mc.lock);
4869 mc.from = from;
4870 mc.to = memcg;
4871 mc.flags = move_flags;
4872 spin_unlock(&mc.lock);
4873 /* We set mc.moving_task later */
4874
4875 ret = mem_cgroup_precharge_mc(mm);
4876 if (ret)
4877 mem_cgroup_clear_mc();
7dc74be0 4878 }
9f2115f9 4879 mmput(mm);
7dc74be0
DN
4880 return ret;
4881}
4882
1f7dd3e5 4883static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4884{
4e2f245d
JW
4885 if (mc.to)
4886 mem_cgroup_clear_mc();
7dc74be0
DN
4887}
4888
4ffef5fe
DN
4889static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4890 unsigned long addr, unsigned long end,
4891 struct mm_walk *walk)
7dc74be0 4892{
4ffef5fe 4893 int ret = 0;
26bcd64a 4894 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4895 pte_t *pte;
4896 spinlock_t *ptl;
12724850
NH
4897 enum mc_target_type target_type;
4898 union mc_target target;
4899 struct page *page;
4ffef5fe 4900
12724850
NH
4901 /*
4902 * We don't take compound_lock() here but no race with splitting thp
4903 * happens because:
4904 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4905 * under splitting, which means there's no concurrent thp split,
4906 * - if another thread runs into split_huge_page() just after we
4907 * entered this if-block, the thread must wait for page table lock
4908 * to be unlocked in __split_huge_page_splitting(), where the main
4909 * part of thp split is not executed yet.
4910 */
bf929152 4911 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4912 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4913 spin_unlock(ptl);
12724850
NH
4914 return 0;
4915 }
4916 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4917 if (target_type == MC_TARGET_PAGE) {
4918 page = target.page;
4919 if (!isolate_lru_page(page)) {
12724850 4920 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4921 mc.from, mc.to)) {
12724850
NH
4922 mc.precharge -= HPAGE_PMD_NR;
4923 mc.moved_charge += HPAGE_PMD_NR;
4924 }
4925 putback_lru_page(page);
4926 }
4927 put_page(page);
4928 }
bf929152 4929 spin_unlock(ptl);
1a5a9906 4930 return 0;
12724850
NH
4931 }
4932
45f83cef
AA
4933 if (pmd_trans_unstable(pmd))
4934 return 0;
4ffef5fe
DN
4935retry:
4936 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4937 for (; addr != end; addr += PAGE_SIZE) {
4938 pte_t ptent = *(pte++);
02491447 4939 swp_entry_t ent;
4ffef5fe
DN
4940
4941 if (!mc.precharge)
4942 break;
4943
8d32ff84 4944 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4945 case MC_TARGET_PAGE:
4946 page = target.page;
4947 if (isolate_lru_page(page))
4948 goto put;
1306a85a 4949 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 4950 mc.precharge--;
854ffa8d
DN
4951 /* we uncharge from mc.from later. */
4952 mc.moved_charge++;
4ffef5fe
DN
4953 }
4954 putback_lru_page(page);
8d32ff84 4955put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4956 put_page(page);
4957 break;
02491447
DN
4958 case MC_TARGET_SWAP:
4959 ent = target.ent;
e91cbb42 4960 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4961 mc.precharge--;
483c30b5
DN
4962 /* we fixup refcnts and charges later. */
4963 mc.moved_swap++;
4964 }
02491447 4965 break;
4ffef5fe
DN
4966 default:
4967 break;
4968 }
4969 }
4970 pte_unmap_unlock(pte - 1, ptl);
4971 cond_resched();
4972
4973 if (addr != end) {
4974 /*
4975 * We have consumed all precharges we got in can_attach().
4976 * We try charge one by one, but don't do any additional
4977 * charges to mc.to if we have failed in charge once in attach()
4978 * phase.
4979 */
854ffa8d 4980 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4981 if (!ret)
4982 goto retry;
4983 }
4984
4985 return ret;
4986}
4987
4988static void mem_cgroup_move_charge(struct mm_struct *mm)
4989{
26bcd64a
NH
4990 struct mm_walk mem_cgroup_move_charge_walk = {
4991 .pmd_entry = mem_cgroup_move_charge_pte_range,
4992 .mm = mm,
4993 };
4ffef5fe
DN
4994
4995 lru_add_drain_all();
312722cb
JW
4996 /*
4997 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4998 * move_lock while we're moving its pages to another memcg.
4999 * Then wait for already started RCU-only updates to finish.
5000 */
5001 atomic_inc(&mc.from->moving_account);
5002 synchronize_rcu();
dfe076b0
DN
5003retry:
5004 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5005 /*
5006 * Someone who are holding the mmap_sem might be waiting in
5007 * waitq. So we cancel all extra charges, wake up all waiters,
5008 * and retry. Because we cancel precharges, we might not be able
5009 * to move enough charges, but moving charge is a best-effort
5010 * feature anyway, so it wouldn't be a big problem.
5011 */
5012 __mem_cgroup_clear_mc();
5013 cond_resched();
5014 goto retry;
5015 }
26bcd64a
NH
5016 /*
5017 * When we have consumed all precharges and failed in doing
5018 * additional charge, the page walk just aborts.
5019 */
5020 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5021 up_read(&mm->mmap_sem);
312722cb 5022 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5023}
5024
1f7dd3e5 5025static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 5026{
1f7dd3e5
TH
5027 struct cgroup_subsys_state *css;
5028 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 5029 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5030
dfe076b0 5031 if (mm) {
a433658c
KM
5032 if (mc.to)
5033 mem_cgroup_move_charge(mm);
dfe076b0
DN
5034 mmput(mm);
5035 }
a433658c
KM
5036 if (mc.to)
5037 mem_cgroup_clear_mc();
67e465a7 5038}
5cfb80a7 5039#else /* !CONFIG_MMU */
1f7dd3e5 5040static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5041{
5042 return 0;
5043}
1f7dd3e5 5044static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5045{
5046}
1f7dd3e5 5047static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
5048{
5049}
5050#endif
67e465a7 5051
f00baae7
TH
5052/*
5053 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5054 * to verify whether we're attached to the default hierarchy on each mount
5055 * attempt.
f00baae7 5056 */
eb95419b 5057static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5058{
5059 /*
aa6ec29b 5060 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5061 * guarantees that @root doesn't have any children, so turning it
5062 * on for the root memcg is enough.
5063 */
9e10a130 5064 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5065 root_mem_cgroup->use_hierarchy = true;
5066 else
5067 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5068}
5069
241994ed
JW
5070static u64 memory_current_read(struct cgroup_subsys_state *css,
5071 struct cftype *cft)
5072{
f5fc3c5d
JW
5073 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5074
5075 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5076}
5077
5078static int memory_low_show(struct seq_file *m, void *v)
5079{
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5081 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5082
5083 if (low == PAGE_COUNTER_MAX)
d2973697 5084 seq_puts(m, "max\n");
241994ed
JW
5085 else
5086 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5087
5088 return 0;
5089}
5090
5091static ssize_t memory_low_write(struct kernfs_open_file *of,
5092 char *buf, size_t nbytes, loff_t off)
5093{
5094 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5095 unsigned long low;
5096 int err;
5097
5098 buf = strstrip(buf);
d2973697 5099 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5100 if (err)
5101 return err;
5102
5103 memcg->low = low;
5104
5105 return nbytes;
5106}
5107
5108static int memory_high_show(struct seq_file *m, void *v)
5109{
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5111 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5112
5113 if (high == PAGE_COUNTER_MAX)
d2973697 5114 seq_puts(m, "max\n");
241994ed
JW
5115 else
5116 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5117
5118 return 0;
5119}
5120
5121static ssize_t memory_high_write(struct kernfs_open_file *of,
5122 char *buf, size_t nbytes, loff_t off)
5123{
5124 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8b42fc47 5125 unsigned long nr_pages;
241994ed
JW
5126 unsigned long high;
5127 int err;
5128
5129 buf = strstrip(buf);
d2973697 5130 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5131 if (err)
5132 return err;
5133
5134 memcg->high = high;
5135
8b42fc47
JW
5136 nr_pages = page_counter_read(&memcg->memory);
5137 if (nr_pages > high)
5138 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5139 GFP_KERNEL, true);
5140
2529bb3a 5141 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5142 return nbytes;
5143}
5144
5145static int memory_max_show(struct seq_file *m, void *v)
5146{
5147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5148 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5149
5150 if (max == PAGE_COUNTER_MAX)
d2973697 5151 seq_puts(m, "max\n");
241994ed
JW
5152 else
5153 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5154
5155 return 0;
5156}
5157
5158static ssize_t memory_max_write(struct kernfs_open_file *of,
5159 char *buf, size_t nbytes, loff_t off)
5160{
5161 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
0ccab5b1
JW
5162 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5163 bool drained = false;
241994ed
JW
5164 unsigned long max;
5165 int err;
5166
5167 buf = strstrip(buf);
d2973697 5168 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5169 if (err)
5170 return err;
5171
0ccab5b1
JW
5172 xchg(&memcg->memory.limit, max);
5173
5174 for (;;) {
5175 unsigned long nr_pages = page_counter_read(&memcg->memory);
5176
5177 if (nr_pages <= max)
5178 break;
5179
5180 if (signal_pending(current)) {
5181 err = -EINTR;
5182 break;
5183 }
5184
5185 if (!drained) {
5186 drain_all_stock(memcg);
5187 drained = true;
5188 continue;
5189 }
5190
5191 if (nr_reclaims) {
5192 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5193 GFP_KERNEL, true))
5194 nr_reclaims--;
5195 continue;
5196 }
5197
5198 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5199 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5200 break;
5201 }
241994ed 5202
2529bb3a 5203 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5204 return nbytes;
5205}
5206
5207static int memory_events_show(struct seq_file *m, void *v)
5208{
5209 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5210
5211 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5212 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5213 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5214 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5215
5216 return 0;
5217}
5218
5219static struct cftype memory_files[] = {
5220 {
5221 .name = "current",
f5fc3c5d 5222 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5223 .read_u64 = memory_current_read,
5224 },
5225 {
5226 .name = "low",
5227 .flags = CFTYPE_NOT_ON_ROOT,
5228 .seq_show = memory_low_show,
5229 .write = memory_low_write,
5230 },
5231 {
5232 .name = "high",
5233 .flags = CFTYPE_NOT_ON_ROOT,
5234 .seq_show = memory_high_show,
5235 .write = memory_high_write,
5236 },
5237 {
5238 .name = "max",
5239 .flags = CFTYPE_NOT_ON_ROOT,
5240 .seq_show = memory_max_show,
5241 .write = memory_max_write,
5242 },
5243 {
5244 .name = "events",
5245 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5246 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5247 .seq_show = memory_events_show,
5248 },
5249 { } /* terminate */
5250};
5251
073219e9 5252struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5253 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5254 .css_online = mem_cgroup_css_online,
92fb9748 5255 .css_offline = mem_cgroup_css_offline,
6df38689 5256 .css_released = mem_cgroup_css_released,
92fb9748 5257 .css_free = mem_cgroup_css_free,
1ced953b 5258 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5259 .can_attach = mem_cgroup_can_attach,
5260 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5261 .attach = mem_cgroup_move_task,
f00baae7 5262 .bind = mem_cgroup_bind,
241994ed
JW
5263 .dfl_cftypes = memory_files,
5264 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5265 .early_init = 0,
8cdea7c0 5266};
c077719b 5267
241994ed
JW
5268/**
5269 * mem_cgroup_low - check if memory consumption is below the normal range
5270 * @root: the highest ancestor to consider
5271 * @memcg: the memory cgroup to check
5272 *
5273 * Returns %true if memory consumption of @memcg, and that of all
5274 * configurable ancestors up to @root, is below the normal range.
5275 */
5276bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5277{
5278 if (mem_cgroup_disabled())
5279 return false;
5280
5281 /*
5282 * The toplevel group doesn't have a configurable range, so
5283 * it's never low when looked at directly, and it is not
5284 * considered an ancestor when assessing the hierarchy.
5285 */
5286
5287 if (memcg == root_mem_cgroup)
5288 return false;
5289
4e54dede 5290 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5291 return false;
5292
5293 while (memcg != root) {
5294 memcg = parent_mem_cgroup(memcg);
5295
5296 if (memcg == root_mem_cgroup)
5297 break;
5298
4e54dede 5299 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5300 return false;
5301 }
5302 return true;
5303}
5304
00501b53
JW
5305/**
5306 * mem_cgroup_try_charge - try charging a page
5307 * @page: page to charge
5308 * @mm: mm context of the victim
5309 * @gfp_mask: reclaim mode
5310 * @memcgp: charged memcg return
5311 *
5312 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5313 * pages according to @gfp_mask if necessary.
5314 *
5315 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5316 * Otherwise, an error code is returned.
5317 *
5318 * After page->mapping has been set up, the caller must finalize the
5319 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5320 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5321 */
5322int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5323 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5324{
5325 struct mem_cgroup *memcg = NULL;
5326 unsigned int nr_pages = 1;
5327 int ret = 0;
5328
5329 if (mem_cgroup_disabled())
5330 goto out;
5331
5332 if (PageSwapCache(page)) {
00501b53
JW
5333 /*
5334 * Every swap fault against a single page tries to charge the
5335 * page, bail as early as possible. shmem_unuse() encounters
5336 * already charged pages, too. The USED bit is protected by
5337 * the page lock, which serializes swap cache removal, which
5338 * in turn serializes uncharging.
5339 */
e993d905 5340 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5341 if (page->mem_cgroup)
00501b53 5342 goto out;
e993d905
VD
5343
5344 if (do_swap_account) {
5345 swp_entry_t ent = { .val = page_private(page), };
5346 unsigned short id = lookup_swap_cgroup_id(ent);
5347
5348 rcu_read_lock();
5349 memcg = mem_cgroup_from_id(id);
5350 if (memcg && !css_tryget_online(&memcg->css))
5351 memcg = NULL;
5352 rcu_read_unlock();
5353 }
00501b53
JW
5354 }
5355
5356 if (PageTransHuge(page)) {
5357 nr_pages <<= compound_order(page);
5358 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5359 }
5360
00501b53
JW
5361 if (!memcg)
5362 memcg = get_mem_cgroup_from_mm(mm);
5363
5364 ret = try_charge(memcg, gfp_mask, nr_pages);
5365
5366 css_put(&memcg->css);
00501b53
JW
5367out:
5368 *memcgp = memcg;
5369 return ret;
5370}
5371
5372/**
5373 * mem_cgroup_commit_charge - commit a page charge
5374 * @page: page to charge
5375 * @memcg: memcg to charge the page to
5376 * @lrucare: page might be on LRU already
5377 *
5378 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5379 * after page->mapping has been set up. This must happen atomically
5380 * as part of the page instantiation, i.e. under the page table lock
5381 * for anonymous pages, under the page lock for page and swap cache.
5382 *
5383 * In addition, the page must not be on the LRU during the commit, to
5384 * prevent racing with task migration. If it might be, use @lrucare.
5385 *
5386 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5387 */
5388void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5389 bool lrucare)
5390{
5391 unsigned int nr_pages = 1;
5392
5393 VM_BUG_ON_PAGE(!page->mapping, page);
5394 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5395
5396 if (mem_cgroup_disabled())
5397 return;
5398 /*
5399 * Swap faults will attempt to charge the same page multiple
5400 * times. But reuse_swap_page() might have removed the page
5401 * from swapcache already, so we can't check PageSwapCache().
5402 */
5403 if (!memcg)
5404 return;
5405
6abb5a86
JW
5406 commit_charge(page, memcg, lrucare);
5407
00501b53
JW
5408 if (PageTransHuge(page)) {
5409 nr_pages <<= compound_order(page);
5410 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5411 }
5412
6abb5a86
JW
5413 local_irq_disable();
5414 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5415 memcg_check_events(memcg, page);
5416 local_irq_enable();
00501b53
JW
5417
5418 if (do_swap_account && PageSwapCache(page)) {
5419 swp_entry_t entry = { .val = page_private(page) };
5420 /*
5421 * The swap entry might not get freed for a long time,
5422 * let's not wait for it. The page already received a
5423 * memory+swap charge, drop the swap entry duplicate.
5424 */
5425 mem_cgroup_uncharge_swap(entry);
5426 }
5427}
5428
5429/**
5430 * mem_cgroup_cancel_charge - cancel a page charge
5431 * @page: page to charge
5432 * @memcg: memcg to charge the page to
5433 *
5434 * Cancel a charge transaction started by mem_cgroup_try_charge().
5435 */
5436void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5437{
5438 unsigned int nr_pages = 1;
5439
5440 if (mem_cgroup_disabled())
5441 return;
5442 /*
5443 * Swap faults will attempt to charge the same page multiple
5444 * times. But reuse_swap_page() might have removed the page
5445 * from swapcache already, so we can't check PageSwapCache().
5446 */
5447 if (!memcg)
5448 return;
5449
5450 if (PageTransHuge(page)) {
5451 nr_pages <<= compound_order(page);
5452 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5453 }
5454
5455 cancel_charge(memcg, nr_pages);
5456}
5457
747db954 5458static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5459 unsigned long nr_anon, unsigned long nr_file,
5460 unsigned long nr_huge, struct page *dummy_page)
5461{
18eca2e6 5462 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5463 unsigned long flags;
5464
ce00a967 5465 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5466 page_counter_uncharge(&memcg->memory, nr_pages);
5467 if (do_swap_account)
5468 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5469 memcg_oom_recover(memcg);
5470 }
747db954
JW
5471
5472 local_irq_save(flags);
5473 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5474 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5475 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5476 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5477 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5478 memcg_check_events(memcg, dummy_page);
5479 local_irq_restore(flags);
e8ea14cc
JW
5480
5481 if (!mem_cgroup_is_root(memcg))
18eca2e6 5482 css_put_many(&memcg->css, nr_pages);
747db954
JW
5483}
5484
5485static void uncharge_list(struct list_head *page_list)
5486{
5487 struct mem_cgroup *memcg = NULL;
747db954
JW
5488 unsigned long nr_anon = 0;
5489 unsigned long nr_file = 0;
5490 unsigned long nr_huge = 0;
5491 unsigned long pgpgout = 0;
747db954
JW
5492 struct list_head *next;
5493 struct page *page;
5494
5495 next = page_list->next;
5496 do {
5497 unsigned int nr_pages = 1;
747db954
JW
5498
5499 page = list_entry(next, struct page, lru);
5500 next = page->lru.next;
5501
5502 VM_BUG_ON_PAGE(PageLRU(page), page);
5503 VM_BUG_ON_PAGE(page_count(page), page);
5504
1306a85a 5505 if (!page->mem_cgroup)
747db954
JW
5506 continue;
5507
5508 /*
5509 * Nobody should be changing or seriously looking at
1306a85a 5510 * page->mem_cgroup at this point, we have fully
29833315 5511 * exclusive access to the page.
747db954
JW
5512 */
5513
1306a85a 5514 if (memcg != page->mem_cgroup) {
747db954 5515 if (memcg) {
18eca2e6
JW
5516 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5517 nr_huge, page);
5518 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5519 }
1306a85a 5520 memcg = page->mem_cgroup;
747db954
JW
5521 }
5522
5523 if (PageTransHuge(page)) {
5524 nr_pages <<= compound_order(page);
5525 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5526 nr_huge += nr_pages;
5527 }
5528
5529 if (PageAnon(page))
5530 nr_anon += nr_pages;
5531 else
5532 nr_file += nr_pages;
5533
1306a85a 5534 page->mem_cgroup = NULL;
747db954
JW
5535
5536 pgpgout++;
5537 } while (next != page_list);
5538
5539 if (memcg)
18eca2e6
JW
5540 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5541 nr_huge, page);
747db954
JW
5542}
5543
0a31bc97
JW
5544/**
5545 * mem_cgroup_uncharge - uncharge a page
5546 * @page: page to uncharge
5547 *
5548 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5549 * mem_cgroup_commit_charge().
5550 */
5551void mem_cgroup_uncharge(struct page *page)
5552{
0a31bc97
JW
5553 if (mem_cgroup_disabled())
5554 return;
5555
747db954 5556 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5557 if (!page->mem_cgroup)
0a31bc97
JW
5558 return;
5559
747db954
JW
5560 INIT_LIST_HEAD(&page->lru);
5561 uncharge_list(&page->lru);
5562}
0a31bc97 5563
747db954
JW
5564/**
5565 * mem_cgroup_uncharge_list - uncharge a list of page
5566 * @page_list: list of pages to uncharge
5567 *
5568 * Uncharge a list of pages previously charged with
5569 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5570 */
5571void mem_cgroup_uncharge_list(struct list_head *page_list)
5572{
5573 if (mem_cgroup_disabled())
5574 return;
0a31bc97 5575
747db954
JW
5576 if (!list_empty(page_list))
5577 uncharge_list(page_list);
0a31bc97
JW
5578}
5579
5580/**
45637bab 5581 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5582 * @oldpage: currently charged page
5583 * @newpage: page to transfer the charge to
0a31bc97
JW
5584 *
5585 * Migrate the charge from @oldpage to @newpage.
5586 *
5587 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5588 * Either or both pages might be on the LRU already.
0a31bc97 5589 */
45637bab 5590void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5591{
29833315 5592 struct mem_cgroup *memcg;
0a31bc97
JW
5593 int isolated;
5594
5595 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5596 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5597 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5598 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5599 newpage);
0a31bc97
JW
5600
5601 if (mem_cgroup_disabled())
5602 return;
5603
5604 /* Page cache replacement: new page already charged? */
1306a85a 5605 if (newpage->mem_cgroup)
0a31bc97
JW
5606 return;
5607
45637bab 5608 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5609 memcg = oldpage->mem_cgroup;
29833315 5610 if (!memcg)
0a31bc97
JW
5611 return;
5612
45637bab 5613 lock_page_lru(oldpage, &isolated);
1306a85a 5614 oldpage->mem_cgroup = NULL;
45637bab 5615 unlock_page_lru(oldpage, isolated);
0a31bc97 5616
45637bab 5617 commit_charge(newpage, memcg, true);
0a31bc97
JW
5618}
5619
2d11085e 5620/*
1081312f
MH
5621 * subsys_initcall() for memory controller.
5622 *
5623 * Some parts like hotcpu_notifier() have to be initialized from this context
5624 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5625 * everything that doesn't depend on a specific mem_cgroup structure should
5626 * be initialized from here.
2d11085e
MH
5627 */
5628static int __init mem_cgroup_init(void)
5629{
95a045f6
JW
5630 int cpu, node;
5631
2d11085e 5632 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5633
5634 for_each_possible_cpu(cpu)
5635 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5636 drain_local_stock);
5637
5638 for_each_node(node) {
5639 struct mem_cgroup_tree_per_node *rtpn;
5640 int zone;
5641
5642 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5643 node_online(node) ? node : NUMA_NO_NODE);
5644
5645 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5646 struct mem_cgroup_tree_per_zone *rtpz;
5647
5648 rtpz = &rtpn->rb_tree_per_zone[zone];
5649 rtpz->rb_root = RB_ROOT;
5650 spin_lock_init(&rtpz->lock);
5651 }
5652 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5653 }
5654
2d11085e
MH
5655 return 0;
5656}
5657subsys_initcall(mem_cgroup_init);
21afa38e
JW
5658
5659#ifdef CONFIG_MEMCG_SWAP
5660/**
5661 * mem_cgroup_swapout - transfer a memsw charge to swap
5662 * @page: page whose memsw charge to transfer
5663 * @entry: swap entry to move the charge to
5664 *
5665 * Transfer the memsw charge of @page to @entry.
5666 */
5667void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5668{
5669 struct mem_cgroup *memcg;
5670 unsigned short oldid;
5671
5672 VM_BUG_ON_PAGE(PageLRU(page), page);
5673 VM_BUG_ON_PAGE(page_count(page), page);
5674
5675 if (!do_swap_account)
5676 return;
5677
5678 memcg = page->mem_cgroup;
5679
5680 /* Readahead page, never charged */
5681 if (!memcg)
5682 return;
5683
5684 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5685 VM_BUG_ON_PAGE(oldid, page);
5686 mem_cgroup_swap_statistics(memcg, true);
5687
5688 page->mem_cgroup = NULL;
5689
5690 if (!mem_cgroup_is_root(memcg))
5691 page_counter_uncharge(&memcg->memory, 1);
5692
ce9ce665
SAS
5693 /*
5694 * Interrupts should be disabled here because the caller holds the
5695 * mapping->tree_lock lock which is taken with interrupts-off. It is
5696 * important here to have the interrupts disabled because it is the
5697 * only synchronisation we have for udpating the per-CPU variables.
5698 */
5699 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5700 mem_cgroup_charge_statistics(memcg, page, -1);
5701 memcg_check_events(memcg, page);
5702}
5703
5704/**
5705 * mem_cgroup_uncharge_swap - uncharge a swap entry
5706 * @entry: swap entry to uncharge
5707 *
5708 * Drop the memsw charge associated with @entry.
5709 */
5710void mem_cgroup_uncharge_swap(swp_entry_t entry)
5711{
5712 struct mem_cgroup *memcg;
5713 unsigned short id;
5714
5715 if (!do_swap_account)
5716 return;
5717
5718 id = swap_cgroup_record(entry, 0);
5719 rcu_read_lock();
adbe427b 5720 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5721 if (memcg) {
5722 if (!mem_cgroup_is_root(memcg))
5723 page_counter_uncharge(&memcg->memsw, 1);
5724 mem_cgroup_swap_statistics(memcg, false);
5725 css_put(&memcg->css);
5726 }
5727 rcu_read_unlock();
5728}
5729
5730/* for remember boot option*/
5731#ifdef CONFIG_MEMCG_SWAP_ENABLED
5732static int really_do_swap_account __initdata = 1;
5733#else
5734static int really_do_swap_account __initdata;
5735#endif
5736
5737static int __init enable_swap_account(char *s)
5738{
5739 if (!strcmp(s, "1"))
5740 really_do_swap_account = 1;
5741 else if (!strcmp(s, "0"))
5742 really_do_swap_account = 0;
5743 return 1;
5744}
5745__setup("swapaccount=", enable_swap_account);
5746
5747static struct cftype memsw_cgroup_files[] = {
5748 {
5749 .name = "memsw.usage_in_bytes",
5750 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5751 .read_u64 = mem_cgroup_read_u64,
5752 },
5753 {
5754 .name = "memsw.max_usage_in_bytes",
5755 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5756 .write = mem_cgroup_reset,
5757 .read_u64 = mem_cgroup_read_u64,
5758 },
5759 {
5760 .name = "memsw.limit_in_bytes",
5761 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5762 .write = mem_cgroup_write,
5763 .read_u64 = mem_cgroup_read_u64,
5764 },
5765 {
5766 .name = "memsw.failcnt",
5767 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5768 .write = mem_cgroup_reset,
5769 .read_u64 = mem_cgroup_read_u64,
5770 },
5771 { }, /* terminate */
5772};
5773
5774static int __init mem_cgroup_swap_init(void)
5775{
5776 if (!mem_cgroup_disabled() && really_do_swap_account) {
5777 do_swap_account = 1;
5778 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5779 memsw_cgroup_files));
5780 }
5781 return 0;
5782}
5783subsys_initcall(mem_cgroup_swap_init);
5784
5785#endif /* CONFIG_MEMCG_SWAP */