mm: memcontrol: fix cgroup creation failure after many small jobs
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
a181b0e8 79#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 80static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 81struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
af7c4b0e
JW
90static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
b070e65c 93 "rss_huge",
af7c4b0e 94 "mapped_file",
c4843a75 95 "dirty",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
af7c4b0e
JW
100static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105};
106
58cf188e
SZ
107static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113};
114
a0db00fc
KS
115#define THRESHOLDS_EVENTS_TARGET 128
116#define SOFTLIMIT_EVENTS_TARGET 1024
117#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 118
bb4cc1a8
AM
119/*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127};
128
129struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131};
132
133struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135};
136
137static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
9490ff27
KH
139/* for OOM */
140struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143};
2e72b634 144
79bd9814
TH
145/*
146 * cgroup_event represents events which userspace want to receive.
147 */
3bc942f3 148struct mem_cgroup_event {
79bd9814 149 /*
59b6f873 150 * memcg which the event belongs to.
79bd9814 151 */
59b6f873 152 struct mem_cgroup *memcg;
79bd9814
TH
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
fba94807
TH
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
59b6f873 166 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 167 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
59b6f873 173 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 174 struct eventfd_ctx *eventfd);
79bd9814
TH
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183};
184
c0ff4b85
R
185static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 187
7dc74be0
DN
188/* Stuffs for move charges at task migration. */
189/*
1dfab5ab 190 * Types of charges to be moved.
7dc74be0 191 */
1dfab5ab
JW
192#define MOVE_ANON 0x1U
193#define MOVE_FILE 0x2U
194#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 195
4ffef5fe
DN
196/* "mc" and its members are protected by cgroup_mutex */
197static struct move_charge_struct {
b1dd693e 198 spinlock_t lock; /* for from, to */
52526076 199 struct mm_struct *mm;
4ffef5fe
DN
200 struct mem_cgroup *from;
201 struct mem_cgroup *to;
1dfab5ab 202 unsigned long flags;
4ffef5fe 203 unsigned long precharge;
854ffa8d 204 unsigned long moved_charge;
483c30b5 205 unsigned long moved_swap;
8033b97c
DN
206 struct task_struct *moving_task; /* a task moving charges */
207 wait_queue_head_t waitq; /* a waitq for other context */
208} mc = {
2bd9bb20 209 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
210 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
211};
4ffef5fe 212
4e416953
BS
213/*
214 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
215 * limit reclaim to prevent infinite loops, if they ever occur.
216 */
a0db00fc 217#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 218#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 219
217bc319
KH
220enum charge_type {
221 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 222 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 223 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 224 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
225 NR_CHARGE_TYPE,
226};
227
8c7c6e34 228/* for encoding cft->private value on file */
86ae53e1
GC
229enum res_type {
230 _MEM,
231 _MEMSWAP,
232 _OOM_TYPE,
510fc4e1 233 _KMEM,
86ae53e1
GC
234};
235
a0db00fc
KS
236#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
237#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 238#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
239/* Used for OOM nofiier */
240#define OOM_CONTROL (0)
8c7c6e34 241
0999821b
GC
242/*
243 * The memcg_create_mutex will be held whenever a new cgroup is created.
244 * As a consequence, any change that needs to protect against new child cgroups
245 * appearing has to hold it as well.
246 */
247static DEFINE_MUTEX(memcg_create_mutex);
248
70ddf637
AV
249/* Some nice accessors for the vmpressure. */
250struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251{
252 if (!memcg)
253 memcg = root_mem_cgroup;
254 return &memcg->vmpressure;
255}
256
257struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258{
259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260}
261
7ffc0edc
MH
262static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
263{
264 return (memcg == root_mem_cgroup);
265}
266
4219b2da
LZ
267/*
268 * We restrict the id in the range of [1, 65535], so it can fit into
269 * an unsigned short.
270 */
271#define MEM_CGROUP_ID_MAX USHRT_MAX
272
34c00c31
LZ
273static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
274{
8627c775 275 return memcg->id.id;
34c00c31
LZ
276}
277
e1aab161 278/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 279#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 280
e1aab161
GC
281void sock_update_memcg(struct sock *sk)
282{
376be5ff 283 if (mem_cgroup_sockets_enabled) {
e1aab161 284 struct mem_cgroup *memcg;
3f134619 285 struct cg_proto *cg_proto;
e1aab161
GC
286
287 BUG_ON(!sk->sk_prot->proto_cgroup);
288
f3f511e1
GC
289 /* Socket cloning can throw us here with sk_cgrp already
290 * filled. It won't however, necessarily happen from
291 * process context. So the test for root memcg given
292 * the current task's memcg won't help us in this case.
293 *
294 * Respecting the original socket's memcg is a better
295 * decision in this case.
296 */
297 if (sk->sk_cgrp) {
298 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 299 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
300 return;
301 }
302
e1aab161
GC
303 rcu_read_lock();
304 memcg = mem_cgroup_from_task(current);
3f134619 305 cg_proto = sk->sk_prot->proto_cgroup(memcg);
e752eb68 306 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
ec903c0c 307 css_tryget_online(&memcg->css)) {
3f134619 308 sk->sk_cgrp = cg_proto;
e1aab161
GC
309 }
310 rcu_read_unlock();
311 }
312}
313EXPORT_SYMBOL(sock_update_memcg);
314
315void sock_release_memcg(struct sock *sk)
316{
376be5ff 317 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
318 struct mem_cgroup *memcg;
319 WARN_ON(!sk->sk_cgrp->memcg);
320 memcg = sk->sk_cgrp->memcg;
5347e5ae 321 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
322 }
323}
d1a4c0b3
GC
324
325struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
326{
327 if (!memcg || mem_cgroup_is_root(memcg))
328 return NULL;
329
2e685cad 330 return &memcg->tcp_mem;
d1a4c0b3
GC
331}
332EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 333
3f134619
GC
334#endif
335
a8964b9b 336#ifdef CONFIG_MEMCG_KMEM
55007d84 337/*
f7ce3190 338 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
339 * The main reason for not using cgroup id for this:
340 * this works better in sparse environments, where we have a lot of memcgs,
341 * but only a few kmem-limited. Or also, if we have, for instance, 200
342 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
343 * 200 entry array for that.
55007d84 344 *
dbcf73e2
VD
345 * The current size of the caches array is stored in memcg_nr_cache_ids. It
346 * will double each time we have to increase it.
55007d84 347 */
dbcf73e2
VD
348static DEFINE_IDA(memcg_cache_ida);
349int memcg_nr_cache_ids;
749c5415 350
05257a1a
VD
351/* Protects memcg_nr_cache_ids */
352static DECLARE_RWSEM(memcg_cache_ids_sem);
353
354void memcg_get_cache_ids(void)
355{
356 down_read(&memcg_cache_ids_sem);
357}
358
359void memcg_put_cache_ids(void)
360{
361 up_read(&memcg_cache_ids_sem);
362}
363
55007d84
GC
364/*
365 * MIN_SIZE is different than 1, because we would like to avoid going through
366 * the alloc/free process all the time. In a small machine, 4 kmem-limited
367 * cgroups is a reasonable guess. In the future, it could be a parameter or
368 * tunable, but that is strictly not necessary.
369 *
b8627835 370 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
371 * this constant directly from cgroup, but it is understandable that this is
372 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 373 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
374 * increase ours as well if it increases.
375 */
376#define MEMCG_CACHES_MIN_SIZE 4
b8627835 377#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 378
d7f25f8a
GC
379/*
380 * A lot of the calls to the cache allocation functions are expected to be
381 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
382 * conditional to this static branch, we'll have to allow modules that does
383 * kmem_cache_alloc and the such to see this symbol as well
384 */
a8964b9b 385struct static_key memcg_kmem_enabled_key;
d7f25f8a 386EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 387
a8964b9b
GC
388#endif /* CONFIG_MEMCG_KMEM */
389
f64c3f54 390static struct mem_cgroup_per_zone *
e231875b 391mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 392{
e231875b
JZ
393 int nid = zone_to_nid(zone);
394 int zid = zone_idx(zone);
395
54f72fe0 396 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
397}
398
ad7fa852
TH
399/**
400 * mem_cgroup_css_from_page - css of the memcg associated with a page
401 * @page: page of interest
402 *
403 * If memcg is bound to the default hierarchy, css of the memcg associated
404 * with @page is returned. The returned css remains associated with @page
405 * until it is released.
406 *
407 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
408 * is returned.
409 *
410 * XXX: The above description of behavior on the default hierarchy isn't
411 * strictly true yet as replace_page_cache_page() can modify the
412 * association before @page is released even on the default hierarchy;
413 * however, the current and planned usages don't mix the the two functions
414 * and replace_page_cache_page() will soon be updated to make the invariant
415 * actually true.
416 */
417struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
418{
419 struct mem_cgroup *memcg;
420
421 rcu_read_lock();
422
423 memcg = page->mem_cgroup;
424
9e10a130 425 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
426 memcg = root_mem_cgroup;
427
428 rcu_read_unlock();
429 return &memcg->css;
430}
431
2fc04524
VD
432/**
433 * page_cgroup_ino - return inode number of the memcg a page is charged to
434 * @page: the page
435 *
436 * Look up the closest online ancestor of the memory cgroup @page is charged to
437 * and return its inode number or 0 if @page is not charged to any cgroup. It
438 * is safe to call this function without holding a reference to @page.
439 *
440 * Note, this function is inherently racy, because there is nothing to prevent
441 * the cgroup inode from getting torn down and potentially reallocated a moment
442 * after page_cgroup_ino() returns, so it only should be used by callers that
443 * do not care (such as procfs interfaces).
444 */
445ino_t page_cgroup_ino(struct page *page)
446{
447 struct mem_cgroup *memcg;
448 unsigned long ino = 0;
449
450 rcu_read_lock();
451 memcg = READ_ONCE(page->mem_cgroup);
452 while (memcg && !(memcg->css.flags & CSS_ONLINE))
453 memcg = parent_mem_cgroup(memcg);
454 if (memcg)
455 ino = cgroup_ino(memcg->css.cgroup);
456 rcu_read_unlock();
457 return ino;
458}
459
f64c3f54 460static struct mem_cgroup_per_zone *
e231875b 461mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 462{
97a6c37b
JW
463 int nid = page_to_nid(page);
464 int zid = page_zonenum(page);
f64c3f54 465
e231875b 466 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
467}
468
bb4cc1a8
AM
469static struct mem_cgroup_tree_per_zone *
470soft_limit_tree_node_zone(int nid, int zid)
471{
472 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
473}
474
475static struct mem_cgroup_tree_per_zone *
476soft_limit_tree_from_page(struct page *page)
477{
478 int nid = page_to_nid(page);
479 int zid = page_zonenum(page);
480
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482}
483
cf2c8127
JW
484static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
485 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 486 unsigned long new_usage_in_excess)
bb4cc1a8
AM
487{
488 struct rb_node **p = &mctz->rb_root.rb_node;
489 struct rb_node *parent = NULL;
490 struct mem_cgroup_per_zone *mz_node;
491
492 if (mz->on_tree)
493 return;
494
495 mz->usage_in_excess = new_usage_in_excess;
496 if (!mz->usage_in_excess)
497 return;
498 while (*p) {
499 parent = *p;
500 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
501 tree_node);
502 if (mz->usage_in_excess < mz_node->usage_in_excess)
503 p = &(*p)->rb_left;
504 /*
505 * We can't avoid mem cgroups that are over their soft
506 * limit by the same amount
507 */
508 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
509 p = &(*p)->rb_right;
510 }
511 rb_link_node(&mz->tree_node, parent, p);
512 rb_insert_color(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = true;
514}
515
cf2c8127
JW
516static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
517 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
518{
519 if (!mz->on_tree)
520 return;
521 rb_erase(&mz->tree_node, &mctz->rb_root);
522 mz->on_tree = false;
523}
524
cf2c8127
JW
525static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
526 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 527{
0a31bc97
JW
528 unsigned long flags;
529
530 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 531 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 532 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
533}
534
3e32cb2e
JW
535static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
536{
537 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 538 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
539 unsigned long excess = 0;
540
541 if (nr_pages > soft_limit)
542 excess = nr_pages - soft_limit;
543
544 return excess;
545}
bb4cc1a8
AM
546
547static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
548{
3e32cb2e 549 unsigned long excess;
bb4cc1a8
AM
550 struct mem_cgroup_per_zone *mz;
551 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 552
e231875b 553 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
554 /*
555 * Necessary to update all ancestors when hierarchy is used.
556 * because their event counter is not touched.
557 */
558 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 559 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 560 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
561 /*
562 * We have to update the tree if mz is on RB-tree or
563 * mem is over its softlimit.
564 */
565 if (excess || mz->on_tree) {
0a31bc97
JW
566 unsigned long flags;
567
568 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
569 /* if on-tree, remove it */
570 if (mz->on_tree)
cf2c8127 571 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
572 /*
573 * Insert again. mz->usage_in_excess will be updated.
574 * If excess is 0, no tree ops.
575 */
cf2c8127 576 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 577 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
578 }
579 }
580}
581
582static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
583{
bb4cc1a8 584 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
585 struct mem_cgroup_per_zone *mz;
586 int nid, zid;
bb4cc1a8 587
e231875b
JZ
588 for_each_node(nid) {
589 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
590 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
591 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 592 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
593 }
594 }
595}
596
597static struct mem_cgroup_per_zone *
598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
599{
600 struct rb_node *rightmost = NULL;
601 struct mem_cgroup_per_zone *mz;
602
603retry:
604 mz = NULL;
605 rightmost = rb_last(&mctz->rb_root);
606 if (!rightmost)
607 goto done; /* Nothing to reclaim from */
608
609 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
610 /*
611 * Remove the node now but someone else can add it back,
612 * we will to add it back at the end of reclaim to its correct
613 * position in the tree.
614 */
cf2c8127 615 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 616 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 617 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
618 goto retry;
619done:
620 return mz;
621}
622
623static struct mem_cgroup_per_zone *
624mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
625{
626 struct mem_cgroup_per_zone *mz;
627
0a31bc97 628 spin_lock_irq(&mctz->lock);
bb4cc1a8 629 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 630 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
631 return mz;
632}
633
711d3d2c 634/*
484ebb3b
GT
635 * Return page count for single (non recursive) @memcg.
636 *
711d3d2c
KH
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 642 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 652 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
653 * implemented.
654 */
484ebb3b
GT
655static unsigned long
656mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 657{
7a159cc9 658 long val = 0;
c62b1a3b 659 int cpu;
c62b1a3b 660
484ebb3b 661 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 662 for_each_possible_cpu(cpu)
c0ff4b85 663 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
664 /*
665 * Summing races with updates, so val may be negative. Avoid exposing
666 * transient negative values.
667 */
668 if (val < 0)
669 val = 0;
c62b1a3b
KH
670 return val;
671}
672
c0ff4b85 673static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
674 enum mem_cgroup_events_index idx)
675{
676 unsigned long val = 0;
677 int cpu;
678
733a572e 679 for_each_possible_cpu(cpu)
c0ff4b85 680 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
681 return val;
682}
683
c0ff4b85 684static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 685 struct page *page,
0a31bc97 686 int nr_pages)
d52aa412 687{
b2402857
KH
688 /*
689 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
690 * counted as CACHE even if it's on ANON LRU.
691 */
0a31bc97 692 if (PageAnon(page))
b2402857 693 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 694 nr_pages);
d52aa412 695 else
b2402857 696 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 697 nr_pages);
55e462b0 698
b070e65c
DR
699 if (PageTransHuge(page))
700 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
701 nr_pages);
702
e401f176
KH
703 /* pagein of a big page is an event. So, ignore page size */
704 if (nr_pages > 0)
c0ff4b85 705 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 706 else {
c0ff4b85 707 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
708 nr_pages = -nr_pages; /* for event */
709 }
e401f176 710
13114716 711 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
712}
713
e231875b
JZ
714static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
715 int nid,
716 unsigned int lru_mask)
bb2a0de9 717{
e231875b 718 unsigned long nr = 0;
889976db
YH
719 int zid;
720
e231875b 721 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 722
e231875b
JZ
723 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
724 struct mem_cgroup_per_zone *mz;
725 enum lru_list lru;
726
727 for_each_lru(lru) {
728 if (!(BIT(lru) & lru_mask))
729 continue;
730 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
731 nr += mz->lru_size[lru];
732 }
733 }
734 return nr;
889976db 735}
bb2a0de9 736
c0ff4b85 737static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 738 unsigned int lru_mask)
6d12e2d8 739{
e231875b 740 unsigned long nr = 0;
889976db 741 int nid;
6d12e2d8 742
31aaea4a 743 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
744 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
745 return nr;
d52aa412
KH
746}
747
f53d7ce3
JW
748static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
749 enum mem_cgroup_events_target target)
7a159cc9
JW
750{
751 unsigned long val, next;
752
13114716 753 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 754 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 755 /* from time_after() in jiffies.h */
f53d7ce3
JW
756 if ((long)next - (long)val < 0) {
757 switch (target) {
758 case MEM_CGROUP_TARGET_THRESH:
759 next = val + THRESHOLDS_EVENTS_TARGET;
760 break;
bb4cc1a8
AM
761 case MEM_CGROUP_TARGET_SOFTLIMIT:
762 next = val + SOFTLIMIT_EVENTS_TARGET;
763 break;
f53d7ce3
JW
764 case MEM_CGROUP_TARGET_NUMAINFO:
765 next = val + NUMAINFO_EVENTS_TARGET;
766 break;
767 default:
768 break;
769 }
770 __this_cpu_write(memcg->stat->targets[target], next);
771 return true;
7a159cc9 772 }
f53d7ce3 773 return false;
d2265e6f
KH
774}
775
776/*
777 * Check events in order.
778 *
779 */
c0ff4b85 780static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
781{
782 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
783 if (unlikely(mem_cgroup_event_ratelimit(memcg,
784 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 785 bool do_softlimit;
82b3f2a7 786 bool do_numainfo __maybe_unused;
f53d7ce3 787
bb4cc1a8
AM
788 do_softlimit = mem_cgroup_event_ratelimit(memcg,
789 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
790#if MAX_NUMNODES > 1
791 do_numainfo = mem_cgroup_event_ratelimit(memcg,
792 MEM_CGROUP_TARGET_NUMAINFO);
793#endif
c0ff4b85 794 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
795 if (unlikely(do_softlimit))
796 mem_cgroup_update_tree(memcg, page);
453a9bf3 797#if MAX_NUMNODES > 1
f53d7ce3 798 if (unlikely(do_numainfo))
c0ff4b85 799 atomic_inc(&memcg->numainfo_events);
453a9bf3 800#endif
0a31bc97 801 }
d2265e6f
KH
802}
803
cf475ad2 804struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 805{
31a78f23
BS
806 /*
807 * mm_update_next_owner() may clear mm->owner to NULL
808 * if it races with swapoff, page migration, etc.
809 * So this can be called with p == NULL.
810 */
811 if (unlikely(!p))
812 return NULL;
813
073219e9 814 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 815}
33398cf2 816EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 817
df381975 818static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 819{
c0ff4b85 820 struct mem_cgroup *memcg = NULL;
0b7f569e 821
54595fe2
KH
822 rcu_read_lock();
823 do {
6f6acb00
MH
824 /*
825 * Page cache insertions can happen withou an
826 * actual mm context, e.g. during disk probing
827 * on boot, loopback IO, acct() writes etc.
828 */
829 if (unlikely(!mm))
df381975 830 memcg = root_mem_cgroup;
6f6acb00
MH
831 else {
832 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
833 if (unlikely(!memcg))
834 memcg = root_mem_cgroup;
835 }
ec903c0c 836 } while (!css_tryget_online(&memcg->css));
54595fe2 837 rcu_read_unlock();
c0ff4b85 838 return memcg;
54595fe2
KH
839}
840
5660048c
JW
841/**
842 * mem_cgroup_iter - iterate over memory cgroup hierarchy
843 * @root: hierarchy root
844 * @prev: previously returned memcg, NULL on first invocation
845 * @reclaim: cookie for shared reclaim walks, NULL for full walks
846 *
847 * Returns references to children of the hierarchy below @root, or
848 * @root itself, or %NULL after a full round-trip.
849 *
850 * Caller must pass the return value in @prev on subsequent
851 * invocations for reference counting, or use mem_cgroup_iter_break()
852 * to cancel a hierarchy walk before the round-trip is complete.
853 *
854 * Reclaimers can specify a zone and a priority level in @reclaim to
855 * divide up the memcgs in the hierarchy among all concurrent
856 * reclaimers operating on the same zone and priority.
857 */
694fbc0f 858struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 859 struct mem_cgroup *prev,
694fbc0f 860 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 861{
33398cf2 862 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 863 struct cgroup_subsys_state *css = NULL;
9f3a0d09 864 struct mem_cgroup *memcg = NULL;
5ac8fb31 865 struct mem_cgroup *pos = NULL;
711d3d2c 866
694fbc0f
AM
867 if (mem_cgroup_disabled())
868 return NULL;
5660048c 869
9f3a0d09
JW
870 if (!root)
871 root = root_mem_cgroup;
7d74b06f 872
9f3a0d09 873 if (prev && !reclaim)
5ac8fb31 874 pos = prev;
14067bb3 875
9f3a0d09
JW
876 if (!root->use_hierarchy && root != root_mem_cgroup) {
877 if (prev)
5ac8fb31 878 goto out;
694fbc0f 879 return root;
9f3a0d09 880 }
14067bb3 881
542f85f9 882 rcu_read_lock();
5f578161 883
5ac8fb31
JW
884 if (reclaim) {
885 struct mem_cgroup_per_zone *mz;
886
887 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
888 iter = &mz->iter[reclaim->priority];
889
890 if (prev && reclaim->generation != iter->generation)
891 goto out_unlock;
892
6df38689 893 while (1) {
4db0c3c2 894 pos = READ_ONCE(iter->position);
6df38689
VD
895 if (!pos || css_tryget(&pos->css))
896 break;
5ac8fb31 897 /*
6df38689
VD
898 * css reference reached zero, so iter->position will
899 * be cleared by ->css_released. However, we should not
900 * rely on this happening soon, because ->css_released
901 * is called from a work queue, and by busy-waiting we
902 * might block it. So we clear iter->position right
903 * away.
5ac8fb31 904 */
6df38689
VD
905 (void)cmpxchg(&iter->position, pos, NULL);
906 }
5ac8fb31
JW
907 }
908
909 if (pos)
910 css = &pos->css;
911
912 for (;;) {
913 css = css_next_descendant_pre(css, &root->css);
914 if (!css) {
915 /*
916 * Reclaimers share the hierarchy walk, and a
917 * new one might jump in right at the end of
918 * the hierarchy - make sure they see at least
919 * one group and restart from the beginning.
920 */
921 if (!prev)
922 continue;
923 break;
527a5ec9 924 }
7d74b06f 925
5ac8fb31
JW
926 /*
927 * Verify the css and acquire a reference. The root
928 * is provided by the caller, so we know it's alive
929 * and kicking, and don't take an extra reference.
930 */
931 memcg = mem_cgroup_from_css(css);
14067bb3 932
5ac8fb31
JW
933 if (css == &root->css)
934 break;
14067bb3 935
b2052564 936 if (css_tryget(css)) {
5ac8fb31
JW
937 /*
938 * Make sure the memcg is initialized:
939 * mem_cgroup_css_online() orders the the
940 * initialization against setting the flag.
941 */
942 if (smp_load_acquire(&memcg->initialized))
943 break;
542f85f9 944
5ac8fb31 945 css_put(css);
527a5ec9 946 }
9f3a0d09 947
5ac8fb31 948 memcg = NULL;
9f3a0d09 949 }
5ac8fb31
JW
950
951 if (reclaim) {
5ac8fb31 952 /*
6df38689
VD
953 * The position could have already been updated by a competing
954 * thread, so check that the value hasn't changed since we read
955 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 956 */
6df38689
VD
957 (void)cmpxchg(&iter->position, pos, memcg);
958
5ac8fb31
JW
959 if (pos)
960 css_put(&pos->css);
961
962 if (!memcg)
963 iter->generation++;
964 else if (!prev)
965 reclaim->generation = iter->generation;
9f3a0d09 966 }
5ac8fb31 967
542f85f9
MH
968out_unlock:
969 rcu_read_unlock();
5ac8fb31 970out:
c40046f3
MH
971 if (prev && prev != root)
972 css_put(&prev->css);
973
9f3a0d09 974 return memcg;
14067bb3 975}
7d74b06f 976
5660048c
JW
977/**
978 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
979 * @root: hierarchy root
980 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
981 */
982void mem_cgroup_iter_break(struct mem_cgroup *root,
983 struct mem_cgroup *prev)
9f3a0d09
JW
984{
985 if (!root)
986 root = root_mem_cgroup;
987 if (prev && prev != root)
988 css_put(&prev->css);
989}
7d74b06f 990
6df38689
VD
991static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
992{
993 struct mem_cgroup *memcg = dead_memcg;
994 struct mem_cgroup_reclaim_iter *iter;
995 struct mem_cgroup_per_zone *mz;
996 int nid, zid;
997 int i;
998
999 while ((memcg = parent_mem_cgroup(memcg))) {
1000 for_each_node(nid) {
1001 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1002 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1003 for (i = 0; i <= DEF_PRIORITY; i++) {
1004 iter = &mz->iter[i];
1005 cmpxchg(&iter->position,
1006 dead_memcg, NULL);
1007 }
1008 }
1009 }
1010 }
1011}
1012
9f3a0d09
JW
1013/*
1014 * Iteration constructs for visiting all cgroups (under a tree). If
1015 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1016 * be used for reference counting.
1017 */
1018#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1019 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1020 iter != NULL; \
527a5ec9 1021 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1022
9f3a0d09 1023#define for_each_mem_cgroup(iter) \
527a5ec9 1024 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1025 iter != NULL; \
527a5ec9 1026 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1027
925b7673
JW
1028/**
1029 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1030 * @zone: zone of the wanted lruvec
fa9add64 1031 * @memcg: memcg of the wanted lruvec
925b7673
JW
1032 *
1033 * Returns the lru list vector holding pages for the given @zone and
1034 * @mem. This can be the global zone lruvec, if the memory controller
1035 * is disabled.
1036 */
1037struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1038 struct mem_cgroup *memcg)
1039{
1040 struct mem_cgroup_per_zone *mz;
bea8c150 1041 struct lruvec *lruvec;
925b7673 1042
bea8c150
HD
1043 if (mem_cgroup_disabled()) {
1044 lruvec = &zone->lruvec;
1045 goto out;
1046 }
925b7673 1047
e231875b 1048 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1049 lruvec = &mz->lruvec;
1050out:
1051 /*
1052 * Since a node can be onlined after the mem_cgroup was created,
1053 * we have to be prepared to initialize lruvec->zone here;
1054 * and if offlined then reonlined, we need to reinitialize it.
1055 */
1056 if (unlikely(lruvec->zone != zone))
1057 lruvec->zone = zone;
1058 return lruvec;
925b7673
JW
1059}
1060
925b7673 1061/**
dfe0e773 1062 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1063 * @page: the page
fa9add64 1064 * @zone: zone of the page
dfe0e773
JW
1065 *
1066 * This function is only safe when following the LRU page isolation
1067 * and putback protocol: the LRU lock must be held, and the page must
1068 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1069 */
fa9add64 1070struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1071{
08e552c6 1072 struct mem_cgroup_per_zone *mz;
925b7673 1073 struct mem_cgroup *memcg;
bea8c150 1074 struct lruvec *lruvec;
6d12e2d8 1075
bea8c150
HD
1076 if (mem_cgroup_disabled()) {
1077 lruvec = &zone->lruvec;
1078 goto out;
1079 }
925b7673 1080
1306a85a 1081 memcg = page->mem_cgroup;
7512102c 1082 /*
dfe0e773 1083 * Swapcache readahead pages are added to the LRU - and
29833315 1084 * possibly migrated - before they are charged.
7512102c 1085 */
29833315
JW
1086 if (!memcg)
1087 memcg = root_mem_cgroup;
7512102c 1088
e231875b 1089 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1090 lruvec = &mz->lruvec;
1091out:
1092 /*
1093 * Since a node can be onlined after the mem_cgroup was created,
1094 * we have to be prepared to initialize lruvec->zone here;
1095 * and if offlined then reonlined, we need to reinitialize it.
1096 */
1097 if (unlikely(lruvec->zone != zone))
1098 lruvec->zone = zone;
1099 return lruvec;
08e552c6 1100}
b69408e8 1101
925b7673 1102/**
fa9add64
HD
1103 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1104 * @lruvec: mem_cgroup per zone lru vector
1105 * @lru: index of lru list the page is sitting on
1106 * @nr_pages: positive when adding or negative when removing
925b7673 1107 *
fa9add64
HD
1108 * This function must be called when a page is added to or removed from an
1109 * lru list.
3f58a829 1110 */
fa9add64
HD
1111void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1112 int nr_pages)
3f58a829
MK
1113{
1114 struct mem_cgroup_per_zone *mz;
fa9add64 1115 unsigned long *lru_size;
3f58a829
MK
1116
1117 if (mem_cgroup_disabled())
1118 return;
1119
fa9add64
HD
1120 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1121 lru_size = mz->lru_size + lru;
1122 *lru_size += nr_pages;
1123 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1124}
544122e5 1125
2314b42d 1126bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1127{
2314b42d 1128 struct mem_cgroup *task_memcg;
158e0a2d 1129 struct task_struct *p;
ffbdccf5 1130 bool ret;
4c4a2214 1131
158e0a2d 1132 p = find_lock_task_mm(task);
de077d22 1133 if (p) {
2314b42d 1134 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1135 task_unlock(p);
1136 } else {
1137 /*
1138 * All threads may have already detached their mm's, but the oom
1139 * killer still needs to detect if they have already been oom
1140 * killed to prevent needlessly killing additional tasks.
1141 */
ffbdccf5 1142 rcu_read_lock();
2314b42d
JW
1143 task_memcg = mem_cgroup_from_task(task);
1144 css_get(&task_memcg->css);
ffbdccf5 1145 rcu_read_unlock();
de077d22 1146 }
2314b42d
JW
1147 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1148 css_put(&task_memcg->css);
4c4a2214
DR
1149 return ret;
1150}
1151
3e32cb2e 1152#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1153 container_of(counter, struct mem_cgroup, member)
1154
19942822 1155/**
9d11ea9f 1156 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1157 * @memcg: the memory cgroup
19942822 1158 *
9d11ea9f 1159 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1160 * pages.
19942822 1161 */
c0ff4b85 1162static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1163{
3e32cb2e
JW
1164 unsigned long margin = 0;
1165 unsigned long count;
1166 unsigned long limit;
9d11ea9f 1167
3e32cb2e 1168 count = page_counter_read(&memcg->memory);
4db0c3c2 1169 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1170 if (count < limit)
1171 margin = limit - count;
1172
1173 if (do_swap_account) {
1174 count = page_counter_read(&memcg->memsw);
4db0c3c2 1175 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1176 if (count <= limit)
1177 margin = min(margin, limit - count);
1178 }
1179
1180 return margin;
19942822
JW
1181}
1182
32047e2a 1183/*
bdcbb659 1184 * A routine for checking "mem" is under move_account() or not.
32047e2a 1185 *
bdcbb659
QH
1186 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1187 * moving cgroups. This is for waiting at high-memory pressure
1188 * caused by "move".
32047e2a 1189 */
c0ff4b85 1190static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1191{
2bd9bb20
KH
1192 struct mem_cgroup *from;
1193 struct mem_cgroup *to;
4b534334 1194 bool ret = false;
2bd9bb20
KH
1195 /*
1196 * Unlike task_move routines, we access mc.to, mc.from not under
1197 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1198 */
1199 spin_lock(&mc.lock);
1200 from = mc.from;
1201 to = mc.to;
1202 if (!from)
1203 goto unlock;
3e92041d 1204
2314b42d
JW
1205 ret = mem_cgroup_is_descendant(from, memcg) ||
1206 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1207unlock:
1208 spin_unlock(&mc.lock);
4b534334
KH
1209 return ret;
1210}
1211
c0ff4b85 1212static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1213{
1214 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1215 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1216 DEFINE_WAIT(wait);
1217 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1218 /* moving charge context might have finished. */
1219 if (mc.moving_task)
1220 schedule();
1221 finish_wait(&mc.waitq, &wait);
1222 return true;
1223 }
1224 }
1225 return false;
1226}
1227
58cf188e 1228#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1229/**
58cf188e 1230 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1231 * @memcg: The memory cgroup that went over limit
1232 * @p: Task that is going to be killed
1233 *
1234 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1235 * enabled
1236 */
1237void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1238{
e61734c5 1239 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1240 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1241 struct mem_cgroup *iter;
1242 unsigned int i;
e222432b 1243
08088cb9 1244 mutex_lock(&oom_info_lock);
e222432b
BS
1245 rcu_read_lock();
1246
2415b9f5
BV
1247 if (p) {
1248 pr_info("Task in ");
1249 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1250 pr_cont(" killed as a result of limit of ");
1251 } else {
1252 pr_info("Memory limit reached of cgroup ");
1253 }
1254
e61734c5 1255 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1256 pr_cont("\n");
e222432b 1257
e222432b
BS
1258 rcu_read_unlock();
1259
3e32cb2e
JW
1260 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1261 K((u64)page_counter_read(&memcg->memory)),
1262 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1263 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1264 K((u64)page_counter_read(&memcg->memsw)),
1265 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1266 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1267 K((u64)page_counter_read(&memcg->kmem)),
1268 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1269
1270 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1271 pr_info("Memory cgroup stats for ");
1272 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1273 pr_cont(":");
1274
1275 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1276 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1277 continue;
484ebb3b 1278 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1279 K(mem_cgroup_read_stat(iter, i)));
1280 }
1281
1282 for (i = 0; i < NR_LRU_LISTS; i++)
1283 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1284 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1285
1286 pr_cont("\n");
1287 }
08088cb9 1288 mutex_unlock(&oom_info_lock);
e222432b
BS
1289}
1290
81d39c20
KH
1291/*
1292 * This function returns the number of memcg under hierarchy tree. Returns
1293 * 1(self count) if no children.
1294 */
c0ff4b85 1295static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1296{
1297 int num = 0;
7d74b06f
KH
1298 struct mem_cgroup *iter;
1299
c0ff4b85 1300 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1301 num++;
81d39c20
KH
1302 return num;
1303}
1304
a63d83f4
DR
1305/*
1306 * Return the memory (and swap, if configured) limit for a memcg.
1307 */
3e32cb2e 1308static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1309{
3e32cb2e 1310 unsigned long limit;
f3e8eb70 1311
3e32cb2e 1312 limit = memcg->memory.limit;
9a5a8f19 1313 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1314 unsigned long memsw_limit;
9a5a8f19 1315
3e32cb2e
JW
1316 memsw_limit = memcg->memsw.limit;
1317 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1318 }
9a5a8f19 1319 return limit;
a63d83f4
DR
1320}
1321
0ccab5b1 1322static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1323 int order)
9cbb78bb 1324{
6e0fc46d
DR
1325 struct oom_control oc = {
1326 .zonelist = NULL,
1327 .nodemask = NULL,
1328 .gfp_mask = gfp_mask,
1329 .order = order,
6e0fc46d 1330 };
9cbb78bb
DR
1331 struct mem_cgroup *iter;
1332 unsigned long chosen_points = 0;
1333 unsigned long totalpages;
1334 unsigned int points = 0;
1335 struct task_struct *chosen = NULL;
1336
dc56401f
JW
1337 mutex_lock(&oom_lock);
1338
876aafbf 1339 /*
465adcf1
DR
1340 * If current has a pending SIGKILL or is exiting, then automatically
1341 * select it. The goal is to allow it to allocate so that it may
1342 * quickly exit and free its memory.
876aafbf 1343 */
d003f371 1344 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1345 mark_oom_victim(current);
dc56401f 1346 goto unlock;
876aafbf
DR
1347 }
1348
6e0fc46d 1349 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1350 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1351 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1352 struct css_task_iter it;
9cbb78bb
DR
1353 struct task_struct *task;
1354
72ec7029
TH
1355 css_task_iter_start(&iter->css, &it);
1356 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1357 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1358 case OOM_SCAN_SELECT:
1359 if (chosen)
1360 put_task_struct(chosen);
1361 chosen = task;
1362 chosen_points = ULONG_MAX;
1363 get_task_struct(chosen);
1364 /* fall through */
1365 case OOM_SCAN_CONTINUE:
1366 continue;
1367 case OOM_SCAN_ABORT:
72ec7029 1368 css_task_iter_end(&it);
9cbb78bb
DR
1369 mem_cgroup_iter_break(memcg, iter);
1370 if (chosen)
1371 put_task_struct(chosen);
dc56401f 1372 goto unlock;
9cbb78bb
DR
1373 case OOM_SCAN_OK:
1374 break;
1375 };
1376 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1377 if (!points || points < chosen_points)
1378 continue;
1379 /* Prefer thread group leaders for display purposes */
1380 if (points == chosen_points &&
1381 thread_group_leader(chosen))
1382 continue;
1383
1384 if (chosen)
1385 put_task_struct(chosen);
1386 chosen = task;
1387 chosen_points = points;
1388 get_task_struct(chosen);
9cbb78bb 1389 }
72ec7029 1390 css_task_iter_end(&it);
9cbb78bb
DR
1391 }
1392
dc56401f
JW
1393 if (chosen) {
1394 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1395 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1396 "Memory cgroup out of memory");
dc56401f
JW
1397 }
1398unlock:
1399 mutex_unlock(&oom_lock);
0ccab5b1 1400 return chosen;
9cbb78bb
DR
1401}
1402
ae6e71d3
MC
1403#if MAX_NUMNODES > 1
1404
4d0c066d
KH
1405/**
1406 * test_mem_cgroup_node_reclaimable
dad7557e 1407 * @memcg: the target memcg
4d0c066d
KH
1408 * @nid: the node ID to be checked.
1409 * @noswap : specify true here if the user wants flle only information.
1410 *
1411 * This function returns whether the specified memcg contains any
1412 * reclaimable pages on a node. Returns true if there are any reclaimable
1413 * pages in the node.
1414 */
c0ff4b85 1415static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1416 int nid, bool noswap)
1417{
c0ff4b85 1418 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1419 return true;
1420 if (noswap || !total_swap_pages)
1421 return false;
c0ff4b85 1422 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1423 return true;
1424 return false;
1425
1426}
889976db
YH
1427
1428/*
1429 * Always updating the nodemask is not very good - even if we have an empty
1430 * list or the wrong list here, we can start from some node and traverse all
1431 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1432 *
1433 */
c0ff4b85 1434static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1435{
1436 int nid;
453a9bf3
KH
1437 /*
1438 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1439 * pagein/pageout changes since the last update.
1440 */
c0ff4b85 1441 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1442 return;
c0ff4b85 1443 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1444 return;
1445
889976db 1446 /* make a nodemask where this memcg uses memory from */
31aaea4a 1447 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1448
31aaea4a 1449 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1450
c0ff4b85
R
1451 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1452 node_clear(nid, memcg->scan_nodes);
889976db 1453 }
453a9bf3 1454
c0ff4b85
R
1455 atomic_set(&memcg->numainfo_events, 0);
1456 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1457}
1458
1459/*
1460 * Selecting a node where we start reclaim from. Because what we need is just
1461 * reducing usage counter, start from anywhere is O,K. Considering
1462 * memory reclaim from current node, there are pros. and cons.
1463 *
1464 * Freeing memory from current node means freeing memory from a node which
1465 * we'll use or we've used. So, it may make LRU bad. And if several threads
1466 * hit limits, it will see a contention on a node. But freeing from remote
1467 * node means more costs for memory reclaim because of memory latency.
1468 *
1469 * Now, we use round-robin. Better algorithm is welcomed.
1470 */
c0ff4b85 1471int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1472{
1473 int node;
1474
c0ff4b85
R
1475 mem_cgroup_may_update_nodemask(memcg);
1476 node = memcg->last_scanned_node;
889976db 1477
c0ff4b85 1478 node = next_node(node, memcg->scan_nodes);
889976db 1479 if (node == MAX_NUMNODES)
c0ff4b85 1480 node = first_node(memcg->scan_nodes);
889976db
YH
1481 /*
1482 * We call this when we hit limit, not when pages are added to LRU.
1483 * No LRU may hold pages because all pages are UNEVICTABLE or
1484 * memcg is too small and all pages are not on LRU. In that case,
1485 * we use curret node.
1486 */
1487 if (unlikely(node == MAX_NUMNODES))
1488 node = numa_node_id();
1489
c0ff4b85 1490 memcg->last_scanned_node = node;
889976db
YH
1491 return node;
1492}
889976db 1493#else
c0ff4b85 1494int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1495{
1496 return 0;
1497}
1498#endif
1499
0608f43d
AM
1500static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1501 struct zone *zone,
1502 gfp_t gfp_mask,
1503 unsigned long *total_scanned)
1504{
1505 struct mem_cgroup *victim = NULL;
1506 int total = 0;
1507 int loop = 0;
1508 unsigned long excess;
1509 unsigned long nr_scanned;
1510 struct mem_cgroup_reclaim_cookie reclaim = {
1511 .zone = zone,
1512 .priority = 0,
1513 };
1514
3e32cb2e 1515 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1516
1517 while (1) {
1518 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1519 if (!victim) {
1520 loop++;
1521 if (loop >= 2) {
1522 /*
1523 * If we have not been able to reclaim
1524 * anything, it might because there are
1525 * no reclaimable pages under this hierarchy
1526 */
1527 if (!total)
1528 break;
1529 /*
1530 * We want to do more targeted reclaim.
1531 * excess >> 2 is not to excessive so as to
1532 * reclaim too much, nor too less that we keep
1533 * coming back to reclaim from this cgroup
1534 */
1535 if (total >= (excess >> 2) ||
1536 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1537 break;
1538 }
1539 continue;
1540 }
0608f43d
AM
1541 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1542 zone, &nr_scanned);
1543 *total_scanned += nr_scanned;
3e32cb2e 1544 if (!soft_limit_excess(root_memcg))
0608f43d 1545 break;
6d61ef40 1546 }
0608f43d
AM
1547 mem_cgroup_iter_break(root_memcg, victim);
1548 return total;
6d61ef40
BS
1549}
1550
0056f4e6
JW
1551#ifdef CONFIG_LOCKDEP
1552static struct lockdep_map memcg_oom_lock_dep_map = {
1553 .name = "memcg_oom_lock",
1554};
1555#endif
1556
fb2a6fc5
JW
1557static DEFINE_SPINLOCK(memcg_oom_lock);
1558
867578cb
KH
1559/*
1560 * Check OOM-Killer is already running under our hierarchy.
1561 * If someone is running, return false.
1562 */
fb2a6fc5 1563static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1564{
79dfdacc 1565 struct mem_cgroup *iter, *failed = NULL;
a636b327 1566
fb2a6fc5
JW
1567 spin_lock(&memcg_oom_lock);
1568
9f3a0d09 1569 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1570 if (iter->oom_lock) {
79dfdacc
MH
1571 /*
1572 * this subtree of our hierarchy is already locked
1573 * so we cannot give a lock.
1574 */
79dfdacc 1575 failed = iter;
9f3a0d09
JW
1576 mem_cgroup_iter_break(memcg, iter);
1577 break;
23751be0
JW
1578 } else
1579 iter->oom_lock = true;
7d74b06f 1580 }
867578cb 1581
fb2a6fc5
JW
1582 if (failed) {
1583 /*
1584 * OK, we failed to lock the whole subtree so we have
1585 * to clean up what we set up to the failing subtree
1586 */
1587 for_each_mem_cgroup_tree(iter, memcg) {
1588 if (iter == failed) {
1589 mem_cgroup_iter_break(memcg, iter);
1590 break;
1591 }
1592 iter->oom_lock = false;
79dfdacc 1593 }
0056f4e6
JW
1594 } else
1595 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1596
1597 spin_unlock(&memcg_oom_lock);
1598
1599 return !failed;
a636b327 1600}
0b7f569e 1601
fb2a6fc5 1602static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1603{
7d74b06f
KH
1604 struct mem_cgroup *iter;
1605
fb2a6fc5 1606 spin_lock(&memcg_oom_lock);
0056f4e6 1607 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1608 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1609 iter->oom_lock = false;
fb2a6fc5 1610 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1611}
1612
c0ff4b85 1613static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1614{
1615 struct mem_cgroup *iter;
1616
c2b42d3c 1617 spin_lock(&memcg_oom_lock);
c0ff4b85 1618 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1619 iter->under_oom++;
1620 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1621}
1622
c0ff4b85 1623static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1624{
1625 struct mem_cgroup *iter;
1626
867578cb
KH
1627 /*
1628 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1629 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1630 */
c2b42d3c 1631 spin_lock(&memcg_oom_lock);
c0ff4b85 1632 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1633 if (iter->under_oom > 0)
1634 iter->under_oom--;
1635 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1636}
1637
867578cb
KH
1638static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1639
dc98df5a 1640struct oom_wait_info {
d79154bb 1641 struct mem_cgroup *memcg;
dc98df5a
KH
1642 wait_queue_t wait;
1643};
1644
1645static int memcg_oom_wake_function(wait_queue_t *wait,
1646 unsigned mode, int sync, void *arg)
1647{
d79154bb
HD
1648 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1649 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1650 struct oom_wait_info *oom_wait_info;
1651
1652 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1653 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1654
2314b42d
JW
1655 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1656 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1657 return 0;
dc98df5a
KH
1658 return autoremove_wake_function(wait, mode, sync, arg);
1659}
1660
c0ff4b85 1661static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1662{
c2b42d3c
TH
1663 /*
1664 * For the following lockless ->under_oom test, the only required
1665 * guarantee is that it must see the state asserted by an OOM when
1666 * this function is called as a result of userland actions
1667 * triggered by the notification of the OOM. This is trivially
1668 * achieved by invoking mem_cgroup_mark_under_oom() before
1669 * triggering notification.
1670 */
1671 if (memcg && memcg->under_oom)
f4b90b70 1672 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1673}
1674
3812c8c8 1675static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1676{
626ebc41 1677 if (!current->memcg_may_oom)
3812c8c8 1678 return;
867578cb 1679 /*
49426420
JW
1680 * We are in the middle of the charge context here, so we
1681 * don't want to block when potentially sitting on a callstack
1682 * that holds all kinds of filesystem and mm locks.
1683 *
1684 * Also, the caller may handle a failed allocation gracefully
1685 * (like optional page cache readahead) and so an OOM killer
1686 * invocation might not even be necessary.
1687 *
1688 * That's why we don't do anything here except remember the
1689 * OOM context and then deal with it at the end of the page
1690 * fault when the stack is unwound, the locks are released,
1691 * and when we know whether the fault was overall successful.
867578cb 1692 */
49426420 1693 css_get(&memcg->css);
626ebc41
TH
1694 current->memcg_in_oom = memcg;
1695 current->memcg_oom_gfp_mask = mask;
1696 current->memcg_oom_order = order;
3812c8c8
JW
1697}
1698
1699/**
1700 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1701 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1702 *
49426420
JW
1703 * This has to be called at the end of a page fault if the memcg OOM
1704 * handler was enabled.
3812c8c8 1705 *
49426420 1706 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1707 * sleep on a waitqueue until the userspace task resolves the
1708 * situation. Sleeping directly in the charge context with all kinds
1709 * of locks held is not a good idea, instead we remember an OOM state
1710 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1711 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1712 *
1713 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1714 * completed, %false otherwise.
3812c8c8 1715 */
49426420 1716bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1717{
626ebc41 1718 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1719 struct oom_wait_info owait;
49426420 1720 bool locked;
3812c8c8
JW
1721
1722 /* OOM is global, do not handle */
3812c8c8 1723 if (!memcg)
49426420 1724 return false;
3812c8c8 1725
c32b3cbe 1726 if (!handle || oom_killer_disabled)
49426420 1727 goto cleanup;
3812c8c8
JW
1728
1729 owait.memcg = memcg;
1730 owait.wait.flags = 0;
1731 owait.wait.func = memcg_oom_wake_function;
1732 owait.wait.private = current;
1733 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1734
3812c8c8 1735 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1736 mem_cgroup_mark_under_oom(memcg);
1737
1738 locked = mem_cgroup_oom_trylock(memcg);
1739
1740 if (locked)
1741 mem_cgroup_oom_notify(memcg);
1742
1743 if (locked && !memcg->oom_kill_disable) {
1744 mem_cgroup_unmark_under_oom(memcg);
1745 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1746 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1747 current->memcg_oom_order);
49426420 1748 } else {
3812c8c8 1749 schedule();
49426420
JW
1750 mem_cgroup_unmark_under_oom(memcg);
1751 finish_wait(&memcg_oom_waitq, &owait.wait);
1752 }
1753
1754 if (locked) {
fb2a6fc5
JW
1755 mem_cgroup_oom_unlock(memcg);
1756 /*
1757 * There is no guarantee that an OOM-lock contender
1758 * sees the wakeups triggered by the OOM kill
1759 * uncharges. Wake any sleepers explicitely.
1760 */
1761 memcg_oom_recover(memcg);
1762 }
49426420 1763cleanup:
626ebc41 1764 current->memcg_in_oom = NULL;
3812c8c8 1765 css_put(&memcg->css);
867578cb 1766 return true;
0b7f569e
KH
1767}
1768
d7365e78
JW
1769/**
1770 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1771 * @page: page that is going to change accounted state
32047e2a 1772 *
d7365e78
JW
1773 * This function must mark the beginning of an accounted page state
1774 * change to prevent double accounting when the page is concurrently
1775 * being moved to another memcg:
32047e2a 1776 *
6de22619 1777 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1778 * if (TestClearPageState(page))
1779 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1780 * mem_cgroup_end_page_stat(memcg);
d69b042f 1781 */
6de22619 1782struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1783{
1784 struct mem_cgroup *memcg;
6de22619 1785 unsigned long flags;
89c06bd5 1786
6de22619
JW
1787 /*
1788 * The RCU lock is held throughout the transaction. The fast
1789 * path can get away without acquiring the memcg->move_lock
1790 * because page moving starts with an RCU grace period.
1791 *
1792 * The RCU lock also protects the memcg from being freed when
1793 * the page state that is going to change is the only thing
1794 * preventing the page from being uncharged.
1795 * E.g. end-writeback clearing PageWriteback(), which allows
1796 * migration to go ahead and uncharge the page before the
1797 * account transaction might be complete.
1798 */
d7365e78
JW
1799 rcu_read_lock();
1800
1801 if (mem_cgroup_disabled())
1802 return NULL;
89c06bd5 1803again:
1306a85a 1804 memcg = page->mem_cgroup;
29833315 1805 if (unlikely(!memcg))
d7365e78
JW
1806 return NULL;
1807
bdcbb659 1808 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1809 return memcg;
89c06bd5 1810
6de22619 1811 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1812 if (memcg != page->mem_cgroup) {
6de22619 1813 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1814 goto again;
1815 }
6de22619
JW
1816
1817 /*
1818 * When charge migration first begins, we can have locked and
1819 * unlocked page stat updates happening concurrently. Track
1820 * the task who has the lock for mem_cgroup_end_page_stat().
1821 */
1822 memcg->move_lock_task = current;
1823 memcg->move_lock_flags = flags;
d7365e78
JW
1824
1825 return memcg;
89c06bd5 1826}
c4843a75 1827EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1828
d7365e78
JW
1829/**
1830 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1831 * @memcg: the memcg that was accounted against
d7365e78 1832 */
6de22619 1833void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1834{
6de22619
JW
1835 if (memcg && memcg->move_lock_task == current) {
1836 unsigned long flags = memcg->move_lock_flags;
1837
1838 memcg->move_lock_task = NULL;
1839 memcg->move_lock_flags = 0;
1840
1841 spin_unlock_irqrestore(&memcg->move_lock, flags);
1842 }
89c06bd5 1843
d7365e78 1844 rcu_read_unlock();
89c06bd5 1845}
c4843a75 1846EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1847
cdec2e42
KH
1848/*
1849 * size of first charge trial. "32" comes from vmscan.c's magic value.
1850 * TODO: maybe necessary to use big numbers in big irons.
1851 */
7ec99d62 1852#define CHARGE_BATCH 32U
cdec2e42
KH
1853struct memcg_stock_pcp {
1854 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1855 unsigned int nr_pages;
cdec2e42 1856 struct work_struct work;
26fe6168 1857 unsigned long flags;
a0db00fc 1858#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1859};
1860static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1861static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1862
a0956d54
SS
1863/**
1864 * consume_stock: Try to consume stocked charge on this cpu.
1865 * @memcg: memcg to consume from.
1866 * @nr_pages: how many pages to charge.
1867 *
1868 * The charges will only happen if @memcg matches the current cpu's memcg
1869 * stock, and at least @nr_pages are available in that stock. Failure to
1870 * service an allocation will refill the stock.
1871 *
1872 * returns true if successful, false otherwise.
cdec2e42 1873 */
a0956d54 1874static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1875{
1876 struct memcg_stock_pcp *stock;
3e32cb2e 1877 bool ret = false;
cdec2e42 1878
a0956d54 1879 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1880 return ret;
a0956d54 1881
cdec2e42 1882 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1883 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1884 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1885 ret = true;
1886 }
cdec2e42
KH
1887 put_cpu_var(memcg_stock);
1888 return ret;
1889}
1890
1891/*
3e32cb2e 1892 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1893 */
1894static void drain_stock(struct memcg_stock_pcp *stock)
1895{
1896 struct mem_cgroup *old = stock->cached;
1897
11c9ea4e 1898 if (stock->nr_pages) {
3e32cb2e 1899 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 1900 if (do_swap_account)
3e32cb2e 1901 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1902 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1903 stock->nr_pages = 0;
cdec2e42
KH
1904 }
1905 stock->cached = NULL;
cdec2e42
KH
1906}
1907
1908/*
1909 * This must be called under preempt disabled or must be called by
1910 * a thread which is pinned to local cpu.
1911 */
1912static void drain_local_stock(struct work_struct *dummy)
1913{
7c8e0181 1914 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1915 drain_stock(stock);
26fe6168 1916 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1917}
1918
1919/*
3e32cb2e 1920 * Cache charges(val) to local per_cpu area.
320cc51d 1921 * This will be consumed by consume_stock() function, later.
cdec2e42 1922 */
c0ff4b85 1923static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1924{
1925 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1926
c0ff4b85 1927 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1928 drain_stock(stock);
c0ff4b85 1929 stock->cached = memcg;
cdec2e42 1930 }
11c9ea4e 1931 stock->nr_pages += nr_pages;
cdec2e42
KH
1932 put_cpu_var(memcg_stock);
1933}
1934
1935/*
c0ff4b85 1936 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1937 * of the hierarchy under it.
cdec2e42 1938 */
6d3d6aa2 1939static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1940{
26fe6168 1941 int cpu, curcpu;
d38144b7 1942
6d3d6aa2
JW
1943 /* If someone's already draining, avoid adding running more workers. */
1944 if (!mutex_trylock(&percpu_charge_mutex))
1945 return;
cdec2e42 1946 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1947 get_online_cpus();
5af12d0e 1948 curcpu = get_cpu();
cdec2e42
KH
1949 for_each_online_cpu(cpu) {
1950 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1951 struct mem_cgroup *memcg;
26fe6168 1952
c0ff4b85
R
1953 memcg = stock->cached;
1954 if (!memcg || !stock->nr_pages)
26fe6168 1955 continue;
2314b42d 1956 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1957 continue;
d1a05b69
MH
1958 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1959 if (cpu == curcpu)
1960 drain_local_stock(&stock->work);
1961 else
1962 schedule_work_on(cpu, &stock->work);
1963 }
cdec2e42 1964 }
5af12d0e 1965 put_cpu();
f894ffa8 1966 put_online_cpus();
9f50fad6 1967 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1968}
1969
0db0628d 1970static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1971 unsigned long action,
1972 void *hcpu)
1973{
1974 int cpu = (unsigned long)hcpu;
1975 struct memcg_stock_pcp *stock;
1976
619d094b 1977 if (action == CPU_ONLINE)
1489ebad 1978 return NOTIFY_OK;
1489ebad 1979
d833049b 1980 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1981 return NOTIFY_OK;
711d3d2c 1982
cdec2e42
KH
1983 stock = &per_cpu(memcg_stock, cpu);
1984 drain_stock(stock);
1985 return NOTIFY_OK;
1986}
1987
b23afb93
TH
1988/*
1989 * Scheduled by try_charge() to be executed from the userland return path
1990 * and reclaims memory over the high limit.
1991 */
1992void mem_cgroup_handle_over_high(void)
1993{
1994 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1995 struct mem_cgroup *memcg, *pos;
1996
1997 if (likely(!nr_pages))
1998 return;
1999
2000 pos = memcg = get_mem_cgroup_from_mm(current->mm);
2001
2002 do {
2003 if (page_counter_read(&pos->memory) <= pos->high)
2004 continue;
2005 mem_cgroup_events(pos, MEMCG_HIGH, 1);
2006 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2007 } while ((pos = parent_mem_cgroup(pos)));
2008
2009 css_put(&memcg->css);
2010 current->memcg_nr_pages_over_high = 0;
2011}
2012
00501b53
JW
2013static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2014 unsigned int nr_pages)
8a9f3ccd 2015{
7ec99d62 2016 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2017 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2018 struct mem_cgroup *mem_over_limit;
3e32cb2e 2019 struct page_counter *counter;
6539cc05 2020 unsigned long nr_reclaimed;
b70a2a21
JW
2021 bool may_swap = true;
2022 bool drained = false;
a636b327 2023
ce00a967 2024 if (mem_cgroup_is_root(memcg))
10d53c74 2025 return 0;
6539cc05 2026retry:
b6b6cc72 2027 if (consume_stock(memcg, nr_pages))
10d53c74 2028 return 0;
8a9f3ccd 2029
3fbe7244 2030 if (!do_swap_account ||
6071ca52
JW
2031 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2032 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2033 goto done_restock;
3fbe7244 2034 if (do_swap_account)
3e32cb2e
JW
2035 page_counter_uncharge(&memcg->memsw, batch);
2036 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2037 } else {
3e32cb2e 2038 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2039 may_swap = false;
3fbe7244 2040 }
7a81b88c 2041
6539cc05
JW
2042 if (batch > nr_pages) {
2043 batch = nr_pages;
2044 goto retry;
2045 }
6d61ef40 2046
06b078fc
JW
2047 /*
2048 * Unlike in global OOM situations, memcg is not in a physical
2049 * memory shortage. Allow dying and OOM-killed tasks to
2050 * bypass the last charges so that they can exit quickly and
2051 * free their memory.
2052 */
2053 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2054 fatal_signal_pending(current) ||
2055 current->flags & PF_EXITING))
10d53c74 2056 goto force;
06b078fc
JW
2057
2058 if (unlikely(task_in_memcg_oom(current)))
2059 goto nomem;
2060
d0164adc 2061 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2062 goto nomem;
4b534334 2063
241994ed
JW
2064 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2065
b70a2a21
JW
2066 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2067 gfp_mask, may_swap);
6539cc05 2068
61e02c74 2069 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2070 goto retry;
28c34c29 2071
b70a2a21 2072 if (!drained) {
6d3d6aa2 2073 drain_all_stock(mem_over_limit);
b70a2a21
JW
2074 drained = true;
2075 goto retry;
2076 }
2077
28c34c29
JW
2078 if (gfp_mask & __GFP_NORETRY)
2079 goto nomem;
6539cc05
JW
2080 /*
2081 * Even though the limit is exceeded at this point, reclaim
2082 * may have been able to free some pages. Retry the charge
2083 * before killing the task.
2084 *
2085 * Only for regular pages, though: huge pages are rather
2086 * unlikely to succeed so close to the limit, and we fall back
2087 * to regular pages anyway in case of failure.
2088 */
61e02c74 2089 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2090 goto retry;
2091 /*
2092 * At task move, charge accounts can be doubly counted. So, it's
2093 * better to wait until the end of task_move if something is going on.
2094 */
2095 if (mem_cgroup_wait_acct_move(mem_over_limit))
2096 goto retry;
2097
9b130619
JW
2098 if (nr_retries--)
2099 goto retry;
2100
06b078fc 2101 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2102 goto force;
06b078fc 2103
6539cc05 2104 if (fatal_signal_pending(current))
10d53c74 2105 goto force;
6539cc05 2106
241994ed
JW
2107 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2108
3608de07
JM
2109 mem_cgroup_oom(mem_over_limit, gfp_mask,
2110 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2111nomem:
6d1fdc48 2112 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2113 return -ENOMEM;
10d53c74
TH
2114force:
2115 /*
2116 * The allocation either can't fail or will lead to more memory
2117 * being freed very soon. Allow memory usage go over the limit
2118 * temporarily by force charging it.
2119 */
2120 page_counter_charge(&memcg->memory, nr_pages);
2121 if (do_swap_account)
2122 page_counter_charge(&memcg->memsw, nr_pages);
2123 css_get_many(&memcg->css, nr_pages);
2124
2125 return 0;
6539cc05
JW
2126
2127done_restock:
e8ea14cc 2128 css_get_many(&memcg->css, batch);
6539cc05
JW
2129 if (batch > nr_pages)
2130 refill_stock(memcg, batch - nr_pages);
b23afb93 2131
241994ed 2132 /*
b23afb93
TH
2133 * If the hierarchy is above the normal consumption range, schedule
2134 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2135 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2136 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2137 * not recorded as it most likely matches current's and won't
2138 * change in the meantime. As high limit is checked again before
2139 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2140 */
2141 do {
b23afb93 2142 if (page_counter_read(&memcg->memory) > memcg->high) {
9516a18a 2143 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2144 set_notify_resume(current);
2145 break;
2146 }
241994ed 2147 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2148
2149 return 0;
7a81b88c 2150}
8a9f3ccd 2151
00501b53 2152static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2153{
ce00a967
JW
2154 if (mem_cgroup_is_root(memcg))
2155 return;
2156
3e32cb2e 2157 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2158 if (do_swap_account)
3e32cb2e 2159 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2160
e8ea14cc 2161 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2162}
2163
0a31bc97
JW
2164static void lock_page_lru(struct page *page, int *isolated)
2165{
2166 struct zone *zone = page_zone(page);
2167
2168 spin_lock_irq(&zone->lru_lock);
2169 if (PageLRU(page)) {
2170 struct lruvec *lruvec;
2171
2172 lruvec = mem_cgroup_page_lruvec(page, zone);
2173 ClearPageLRU(page);
2174 del_page_from_lru_list(page, lruvec, page_lru(page));
2175 *isolated = 1;
2176 } else
2177 *isolated = 0;
2178}
2179
2180static void unlock_page_lru(struct page *page, int isolated)
2181{
2182 struct zone *zone = page_zone(page);
2183
2184 if (isolated) {
2185 struct lruvec *lruvec;
2186
2187 lruvec = mem_cgroup_page_lruvec(page, zone);
2188 VM_BUG_ON_PAGE(PageLRU(page), page);
2189 SetPageLRU(page);
2190 add_page_to_lru_list(page, lruvec, page_lru(page));
2191 }
2192 spin_unlock_irq(&zone->lru_lock);
2193}
2194
00501b53 2195static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2196 bool lrucare)
7a81b88c 2197{
0a31bc97 2198 int isolated;
9ce70c02 2199
1306a85a 2200 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2201
2202 /*
2203 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2204 * may already be on some other mem_cgroup's LRU. Take care of it.
2205 */
0a31bc97
JW
2206 if (lrucare)
2207 lock_page_lru(page, &isolated);
9ce70c02 2208
0a31bc97
JW
2209 /*
2210 * Nobody should be changing or seriously looking at
1306a85a 2211 * page->mem_cgroup at this point:
0a31bc97
JW
2212 *
2213 * - the page is uncharged
2214 *
2215 * - the page is off-LRU
2216 *
2217 * - an anonymous fault has exclusive page access, except for
2218 * a locked page table
2219 *
2220 * - a page cache insertion, a swapin fault, or a migration
2221 * have the page locked
2222 */
1306a85a 2223 page->mem_cgroup = memcg;
9ce70c02 2224
0a31bc97
JW
2225 if (lrucare)
2226 unlock_page_lru(page, isolated);
7a81b88c 2227}
66e1707b 2228
7ae1e1d0 2229#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2230static int memcg_alloc_cache_id(void)
55007d84 2231{
f3bb3043
VD
2232 int id, size;
2233 int err;
2234
dbcf73e2 2235 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2236 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2237 if (id < 0)
2238 return id;
55007d84 2239
dbcf73e2 2240 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2241 return id;
2242
2243 /*
2244 * There's no space for the new id in memcg_caches arrays,
2245 * so we have to grow them.
2246 */
05257a1a 2247 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2248
2249 size = 2 * (id + 1);
55007d84
GC
2250 if (size < MEMCG_CACHES_MIN_SIZE)
2251 size = MEMCG_CACHES_MIN_SIZE;
2252 else if (size > MEMCG_CACHES_MAX_SIZE)
2253 size = MEMCG_CACHES_MAX_SIZE;
2254
f3bb3043 2255 err = memcg_update_all_caches(size);
60d3fd32
VD
2256 if (!err)
2257 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2258 if (!err)
2259 memcg_nr_cache_ids = size;
2260
2261 up_write(&memcg_cache_ids_sem);
2262
f3bb3043 2263 if (err) {
dbcf73e2 2264 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2265 return err;
2266 }
2267 return id;
2268}
2269
2270static void memcg_free_cache_id(int id)
2271{
dbcf73e2 2272 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2273}
2274
d5b3cf71 2275struct memcg_kmem_cache_create_work {
5722d094
VD
2276 struct mem_cgroup *memcg;
2277 struct kmem_cache *cachep;
2278 struct work_struct work;
2279};
2280
d5b3cf71 2281static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2282{
d5b3cf71
VD
2283 struct memcg_kmem_cache_create_work *cw =
2284 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2285 struct mem_cgroup *memcg = cw->memcg;
2286 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2287
d5b3cf71 2288 memcg_create_kmem_cache(memcg, cachep);
bd673145 2289
5722d094 2290 css_put(&memcg->css);
d7f25f8a
GC
2291 kfree(cw);
2292}
2293
2294/*
2295 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2296 */
d5b3cf71
VD
2297static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2298 struct kmem_cache *cachep)
d7f25f8a 2299{
d5b3cf71 2300 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2301
776ed0f0 2302 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2303 if (!cw)
d7f25f8a 2304 return;
8135be5a
VD
2305
2306 css_get(&memcg->css);
d7f25f8a
GC
2307
2308 cw->memcg = memcg;
2309 cw->cachep = cachep;
d5b3cf71 2310 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2311
d7f25f8a
GC
2312 schedule_work(&cw->work);
2313}
2314
d5b3cf71
VD
2315static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2316 struct kmem_cache *cachep)
0e9d92f2
GC
2317{
2318 /*
2319 * We need to stop accounting when we kmalloc, because if the
2320 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2321 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2322 *
2323 * However, it is better to enclose the whole function. Depending on
2324 * the debugging options enabled, INIT_WORK(), for instance, can
2325 * trigger an allocation. This too, will make us recurse. Because at
2326 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2327 * the safest choice is to do it like this, wrapping the whole function.
2328 */
6f185c29 2329 current->memcg_kmem_skip_account = 1;
d5b3cf71 2330 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2331 current->memcg_kmem_skip_account = 0;
0e9d92f2 2332}
c67a8a68 2333
d7f25f8a
GC
2334/*
2335 * Return the kmem_cache we're supposed to use for a slab allocation.
2336 * We try to use the current memcg's version of the cache.
2337 *
2338 * If the cache does not exist yet, if we are the first user of it,
2339 * we either create it immediately, if possible, or create it asynchronously
2340 * in a workqueue.
2341 * In the latter case, we will let the current allocation go through with
2342 * the original cache.
2343 *
2344 * Can't be called in interrupt context or from kernel threads.
2345 * This function needs to be called with rcu_read_lock() held.
2346 */
056b7cce 2347struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2348{
2349 struct mem_cgroup *memcg;
959c8963 2350 struct kmem_cache *memcg_cachep;
2a4db7eb 2351 int kmemcg_id;
d7f25f8a 2352
f7ce3190 2353 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2354
9d100c5e 2355 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2356 return cachep;
2357
8135be5a 2358 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2359 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2360 if (kmemcg_id < 0)
ca0dde97 2361 goto out;
d7f25f8a 2362
2a4db7eb 2363 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2364 if (likely(memcg_cachep))
2365 return memcg_cachep;
ca0dde97
LZ
2366
2367 /*
2368 * If we are in a safe context (can wait, and not in interrupt
2369 * context), we could be be predictable and return right away.
2370 * This would guarantee that the allocation being performed
2371 * already belongs in the new cache.
2372 *
2373 * However, there are some clashes that can arrive from locking.
2374 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2375 * memcg_create_kmem_cache, this means no further allocation
2376 * could happen with the slab_mutex held. So it's better to
2377 * defer everything.
ca0dde97 2378 */
d5b3cf71 2379 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2380out:
8135be5a 2381 css_put(&memcg->css);
ca0dde97 2382 return cachep;
d7f25f8a 2383}
d7f25f8a 2384
8135be5a
VD
2385void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2386{
2387 if (!is_root_cache(cachep))
f7ce3190 2388 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2389}
2390
f3ccb2c4
VD
2391int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2392 struct mem_cgroup *memcg)
7ae1e1d0 2393{
f3ccb2c4
VD
2394 unsigned int nr_pages = 1 << order;
2395 struct page_counter *counter;
7ae1e1d0
GC
2396 int ret;
2397
f3ccb2c4 2398 if (!memcg_kmem_is_active(memcg))
d05e83a6 2399 return 0;
6d42c232 2400
6071ca52
JW
2401 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2402 return -ENOMEM;
7ae1e1d0 2403
f3ccb2c4
VD
2404 ret = try_charge(memcg, gfp, nr_pages);
2405 if (ret) {
2406 page_counter_uncharge(&memcg->kmem, nr_pages);
2407 return ret;
7ae1e1d0
GC
2408 }
2409
f3ccb2c4 2410 page->mem_cgroup = memcg;
7ae1e1d0 2411
f3ccb2c4 2412 return 0;
7ae1e1d0
GC
2413}
2414
f3ccb2c4 2415int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2416{
f3ccb2c4
VD
2417 struct mem_cgroup *memcg;
2418 int ret;
7ae1e1d0 2419
f3ccb2c4
VD
2420 memcg = get_mem_cgroup_from_mm(current->mm);
2421 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2422 css_put(&memcg->css);
d05e83a6 2423 return ret;
7ae1e1d0
GC
2424}
2425
d05e83a6 2426void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2427{
1306a85a 2428 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2429 unsigned int nr_pages = 1 << order;
7ae1e1d0 2430
7ae1e1d0
GC
2431 if (!memcg)
2432 return;
2433
309381fe 2434 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2435
f3ccb2c4
VD
2436 page_counter_uncharge(&memcg->kmem, nr_pages);
2437 page_counter_uncharge(&memcg->memory, nr_pages);
2438 if (do_swap_account)
2439 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2440
1306a85a 2441 page->mem_cgroup = NULL;
f3ccb2c4 2442 css_put_many(&memcg->css, nr_pages);
60d3fd32 2443}
7ae1e1d0
GC
2444#endif /* CONFIG_MEMCG_KMEM */
2445
ca3e0214
KH
2446#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2447
ca3e0214
KH
2448/*
2449 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2450 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2451 * charge/uncharge will be never happen and move_account() is done under
2452 * compound_lock(), so we don't have to take care of races.
ca3e0214 2453 */
e94c8a9c 2454void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2455{
e94c8a9c 2456 int i;
ca3e0214 2457
3d37c4a9
KH
2458 if (mem_cgroup_disabled())
2459 return;
b070e65c 2460
29833315 2461 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2462 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2463
1306a85a 2464 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2465 HPAGE_PMD_NR);
ca3e0214 2466}
12d27107 2467#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2468
c255a458 2469#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2470static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2471 bool charge)
d13d1443 2472{
0a31bc97
JW
2473 int val = (charge) ? 1 : -1;
2474 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2475}
02491447
DN
2476
2477/**
2478 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2479 * @entry: swap entry to be moved
2480 * @from: mem_cgroup which the entry is moved from
2481 * @to: mem_cgroup which the entry is moved to
2482 *
2483 * It succeeds only when the swap_cgroup's record for this entry is the same
2484 * as the mem_cgroup's id of @from.
2485 *
2486 * Returns 0 on success, -EINVAL on failure.
2487 *
3e32cb2e 2488 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2489 * both res and memsw, and called css_get().
2490 */
2491static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2492 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2493{
2494 unsigned short old_id, new_id;
2495
34c00c31
LZ
2496 old_id = mem_cgroup_id(from);
2497 new_id = mem_cgroup_id(to);
02491447
DN
2498
2499 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2500 mem_cgroup_swap_statistics(from, false);
483c30b5 2501 mem_cgroup_swap_statistics(to, true);
02491447
DN
2502 return 0;
2503 }
2504 return -EINVAL;
2505}
2506#else
2507static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2508 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2509{
2510 return -EINVAL;
2511}
8c7c6e34 2512#endif
d13d1443 2513
3e32cb2e 2514static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2515
d38d2a75 2516static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2517 unsigned long limit)
628f4235 2518{
3e32cb2e
JW
2519 unsigned long curusage;
2520 unsigned long oldusage;
2521 bool enlarge = false;
81d39c20 2522 int retry_count;
3e32cb2e 2523 int ret;
81d39c20
KH
2524
2525 /*
2526 * For keeping hierarchical_reclaim simple, how long we should retry
2527 * is depends on callers. We set our retry-count to be function
2528 * of # of children which we should visit in this loop.
2529 */
3e32cb2e
JW
2530 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2531 mem_cgroup_count_children(memcg);
81d39c20 2532
3e32cb2e 2533 oldusage = page_counter_read(&memcg->memory);
628f4235 2534
3e32cb2e 2535 do {
628f4235
KH
2536 if (signal_pending(current)) {
2537 ret = -EINTR;
2538 break;
2539 }
3e32cb2e
JW
2540
2541 mutex_lock(&memcg_limit_mutex);
2542 if (limit > memcg->memsw.limit) {
2543 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2544 ret = -EINVAL;
628f4235
KH
2545 break;
2546 }
3e32cb2e
JW
2547 if (limit > memcg->memory.limit)
2548 enlarge = true;
2549 ret = page_counter_limit(&memcg->memory, limit);
2550 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2551
2552 if (!ret)
2553 break;
2554
b70a2a21
JW
2555 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2556
3e32cb2e 2557 curusage = page_counter_read(&memcg->memory);
81d39c20 2558 /* Usage is reduced ? */
f894ffa8 2559 if (curusage >= oldusage)
81d39c20
KH
2560 retry_count--;
2561 else
2562 oldusage = curusage;
3e32cb2e
JW
2563 } while (retry_count);
2564
3c11ecf4
KH
2565 if (!ret && enlarge)
2566 memcg_oom_recover(memcg);
14797e23 2567
8c7c6e34
KH
2568 return ret;
2569}
2570
338c8431 2571static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2572 unsigned long limit)
8c7c6e34 2573{
3e32cb2e
JW
2574 unsigned long curusage;
2575 unsigned long oldusage;
2576 bool enlarge = false;
81d39c20 2577 int retry_count;
3e32cb2e 2578 int ret;
8c7c6e34 2579
81d39c20 2580 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2581 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2582 mem_cgroup_count_children(memcg);
2583
2584 oldusage = page_counter_read(&memcg->memsw);
2585
2586 do {
8c7c6e34
KH
2587 if (signal_pending(current)) {
2588 ret = -EINTR;
2589 break;
2590 }
3e32cb2e
JW
2591
2592 mutex_lock(&memcg_limit_mutex);
2593 if (limit < memcg->memory.limit) {
2594 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2595 ret = -EINVAL;
8c7c6e34
KH
2596 break;
2597 }
3e32cb2e
JW
2598 if (limit > memcg->memsw.limit)
2599 enlarge = true;
2600 ret = page_counter_limit(&memcg->memsw, limit);
2601 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2602
2603 if (!ret)
2604 break;
2605
b70a2a21
JW
2606 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2607
3e32cb2e 2608 curusage = page_counter_read(&memcg->memsw);
81d39c20 2609 /* Usage is reduced ? */
8c7c6e34 2610 if (curusage >= oldusage)
628f4235 2611 retry_count--;
81d39c20
KH
2612 else
2613 oldusage = curusage;
3e32cb2e
JW
2614 } while (retry_count);
2615
3c11ecf4
KH
2616 if (!ret && enlarge)
2617 memcg_oom_recover(memcg);
3e32cb2e 2618
628f4235
KH
2619 return ret;
2620}
2621
0608f43d
AM
2622unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2623 gfp_t gfp_mask,
2624 unsigned long *total_scanned)
2625{
2626 unsigned long nr_reclaimed = 0;
2627 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2628 unsigned long reclaimed;
2629 int loop = 0;
2630 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2631 unsigned long excess;
0608f43d
AM
2632 unsigned long nr_scanned;
2633
2634 if (order > 0)
2635 return 0;
2636
2637 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2638 /*
2639 * This loop can run a while, specially if mem_cgroup's continuously
2640 * keep exceeding their soft limit and putting the system under
2641 * pressure
2642 */
2643 do {
2644 if (next_mz)
2645 mz = next_mz;
2646 else
2647 mz = mem_cgroup_largest_soft_limit_node(mctz);
2648 if (!mz)
2649 break;
2650
2651 nr_scanned = 0;
2652 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2653 gfp_mask, &nr_scanned);
2654 nr_reclaimed += reclaimed;
2655 *total_scanned += nr_scanned;
0a31bc97 2656 spin_lock_irq(&mctz->lock);
bc2f2e7f 2657 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2658
2659 /*
2660 * If we failed to reclaim anything from this memory cgroup
2661 * it is time to move on to the next cgroup
2662 */
2663 next_mz = NULL;
bc2f2e7f
VD
2664 if (!reclaimed)
2665 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2666
3e32cb2e 2667 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2668 /*
2669 * One school of thought says that we should not add
2670 * back the node to the tree if reclaim returns 0.
2671 * But our reclaim could return 0, simply because due
2672 * to priority we are exposing a smaller subset of
2673 * memory to reclaim from. Consider this as a longer
2674 * term TODO.
2675 */
2676 /* If excess == 0, no tree ops */
cf2c8127 2677 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2678 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2679 css_put(&mz->memcg->css);
2680 loop++;
2681 /*
2682 * Could not reclaim anything and there are no more
2683 * mem cgroups to try or we seem to be looping without
2684 * reclaiming anything.
2685 */
2686 if (!nr_reclaimed &&
2687 (next_mz == NULL ||
2688 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2689 break;
2690 } while (!nr_reclaimed);
2691 if (next_mz)
2692 css_put(&next_mz->memcg->css);
2693 return nr_reclaimed;
2694}
2695
ea280e7b
TH
2696/*
2697 * Test whether @memcg has children, dead or alive. Note that this
2698 * function doesn't care whether @memcg has use_hierarchy enabled and
2699 * returns %true if there are child csses according to the cgroup
2700 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2701 */
b5f99b53
GC
2702static inline bool memcg_has_children(struct mem_cgroup *memcg)
2703{
ea280e7b
TH
2704 bool ret;
2705
696ac172 2706 /*
ea280e7b
TH
2707 * The lock does not prevent addition or deletion of children, but
2708 * it prevents a new child from being initialized based on this
2709 * parent in css_online(), so it's enough to decide whether
2710 * hierarchically inherited attributes can still be changed or not.
696ac172 2711 */
ea280e7b
TH
2712 lockdep_assert_held(&memcg_create_mutex);
2713
2714 rcu_read_lock();
2715 ret = css_next_child(NULL, &memcg->css);
2716 rcu_read_unlock();
2717 return ret;
b5f99b53
GC
2718}
2719
c26251f9
MH
2720/*
2721 * Reclaims as many pages from the given memcg as possible and moves
2722 * the rest to the parent.
2723 *
2724 * Caller is responsible for holding css reference for memcg.
2725 */
2726static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2727{
2728 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2729
c1e862c1
KH
2730 /* we call try-to-free pages for make this cgroup empty */
2731 lru_add_drain_all();
f817ed48 2732 /* try to free all pages in this cgroup */
3e32cb2e 2733 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2734 int progress;
c1e862c1 2735
c26251f9
MH
2736 if (signal_pending(current))
2737 return -EINTR;
2738
b70a2a21
JW
2739 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2740 GFP_KERNEL, true);
c1e862c1 2741 if (!progress) {
f817ed48 2742 nr_retries--;
c1e862c1 2743 /* maybe some writeback is necessary */
8aa7e847 2744 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2745 }
f817ed48
KH
2746
2747 }
ab5196c2
MH
2748
2749 return 0;
cc847582
KH
2750}
2751
6770c64e
TH
2752static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2753 char *buf, size_t nbytes,
2754 loff_t off)
c1e862c1 2755{
6770c64e 2756 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2757
d8423011
MH
2758 if (mem_cgroup_is_root(memcg))
2759 return -EINVAL;
6770c64e 2760 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2761}
2762
182446d0
TH
2763static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2764 struct cftype *cft)
18f59ea7 2765{
182446d0 2766 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2767}
2768
182446d0
TH
2769static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2770 struct cftype *cft, u64 val)
18f59ea7
BS
2771{
2772 int retval = 0;
182446d0 2773 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2774 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2775
0999821b 2776 mutex_lock(&memcg_create_mutex);
567fb435
GC
2777
2778 if (memcg->use_hierarchy == val)
2779 goto out;
2780
18f59ea7 2781 /*
af901ca1 2782 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2783 * in the child subtrees. If it is unset, then the change can
2784 * occur, provided the current cgroup has no children.
2785 *
2786 * For the root cgroup, parent_mem is NULL, we allow value to be
2787 * set if there are no children.
2788 */
c0ff4b85 2789 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2790 (val == 1 || val == 0)) {
ea280e7b 2791 if (!memcg_has_children(memcg))
c0ff4b85 2792 memcg->use_hierarchy = val;
18f59ea7
BS
2793 else
2794 retval = -EBUSY;
2795 } else
2796 retval = -EINVAL;
567fb435
GC
2797
2798out:
0999821b 2799 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2800
2801 return retval;
2802}
2803
3e32cb2e
JW
2804static unsigned long tree_stat(struct mem_cgroup *memcg,
2805 enum mem_cgroup_stat_index idx)
ce00a967
JW
2806{
2807 struct mem_cgroup *iter;
484ebb3b 2808 unsigned long val = 0;
ce00a967 2809
ce00a967
JW
2810 for_each_mem_cgroup_tree(iter, memcg)
2811 val += mem_cgroup_read_stat(iter, idx);
2812
ce00a967
JW
2813 return val;
2814}
2815
6f646156 2816static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2817{
c12176d3 2818 unsigned long val;
ce00a967 2819
3e32cb2e
JW
2820 if (mem_cgroup_is_root(memcg)) {
2821 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2822 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2823 if (swap)
2824 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2825 } else {
ce00a967 2826 if (!swap)
3e32cb2e 2827 val = page_counter_read(&memcg->memory);
ce00a967 2828 else
3e32cb2e 2829 val = page_counter_read(&memcg->memsw);
ce00a967 2830 }
c12176d3 2831 return val;
ce00a967
JW
2832}
2833
3e32cb2e
JW
2834enum {
2835 RES_USAGE,
2836 RES_LIMIT,
2837 RES_MAX_USAGE,
2838 RES_FAILCNT,
2839 RES_SOFT_LIMIT,
2840};
ce00a967 2841
791badbd 2842static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2843 struct cftype *cft)
8cdea7c0 2844{
182446d0 2845 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2846 struct page_counter *counter;
af36f906 2847
3e32cb2e 2848 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2849 case _MEM:
3e32cb2e
JW
2850 counter = &memcg->memory;
2851 break;
8c7c6e34 2852 case _MEMSWAP:
3e32cb2e
JW
2853 counter = &memcg->memsw;
2854 break;
510fc4e1 2855 case _KMEM:
3e32cb2e 2856 counter = &memcg->kmem;
510fc4e1 2857 break;
8c7c6e34
KH
2858 default:
2859 BUG();
8c7c6e34 2860 }
3e32cb2e
JW
2861
2862 switch (MEMFILE_ATTR(cft->private)) {
2863 case RES_USAGE:
2864 if (counter == &memcg->memory)
c12176d3 2865 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2866 if (counter == &memcg->memsw)
c12176d3 2867 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2868 return (u64)page_counter_read(counter) * PAGE_SIZE;
2869 case RES_LIMIT:
2870 return (u64)counter->limit * PAGE_SIZE;
2871 case RES_MAX_USAGE:
2872 return (u64)counter->watermark * PAGE_SIZE;
2873 case RES_FAILCNT:
2874 return counter->failcnt;
2875 case RES_SOFT_LIMIT:
2876 return (u64)memcg->soft_limit * PAGE_SIZE;
2877 default:
2878 BUG();
2879 }
8cdea7c0 2880}
510fc4e1 2881
510fc4e1 2882#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2883static int memcg_activate_kmem(struct mem_cgroup *memcg,
2884 unsigned long nr_pages)
d6441637
VD
2885{
2886 int err = 0;
2887 int memcg_id;
2888
2a4db7eb 2889 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2890 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2891 BUG_ON(memcg->kmem_acct_active);
d6441637 2892
510fc4e1
GC
2893 /*
2894 * For simplicity, we won't allow this to be disabled. It also can't
2895 * be changed if the cgroup has children already, or if tasks had
2896 * already joined.
2897 *
2898 * If tasks join before we set the limit, a person looking at
2899 * kmem.usage_in_bytes will have no way to determine when it took
2900 * place, which makes the value quite meaningless.
2901 *
2902 * After it first became limited, changes in the value of the limit are
2903 * of course permitted.
510fc4e1 2904 */
0999821b 2905 mutex_lock(&memcg_create_mutex);
27bd4dbb 2906 if (cgroup_is_populated(memcg->css.cgroup) ||
ea280e7b 2907 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2908 err = -EBUSY;
2909 mutex_unlock(&memcg_create_mutex);
2910 if (err)
2911 goto out;
510fc4e1 2912
f3bb3043 2913 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2914 if (memcg_id < 0) {
2915 err = memcg_id;
2916 goto out;
2917 }
2918
d6441637 2919 /*
900a38f0
VD
2920 * We couldn't have accounted to this cgroup, because it hasn't got
2921 * activated yet, so this should succeed.
d6441637 2922 */
3e32cb2e 2923 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2924 VM_BUG_ON(err);
2925
2926 static_key_slow_inc(&memcg_kmem_enabled_key);
2927 /*
900a38f0
VD
2928 * A memory cgroup is considered kmem-active as soon as it gets
2929 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2930 * guarantee no one starts accounting before all call sites are
2931 * patched.
2932 */
900a38f0 2933 memcg->kmemcg_id = memcg_id;
2788cf0c 2934 memcg->kmem_acct_activated = true;
2a4db7eb 2935 memcg->kmem_acct_active = true;
510fc4e1 2936out:
d6441637 2937 return err;
d6441637
VD
2938}
2939
d6441637 2940static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2941 unsigned long limit)
d6441637
VD
2942{
2943 int ret;
2944
3e32cb2e 2945 mutex_lock(&memcg_limit_mutex);
d6441637 2946 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2947 ret = memcg_activate_kmem(memcg, limit);
d6441637 2948 else
3e32cb2e
JW
2949 ret = page_counter_limit(&memcg->kmem, limit);
2950 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2951 return ret;
2952}
2953
55007d84 2954static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2955{
55007d84 2956 int ret = 0;
510fc4e1 2957 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2958
d6441637
VD
2959 if (!parent)
2960 return 0;
55007d84 2961
8c0145b6 2962 mutex_lock(&memcg_limit_mutex);
55007d84 2963 /*
d6441637
VD
2964 * If the parent cgroup is not kmem-active now, it cannot be activated
2965 * after this point, because it has at least one child already.
55007d84 2966 */
d6441637 2967 if (memcg_kmem_is_active(parent))
8c0145b6
VD
2968 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2969 mutex_unlock(&memcg_limit_mutex);
55007d84 2970 return ret;
510fc4e1 2971}
d6441637
VD
2972#else
2973static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2974 unsigned long limit)
d6441637
VD
2975{
2976 return -EINVAL;
2977}
6d043990 2978#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 2979
628f4235
KH
2980/*
2981 * The user of this function is...
2982 * RES_LIMIT.
2983 */
451af504
TH
2984static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2985 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2986{
451af504 2987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2988 unsigned long nr_pages;
628f4235
KH
2989 int ret;
2990
451af504 2991 buf = strstrip(buf);
650c5e56 2992 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2993 if (ret)
2994 return ret;
af36f906 2995
3e32cb2e 2996 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2997 case RES_LIMIT:
4b3bde4c
BS
2998 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2999 ret = -EINVAL;
3000 break;
3001 }
3e32cb2e
JW
3002 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3003 case _MEM:
3004 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3005 break;
3e32cb2e
JW
3006 case _MEMSWAP:
3007 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3008 break;
3e32cb2e
JW
3009 case _KMEM:
3010 ret = memcg_update_kmem_limit(memcg, nr_pages);
3011 break;
3012 }
296c81d8 3013 break;
3e32cb2e
JW
3014 case RES_SOFT_LIMIT:
3015 memcg->soft_limit = nr_pages;
3016 ret = 0;
628f4235
KH
3017 break;
3018 }
451af504 3019 return ret ?: nbytes;
8cdea7c0
BS
3020}
3021
6770c64e
TH
3022static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3023 size_t nbytes, loff_t off)
c84872e1 3024{
6770c64e 3025 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3026 struct page_counter *counter;
c84872e1 3027
3e32cb2e
JW
3028 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3029 case _MEM:
3030 counter = &memcg->memory;
3031 break;
3032 case _MEMSWAP:
3033 counter = &memcg->memsw;
3034 break;
3035 case _KMEM:
3036 counter = &memcg->kmem;
3037 break;
3038 default:
3039 BUG();
3040 }
af36f906 3041
3e32cb2e 3042 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3043 case RES_MAX_USAGE:
3e32cb2e 3044 page_counter_reset_watermark(counter);
29f2a4da
PE
3045 break;
3046 case RES_FAILCNT:
3e32cb2e 3047 counter->failcnt = 0;
29f2a4da 3048 break;
3e32cb2e
JW
3049 default:
3050 BUG();
29f2a4da 3051 }
f64c3f54 3052
6770c64e 3053 return nbytes;
c84872e1
PE
3054}
3055
182446d0 3056static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3057 struct cftype *cft)
3058{
182446d0 3059 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3060}
3061
02491447 3062#ifdef CONFIG_MMU
182446d0 3063static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3064 struct cftype *cft, u64 val)
3065{
182446d0 3066 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3067
1dfab5ab 3068 if (val & ~MOVE_MASK)
7dc74be0 3069 return -EINVAL;
ee5e8472 3070
7dc74be0 3071 /*
ee5e8472
GC
3072 * No kind of locking is needed in here, because ->can_attach() will
3073 * check this value once in the beginning of the process, and then carry
3074 * on with stale data. This means that changes to this value will only
3075 * affect task migrations starting after the change.
7dc74be0 3076 */
c0ff4b85 3077 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3078 return 0;
3079}
02491447 3080#else
182446d0 3081static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3082 struct cftype *cft, u64 val)
3083{
3084 return -ENOSYS;
3085}
3086#endif
7dc74be0 3087
406eb0c9 3088#ifdef CONFIG_NUMA
2da8ca82 3089static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3090{
25485de6
GT
3091 struct numa_stat {
3092 const char *name;
3093 unsigned int lru_mask;
3094 };
3095
3096 static const struct numa_stat stats[] = {
3097 { "total", LRU_ALL },
3098 { "file", LRU_ALL_FILE },
3099 { "anon", LRU_ALL_ANON },
3100 { "unevictable", BIT(LRU_UNEVICTABLE) },
3101 };
3102 const struct numa_stat *stat;
406eb0c9 3103 int nid;
25485de6 3104 unsigned long nr;
2da8ca82 3105 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3106
25485de6
GT
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3109 seq_printf(m, "%s=%lu", stat->name, nr);
3110 for_each_node_state(nid, N_MEMORY) {
3111 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3112 stat->lru_mask);
3113 seq_printf(m, " N%d=%lu", nid, nr);
3114 }
3115 seq_putc(m, '\n');
406eb0c9 3116 }
406eb0c9 3117
071aee13
YH
3118 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3119 struct mem_cgroup *iter;
3120
3121 nr = 0;
3122 for_each_mem_cgroup_tree(iter, memcg)
3123 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3124 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3125 for_each_node_state(nid, N_MEMORY) {
3126 nr = 0;
3127 for_each_mem_cgroup_tree(iter, memcg)
3128 nr += mem_cgroup_node_nr_lru_pages(
3129 iter, nid, stat->lru_mask);
3130 seq_printf(m, " N%d=%lu", nid, nr);
3131 }
3132 seq_putc(m, '\n');
406eb0c9 3133 }
406eb0c9 3134
406eb0c9
YH
3135 return 0;
3136}
3137#endif /* CONFIG_NUMA */
3138
2da8ca82 3139static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3140{
2da8ca82 3141 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3142 unsigned long memory, memsw;
af7c4b0e
JW
3143 struct mem_cgroup *mi;
3144 unsigned int i;
406eb0c9 3145
0ca44b14
GT
3146 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3147 MEM_CGROUP_STAT_NSTATS);
3148 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3149 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3150 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3151
af7c4b0e 3152 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3153 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3154 continue;
484ebb3b 3155 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3156 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3157 }
7b854121 3158
af7c4b0e
JW
3159 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3160 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3161 mem_cgroup_read_events(memcg, i));
3162
3163 for (i = 0; i < NR_LRU_LISTS; i++)
3164 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3165 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3166
14067bb3 3167 /* Hierarchical information */
3e32cb2e
JW
3168 memory = memsw = PAGE_COUNTER_MAX;
3169 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3170 memory = min(memory, mi->memory.limit);
3171 memsw = min(memsw, mi->memsw.limit);
fee7b548 3172 }
3e32cb2e
JW
3173 seq_printf(m, "hierarchical_memory_limit %llu\n",
3174 (u64)memory * PAGE_SIZE);
3175 if (do_swap_account)
3176 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3177 (u64)memsw * PAGE_SIZE);
7f016ee8 3178
af7c4b0e 3179 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3180 unsigned long long val = 0;
af7c4b0e 3181
bff6bb83 3182 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3183 continue;
af7c4b0e
JW
3184 for_each_mem_cgroup_tree(mi, memcg)
3185 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3186 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3187 }
3188
3189 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3190 unsigned long long val = 0;
3191
3192 for_each_mem_cgroup_tree(mi, memcg)
3193 val += mem_cgroup_read_events(mi, i);
3194 seq_printf(m, "total_%s %llu\n",
3195 mem_cgroup_events_names[i], val);
3196 }
3197
3198 for (i = 0; i < NR_LRU_LISTS; i++) {
3199 unsigned long long val = 0;
3200
3201 for_each_mem_cgroup_tree(mi, memcg)
3202 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3203 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3204 }
14067bb3 3205
7f016ee8 3206#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3207 {
3208 int nid, zid;
3209 struct mem_cgroup_per_zone *mz;
89abfab1 3210 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3211 unsigned long recent_rotated[2] = {0, 0};
3212 unsigned long recent_scanned[2] = {0, 0};
3213
3214 for_each_online_node(nid)
3215 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3216 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3217 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3218
89abfab1
HD
3219 recent_rotated[0] += rstat->recent_rotated[0];
3220 recent_rotated[1] += rstat->recent_rotated[1];
3221 recent_scanned[0] += rstat->recent_scanned[0];
3222 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3223 }
78ccf5b5
JW
3224 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3225 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3226 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3227 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3228 }
3229#endif
3230
d2ceb9b7
KH
3231 return 0;
3232}
3233
182446d0
TH
3234static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3235 struct cftype *cft)
a7885eb8 3236{
182446d0 3237 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3238
1f4c025b 3239 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3240}
3241
182446d0
TH
3242static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3243 struct cftype *cft, u64 val)
a7885eb8 3244{
182446d0 3245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3246
3dae7fec 3247 if (val > 100)
a7885eb8
KM
3248 return -EINVAL;
3249
14208b0e 3250 if (css->parent)
3dae7fec
JW
3251 memcg->swappiness = val;
3252 else
3253 vm_swappiness = val;
068b38c1 3254
a7885eb8
KM
3255 return 0;
3256}
3257
2e72b634
KS
3258static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3259{
3260 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3261 unsigned long usage;
2e72b634
KS
3262 int i;
3263
3264 rcu_read_lock();
3265 if (!swap)
2c488db2 3266 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3267 else
2c488db2 3268 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3269
3270 if (!t)
3271 goto unlock;
3272
ce00a967 3273 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3274
3275 /*
748dad36 3276 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3277 * If it's not true, a threshold was crossed after last
3278 * call of __mem_cgroup_threshold().
3279 */
5407a562 3280 i = t->current_threshold;
2e72b634
KS
3281
3282 /*
3283 * Iterate backward over array of thresholds starting from
3284 * current_threshold and check if a threshold is crossed.
3285 * If none of thresholds below usage is crossed, we read
3286 * only one element of the array here.
3287 */
3288 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3289 eventfd_signal(t->entries[i].eventfd, 1);
3290
3291 /* i = current_threshold + 1 */
3292 i++;
3293
3294 /*
3295 * Iterate forward over array of thresholds starting from
3296 * current_threshold+1 and check if a threshold is crossed.
3297 * If none of thresholds above usage is crossed, we read
3298 * only one element of the array here.
3299 */
3300 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3301 eventfd_signal(t->entries[i].eventfd, 1);
3302
3303 /* Update current_threshold */
5407a562 3304 t->current_threshold = i - 1;
2e72b634
KS
3305unlock:
3306 rcu_read_unlock();
3307}
3308
3309static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3310{
ad4ca5f4
KS
3311 while (memcg) {
3312 __mem_cgroup_threshold(memcg, false);
3313 if (do_swap_account)
3314 __mem_cgroup_threshold(memcg, true);
3315
3316 memcg = parent_mem_cgroup(memcg);
3317 }
2e72b634
KS
3318}
3319
3320static int compare_thresholds(const void *a, const void *b)
3321{
3322 const struct mem_cgroup_threshold *_a = a;
3323 const struct mem_cgroup_threshold *_b = b;
3324
2bff24a3
GT
3325 if (_a->threshold > _b->threshold)
3326 return 1;
3327
3328 if (_a->threshold < _b->threshold)
3329 return -1;
3330
3331 return 0;
2e72b634
KS
3332}
3333
c0ff4b85 3334static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3335{
3336 struct mem_cgroup_eventfd_list *ev;
3337
2bcf2e92
MH
3338 spin_lock(&memcg_oom_lock);
3339
c0ff4b85 3340 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3341 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3342
3343 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3344 return 0;
3345}
3346
c0ff4b85 3347static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3348{
7d74b06f
KH
3349 struct mem_cgroup *iter;
3350
c0ff4b85 3351 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3352 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3353}
3354
59b6f873 3355static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3356 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3357{
2c488db2
KS
3358 struct mem_cgroup_thresholds *thresholds;
3359 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3360 unsigned long threshold;
3361 unsigned long usage;
2c488db2 3362 int i, size, ret;
2e72b634 3363
650c5e56 3364 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3365 if (ret)
3366 return ret;
3367
3368 mutex_lock(&memcg->thresholds_lock);
2c488db2 3369
05b84301 3370 if (type == _MEM) {
2c488db2 3371 thresholds = &memcg->thresholds;
ce00a967 3372 usage = mem_cgroup_usage(memcg, false);
05b84301 3373 } else if (type == _MEMSWAP) {
2c488db2 3374 thresholds = &memcg->memsw_thresholds;
ce00a967 3375 usage = mem_cgroup_usage(memcg, true);
05b84301 3376 } else
2e72b634
KS
3377 BUG();
3378
2e72b634 3379 /* Check if a threshold crossed before adding a new one */
2c488db2 3380 if (thresholds->primary)
2e72b634
KS
3381 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3382
2c488db2 3383 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3384
3385 /* Allocate memory for new array of thresholds */
2c488db2 3386 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3387 GFP_KERNEL);
2c488db2 3388 if (!new) {
2e72b634
KS
3389 ret = -ENOMEM;
3390 goto unlock;
3391 }
2c488db2 3392 new->size = size;
2e72b634
KS
3393
3394 /* Copy thresholds (if any) to new array */
2c488db2
KS
3395 if (thresholds->primary) {
3396 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3397 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3398 }
3399
2e72b634 3400 /* Add new threshold */
2c488db2
KS
3401 new->entries[size - 1].eventfd = eventfd;
3402 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3403
3404 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3405 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3406 compare_thresholds, NULL);
3407
3408 /* Find current threshold */
2c488db2 3409 new->current_threshold = -1;
2e72b634 3410 for (i = 0; i < size; i++) {
748dad36 3411 if (new->entries[i].threshold <= usage) {
2e72b634 3412 /*
2c488db2
KS
3413 * new->current_threshold will not be used until
3414 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3415 * it here.
3416 */
2c488db2 3417 ++new->current_threshold;
748dad36
SZ
3418 } else
3419 break;
2e72b634
KS
3420 }
3421
2c488db2
KS
3422 /* Free old spare buffer and save old primary buffer as spare */
3423 kfree(thresholds->spare);
3424 thresholds->spare = thresholds->primary;
3425
3426 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3427
907860ed 3428 /* To be sure that nobody uses thresholds */
2e72b634
KS
3429 synchronize_rcu();
3430
2e72b634
KS
3431unlock:
3432 mutex_unlock(&memcg->thresholds_lock);
3433
3434 return ret;
3435}
3436
59b6f873 3437static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3438 struct eventfd_ctx *eventfd, const char *args)
3439{
59b6f873 3440 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3441}
3442
59b6f873 3443static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3444 struct eventfd_ctx *eventfd, const char *args)
3445{
59b6f873 3446 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3447}
3448
59b6f873 3449static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3450 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3451{
2c488db2
KS
3452 struct mem_cgroup_thresholds *thresholds;
3453 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3454 unsigned long usage;
2c488db2 3455 int i, j, size;
2e72b634
KS
3456
3457 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3458
3459 if (type == _MEM) {
2c488db2 3460 thresholds = &memcg->thresholds;
ce00a967 3461 usage = mem_cgroup_usage(memcg, false);
05b84301 3462 } else if (type == _MEMSWAP) {
2c488db2 3463 thresholds = &memcg->memsw_thresholds;
ce00a967 3464 usage = mem_cgroup_usage(memcg, true);
05b84301 3465 } else
2e72b634
KS
3466 BUG();
3467
371528ca
AV
3468 if (!thresholds->primary)
3469 goto unlock;
3470
2e72b634
KS
3471 /* Check if a threshold crossed before removing */
3472 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3473
3474 /* Calculate new number of threshold */
2c488db2
KS
3475 size = 0;
3476 for (i = 0; i < thresholds->primary->size; i++) {
3477 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3478 size++;
3479 }
3480
2c488db2 3481 new = thresholds->spare;
907860ed 3482
2e72b634
KS
3483 /* Set thresholds array to NULL if we don't have thresholds */
3484 if (!size) {
2c488db2
KS
3485 kfree(new);
3486 new = NULL;
907860ed 3487 goto swap_buffers;
2e72b634
KS
3488 }
3489
2c488db2 3490 new->size = size;
2e72b634
KS
3491
3492 /* Copy thresholds and find current threshold */
2c488db2
KS
3493 new->current_threshold = -1;
3494 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3495 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3496 continue;
3497
2c488db2 3498 new->entries[j] = thresholds->primary->entries[i];
748dad36 3499 if (new->entries[j].threshold <= usage) {
2e72b634 3500 /*
2c488db2 3501 * new->current_threshold will not be used
2e72b634
KS
3502 * until rcu_assign_pointer(), so it's safe to increment
3503 * it here.
3504 */
2c488db2 3505 ++new->current_threshold;
2e72b634
KS
3506 }
3507 j++;
3508 }
3509
907860ed 3510swap_buffers:
2c488db2
KS
3511 /* Swap primary and spare array */
3512 thresholds->spare = thresholds->primary;
8c757763 3513
2c488db2 3514 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3515
907860ed 3516 /* To be sure that nobody uses thresholds */
2e72b634 3517 synchronize_rcu();
ececa3eb
MC
3518
3519 /* If all events are unregistered, free the spare array */
3520 if (!new) {
3521 kfree(thresholds->spare);
3522 thresholds->spare = NULL;
3523 }
371528ca 3524unlock:
2e72b634 3525 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3526}
c1e862c1 3527
59b6f873 3528static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3529 struct eventfd_ctx *eventfd)
3530{
59b6f873 3531 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3532}
3533
59b6f873 3534static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3535 struct eventfd_ctx *eventfd)
3536{
59b6f873 3537 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3538}
3539
59b6f873 3540static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3541 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3542{
9490ff27 3543 struct mem_cgroup_eventfd_list *event;
9490ff27 3544
9490ff27
KH
3545 event = kmalloc(sizeof(*event), GFP_KERNEL);
3546 if (!event)
3547 return -ENOMEM;
3548
1af8efe9 3549 spin_lock(&memcg_oom_lock);
9490ff27
KH
3550
3551 event->eventfd = eventfd;
3552 list_add(&event->list, &memcg->oom_notify);
3553
3554 /* already in OOM ? */
c2b42d3c 3555 if (memcg->under_oom)
9490ff27 3556 eventfd_signal(eventfd, 1);
1af8efe9 3557 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3558
3559 return 0;
3560}
3561
59b6f873 3562static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3563 struct eventfd_ctx *eventfd)
9490ff27 3564{
9490ff27 3565 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3566
1af8efe9 3567 spin_lock(&memcg_oom_lock);
9490ff27 3568
c0ff4b85 3569 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3570 if (ev->eventfd == eventfd) {
3571 list_del(&ev->list);
3572 kfree(ev);
3573 }
3574 }
3575
1af8efe9 3576 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3577}
3578
2da8ca82 3579static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3580{
2da8ca82 3581 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3582
791badbd 3583 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3584 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3585 return 0;
3586}
3587
182446d0 3588static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3589 struct cftype *cft, u64 val)
3590{
182446d0 3591 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3592
3593 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3594 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3595 return -EINVAL;
3596
c0ff4b85 3597 memcg->oom_kill_disable = val;
4d845ebf 3598 if (!val)
c0ff4b85 3599 memcg_oom_recover(memcg);
3dae7fec 3600
3c11ecf4
KH
3601 return 0;
3602}
3603
c255a458 3604#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3605static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3606{
55007d84
GC
3607 int ret;
3608
55007d84
GC
3609 ret = memcg_propagate_kmem(memcg);
3610 if (ret)
3611 return ret;
2633d7a0 3612
1d62e436 3613 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3614}
e5671dfa 3615
2a4db7eb
VD
3616static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3617{
2788cf0c
VD
3618 struct cgroup_subsys_state *css;
3619 struct mem_cgroup *parent, *child;
3620 int kmemcg_id;
3621
2a4db7eb
VD
3622 if (!memcg->kmem_acct_active)
3623 return;
3624
3625 /*
3626 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3627 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3628 * guarantees no cache will be created for this cgroup after we are
3629 * done (see memcg_create_kmem_cache()).
3630 */
3631 memcg->kmem_acct_active = false;
3632
3633 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3634
3635 kmemcg_id = memcg->kmemcg_id;
3636 BUG_ON(kmemcg_id < 0);
3637
3638 parent = parent_mem_cgroup(memcg);
3639 if (!parent)
3640 parent = root_mem_cgroup;
3641
3642 /*
3643 * Change kmemcg_id of this cgroup and all its descendants to the
3644 * parent's id, and then move all entries from this cgroup's list_lrus
3645 * to ones of the parent. After we have finished, all list_lrus
3646 * corresponding to this cgroup are guaranteed to remain empty. The
3647 * ordering is imposed by list_lru_node->lock taken by
3648 * memcg_drain_all_list_lrus().
3649 */
d3f97524 3650 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2788cf0c
VD
3651 css_for_each_descendant_pre(css, &memcg->css) {
3652 child = mem_cgroup_from_css(css);
3653 BUG_ON(child->kmemcg_id != kmemcg_id);
3654 child->kmemcg_id = parent->kmemcg_id;
3655 if (!memcg->use_hierarchy)
3656 break;
3657 }
d3f97524
TH
3658 rcu_read_unlock();
3659
2788cf0c
VD
3660 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3661
3662 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3663}
3664
10d5ebf4 3665static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3666{
f48b80a5
VD
3667 if (memcg->kmem_acct_activated) {
3668 memcg_destroy_kmem_caches(memcg);
3669 static_key_slow_dec(&memcg_kmem_enabled_key);
3670 WARN_ON(page_counter_read(&memcg->kmem));
3671 }
1d62e436 3672 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3673}
e5671dfa 3674#else
cbe128e3 3675static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3676{
3677 return 0;
3678}
d1a4c0b3 3679
2a4db7eb
VD
3680static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3681{
3682}
3683
10d5ebf4
LZ
3684static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3685{
3686}
e5671dfa
GC
3687#endif
3688
52ebea74
TH
3689#ifdef CONFIG_CGROUP_WRITEBACK
3690
3691struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3692{
3693 return &memcg->cgwb_list;
3694}
3695
841710aa
TH
3696static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3697{
3698 return wb_domain_init(&memcg->cgwb_domain, gfp);
3699}
3700
3701static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3702{
3703 wb_domain_exit(&memcg->cgwb_domain);
3704}
3705
2529bb3a
TH
3706static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3707{
3708 wb_domain_size_changed(&memcg->cgwb_domain);
3709}
3710
841710aa
TH
3711struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3712{
3713 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3714
3715 if (!memcg->css.parent)
3716 return NULL;
3717
3718 return &memcg->cgwb_domain;
3719}
3720
c2aa723a
TH
3721/**
3722 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3723 * @wb: bdi_writeback in question
c5edf9cd
TH
3724 * @pfilepages: out parameter for number of file pages
3725 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3726 * @pdirty: out parameter for number of dirty pages
3727 * @pwriteback: out parameter for number of pages under writeback
3728 *
c5edf9cd
TH
3729 * Determine the numbers of file, headroom, dirty, and writeback pages in
3730 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3731 * is a bit more involved.
c2aa723a 3732 *
c5edf9cd
TH
3733 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3734 * headroom is calculated as the lowest headroom of itself and the
3735 * ancestors. Note that this doesn't consider the actual amount of
3736 * available memory in the system. The caller should further cap
3737 * *@pheadroom accordingly.
c2aa723a 3738 */
c5edf9cd
TH
3739void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3740 unsigned long *pheadroom, unsigned long *pdirty,
3741 unsigned long *pwriteback)
c2aa723a
TH
3742{
3743 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3744 struct mem_cgroup *parent;
c2aa723a
TH
3745
3746 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3747
3748 /* this should eventually include NR_UNSTABLE_NFS */
3749 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3750 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3751 (1 << LRU_ACTIVE_FILE));
3752 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3753
c2aa723a
TH
3754 while ((parent = parent_mem_cgroup(memcg))) {
3755 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3756 unsigned long used = page_counter_read(&memcg->memory);
3757
c5edf9cd 3758 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3759 memcg = parent;
3760 }
c2aa723a
TH
3761}
3762
841710aa
TH
3763#else /* CONFIG_CGROUP_WRITEBACK */
3764
3765static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3766{
3767 return 0;
3768}
3769
3770static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3771{
3772}
3773
2529bb3a
TH
3774static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3775{
3776}
3777
52ebea74
TH
3778#endif /* CONFIG_CGROUP_WRITEBACK */
3779
3bc942f3
TH
3780/*
3781 * DO NOT USE IN NEW FILES.
3782 *
3783 * "cgroup.event_control" implementation.
3784 *
3785 * This is way over-engineered. It tries to support fully configurable
3786 * events for each user. Such level of flexibility is completely
3787 * unnecessary especially in the light of the planned unified hierarchy.
3788 *
3789 * Please deprecate this and replace with something simpler if at all
3790 * possible.
3791 */
3792
79bd9814
TH
3793/*
3794 * Unregister event and free resources.
3795 *
3796 * Gets called from workqueue.
3797 */
3bc942f3 3798static void memcg_event_remove(struct work_struct *work)
79bd9814 3799{
3bc942f3
TH
3800 struct mem_cgroup_event *event =
3801 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3802 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3803
3804 remove_wait_queue(event->wqh, &event->wait);
3805
59b6f873 3806 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3807
3808 /* Notify userspace the event is going away. */
3809 eventfd_signal(event->eventfd, 1);
3810
3811 eventfd_ctx_put(event->eventfd);
3812 kfree(event);
59b6f873 3813 css_put(&memcg->css);
79bd9814
TH
3814}
3815
3816/*
3817 * Gets called on POLLHUP on eventfd when user closes it.
3818 *
3819 * Called with wqh->lock held and interrupts disabled.
3820 */
3bc942f3
TH
3821static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3822 int sync, void *key)
79bd9814 3823{
3bc942f3
TH
3824 struct mem_cgroup_event *event =
3825 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3826 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3827 unsigned long flags = (unsigned long)key;
3828
3829 if (flags & POLLHUP) {
3830 /*
3831 * If the event has been detached at cgroup removal, we
3832 * can simply return knowing the other side will cleanup
3833 * for us.
3834 *
3835 * We can't race against event freeing since the other
3836 * side will require wqh->lock via remove_wait_queue(),
3837 * which we hold.
3838 */
fba94807 3839 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3840 if (!list_empty(&event->list)) {
3841 list_del_init(&event->list);
3842 /*
3843 * We are in atomic context, but cgroup_event_remove()
3844 * may sleep, so we have to call it in workqueue.
3845 */
3846 schedule_work(&event->remove);
3847 }
fba94807 3848 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3849 }
3850
3851 return 0;
3852}
3853
3bc942f3 3854static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3855 wait_queue_head_t *wqh, poll_table *pt)
3856{
3bc942f3
TH
3857 struct mem_cgroup_event *event =
3858 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3859
3860 event->wqh = wqh;
3861 add_wait_queue(wqh, &event->wait);
3862}
3863
3864/*
3bc942f3
TH
3865 * DO NOT USE IN NEW FILES.
3866 *
79bd9814
TH
3867 * Parse input and register new cgroup event handler.
3868 *
3869 * Input must be in format '<event_fd> <control_fd> <args>'.
3870 * Interpretation of args is defined by control file implementation.
3871 */
451af504
TH
3872static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3873 char *buf, size_t nbytes, loff_t off)
79bd9814 3874{
451af504 3875 struct cgroup_subsys_state *css = of_css(of);
fba94807 3876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3877 struct mem_cgroup_event *event;
79bd9814
TH
3878 struct cgroup_subsys_state *cfile_css;
3879 unsigned int efd, cfd;
3880 struct fd efile;
3881 struct fd cfile;
fba94807 3882 const char *name;
79bd9814
TH
3883 char *endp;
3884 int ret;
3885
451af504
TH
3886 buf = strstrip(buf);
3887
3888 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3889 if (*endp != ' ')
3890 return -EINVAL;
451af504 3891 buf = endp + 1;
79bd9814 3892
451af504 3893 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3894 if ((*endp != ' ') && (*endp != '\0'))
3895 return -EINVAL;
451af504 3896 buf = endp + 1;
79bd9814
TH
3897
3898 event = kzalloc(sizeof(*event), GFP_KERNEL);
3899 if (!event)
3900 return -ENOMEM;
3901
59b6f873 3902 event->memcg = memcg;
79bd9814 3903 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3904 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3905 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3906 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3907
3908 efile = fdget(efd);
3909 if (!efile.file) {
3910 ret = -EBADF;
3911 goto out_kfree;
3912 }
3913
3914 event->eventfd = eventfd_ctx_fileget(efile.file);
3915 if (IS_ERR(event->eventfd)) {
3916 ret = PTR_ERR(event->eventfd);
3917 goto out_put_efile;
3918 }
3919
3920 cfile = fdget(cfd);
3921 if (!cfile.file) {
3922 ret = -EBADF;
3923 goto out_put_eventfd;
3924 }
3925
3926 /* the process need read permission on control file */
3927 /* AV: shouldn't we check that it's been opened for read instead? */
3928 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3929 if (ret < 0)
3930 goto out_put_cfile;
3931
fba94807
TH
3932 /*
3933 * Determine the event callbacks and set them in @event. This used
3934 * to be done via struct cftype but cgroup core no longer knows
3935 * about these events. The following is crude but the whole thing
3936 * is for compatibility anyway.
3bc942f3
TH
3937 *
3938 * DO NOT ADD NEW FILES.
fba94807 3939 */
b583043e 3940 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3941
3942 if (!strcmp(name, "memory.usage_in_bytes")) {
3943 event->register_event = mem_cgroup_usage_register_event;
3944 event->unregister_event = mem_cgroup_usage_unregister_event;
3945 } else if (!strcmp(name, "memory.oom_control")) {
3946 event->register_event = mem_cgroup_oom_register_event;
3947 event->unregister_event = mem_cgroup_oom_unregister_event;
3948 } else if (!strcmp(name, "memory.pressure_level")) {
3949 event->register_event = vmpressure_register_event;
3950 event->unregister_event = vmpressure_unregister_event;
3951 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3952 event->register_event = memsw_cgroup_usage_register_event;
3953 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3954 } else {
3955 ret = -EINVAL;
3956 goto out_put_cfile;
3957 }
3958
79bd9814 3959 /*
b5557c4c
TH
3960 * Verify @cfile should belong to @css. Also, remaining events are
3961 * automatically removed on cgroup destruction but the removal is
3962 * asynchronous, so take an extra ref on @css.
79bd9814 3963 */
b583043e 3964 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3965 &memory_cgrp_subsys);
79bd9814 3966 ret = -EINVAL;
5a17f543 3967 if (IS_ERR(cfile_css))
79bd9814 3968 goto out_put_cfile;
5a17f543
TH
3969 if (cfile_css != css) {
3970 css_put(cfile_css);
79bd9814 3971 goto out_put_cfile;
5a17f543 3972 }
79bd9814 3973
451af504 3974 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3975 if (ret)
3976 goto out_put_css;
3977
3978 efile.file->f_op->poll(efile.file, &event->pt);
3979
fba94807
TH
3980 spin_lock(&memcg->event_list_lock);
3981 list_add(&event->list, &memcg->event_list);
3982 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3983
3984 fdput(cfile);
3985 fdput(efile);
3986
451af504 3987 return nbytes;
79bd9814
TH
3988
3989out_put_css:
b5557c4c 3990 css_put(css);
79bd9814
TH
3991out_put_cfile:
3992 fdput(cfile);
3993out_put_eventfd:
3994 eventfd_ctx_put(event->eventfd);
3995out_put_efile:
3996 fdput(efile);
3997out_kfree:
3998 kfree(event);
3999
4000 return ret;
4001}
4002
241994ed 4003static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4004 {
0eea1030 4005 .name = "usage_in_bytes",
8c7c6e34 4006 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4007 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4008 },
c84872e1
PE
4009 {
4010 .name = "max_usage_in_bytes",
8c7c6e34 4011 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4012 .write = mem_cgroup_reset,
791badbd 4013 .read_u64 = mem_cgroup_read_u64,
c84872e1 4014 },
8cdea7c0 4015 {
0eea1030 4016 .name = "limit_in_bytes",
8c7c6e34 4017 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4018 .write = mem_cgroup_write,
791badbd 4019 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4020 },
296c81d8
BS
4021 {
4022 .name = "soft_limit_in_bytes",
4023 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4024 .write = mem_cgroup_write,
791badbd 4025 .read_u64 = mem_cgroup_read_u64,
296c81d8 4026 },
8cdea7c0
BS
4027 {
4028 .name = "failcnt",
8c7c6e34 4029 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4030 .write = mem_cgroup_reset,
791badbd 4031 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4032 },
d2ceb9b7
KH
4033 {
4034 .name = "stat",
2da8ca82 4035 .seq_show = memcg_stat_show,
d2ceb9b7 4036 },
c1e862c1
KH
4037 {
4038 .name = "force_empty",
6770c64e 4039 .write = mem_cgroup_force_empty_write,
c1e862c1 4040 },
18f59ea7
BS
4041 {
4042 .name = "use_hierarchy",
4043 .write_u64 = mem_cgroup_hierarchy_write,
4044 .read_u64 = mem_cgroup_hierarchy_read,
4045 },
79bd9814 4046 {
3bc942f3 4047 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4048 .write = memcg_write_event_control,
7dbdb199 4049 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4050 },
a7885eb8
KM
4051 {
4052 .name = "swappiness",
4053 .read_u64 = mem_cgroup_swappiness_read,
4054 .write_u64 = mem_cgroup_swappiness_write,
4055 },
7dc74be0
DN
4056 {
4057 .name = "move_charge_at_immigrate",
4058 .read_u64 = mem_cgroup_move_charge_read,
4059 .write_u64 = mem_cgroup_move_charge_write,
4060 },
9490ff27
KH
4061 {
4062 .name = "oom_control",
2da8ca82 4063 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4064 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4065 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4066 },
70ddf637
AV
4067 {
4068 .name = "pressure_level",
70ddf637 4069 },
406eb0c9
YH
4070#ifdef CONFIG_NUMA
4071 {
4072 .name = "numa_stat",
2da8ca82 4073 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4074 },
4075#endif
510fc4e1
GC
4076#ifdef CONFIG_MEMCG_KMEM
4077 {
4078 .name = "kmem.limit_in_bytes",
4079 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4080 .write = mem_cgroup_write,
791badbd 4081 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4082 },
4083 {
4084 .name = "kmem.usage_in_bytes",
4085 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4086 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4087 },
4088 {
4089 .name = "kmem.failcnt",
4090 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4091 .write = mem_cgroup_reset,
791badbd 4092 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4093 },
4094 {
4095 .name = "kmem.max_usage_in_bytes",
4096 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4097 .write = mem_cgroup_reset,
791badbd 4098 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4099 },
749c5415
GC
4100#ifdef CONFIG_SLABINFO
4101 {
4102 .name = "kmem.slabinfo",
b047501c
VD
4103 .seq_start = slab_start,
4104 .seq_next = slab_next,
4105 .seq_stop = slab_stop,
4106 .seq_show = memcg_slab_show,
749c5415
GC
4107 },
4108#endif
8c7c6e34 4109#endif
6bc10349 4110 { }, /* terminate */
af36f906 4111};
8c7c6e34 4112
8627c775
JW
4113/*
4114 * Private memory cgroup IDR
4115 *
4116 * Swap-out records and page cache shadow entries need to store memcg
4117 * references in constrained space, so we maintain an ID space that is
4118 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4119 * memory-controlled cgroups to 64k.
4120 *
4121 * However, there usually are many references to the oflline CSS after
4122 * the cgroup has been destroyed, such as page cache or reclaimable
4123 * slab objects, that don't need to hang on to the ID. We want to keep
4124 * those dead CSS from occupying IDs, or we might quickly exhaust the
4125 * relatively small ID space and prevent the creation of new cgroups
4126 * even when there are much fewer than 64k cgroups - possibly none.
4127 *
4128 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4129 * be freed and recycled when it's no longer needed, which is usually
4130 * when the CSS is offlined.
4131 *
4132 * The only exception to that are records of swapped out tmpfs/shmem
4133 * pages that need to be attributed to live ancestors on swapin. But
4134 * those references are manageable from userspace.
4135 */
4136
4137static DEFINE_IDR(mem_cgroup_idr);
4138
4139static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4140{
4141 atomic_inc(&memcg->id.ref);
4142}
4143
4144static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4145{
4146 if (atomic_dec_and_test(&memcg->id.ref)) {
4147 idr_remove(&mem_cgroup_idr, memcg->id.id);
4148 memcg->id.id = 0;
4149
4150 /* Memcg ID pins CSS */
4151 css_put(&memcg->css);
4152 }
4153}
4154
4155/**
4156 * mem_cgroup_from_id - look up a memcg from a memcg id
4157 * @id: the memcg id to look up
4158 *
4159 * Caller must hold rcu_read_lock().
4160 */
4161struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4162{
4163 WARN_ON_ONCE(!rcu_read_lock_held());
4164 return idr_find(&mem_cgroup_idr, id);
4165}
4166
c0ff4b85 4167static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4168{
4169 struct mem_cgroup_per_node *pn;
1ecaab2b 4170 struct mem_cgroup_per_zone *mz;
41e3355d 4171 int zone, tmp = node;
1ecaab2b
KH
4172 /*
4173 * This routine is called against possible nodes.
4174 * But it's BUG to call kmalloc() against offline node.
4175 *
4176 * TODO: this routine can waste much memory for nodes which will
4177 * never be onlined. It's better to use memory hotplug callback
4178 * function.
4179 */
41e3355d
KH
4180 if (!node_state(node, N_NORMAL_MEMORY))
4181 tmp = -1;
17295c88 4182 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4183 if (!pn)
4184 return 1;
1ecaab2b 4185
1ecaab2b
KH
4186 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4187 mz = &pn->zoneinfo[zone];
bea8c150 4188 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4189 mz->usage_in_excess = 0;
4190 mz->on_tree = false;
d79154bb 4191 mz->memcg = memcg;
1ecaab2b 4192 }
54f72fe0 4193 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4194 return 0;
4195}
4196
c0ff4b85 4197static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4198{
54f72fe0 4199 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4200}
4201
33327948
KH
4202static struct mem_cgroup *mem_cgroup_alloc(void)
4203{
d79154bb 4204 struct mem_cgroup *memcg;
8ff69e2c 4205 size_t size;
33327948 4206
8ff69e2c
VD
4207 size = sizeof(struct mem_cgroup);
4208 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4209
8ff69e2c 4210 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4211 if (!memcg)
e7bbcdf3
DC
4212 return NULL;
4213
d79154bb
HD
4214 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4215 if (!memcg->stat)
d2e61b8d 4216 goto out_free;
841710aa
TH
4217
4218 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4219 goto out_free_stat;
4220
8627c775
JW
4221 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4222 1, MEM_CGROUP_ID_MAX,
4223 GFP_KERNEL);
4224 if (memcg->id.id < 0)
4225 goto out_free_stat;
4226
d79154bb 4227 return memcg;
d2e61b8d 4228
841710aa
TH
4229out_free_stat:
4230 free_percpu(memcg->stat);
d2e61b8d 4231out_free:
8ff69e2c 4232 kfree(memcg);
d2e61b8d 4233 return NULL;
33327948
KH
4234}
4235
59927fb9 4236/*
c8b2a36f
GC
4237 * At destroying mem_cgroup, references from swap_cgroup can remain.
4238 * (scanning all at force_empty is too costly...)
4239 *
4240 * Instead of clearing all references at force_empty, we remember
4241 * the number of reference from swap_cgroup and free mem_cgroup when
4242 * it goes down to 0.
4243 *
4244 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4245 */
c8b2a36f
GC
4246
4247static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4248{
c8b2a36f 4249 int node;
59927fb9 4250
bb4cc1a8 4251 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4252
4253 for_each_node(node)
4254 free_mem_cgroup_per_zone_info(memcg, node);
4255
4256 free_percpu(memcg->stat);
841710aa 4257 memcg_wb_domain_exit(memcg);
8ff69e2c 4258 kfree(memcg);
59927fb9 4259}
3afe36b1 4260
7bcc1bb1
DN
4261/*
4262 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4263 */
e1aab161 4264struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4265{
3e32cb2e 4266 if (!memcg->memory.parent)
7bcc1bb1 4267 return NULL;
3e32cb2e 4268 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4269}
e1aab161 4270EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4271
0eb253e2 4272static struct cgroup_subsys_state * __ref
eb95419b 4273mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4274{
d142e3e6 4275 struct mem_cgroup *memcg;
04046e1a 4276 long error = -ENOMEM;
6d12e2d8 4277 int node;
8cdea7c0 4278
c0ff4b85
R
4279 memcg = mem_cgroup_alloc();
4280 if (!memcg)
04046e1a 4281 return ERR_PTR(error);
78fb7466 4282
3ed28fa1 4283 for_each_node(node)
c0ff4b85 4284 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4285 goto free_out;
f64c3f54 4286
c077719b 4287 /* root ? */
eb95419b 4288 if (parent_css == NULL) {
a41c58a6 4289 root_mem_cgroup = memcg;
56161634 4290 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4291 page_counter_init(&memcg->memory, NULL);
241994ed 4292 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4293 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4294 page_counter_init(&memcg->memsw, NULL);
4295 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4296 }
28dbc4b6 4297
d142e3e6
GC
4298 memcg->last_scanned_node = MAX_NUMNODES;
4299 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4300 memcg->move_charge_at_immigrate = 0;
4301 mutex_init(&memcg->thresholds_lock);
4302 spin_lock_init(&memcg->move_lock);
70ddf637 4303 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4304 INIT_LIST_HEAD(&memcg->event_list);
4305 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4306#ifdef CONFIG_MEMCG_KMEM
4307 memcg->kmemcg_id = -1;
900a38f0 4308#endif
52ebea74
TH
4309#ifdef CONFIG_CGROUP_WRITEBACK
4310 INIT_LIST_HEAD(&memcg->cgwb_list);
4311#endif
8627c775 4312 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
d142e3e6
GC
4313 return &memcg->css;
4314
4315free_out:
8627c775 4316 idr_remove(&mem_cgroup_idr, memcg->id.id);
d142e3e6
GC
4317 __mem_cgroup_free(memcg);
4318 return ERR_PTR(error);
4319}
4320
4321static int
eb95419b 4322mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4323{
eb95419b 4324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4325 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4326 int ret;
d142e3e6 4327
8627c775
JW
4328 /* Online state pins memcg ID, memcg ID pins CSS */
4329 mem_cgroup_id_get(mem_cgroup_from_css(css));
4330 css_get(css);
4219b2da 4331
63876986 4332 if (!parent)
d142e3e6
GC
4333 return 0;
4334
0999821b 4335 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4336
4337 memcg->use_hierarchy = parent->use_hierarchy;
4338 memcg->oom_kill_disable = parent->oom_kill_disable;
4339 memcg->swappiness = mem_cgroup_swappiness(parent);
4340
4341 if (parent->use_hierarchy) {
3e32cb2e 4342 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4343 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4344 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4345 page_counter_init(&memcg->memsw, &parent->memsw);
4346 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4347
7bcc1bb1 4348 /*
8d76a979
LZ
4349 * No need to take a reference to the parent because cgroup
4350 * core guarantees its existence.
7bcc1bb1 4351 */
18f59ea7 4352 } else {
3e32cb2e 4353 page_counter_init(&memcg->memory, NULL);
241994ed 4354 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4355 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4356 page_counter_init(&memcg->memsw, NULL);
4357 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4358 /*
4359 * Deeper hierachy with use_hierarchy == false doesn't make
4360 * much sense so let cgroup subsystem know about this
4361 * unfortunate state in our controller.
4362 */
d142e3e6 4363 if (parent != root_mem_cgroup)
073219e9 4364 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4365 }
0999821b 4366 mutex_unlock(&memcg_create_mutex);
d6441637 4367
2f7dd7a4
JW
4368 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4369 if (ret)
4370 return ret;
4371
4372 /*
4373 * Make sure the memcg is initialized: mem_cgroup_iter()
4374 * orders reading memcg->initialized against its callers
4375 * reading the memcg members.
4376 */
4377 smp_store_release(&memcg->initialized, 1);
4378
4379 return 0;
8cdea7c0
BS
4380}
4381
eb95419b 4382static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4383{
eb95419b 4384 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4385 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4386
4387 /*
4388 * Unregister events and notify userspace.
4389 * Notify userspace about cgroup removing only after rmdir of cgroup
4390 * directory to avoid race between userspace and kernelspace.
4391 */
fba94807
TH
4392 spin_lock(&memcg->event_list_lock);
4393 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4394 list_del_init(&event->list);
4395 schedule_work(&event->remove);
4396 }
fba94807 4397 spin_unlock(&memcg->event_list_lock);
ec64f515 4398
33cb876e 4399 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4400
4401 memcg_deactivate_kmem(memcg);
52ebea74
TH
4402
4403 wb_memcg_offline(memcg);
8627c775
JW
4404
4405 mem_cgroup_id_put(memcg);
df878fb0
KH
4406}
4407
6df38689
VD
4408static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4409{
4410 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4411
4412 invalidate_reclaim_iterators(memcg);
4413}
4414
eb95419b 4415static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4416{
eb95419b 4417 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4418
10d5ebf4 4419 memcg_destroy_kmem(memcg);
465939a1 4420 __mem_cgroup_free(memcg);
8cdea7c0
BS
4421}
4422
1ced953b
TH
4423/**
4424 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4425 * @css: the target css
4426 *
4427 * Reset the states of the mem_cgroup associated with @css. This is
4428 * invoked when the userland requests disabling on the default hierarchy
4429 * but the memcg is pinned through dependency. The memcg should stop
4430 * applying policies and should revert to the vanilla state as it may be
4431 * made visible again.
4432 *
4433 * The current implementation only resets the essential configurations.
4434 * This needs to be expanded to cover all the visible parts.
4435 */
4436static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4437{
4438 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4439
3e32cb2e
JW
4440 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4441 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4442 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4443 memcg->low = 0;
4444 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4445 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4446 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4447}
4448
02491447 4449#ifdef CONFIG_MMU
7dc74be0 4450/* Handlers for move charge at task migration. */
854ffa8d 4451static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4452{
05b84301 4453 int ret;
9476db97 4454
d0164adc
MG
4455 /* Try a single bulk charge without reclaim first, kswapd may wake */
4456 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4457 if (!ret) {
854ffa8d 4458 mc.precharge += count;
854ffa8d
DN
4459 return ret;
4460 }
9476db97
JW
4461
4462 /* Try charges one by one with reclaim */
854ffa8d 4463 while (count--) {
00501b53 4464 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4465 if (ret)
38c5d72f 4466 return ret;
854ffa8d 4467 mc.precharge++;
9476db97 4468 cond_resched();
854ffa8d 4469 }
9476db97 4470 return 0;
4ffef5fe
DN
4471}
4472
4473/**
8d32ff84 4474 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4475 * @vma: the vma the pte to be checked belongs
4476 * @addr: the address corresponding to the pte to be checked
4477 * @ptent: the pte to be checked
02491447 4478 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4479 *
4480 * Returns
4481 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4482 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4483 * move charge. if @target is not NULL, the page is stored in target->page
4484 * with extra refcnt got(Callers should handle it).
02491447
DN
4485 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4486 * target for charge migration. if @target is not NULL, the entry is stored
4487 * in target->ent.
4ffef5fe
DN
4488 *
4489 * Called with pte lock held.
4490 */
4ffef5fe
DN
4491union mc_target {
4492 struct page *page;
02491447 4493 swp_entry_t ent;
4ffef5fe
DN
4494};
4495
4ffef5fe 4496enum mc_target_type {
8d32ff84 4497 MC_TARGET_NONE = 0,
4ffef5fe 4498 MC_TARGET_PAGE,
02491447 4499 MC_TARGET_SWAP,
4ffef5fe
DN
4500};
4501
90254a65
DN
4502static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4503 unsigned long addr, pte_t ptent)
4ffef5fe 4504{
90254a65 4505 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4506
90254a65
DN
4507 if (!page || !page_mapped(page))
4508 return NULL;
4509 if (PageAnon(page)) {
1dfab5ab 4510 if (!(mc.flags & MOVE_ANON))
90254a65 4511 return NULL;
1dfab5ab
JW
4512 } else {
4513 if (!(mc.flags & MOVE_FILE))
4514 return NULL;
4515 }
90254a65
DN
4516 if (!get_page_unless_zero(page))
4517 return NULL;
4518
4519 return page;
4520}
4521
4b91355e 4522#ifdef CONFIG_SWAP
90254a65
DN
4523static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4524 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4525{
90254a65
DN
4526 struct page *page = NULL;
4527 swp_entry_t ent = pte_to_swp_entry(ptent);
4528
1dfab5ab 4529 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4530 return NULL;
4b91355e
KH
4531 /*
4532 * Because lookup_swap_cache() updates some statistics counter,
4533 * we call find_get_page() with swapper_space directly.
4534 */
33806f06 4535 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4536 if (do_swap_account)
4537 entry->val = ent.val;
4538
4539 return page;
4540}
4b91355e
KH
4541#else
4542static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4543 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4544{
4545 return NULL;
4546}
4547#endif
90254a65 4548
87946a72
DN
4549static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4550 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4551{
4552 struct page *page = NULL;
87946a72
DN
4553 struct address_space *mapping;
4554 pgoff_t pgoff;
4555
4556 if (!vma->vm_file) /* anonymous vma */
4557 return NULL;
1dfab5ab 4558 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4559 return NULL;
4560
87946a72 4561 mapping = vma->vm_file->f_mapping;
0661a336 4562 pgoff = linear_page_index(vma, addr);
87946a72
DN
4563
4564 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4565#ifdef CONFIG_SWAP
4566 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4567 if (shmem_mapping(mapping)) {
4568 page = find_get_entry(mapping, pgoff);
4569 if (radix_tree_exceptional_entry(page)) {
4570 swp_entry_t swp = radix_to_swp_entry(page);
4571 if (do_swap_account)
4572 *entry = swp;
4573 page = find_get_page(swap_address_space(swp), swp.val);
4574 }
4575 } else
4576 page = find_get_page(mapping, pgoff);
4577#else
4578 page = find_get_page(mapping, pgoff);
aa3b1895 4579#endif
87946a72
DN
4580 return page;
4581}
4582
b1b0deab
CG
4583/**
4584 * mem_cgroup_move_account - move account of the page
4585 * @page: the page
4586 * @nr_pages: number of regular pages (>1 for huge pages)
4587 * @from: mem_cgroup which the page is moved from.
4588 * @to: mem_cgroup which the page is moved to. @from != @to.
4589 *
4590 * The caller must confirm following.
4591 * - page is not on LRU (isolate_page() is useful.)
4592 * - compound_lock is held when nr_pages > 1
4593 *
4594 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4595 * from old cgroup.
4596 */
4597static int mem_cgroup_move_account(struct page *page,
4598 unsigned int nr_pages,
4599 struct mem_cgroup *from,
4600 struct mem_cgroup *to)
4601{
4602 unsigned long flags;
4603 int ret;
c4843a75 4604 bool anon;
b1b0deab
CG
4605
4606 VM_BUG_ON(from == to);
4607 VM_BUG_ON_PAGE(PageLRU(page), page);
4608 /*
4609 * The page is isolated from LRU. So, collapse function
4610 * will not handle this page. But page splitting can happen.
4611 * Do this check under compound_page_lock(). The caller should
4612 * hold it.
4613 */
4614 ret = -EBUSY;
4615 if (nr_pages > 1 && !PageTransHuge(page))
4616 goto out;
4617
4618 /*
45637bab
HD
4619 * Prevent mem_cgroup_replace_page() from looking at
4620 * page->mem_cgroup of its source page while we change it.
b1b0deab
CG
4621 */
4622 if (!trylock_page(page))
4623 goto out;
4624
4625 ret = -EINVAL;
4626 if (page->mem_cgroup != from)
4627 goto out_unlock;
4628
c4843a75
GT
4629 anon = PageAnon(page);
4630
b1b0deab
CG
4631 spin_lock_irqsave(&from->move_lock, flags);
4632
c4843a75 4633 if (!anon && page_mapped(page)) {
b1b0deab
CG
4634 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4635 nr_pages);
4636 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4637 nr_pages);
4638 }
4639
c4843a75
GT
4640 /*
4641 * move_lock grabbed above and caller set from->moving_account, so
4642 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4643 * So mapping should be stable for dirty pages.
4644 */
4645 if (!anon && PageDirty(page)) {
4646 struct address_space *mapping = page_mapping(page);
4647
4648 if (mapping_cap_account_dirty(mapping)) {
4649 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4650 nr_pages);
4651 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4652 nr_pages);
4653 }
4654 }
4655
b1b0deab
CG
4656 if (PageWriteback(page)) {
4657 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4658 nr_pages);
4659 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4660 nr_pages);
4661 }
4662
4663 /*
4664 * It is safe to change page->mem_cgroup here because the page
4665 * is referenced, charged, and isolated - we can't race with
4666 * uncharging, charging, migration, or LRU putback.
4667 */
4668
4669 /* caller should have done css_get */
4670 page->mem_cgroup = to;
4671 spin_unlock_irqrestore(&from->move_lock, flags);
4672
4673 ret = 0;
4674
4675 local_irq_disable();
4676 mem_cgroup_charge_statistics(to, page, nr_pages);
4677 memcg_check_events(to, page);
4678 mem_cgroup_charge_statistics(from, page, -nr_pages);
4679 memcg_check_events(from, page);
4680 local_irq_enable();
4681out_unlock:
4682 unlock_page(page);
4683out:
4684 return ret;
4685}
4686
8d32ff84 4687static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4688 unsigned long addr, pte_t ptent, union mc_target *target)
4689{
4690 struct page *page = NULL;
8d32ff84 4691 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4692 swp_entry_t ent = { .val = 0 };
4693
4694 if (pte_present(ptent))
4695 page = mc_handle_present_pte(vma, addr, ptent);
4696 else if (is_swap_pte(ptent))
4697 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4698 else if (pte_none(ptent))
87946a72 4699 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4700
4701 if (!page && !ent.val)
8d32ff84 4702 return ret;
02491447 4703 if (page) {
02491447 4704 /*
0a31bc97 4705 * Do only loose check w/o serialization.
1306a85a 4706 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4707 * not under LRU exclusion.
02491447 4708 */
1306a85a 4709 if (page->mem_cgroup == mc.from) {
02491447
DN
4710 ret = MC_TARGET_PAGE;
4711 if (target)
4712 target->page = page;
4713 }
4714 if (!ret || !target)
4715 put_page(page);
4716 }
90254a65
DN
4717 /* There is a swap entry and a page doesn't exist or isn't charged */
4718 if (ent.val && !ret &&
34c00c31 4719 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4720 ret = MC_TARGET_SWAP;
4721 if (target)
4722 target->ent = ent;
4ffef5fe 4723 }
4ffef5fe
DN
4724 return ret;
4725}
4726
12724850
NH
4727#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4728/*
4729 * We don't consider swapping or file mapped pages because THP does not
4730 * support them for now.
4731 * Caller should make sure that pmd_trans_huge(pmd) is true.
4732 */
4733static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4734 unsigned long addr, pmd_t pmd, union mc_target *target)
4735{
4736 struct page *page = NULL;
12724850
NH
4737 enum mc_target_type ret = MC_TARGET_NONE;
4738
4739 page = pmd_page(pmd);
309381fe 4740 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4741 if (!(mc.flags & MOVE_ANON))
12724850 4742 return ret;
1306a85a 4743 if (page->mem_cgroup == mc.from) {
12724850
NH
4744 ret = MC_TARGET_PAGE;
4745 if (target) {
4746 get_page(page);
4747 target->page = page;
4748 }
4749 }
4750 return ret;
4751}
4752#else
4753static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4754 unsigned long addr, pmd_t pmd, union mc_target *target)
4755{
4756 return MC_TARGET_NONE;
4757}
4758#endif
4759
4ffef5fe
DN
4760static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4761 unsigned long addr, unsigned long end,
4762 struct mm_walk *walk)
4763{
26bcd64a 4764 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4765 pte_t *pte;
4766 spinlock_t *ptl;
4767
bf929152 4768 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4769 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4770 mc.precharge += HPAGE_PMD_NR;
bf929152 4771 spin_unlock(ptl);
1a5a9906 4772 return 0;
12724850 4773 }
03319327 4774
45f83cef
AA
4775 if (pmd_trans_unstable(pmd))
4776 return 0;
4ffef5fe
DN
4777 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4778 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4779 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4780 mc.precharge++; /* increment precharge temporarily */
4781 pte_unmap_unlock(pte - 1, ptl);
4782 cond_resched();
4783
7dc74be0
DN
4784 return 0;
4785}
4786
4ffef5fe
DN
4787static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4788{
4789 unsigned long precharge;
4ffef5fe 4790
26bcd64a
NH
4791 struct mm_walk mem_cgroup_count_precharge_walk = {
4792 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4793 .mm = mm,
4794 };
dfe076b0 4795 down_read(&mm->mmap_sem);
26bcd64a 4796 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4797 up_read(&mm->mmap_sem);
4ffef5fe
DN
4798
4799 precharge = mc.precharge;
4800 mc.precharge = 0;
4801
4802 return precharge;
4803}
4804
4ffef5fe
DN
4805static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4806{
dfe076b0
DN
4807 unsigned long precharge = mem_cgroup_count_precharge(mm);
4808
4809 VM_BUG_ON(mc.moving_task);
4810 mc.moving_task = current;
4811 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4812}
4813
dfe076b0
DN
4814/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4815static void __mem_cgroup_clear_mc(void)
4ffef5fe 4816{
2bd9bb20
KH
4817 struct mem_cgroup *from = mc.from;
4818 struct mem_cgroup *to = mc.to;
4819
4ffef5fe 4820 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4821 if (mc.precharge) {
00501b53 4822 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4823 mc.precharge = 0;
4824 }
4825 /*
4826 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4827 * we must uncharge here.
4828 */
4829 if (mc.moved_charge) {
00501b53 4830 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4831 mc.moved_charge = 0;
4ffef5fe 4832 }
483c30b5
DN
4833 /* we must fixup refcnts and charges */
4834 if (mc.moved_swap) {
483c30b5 4835 /* uncharge swap account from the old cgroup */
ce00a967 4836 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4837 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4838
05b84301 4839 /*
3e32cb2e
JW
4840 * we charged both to->memory and to->memsw, so we
4841 * should uncharge to->memory.
05b84301 4842 */
ce00a967 4843 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4844 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4845
e8ea14cc 4846 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4847
4050377b 4848 /* we've already done css_get(mc.to) */
483c30b5
DN
4849 mc.moved_swap = 0;
4850 }
dfe076b0
DN
4851 memcg_oom_recover(from);
4852 memcg_oom_recover(to);
4853 wake_up_all(&mc.waitq);
4854}
4855
4856static void mem_cgroup_clear_mc(void)
4857{
52526076
TH
4858 struct mm_struct *mm = mc.mm;
4859
dfe076b0
DN
4860 /*
4861 * we must clear moving_task before waking up waiters at the end of
4862 * task migration.
4863 */
4864 mc.moving_task = NULL;
4865 __mem_cgroup_clear_mc();
2bd9bb20 4866 spin_lock(&mc.lock);
4ffef5fe
DN
4867 mc.from = NULL;
4868 mc.to = NULL;
52526076 4869 mc.mm = NULL;
2bd9bb20 4870 spin_unlock(&mc.lock);
52526076
TH
4871
4872 mmput(mm);
4ffef5fe
DN
4873}
4874
1f7dd3e5 4875static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4876{
1f7dd3e5
TH
4877 struct cgroup_subsys_state *css;
4878 struct mem_cgroup *memcg;
9f2115f9 4879 struct mem_cgroup *from;
4530eddb 4880 struct task_struct *leader, *p;
9f2115f9 4881 struct mm_struct *mm;
1dfab5ab 4882 unsigned long move_flags;
9f2115f9 4883 int ret = 0;
7dc74be0 4884
1f7dd3e5
TH
4885 /* charge immigration isn't supported on the default hierarchy */
4886 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4887 return 0;
4888
4530eddb
TH
4889 /*
4890 * Multi-process migrations only happen on the default hierarchy
4891 * where charge immigration is not used. Perform charge
4892 * immigration if @tset contains a leader and whine if there are
4893 * multiple.
4894 */
4895 p = NULL;
1f7dd3e5 4896 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4897 WARN_ON_ONCE(p);
4898 p = leader;
1f7dd3e5 4899 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4900 }
4901 if (!p)
4902 return 0;
4903
1f7dd3e5
TH
4904 /*
4905 * We are now commited to this value whatever it is. Changes in this
4906 * tunable will only affect upcoming migrations, not the current one.
4907 * So we need to save it, and keep it going.
4908 */
4909 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4910 if (!move_flags)
4911 return 0;
4912
9f2115f9
TH
4913 from = mem_cgroup_from_task(p);
4914
4915 VM_BUG_ON(from == memcg);
4916
4917 mm = get_task_mm(p);
4918 if (!mm)
4919 return 0;
4920 /* We move charges only when we move a owner of the mm */
4921 if (mm->owner == p) {
4922 VM_BUG_ON(mc.from);
4923 VM_BUG_ON(mc.to);
4924 VM_BUG_ON(mc.precharge);
4925 VM_BUG_ON(mc.moved_charge);
4926 VM_BUG_ON(mc.moved_swap);
4927
4928 spin_lock(&mc.lock);
52526076 4929 mc.mm = mm;
9f2115f9
TH
4930 mc.from = from;
4931 mc.to = memcg;
4932 mc.flags = move_flags;
4933 spin_unlock(&mc.lock);
4934 /* We set mc.moving_task later */
4935
4936 ret = mem_cgroup_precharge_mc(mm);
4937 if (ret)
4938 mem_cgroup_clear_mc();
52526076
TH
4939 } else {
4940 mmput(mm);
7dc74be0
DN
4941 }
4942 return ret;
4943}
4944
1f7dd3e5 4945static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4946{
4e2f245d
JW
4947 if (mc.to)
4948 mem_cgroup_clear_mc();
7dc74be0
DN
4949}
4950
4ffef5fe
DN
4951static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4952 unsigned long addr, unsigned long end,
4953 struct mm_walk *walk)
7dc74be0 4954{
4ffef5fe 4955 int ret = 0;
26bcd64a 4956 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4957 pte_t *pte;
4958 spinlock_t *ptl;
12724850
NH
4959 enum mc_target_type target_type;
4960 union mc_target target;
4961 struct page *page;
4ffef5fe 4962
12724850
NH
4963 /*
4964 * We don't take compound_lock() here but no race with splitting thp
4965 * happens because:
4966 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4967 * under splitting, which means there's no concurrent thp split,
4968 * - if another thread runs into split_huge_page() just after we
4969 * entered this if-block, the thread must wait for page table lock
4970 * to be unlocked in __split_huge_page_splitting(), where the main
4971 * part of thp split is not executed yet.
4972 */
bf929152 4973 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4974 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4975 spin_unlock(ptl);
12724850
NH
4976 return 0;
4977 }
4978 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4979 if (target_type == MC_TARGET_PAGE) {
4980 page = target.page;
4981 if (!isolate_lru_page(page)) {
12724850 4982 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4983 mc.from, mc.to)) {
12724850
NH
4984 mc.precharge -= HPAGE_PMD_NR;
4985 mc.moved_charge += HPAGE_PMD_NR;
4986 }
4987 putback_lru_page(page);
4988 }
4989 put_page(page);
4990 }
bf929152 4991 spin_unlock(ptl);
1a5a9906 4992 return 0;
12724850
NH
4993 }
4994
45f83cef
AA
4995 if (pmd_trans_unstable(pmd))
4996 return 0;
4ffef5fe
DN
4997retry:
4998 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4999 for (; addr != end; addr += PAGE_SIZE) {
5000 pte_t ptent = *(pte++);
02491447 5001 swp_entry_t ent;
4ffef5fe
DN
5002
5003 if (!mc.precharge)
5004 break;
5005
8d32ff84 5006 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5007 case MC_TARGET_PAGE:
5008 page = target.page;
5009 if (isolate_lru_page(page))
5010 goto put;
1306a85a 5011 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5012 mc.precharge--;
854ffa8d
DN
5013 /* we uncharge from mc.from later. */
5014 mc.moved_charge++;
4ffef5fe
DN
5015 }
5016 putback_lru_page(page);
8d32ff84 5017put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5018 put_page(page);
5019 break;
02491447
DN
5020 case MC_TARGET_SWAP:
5021 ent = target.ent;
e91cbb42 5022 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5023 mc.precharge--;
483c30b5
DN
5024 /* we fixup refcnts and charges later. */
5025 mc.moved_swap++;
5026 }
02491447 5027 break;
4ffef5fe
DN
5028 default:
5029 break;
5030 }
5031 }
5032 pte_unmap_unlock(pte - 1, ptl);
5033 cond_resched();
5034
5035 if (addr != end) {
5036 /*
5037 * We have consumed all precharges we got in can_attach().
5038 * We try charge one by one, but don't do any additional
5039 * charges to mc.to if we have failed in charge once in attach()
5040 * phase.
5041 */
854ffa8d 5042 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5043 if (!ret)
5044 goto retry;
5045 }
5046
5047 return ret;
5048}
5049
52526076 5050static void mem_cgroup_move_charge(void)
4ffef5fe 5051{
26bcd64a
NH
5052 struct mm_walk mem_cgroup_move_charge_walk = {
5053 .pmd_entry = mem_cgroup_move_charge_pte_range,
52526076 5054 .mm = mc.mm,
26bcd64a 5055 };
4ffef5fe
DN
5056
5057 lru_add_drain_all();
312722cb
JW
5058 /*
5059 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5060 * move_lock while we're moving its pages to another memcg.
5061 * Then wait for already started RCU-only updates to finish.
5062 */
5063 atomic_inc(&mc.from->moving_account);
5064 synchronize_rcu();
dfe076b0 5065retry:
52526076 5066 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5067 /*
5068 * Someone who are holding the mmap_sem might be waiting in
5069 * waitq. So we cancel all extra charges, wake up all waiters,
5070 * and retry. Because we cancel precharges, we might not be able
5071 * to move enough charges, but moving charge is a best-effort
5072 * feature anyway, so it wouldn't be a big problem.
5073 */
5074 __mem_cgroup_clear_mc();
5075 cond_resched();
5076 goto retry;
5077 }
26bcd64a
NH
5078 /*
5079 * When we have consumed all precharges and failed in doing
5080 * additional charge, the page walk just aborts.
5081 */
5082 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
52526076 5083 up_read(&mc.mm->mmap_sem);
312722cb 5084 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5085}
5086
52526076 5087static void mem_cgroup_move_task(void)
67e465a7 5088{
52526076
TH
5089 if (mc.to) {
5090 mem_cgroup_move_charge();
a433658c 5091 mem_cgroup_clear_mc();
52526076 5092 }
67e465a7 5093}
5cfb80a7 5094#else /* !CONFIG_MMU */
1f7dd3e5 5095static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5096{
5097 return 0;
5098}
1f7dd3e5 5099static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5100{
5101}
52526076 5102static void mem_cgroup_move_task(void)
5cfb80a7
DN
5103{
5104}
5105#endif
67e465a7 5106
f00baae7
TH
5107/*
5108 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5109 * to verify whether we're attached to the default hierarchy on each mount
5110 * attempt.
f00baae7 5111 */
eb95419b 5112static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5113{
5114 /*
aa6ec29b 5115 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5116 * guarantees that @root doesn't have any children, so turning it
5117 * on for the root memcg is enough.
5118 */
9e10a130 5119 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5120 root_mem_cgroup->use_hierarchy = true;
5121 else
5122 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5123}
5124
241994ed
JW
5125static u64 memory_current_read(struct cgroup_subsys_state *css,
5126 struct cftype *cft)
5127{
f5fc3c5d
JW
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5129
5130 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5131}
5132
5133static int memory_low_show(struct seq_file *m, void *v)
5134{
5135 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5136 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5137
5138 if (low == PAGE_COUNTER_MAX)
d2973697 5139 seq_puts(m, "max\n");
241994ed
JW
5140 else
5141 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5142
5143 return 0;
5144}
5145
5146static ssize_t memory_low_write(struct kernfs_open_file *of,
5147 char *buf, size_t nbytes, loff_t off)
5148{
5149 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5150 unsigned long low;
5151 int err;
5152
5153 buf = strstrip(buf);
d2973697 5154 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5155 if (err)
5156 return err;
5157
5158 memcg->low = low;
5159
5160 return nbytes;
5161}
5162
5163static int memory_high_show(struct seq_file *m, void *v)
5164{
5165 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5166 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5167
5168 if (high == PAGE_COUNTER_MAX)
d2973697 5169 seq_puts(m, "max\n");
241994ed
JW
5170 else
5171 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5172
5173 return 0;
5174}
5175
5176static ssize_t memory_high_write(struct kernfs_open_file *of,
5177 char *buf, size_t nbytes, loff_t off)
5178{
5179 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8b42fc47 5180 unsigned long nr_pages;
241994ed
JW
5181 unsigned long high;
5182 int err;
5183
5184 buf = strstrip(buf);
d2973697 5185 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5186 if (err)
5187 return err;
5188
5189 memcg->high = high;
5190
8b42fc47
JW
5191 nr_pages = page_counter_read(&memcg->memory);
5192 if (nr_pages > high)
5193 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5194 GFP_KERNEL, true);
5195
2529bb3a 5196 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5197 return nbytes;
5198}
5199
5200static int memory_max_show(struct seq_file *m, void *v)
5201{
5202 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5203 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5204
5205 if (max == PAGE_COUNTER_MAX)
d2973697 5206 seq_puts(m, "max\n");
241994ed
JW
5207 else
5208 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5209
5210 return 0;
5211}
5212
5213static ssize_t memory_max_write(struct kernfs_open_file *of,
5214 char *buf, size_t nbytes, loff_t off)
5215{
5216 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
0ccab5b1
JW
5217 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5218 bool drained = false;
241994ed
JW
5219 unsigned long max;
5220 int err;
5221
5222 buf = strstrip(buf);
d2973697 5223 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5224 if (err)
5225 return err;
5226
0ccab5b1
JW
5227 xchg(&memcg->memory.limit, max);
5228
5229 for (;;) {
5230 unsigned long nr_pages = page_counter_read(&memcg->memory);
5231
5232 if (nr_pages <= max)
5233 break;
5234
5235 if (signal_pending(current)) {
5236 err = -EINTR;
5237 break;
5238 }
5239
5240 if (!drained) {
5241 drain_all_stock(memcg);
5242 drained = true;
5243 continue;
5244 }
5245
5246 if (nr_reclaims) {
5247 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5248 GFP_KERNEL, true))
5249 nr_reclaims--;
5250 continue;
5251 }
5252
5253 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5254 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5255 break;
5256 }
241994ed 5257
2529bb3a 5258 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5259 return nbytes;
5260}
5261
5262static int memory_events_show(struct seq_file *m, void *v)
5263{
5264 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5265
5266 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5267 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5268 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5269 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5270
5271 return 0;
5272}
5273
5274static struct cftype memory_files[] = {
5275 {
5276 .name = "current",
f5fc3c5d 5277 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5278 .read_u64 = memory_current_read,
5279 },
5280 {
5281 .name = "low",
5282 .flags = CFTYPE_NOT_ON_ROOT,
5283 .seq_show = memory_low_show,
5284 .write = memory_low_write,
5285 },
5286 {
5287 .name = "high",
5288 .flags = CFTYPE_NOT_ON_ROOT,
5289 .seq_show = memory_high_show,
5290 .write = memory_high_write,
5291 },
5292 {
5293 .name = "max",
5294 .flags = CFTYPE_NOT_ON_ROOT,
5295 .seq_show = memory_max_show,
5296 .write = memory_max_write,
5297 },
5298 {
5299 .name = "events",
5300 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5301 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5302 .seq_show = memory_events_show,
5303 },
5304 { } /* terminate */
5305};
5306
073219e9 5307struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5308 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5309 .css_online = mem_cgroup_css_online,
92fb9748 5310 .css_offline = mem_cgroup_css_offline,
6df38689 5311 .css_released = mem_cgroup_css_released,
92fb9748 5312 .css_free = mem_cgroup_css_free,
1ced953b 5313 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5314 .can_attach = mem_cgroup_can_attach,
5315 .cancel_attach = mem_cgroup_cancel_attach,
52526076 5316 .post_attach = mem_cgroup_move_task,
f00baae7 5317 .bind = mem_cgroup_bind,
241994ed
JW
5318 .dfl_cftypes = memory_files,
5319 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5320 .early_init = 0,
8cdea7c0 5321};
c077719b 5322
241994ed
JW
5323/**
5324 * mem_cgroup_low - check if memory consumption is below the normal range
5325 * @root: the highest ancestor to consider
5326 * @memcg: the memory cgroup to check
5327 *
5328 * Returns %true if memory consumption of @memcg, and that of all
5329 * configurable ancestors up to @root, is below the normal range.
5330 */
5331bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5332{
5333 if (mem_cgroup_disabled())
5334 return false;
5335
5336 /*
5337 * The toplevel group doesn't have a configurable range, so
5338 * it's never low when looked at directly, and it is not
5339 * considered an ancestor when assessing the hierarchy.
5340 */
5341
5342 if (memcg == root_mem_cgroup)
5343 return false;
5344
4e54dede 5345 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5346 return false;
5347
5348 while (memcg != root) {
5349 memcg = parent_mem_cgroup(memcg);
5350
5351 if (memcg == root_mem_cgroup)
5352 break;
5353
4e54dede 5354 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5355 return false;
5356 }
5357 return true;
5358}
5359
00501b53
JW
5360/**
5361 * mem_cgroup_try_charge - try charging a page
5362 * @page: page to charge
5363 * @mm: mm context of the victim
5364 * @gfp_mask: reclaim mode
5365 * @memcgp: charged memcg return
5366 *
5367 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5368 * pages according to @gfp_mask if necessary.
5369 *
5370 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5371 * Otherwise, an error code is returned.
5372 *
5373 * After page->mapping has been set up, the caller must finalize the
5374 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5375 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5376 */
5377int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5378 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5379{
5380 struct mem_cgroup *memcg = NULL;
5381 unsigned int nr_pages = 1;
5382 int ret = 0;
5383
5384 if (mem_cgroup_disabled())
5385 goto out;
5386
5387 if (PageSwapCache(page)) {
00501b53
JW
5388 /*
5389 * Every swap fault against a single page tries to charge the
5390 * page, bail as early as possible. shmem_unuse() encounters
5391 * already charged pages, too. The USED bit is protected by
5392 * the page lock, which serializes swap cache removal, which
5393 * in turn serializes uncharging.
5394 */
e993d905 5395 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5396 if (page->mem_cgroup)
00501b53 5397 goto out;
e993d905
VD
5398
5399 if (do_swap_account) {
5400 swp_entry_t ent = { .val = page_private(page), };
5401 unsigned short id = lookup_swap_cgroup_id(ent);
5402
5403 rcu_read_lock();
5404 memcg = mem_cgroup_from_id(id);
5405 if (memcg && !css_tryget_online(&memcg->css))
5406 memcg = NULL;
5407 rcu_read_unlock();
5408 }
00501b53
JW
5409 }
5410
5411 if (PageTransHuge(page)) {
5412 nr_pages <<= compound_order(page);
5413 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5414 }
5415
00501b53
JW
5416 if (!memcg)
5417 memcg = get_mem_cgroup_from_mm(mm);
5418
5419 ret = try_charge(memcg, gfp_mask, nr_pages);
5420
5421 css_put(&memcg->css);
00501b53
JW
5422out:
5423 *memcgp = memcg;
5424 return ret;
5425}
5426
5427/**
5428 * mem_cgroup_commit_charge - commit a page charge
5429 * @page: page to charge
5430 * @memcg: memcg to charge the page to
5431 * @lrucare: page might be on LRU already
5432 *
5433 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5434 * after page->mapping has been set up. This must happen atomically
5435 * as part of the page instantiation, i.e. under the page table lock
5436 * for anonymous pages, under the page lock for page and swap cache.
5437 *
5438 * In addition, the page must not be on the LRU during the commit, to
5439 * prevent racing with task migration. If it might be, use @lrucare.
5440 *
5441 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5442 */
5443void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5444 bool lrucare)
5445{
5446 unsigned int nr_pages = 1;
5447
5448 VM_BUG_ON_PAGE(!page->mapping, page);
5449 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5450
5451 if (mem_cgroup_disabled())
5452 return;
5453 /*
5454 * Swap faults will attempt to charge the same page multiple
5455 * times. But reuse_swap_page() might have removed the page
5456 * from swapcache already, so we can't check PageSwapCache().
5457 */
5458 if (!memcg)
5459 return;
5460
6abb5a86
JW
5461 commit_charge(page, memcg, lrucare);
5462
00501b53
JW
5463 if (PageTransHuge(page)) {
5464 nr_pages <<= compound_order(page);
5465 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5466 }
5467
6abb5a86
JW
5468 local_irq_disable();
5469 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5470 memcg_check_events(memcg, page);
5471 local_irq_enable();
00501b53
JW
5472
5473 if (do_swap_account && PageSwapCache(page)) {
5474 swp_entry_t entry = { .val = page_private(page) };
5475 /*
5476 * The swap entry might not get freed for a long time,
5477 * let's not wait for it. The page already received a
5478 * memory+swap charge, drop the swap entry duplicate.
5479 */
5480 mem_cgroup_uncharge_swap(entry);
5481 }
5482}
5483
5484/**
5485 * mem_cgroup_cancel_charge - cancel a page charge
5486 * @page: page to charge
5487 * @memcg: memcg to charge the page to
5488 *
5489 * Cancel a charge transaction started by mem_cgroup_try_charge().
5490 */
5491void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5492{
5493 unsigned int nr_pages = 1;
5494
5495 if (mem_cgroup_disabled())
5496 return;
5497 /*
5498 * Swap faults will attempt to charge the same page multiple
5499 * times. But reuse_swap_page() might have removed the page
5500 * from swapcache already, so we can't check PageSwapCache().
5501 */
5502 if (!memcg)
5503 return;
5504
5505 if (PageTransHuge(page)) {
5506 nr_pages <<= compound_order(page);
5507 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5508 }
5509
5510 cancel_charge(memcg, nr_pages);
5511}
5512
747db954 5513static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5514 unsigned long nr_anon, unsigned long nr_file,
5515 unsigned long nr_huge, struct page *dummy_page)
5516{
18eca2e6 5517 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5518 unsigned long flags;
5519
ce00a967 5520 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5521 page_counter_uncharge(&memcg->memory, nr_pages);
5522 if (do_swap_account)
5523 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5524 memcg_oom_recover(memcg);
5525 }
747db954
JW
5526
5527 local_irq_save(flags);
5528 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5529 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5530 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5531 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5532 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5533 memcg_check_events(memcg, dummy_page);
5534 local_irq_restore(flags);
e8ea14cc
JW
5535
5536 if (!mem_cgroup_is_root(memcg))
18eca2e6 5537 css_put_many(&memcg->css, nr_pages);
747db954
JW
5538}
5539
5540static void uncharge_list(struct list_head *page_list)
5541{
5542 struct mem_cgroup *memcg = NULL;
747db954
JW
5543 unsigned long nr_anon = 0;
5544 unsigned long nr_file = 0;
5545 unsigned long nr_huge = 0;
5546 unsigned long pgpgout = 0;
747db954
JW
5547 struct list_head *next;
5548 struct page *page;
5549
5550 next = page_list->next;
5551 do {
5552 unsigned int nr_pages = 1;
747db954
JW
5553
5554 page = list_entry(next, struct page, lru);
5555 next = page->lru.next;
5556
5557 VM_BUG_ON_PAGE(PageLRU(page), page);
5558 VM_BUG_ON_PAGE(page_count(page), page);
5559
1306a85a 5560 if (!page->mem_cgroup)
747db954
JW
5561 continue;
5562
5563 /*
5564 * Nobody should be changing or seriously looking at
1306a85a 5565 * page->mem_cgroup at this point, we have fully
29833315 5566 * exclusive access to the page.
747db954
JW
5567 */
5568
1306a85a 5569 if (memcg != page->mem_cgroup) {
747db954 5570 if (memcg) {
18eca2e6
JW
5571 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5572 nr_huge, page);
5573 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5574 }
1306a85a 5575 memcg = page->mem_cgroup;
747db954
JW
5576 }
5577
5578 if (PageTransHuge(page)) {
5579 nr_pages <<= compound_order(page);
5580 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5581 nr_huge += nr_pages;
5582 }
5583
5584 if (PageAnon(page))
5585 nr_anon += nr_pages;
5586 else
5587 nr_file += nr_pages;
5588
1306a85a 5589 page->mem_cgroup = NULL;
747db954
JW
5590
5591 pgpgout++;
5592 } while (next != page_list);
5593
5594 if (memcg)
18eca2e6
JW
5595 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5596 nr_huge, page);
747db954
JW
5597}
5598
0a31bc97
JW
5599/**
5600 * mem_cgroup_uncharge - uncharge a page
5601 * @page: page to uncharge
5602 *
5603 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5604 * mem_cgroup_commit_charge().
5605 */
5606void mem_cgroup_uncharge(struct page *page)
5607{
0a31bc97
JW
5608 if (mem_cgroup_disabled())
5609 return;
5610
747db954 5611 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5612 if (!page->mem_cgroup)
0a31bc97
JW
5613 return;
5614
747db954
JW
5615 INIT_LIST_HEAD(&page->lru);
5616 uncharge_list(&page->lru);
5617}
0a31bc97 5618
747db954
JW
5619/**
5620 * mem_cgroup_uncharge_list - uncharge a list of page
5621 * @page_list: list of pages to uncharge
5622 *
5623 * Uncharge a list of pages previously charged with
5624 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5625 */
5626void mem_cgroup_uncharge_list(struct list_head *page_list)
5627{
5628 if (mem_cgroup_disabled())
5629 return;
0a31bc97 5630
747db954
JW
5631 if (!list_empty(page_list))
5632 uncharge_list(page_list);
0a31bc97
JW
5633}
5634
5635/**
45637bab 5636 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5637 * @oldpage: currently charged page
5638 * @newpage: page to transfer the charge to
0a31bc97
JW
5639 *
5640 * Migrate the charge from @oldpage to @newpage.
5641 *
5642 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5643 * Either or both pages might be on the LRU already.
0a31bc97 5644 */
45637bab 5645void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5646{
29833315 5647 struct mem_cgroup *memcg;
0a31bc97
JW
5648 int isolated;
5649
5650 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5651 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5652 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5653 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5654 newpage);
0a31bc97
JW
5655
5656 if (mem_cgroup_disabled())
5657 return;
5658
5659 /* Page cache replacement: new page already charged? */
1306a85a 5660 if (newpage->mem_cgroup)
0a31bc97
JW
5661 return;
5662
45637bab 5663 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5664 memcg = oldpage->mem_cgroup;
29833315 5665 if (!memcg)
0a31bc97
JW
5666 return;
5667
45637bab 5668 lock_page_lru(oldpage, &isolated);
1306a85a 5669 oldpage->mem_cgroup = NULL;
45637bab 5670 unlock_page_lru(oldpage, isolated);
0a31bc97 5671
45637bab 5672 commit_charge(newpage, memcg, true);
0a31bc97
JW
5673}
5674
2d11085e 5675/*
1081312f
MH
5676 * subsys_initcall() for memory controller.
5677 *
5678 * Some parts like hotcpu_notifier() have to be initialized from this context
5679 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5680 * everything that doesn't depend on a specific mem_cgroup structure should
5681 * be initialized from here.
2d11085e
MH
5682 */
5683static int __init mem_cgroup_init(void)
5684{
95a045f6
JW
5685 int cpu, node;
5686
2d11085e 5687 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5688
5689 for_each_possible_cpu(cpu)
5690 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5691 drain_local_stock);
5692
5693 for_each_node(node) {
5694 struct mem_cgroup_tree_per_node *rtpn;
5695 int zone;
5696
5697 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5698 node_online(node) ? node : NUMA_NO_NODE);
5699
5700 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5701 struct mem_cgroup_tree_per_zone *rtpz;
5702
5703 rtpz = &rtpn->rb_tree_per_zone[zone];
5704 rtpz->rb_root = RB_ROOT;
5705 spin_lock_init(&rtpz->lock);
5706 }
5707 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5708 }
5709
2d11085e
MH
5710 return 0;
5711}
5712subsys_initcall(mem_cgroup_init);
21afa38e
JW
5713
5714#ifdef CONFIG_MEMCG_SWAP
5715/**
5716 * mem_cgroup_swapout - transfer a memsw charge to swap
5717 * @page: page whose memsw charge to transfer
5718 * @entry: swap entry to move the charge to
5719 *
5720 * Transfer the memsw charge of @page to @entry.
5721 */
5722void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5723{
5724 struct mem_cgroup *memcg;
5725 unsigned short oldid;
5726
5727 VM_BUG_ON_PAGE(PageLRU(page), page);
5728 VM_BUG_ON_PAGE(page_count(page), page);
5729
5730 if (!do_swap_account)
5731 return;
5732
5733 memcg = page->mem_cgroup;
5734
5735 /* Readahead page, never charged */
5736 if (!memcg)
5737 return;
5738
8627c775 5739 mem_cgroup_id_get(memcg);
21afa38e
JW
5740 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5741 VM_BUG_ON_PAGE(oldid, page);
5742 mem_cgroup_swap_statistics(memcg, true);
5743
5744 page->mem_cgroup = NULL;
5745
5746 if (!mem_cgroup_is_root(memcg))
5747 page_counter_uncharge(&memcg->memory, 1);
5748
ce9ce665
SAS
5749 /*
5750 * Interrupts should be disabled here because the caller holds the
5751 * mapping->tree_lock lock which is taken with interrupts-off. It is
5752 * important here to have the interrupts disabled because it is the
5753 * only synchronisation we have for udpating the per-CPU variables.
5754 */
5755 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5756 mem_cgroup_charge_statistics(memcg, page, -1);
5757 memcg_check_events(memcg, page);
8627c775
JW
5758
5759 if (!mem_cgroup_is_root(memcg))
5760 css_put(&memcg->css);
21afa38e
JW
5761}
5762
5763/**
5764 * mem_cgroup_uncharge_swap - uncharge a swap entry
5765 * @entry: swap entry to uncharge
5766 *
5767 * Drop the memsw charge associated with @entry.
5768 */
5769void mem_cgroup_uncharge_swap(swp_entry_t entry)
5770{
5771 struct mem_cgroup *memcg;
5772 unsigned short id;
5773
5774 if (!do_swap_account)
5775 return;
5776
5777 id = swap_cgroup_record(entry, 0);
5778 rcu_read_lock();
adbe427b 5779 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5780 if (memcg) {
5781 if (!mem_cgroup_is_root(memcg))
5782 page_counter_uncharge(&memcg->memsw, 1);
5783 mem_cgroup_swap_statistics(memcg, false);
8627c775 5784 mem_cgroup_id_put(memcg);
21afa38e
JW
5785 }
5786 rcu_read_unlock();
5787}
5788
5789/* for remember boot option*/
5790#ifdef CONFIG_MEMCG_SWAP_ENABLED
5791static int really_do_swap_account __initdata = 1;
5792#else
5793static int really_do_swap_account __initdata;
5794#endif
5795
5796static int __init enable_swap_account(char *s)
5797{
5798 if (!strcmp(s, "1"))
5799 really_do_swap_account = 1;
5800 else if (!strcmp(s, "0"))
5801 really_do_swap_account = 0;
5802 return 1;
5803}
5804__setup("swapaccount=", enable_swap_account);
5805
5806static struct cftype memsw_cgroup_files[] = {
5807 {
5808 .name = "memsw.usage_in_bytes",
5809 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5810 .read_u64 = mem_cgroup_read_u64,
5811 },
5812 {
5813 .name = "memsw.max_usage_in_bytes",
5814 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5815 .write = mem_cgroup_reset,
5816 .read_u64 = mem_cgroup_read_u64,
5817 },
5818 {
5819 .name = "memsw.limit_in_bytes",
5820 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5821 .write = mem_cgroup_write,
5822 .read_u64 = mem_cgroup_read_u64,
5823 },
5824 {
5825 .name = "memsw.failcnt",
5826 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5827 .write = mem_cgroup_reset,
5828 .read_u64 = mem_cgroup_read_u64,
5829 },
5830 { }, /* terminate */
5831};
5832
5833static int __init mem_cgroup_swap_init(void)
5834{
5835 if (!mem_cgroup_disabled() && really_do_swap_account) {
5836 do_swap_account = 1;
5837 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5838 memsw_cgroup_files));
5839 }
5840 return 0;
5841}
5842subsys_initcall(mem_cgroup_swap_init);
5843
5844#endif /* CONFIG_MEMCG_SWAP */