blkcg: implement bio_associate_blkcg()
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 80struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
c077719b 84int do_swap_account __read_mostly;
c077719b 85#else
a0db00fc 86#define do_swap_account 0
c077719b
KH
87#endif
88
af7c4b0e
JW
89static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
b070e65c 92 "rss_huge",
af7c4b0e 93 "mapped_file",
c4843a75 94 "dirty",
3ea67d06 95 "writeback",
af7c4b0e
JW
96 "swap",
97};
98
af7c4b0e
JW
99static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104};
105
58cf188e
SZ
106static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112};
113
7a159cc9
JW
114/*
115 * Per memcg event counter is incremented at every pagein/pageout. With THP,
116 * it will be incremated by the number of pages. This counter is used for
117 * for trigger some periodic events. This is straightforward and better
118 * than using jiffies etc. to handle periodic memcg event.
119 */
120enum mem_cgroup_events_target {
121 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 122 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 123 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
124 MEM_CGROUP_NTARGETS,
125};
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
d52aa412 130struct mem_cgroup_stat_cpu {
7a159cc9 131 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 132 unsigned long events[MEMCG_NR_EVENTS];
13114716 133 unsigned long nr_page_events;
7a159cc9 134 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
135};
136
5ac8fb31
JW
137struct reclaim_iter {
138 struct mem_cgroup *position;
527a5ec9
JW
139 /* scan generation, increased every round-trip */
140 unsigned int generation;
141};
142
6d12e2d8
KH
143/*
144 * per-zone information in memory controller.
145 */
6d12e2d8 146struct mem_cgroup_per_zone {
6290df54 147 struct lruvec lruvec;
1eb49272 148 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 149
5ac8fb31 150 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 151
bb4cc1a8 152 struct rb_node tree_node; /* RB tree node */
3e32cb2e 153 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
154 /* the soft limit is exceeded*/
155 bool on_tree;
d79154bb 156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 157 /* use container_of */
6d12e2d8 158};
6d12e2d8
KH
159
160struct mem_cgroup_per_node {
161 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
162};
163
bb4cc1a8
AM
164/*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172};
173
174struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176};
177
178struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180};
181
182static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
2e72b634
KS
184struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
3e32cb2e 186 unsigned long threshold;
2e72b634
KS
187};
188
9490ff27 189/* For threshold */
2e72b634 190struct mem_cgroup_threshold_ary {
748dad36 191 /* An array index points to threshold just below or equal to usage. */
5407a562 192 int current_threshold;
2e72b634
KS
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197};
2c488db2
KS
198
199struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208};
209
9490ff27
KH
210/* for OOM */
211struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214};
2e72b634 215
79bd9814
TH
216/*
217 * cgroup_event represents events which userspace want to receive.
218 */
3bc942f3 219struct mem_cgroup_event {
79bd9814 220 /*
59b6f873 221 * memcg which the event belongs to.
79bd9814 222 */
59b6f873 223 struct mem_cgroup *memcg;
79bd9814
TH
224 /*
225 * eventfd to signal userspace about the event.
226 */
227 struct eventfd_ctx *eventfd;
228 /*
229 * Each of these stored in a list by the cgroup.
230 */
231 struct list_head list;
fba94807
TH
232 /*
233 * register_event() callback will be used to add new userspace
234 * waiter for changes related to this event. Use eventfd_signal()
235 * on eventfd to send notification to userspace.
236 */
59b6f873 237 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 238 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
239 /*
240 * unregister_event() callback will be called when userspace closes
241 * the eventfd or on cgroup removing. This callback must be set,
242 * if you want provide notification functionality.
243 */
59b6f873 244 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 245 struct eventfd_ctx *eventfd);
79bd9814
TH
246 /*
247 * All fields below needed to unregister event when
248 * userspace closes eventfd.
249 */
250 poll_table pt;
251 wait_queue_head_t *wqh;
252 wait_queue_t wait;
253 struct work_struct remove;
254};
255
c0ff4b85
R
256static void mem_cgroup_threshold(struct mem_cgroup *memcg);
257static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 258
8cdea7c0
BS
259/*
260 * The memory controller data structure. The memory controller controls both
261 * page cache and RSS per cgroup. We would eventually like to provide
262 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263 * to help the administrator determine what knobs to tune.
8cdea7c0
BS
264 */
265struct mem_cgroup {
266 struct cgroup_subsys_state css;
3e32cb2e
JW
267
268 /* Accounted resources */
269 struct page_counter memory;
270 struct page_counter memsw;
271 struct page_counter kmem;
272
241994ed
JW
273 /* Normal memory consumption range */
274 unsigned long low;
275 unsigned long high;
276
3e32cb2e 277 unsigned long soft_limit;
59927fb9 278
70ddf637
AV
279 /* vmpressure notifications */
280 struct vmpressure vmpressure;
281
2f7dd7a4
JW
282 /* css_online() has been completed */
283 int initialized;
284
18f59ea7
BS
285 /*
286 * Should the accounting and control be hierarchical, per subtree?
287 */
288 bool use_hierarchy;
79dfdacc
MH
289
290 bool oom_lock;
291 atomic_t under_oom;
3812c8c8 292 atomic_t oom_wakeups;
79dfdacc 293
1f4c025b 294 int swappiness;
3c11ecf4
KH
295 /* OOM-Killer disable */
296 int oom_kill_disable;
a7885eb8 297
2e72b634
KS
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds thresholds;
907860ed 303
2e72b634 304 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 305 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 306
9490ff27
KH
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
185efc0f 309
7dc74be0
DN
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
f894ffa8 314 unsigned long move_charge_at_immigrate;
619d094b
KH
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
6de22619 318 atomic_t moving_account;
312734c0 319 /* taken only while moving_account > 0 */
6de22619
JW
320 spinlock_t move_lock;
321 struct task_struct *move_lock_task;
322 unsigned long move_lock_flags;
d52aa412 323 /*
c62b1a3b 324 * percpu counter.
d52aa412 325 */
3a7951b4 326 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
327 /*
328 * used when a cpu is offlined or other synchronizations
329 * See mem_cgroup_read_stat().
330 */
331 struct mem_cgroup_stat_cpu nocpu_base;
332 spinlock_t pcp_counter_lock;
d1a4c0b3 333
4bd2c1ee 334#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 335 struct cg_proto tcp_mem;
d1a4c0b3 336#endif
2633d7a0 337#if defined(CONFIG_MEMCG_KMEM)
f7ce3190 338 /* Index in the kmem_cache->memcg_params.memcg_caches array */
2633d7a0 339 int kmemcg_id;
2788cf0c 340 bool kmem_acct_activated;
2a4db7eb 341 bool kmem_acct_active;
2633d7a0 342#endif
45cf7ebd
GC
343
344 int last_scanned_node;
345#if MAX_NUMNODES > 1
346 nodemask_t scan_nodes;
347 atomic_t numainfo_events;
348 atomic_t numainfo_updating;
349#endif
70ddf637 350
fba94807
TH
351 /* List of events which userspace want to receive */
352 struct list_head event_list;
353 spinlock_t event_list_lock;
354
54f72fe0
JW
355 struct mem_cgroup_per_node *nodeinfo[0];
356 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
357};
358
510fc4e1 359#ifdef CONFIG_MEMCG_KMEM
cb731d6c 360bool memcg_kmem_is_active(struct mem_cgroup *memcg)
7de37682 361{
2a4db7eb 362 return memcg->kmem_acct_active;
7de37682 363}
510fc4e1
GC
364#endif
365
7dc74be0
DN
366/* Stuffs for move charges at task migration. */
367/*
1dfab5ab 368 * Types of charges to be moved.
7dc74be0 369 */
1dfab5ab
JW
370#define MOVE_ANON 0x1U
371#define MOVE_FILE 0x2U
372#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 373
4ffef5fe
DN
374/* "mc" and its members are protected by cgroup_mutex */
375static struct move_charge_struct {
b1dd693e 376 spinlock_t lock; /* for from, to */
4ffef5fe
DN
377 struct mem_cgroup *from;
378 struct mem_cgroup *to;
1dfab5ab 379 unsigned long flags;
4ffef5fe 380 unsigned long precharge;
854ffa8d 381 unsigned long moved_charge;
483c30b5 382 unsigned long moved_swap;
8033b97c
DN
383 struct task_struct *moving_task; /* a task moving charges */
384 wait_queue_head_t waitq; /* a waitq for other context */
385} mc = {
2bd9bb20 386 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
387 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
388};
4ffef5fe 389
4e416953
BS
390/*
391 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
392 * limit reclaim to prevent infinite loops, if they ever occur.
393 */
a0db00fc 394#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 395#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 396
217bc319
KH
397enum charge_type {
398 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 399 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 400 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 401 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
402 NR_CHARGE_TYPE,
403};
404
8c7c6e34 405/* for encoding cft->private value on file */
86ae53e1
GC
406enum res_type {
407 _MEM,
408 _MEMSWAP,
409 _OOM_TYPE,
510fc4e1 410 _KMEM,
86ae53e1
GC
411};
412
a0db00fc
KS
413#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
414#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 415#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
416/* Used for OOM nofiier */
417#define OOM_CONTROL (0)
8c7c6e34 418
0999821b
GC
419/*
420 * The memcg_create_mutex will be held whenever a new cgroup is created.
421 * As a consequence, any change that needs to protect against new child cgroups
422 * appearing has to hold it as well.
423 */
424static DEFINE_MUTEX(memcg_create_mutex);
425
b2145145
WL
426struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
427{
a7c6d554 428 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
429}
430
70ddf637
AV
431/* Some nice accessors for the vmpressure. */
432struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
433{
434 if (!memcg)
435 memcg = root_mem_cgroup;
436 return &memcg->vmpressure;
437}
438
439struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
440{
441 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
442}
443
7ffc0edc
MH
444static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
445{
446 return (memcg == root_mem_cgroup);
447}
448
4219b2da
LZ
449/*
450 * We restrict the id in the range of [1, 65535], so it can fit into
451 * an unsigned short.
452 */
453#define MEM_CGROUP_ID_MAX USHRT_MAX
454
34c00c31
LZ
455static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
456{
15a4c835 457 return memcg->css.id;
34c00c31
LZ
458}
459
adbe427b
VD
460/*
461 * A helper function to get mem_cgroup from ID. must be called under
462 * rcu_read_lock(). The caller is responsible for calling
463 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
464 * refcnt from swap can be called against removed memcg.)
465 */
34c00c31
LZ
466static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
467{
468 struct cgroup_subsys_state *css;
469
7d699ddb 470 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
471 return mem_cgroup_from_css(css);
472}
473
e1aab161 474/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 475#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 476
e1aab161
GC
477void sock_update_memcg(struct sock *sk)
478{
376be5ff 479 if (mem_cgroup_sockets_enabled) {
e1aab161 480 struct mem_cgroup *memcg;
3f134619 481 struct cg_proto *cg_proto;
e1aab161
GC
482
483 BUG_ON(!sk->sk_prot->proto_cgroup);
484
f3f511e1
GC
485 /* Socket cloning can throw us here with sk_cgrp already
486 * filled. It won't however, necessarily happen from
487 * process context. So the test for root memcg given
488 * the current task's memcg won't help us in this case.
489 *
490 * Respecting the original socket's memcg is a better
491 * decision in this case.
492 */
493 if (sk->sk_cgrp) {
494 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 495 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
496 return;
497 }
498
e1aab161
GC
499 rcu_read_lock();
500 memcg = mem_cgroup_from_task(current);
3f134619 501 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 502 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
503 memcg_proto_active(cg_proto) &&
504 css_tryget_online(&memcg->css)) {
3f134619 505 sk->sk_cgrp = cg_proto;
e1aab161
GC
506 }
507 rcu_read_unlock();
508 }
509}
510EXPORT_SYMBOL(sock_update_memcg);
511
512void sock_release_memcg(struct sock *sk)
513{
376be5ff 514 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
515 struct mem_cgroup *memcg;
516 WARN_ON(!sk->sk_cgrp->memcg);
517 memcg = sk->sk_cgrp->memcg;
5347e5ae 518 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
519 }
520}
d1a4c0b3
GC
521
522struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
523{
524 if (!memcg || mem_cgroup_is_root(memcg))
525 return NULL;
526
2e685cad 527 return &memcg->tcp_mem;
d1a4c0b3
GC
528}
529EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 530
3f134619
GC
531#endif
532
a8964b9b 533#ifdef CONFIG_MEMCG_KMEM
55007d84 534/*
f7ce3190 535 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
536 * The main reason for not using cgroup id for this:
537 * this works better in sparse environments, where we have a lot of memcgs,
538 * but only a few kmem-limited. Or also, if we have, for instance, 200
539 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
540 * 200 entry array for that.
55007d84 541 *
dbcf73e2
VD
542 * The current size of the caches array is stored in memcg_nr_cache_ids. It
543 * will double each time we have to increase it.
55007d84 544 */
dbcf73e2
VD
545static DEFINE_IDA(memcg_cache_ida);
546int memcg_nr_cache_ids;
749c5415 547
05257a1a
VD
548/* Protects memcg_nr_cache_ids */
549static DECLARE_RWSEM(memcg_cache_ids_sem);
550
551void memcg_get_cache_ids(void)
552{
553 down_read(&memcg_cache_ids_sem);
554}
555
556void memcg_put_cache_ids(void)
557{
558 up_read(&memcg_cache_ids_sem);
559}
560
55007d84
GC
561/*
562 * MIN_SIZE is different than 1, because we would like to avoid going through
563 * the alloc/free process all the time. In a small machine, 4 kmem-limited
564 * cgroups is a reasonable guess. In the future, it could be a parameter or
565 * tunable, but that is strictly not necessary.
566 *
b8627835 567 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
568 * this constant directly from cgroup, but it is understandable that this is
569 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 570 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
571 * increase ours as well if it increases.
572 */
573#define MEMCG_CACHES_MIN_SIZE 4
b8627835 574#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 575
d7f25f8a
GC
576/*
577 * A lot of the calls to the cache allocation functions are expected to be
578 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
579 * conditional to this static branch, we'll have to allow modules that does
580 * kmem_cache_alloc and the such to see this symbol as well
581 */
a8964b9b 582struct static_key memcg_kmem_enabled_key;
d7f25f8a 583EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 584
a8964b9b
GC
585#endif /* CONFIG_MEMCG_KMEM */
586
f64c3f54 587static struct mem_cgroup_per_zone *
e231875b 588mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 589{
e231875b
JZ
590 int nid = zone_to_nid(zone);
591 int zid = zone_idx(zone);
592
54f72fe0 593 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
594}
595
c0ff4b85 596struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 597{
c0ff4b85 598 return &memcg->css;
d324236b
WF
599}
600
f64c3f54 601static struct mem_cgroup_per_zone *
e231875b 602mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 603{
97a6c37b
JW
604 int nid = page_to_nid(page);
605 int zid = page_zonenum(page);
f64c3f54 606
e231875b 607 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
608}
609
bb4cc1a8
AM
610static struct mem_cgroup_tree_per_zone *
611soft_limit_tree_node_zone(int nid, int zid)
612{
613 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
614}
615
616static struct mem_cgroup_tree_per_zone *
617soft_limit_tree_from_page(struct page *page)
618{
619 int nid = page_to_nid(page);
620 int zid = page_zonenum(page);
621
622 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
623}
624
cf2c8127
JW
625static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
626 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 627 unsigned long new_usage_in_excess)
bb4cc1a8
AM
628{
629 struct rb_node **p = &mctz->rb_root.rb_node;
630 struct rb_node *parent = NULL;
631 struct mem_cgroup_per_zone *mz_node;
632
633 if (mz->on_tree)
634 return;
635
636 mz->usage_in_excess = new_usage_in_excess;
637 if (!mz->usage_in_excess)
638 return;
639 while (*p) {
640 parent = *p;
641 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
642 tree_node);
643 if (mz->usage_in_excess < mz_node->usage_in_excess)
644 p = &(*p)->rb_left;
645 /*
646 * We can't avoid mem cgroups that are over their soft
647 * limit by the same amount
648 */
649 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
650 p = &(*p)->rb_right;
651 }
652 rb_link_node(&mz->tree_node, parent, p);
653 rb_insert_color(&mz->tree_node, &mctz->rb_root);
654 mz->on_tree = true;
655}
656
cf2c8127
JW
657static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
658 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
659{
660 if (!mz->on_tree)
661 return;
662 rb_erase(&mz->tree_node, &mctz->rb_root);
663 mz->on_tree = false;
664}
665
cf2c8127
JW
666static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
667 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 668{
0a31bc97
JW
669 unsigned long flags;
670
671 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 672 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 673 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
674}
675
3e32cb2e
JW
676static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
677{
678 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 679 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
680 unsigned long excess = 0;
681
682 if (nr_pages > soft_limit)
683 excess = nr_pages - soft_limit;
684
685 return excess;
686}
bb4cc1a8
AM
687
688static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
689{
3e32cb2e 690 unsigned long excess;
bb4cc1a8
AM
691 struct mem_cgroup_per_zone *mz;
692 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 693
e231875b 694 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
695 /*
696 * Necessary to update all ancestors when hierarchy is used.
697 * because their event counter is not touched.
698 */
699 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 700 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 701 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
702 /*
703 * We have to update the tree if mz is on RB-tree or
704 * mem is over its softlimit.
705 */
706 if (excess || mz->on_tree) {
0a31bc97
JW
707 unsigned long flags;
708
709 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
710 /* if on-tree, remove it */
711 if (mz->on_tree)
cf2c8127 712 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
713 /*
714 * Insert again. mz->usage_in_excess will be updated.
715 * If excess is 0, no tree ops.
716 */
cf2c8127 717 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 718 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
719 }
720 }
721}
722
723static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
724{
bb4cc1a8 725 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
726 struct mem_cgroup_per_zone *mz;
727 int nid, zid;
bb4cc1a8 728
e231875b
JZ
729 for_each_node(nid) {
730 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
731 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
732 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 733 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
734 }
735 }
736}
737
738static struct mem_cgroup_per_zone *
739__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
740{
741 struct rb_node *rightmost = NULL;
742 struct mem_cgroup_per_zone *mz;
743
744retry:
745 mz = NULL;
746 rightmost = rb_last(&mctz->rb_root);
747 if (!rightmost)
748 goto done; /* Nothing to reclaim from */
749
750 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
751 /*
752 * Remove the node now but someone else can add it back,
753 * we will to add it back at the end of reclaim to its correct
754 * position in the tree.
755 */
cf2c8127 756 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 757 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 758 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
759 goto retry;
760done:
761 return mz;
762}
763
764static struct mem_cgroup_per_zone *
765mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
766{
767 struct mem_cgroup_per_zone *mz;
768
0a31bc97 769 spin_lock_irq(&mctz->lock);
bb4cc1a8 770 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 771 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
772 return mz;
773}
774
711d3d2c
KH
775/*
776 * Implementation Note: reading percpu statistics for memcg.
777 *
778 * Both of vmstat[] and percpu_counter has threshold and do periodic
779 * synchronization to implement "quick" read. There are trade-off between
780 * reading cost and precision of value. Then, we may have a chance to implement
781 * a periodic synchronizion of counter in memcg's counter.
782 *
783 * But this _read() function is used for user interface now. The user accounts
784 * memory usage by memory cgroup and he _always_ requires exact value because
785 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
786 * have to visit all online cpus and make sum. So, for now, unnecessary
787 * synchronization is not implemented. (just implemented for cpu hotplug)
788 *
789 * If there are kernel internal actions which can make use of some not-exact
790 * value, and reading all cpu value can be performance bottleneck in some
791 * common workload, threashold and synchonization as vmstat[] should be
792 * implemented.
793 */
c0ff4b85 794static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 795 enum mem_cgroup_stat_index idx)
c62b1a3b 796{
7a159cc9 797 long val = 0;
c62b1a3b 798 int cpu;
c62b1a3b 799
711d3d2c
KH
800 get_online_cpus();
801 for_each_online_cpu(cpu)
c0ff4b85 802 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 803#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
804 spin_lock(&memcg->pcp_counter_lock);
805 val += memcg->nocpu_base.count[idx];
806 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
807#endif
808 put_online_cpus();
c62b1a3b
KH
809 return val;
810}
811
c0ff4b85 812static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
813 enum mem_cgroup_events_index idx)
814{
815 unsigned long val = 0;
816 int cpu;
817
9c567512 818 get_online_cpus();
e9f8974f 819 for_each_online_cpu(cpu)
c0ff4b85 820 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 821#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
822 spin_lock(&memcg->pcp_counter_lock);
823 val += memcg->nocpu_base.events[idx];
824 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 825#endif
9c567512 826 put_online_cpus();
e9f8974f
JW
827 return val;
828}
829
c0ff4b85 830static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 831 struct page *page,
0a31bc97 832 int nr_pages)
d52aa412 833{
b2402857
KH
834 /*
835 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
836 * counted as CACHE even if it's on ANON LRU.
837 */
0a31bc97 838 if (PageAnon(page))
b2402857 839 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 840 nr_pages);
d52aa412 841 else
b2402857 842 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 843 nr_pages);
55e462b0 844
b070e65c
DR
845 if (PageTransHuge(page))
846 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
847 nr_pages);
848
e401f176
KH
849 /* pagein of a big page is an event. So, ignore page size */
850 if (nr_pages > 0)
c0ff4b85 851 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 852 else {
c0ff4b85 853 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
854 nr_pages = -nr_pages; /* for event */
855 }
e401f176 856
13114716 857 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
858}
859
e231875b 860unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
861{
862 struct mem_cgroup_per_zone *mz;
863
864 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
865 return mz->lru_size[lru];
866}
867
e231875b
JZ
868static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
869 int nid,
870 unsigned int lru_mask)
bb2a0de9 871{
e231875b 872 unsigned long nr = 0;
889976db
YH
873 int zid;
874
e231875b 875 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 876
e231875b
JZ
877 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
878 struct mem_cgroup_per_zone *mz;
879 enum lru_list lru;
880
881 for_each_lru(lru) {
882 if (!(BIT(lru) & lru_mask))
883 continue;
884 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
885 nr += mz->lru_size[lru];
886 }
887 }
888 return nr;
889976db 889}
bb2a0de9 890
c0ff4b85 891static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 892 unsigned int lru_mask)
6d12e2d8 893{
e231875b 894 unsigned long nr = 0;
889976db 895 int nid;
6d12e2d8 896
31aaea4a 897 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
898 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
899 return nr;
d52aa412
KH
900}
901
f53d7ce3
JW
902static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
903 enum mem_cgroup_events_target target)
7a159cc9
JW
904{
905 unsigned long val, next;
906
13114716 907 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 908 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 909 /* from time_after() in jiffies.h */
f53d7ce3
JW
910 if ((long)next - (long)val < 0) {
911 switch (target) {
912 case MEM_CGROUP_TARGET_THRESH:
913 next = val + THRESHOLDS_EVENTS_TARGET;
914 break;
bb4cc1a8
AM
915 case MEM_CGROUP_TARGET_SOFTLIMIT:
916 next = val + SOFTLIMIT_EVENTS_TARGET;
917 break;
f53d7ce3
JW
918 case MEM_CGROUP_TARGET_NUMAINFO:
919 next = val + NUMAINFO_EVENTS_TARGET;
920 break;
921 default:
922 break;
923 }
924 __this_cpu_write(memcg->stat->targets[target], next);
925 return true;
7a159cc9 926 }
f53d7ce3 927 return false;
d2265e6f
KH
928}
929
930/*
931 * Check events in order.
932 *
933 */
c0ff4b85 934static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
935{
936 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
937 if (unlikely(mem_cgroup_event_ratelimit(memcg,
938 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 939 bool do_softlimit;
82b3f2a7 940 bool do_numainfo __maybe_unused;
f53d7ce3 941
bb4cc1a8
AM
942 do_softlimit = mem_cgroup_event_ratelimit(memcg,
943 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
944#if MAX_NUMNODES > 1
945 do_numainfo = mem_cgroup_event_ratelimit(memcg,
946 MEM_CGROUP_TARGET_NUMAINFO);
947#endif
c0ff4b85 948 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
949 if (unlikely(do_softlimit))
950 mem_cgroup_update_tree(memcg, page);
453a9bf3 951#if MAX_NUMNODES > 1
f53d7ce3 952 if (unlikely(do_numainfo))
c0ff4b85 953 atomic_inc(&memcg->numainfo_events);
453a9bf3 954#endif
0a31bc97 955 }
d2265e6f
KH
956}
957
cf475ad2 958struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 959{
31a78f23
BS
960 /*
961 * mm_update_next_owner() may clear mm->owner to NULL
962 * if it races with swapoff, page migration, etc.
963 * So this can be called with p == NULL.
964 */
965 if (unlikely(!p))
966 return NULL;
967
073219e9 968 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
969}
970
df381975 971static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 972{
c0ff4b85 973 struct mem_cgroup *memcg = NULL;
0b7f569e 974
54595fe2
KH
975 rcu_read_lock();
976 do {
6f6acb00
MH
977 /*
978 * Page cache insertions can happen withou an
979 * actual mm context, e.g. during disk probing
980 * on boot, loopback IO, acct() writes etc.
981 */
982 if (unlikely(!mm))
df381975 983 memcg = root_mem_cgroup;
6f6acb00
MH
984 else {
985 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
986 if (unlikely(!memcg))
987 memcg = root_mem_cgroup;
988 }
ec903c0c 989 } while (!css_tryget_online(&memcg->css));
54595fe2 990 rcu_read_unlock();
c0ff4b85 991 return memcg;
54595fe2
KH
992}
993
5660048c
JW
994/**
995 * mem_cgroup_iter - iterate over memory cgroup hierarchy
996 * @root: hierarchy root
997 * @prev: previously returned memcg, NULL on first invocation
998 * @reclaim: cookie for shared reclaim walks, NULL for full walks
999 *
1000 * Returns references to children of the hierarchy below @root, or
1001 * @root itself, or %NULL after a full round-trip.
1002 *
1003 * Caller must pass the return value in @prev on subsequent
1004 * invocations for reference counting, or use mem_cgroup_iter_break()
1005 * to cancel a hierarchy walk before the round-trip is complete.
1006 *
1007 * Reclaimers can specify a zone and a priority level in @reclaim to
1008 * divide up the memcgs in the hierarchy among all concurrent
1009 * reclaimers operating on the same zone and priority.
1010 */
694fbc0f 1011struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1012 struct mem_cgroup *prev,
694fbc0f 1013 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1014{
5ac8fb31
JW
1015 struct reclaim_iter *uninitialized_var(iter);
1016 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1017 struct mem_cgroup *memcg = NULL;
5ac8fb31 1018 struct mem_cgroup *pos = NULL;
711d3d2c 1019
694fbc0f
AM
1020 if (mem_cgroup_disabled())
1021 return NULL;
5660048c 1022
9f3a0d09
JW
1023 if (!root)
1024 root = root_mem_cgroup;
7d74b06f 1025
9f3a0d09 1026 if (prev && !reclaim)
5ac8fb31 1027 pos = prev;
14067bb3 1028
9f3a0d09
JW
1029 if (!root->use_hierarchy && root != root_mem_cgroup) {
1030 if (prev)
5ac8fb31 1031 goto out;
694fbc0f 1032 return root;
9f3a0d09 1033 }
14067bb3 1034
542f85f9 1035 rcu_read_lock();
5f578161 1036
5ac8fb31
JW
1037 if (reclaim) {
1038 struct mem_cgroup_per_zone *mz;
1039
1040 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1041 iter = &mz->iter[reclaim->priority];
1042
1043 if (prev && reclaim->generation != iter->generation)
1044 goto out_unlock;
1045
1046 do {
4db0c3c2 1047 pos = READ_ONCE(iter->position);
5ac8fb31
JW
1048 /*
1049 * A racing update may change the position and
1050 * put the last reference, hence css_tryget(),
1051 * or retry to see the updated position.
1052 */
1053 } while (pos && !css_tryget(&pos->css));
1054 }
1055
1056 if (pos)
1057 css = &pos->css;
1058
1059 for (;;) {
1060 css = css_next_descendant_pre(css, &root->css);
1061 if (!css) {
1062 /*
1063 * Reclaimers share the hierarchy walk, and a
1064 * new one might jump in right at the end of
1065 * the hierarchy - make sure they see at least
1066 * one group and restart from the beginning.
1067 */
1068 if (!prev)
1069 continue;
1070 break;
527a5ec9 1071 }
7d74b06f 1072
5ac8fb31
JW
1073 /*
1074 * Verify the css and acquire a reference. The root
1075 * is provided by the caller, so we know it's alive
1076 * and kicking, and don't take an extra reference.
1077 */
1078 memcg = mem_cgroup_from_css(css);
14067bb3 1079
5ac8fb31
JW
1080 if (css == &root->css)
1081 break;
14067bb3 1082
b2052564 1083 if (css_tryget(css)) {
5ac8fb31
JW
1084 /*
1085 * Make sure the memcg is initialized:
1086 * mem_cgroup_css_online() orders the the
1087 * initialization against setting the flag.
1088 */
1089 if (smp_load_acquire(&memcg->initialized))
1090 break;
542f85f9 1091
5ac8fb31 1092 css_put(css);
527a5ec9 1093 }
9f3a0d09 1094
5ac8fb31 1095 memcg = NULL;
9f3a0d09 1096 }
5ac8fb31
JW
1097
1098 if (reclaim) {
1099 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1100 if (memcg)
1101 css_get(&memcg->css);
1102 if (pos)
1103 css_put(&pos->css);
1104 }
1105
1106 /*
1107 * pairs with css_tryget when dereferencing iter->position
1108 * above.
1109 */
1110 if (pos)
1111 css_put(&pos->css);
1112
1113 if (!memcg)
1114 iter->generation++;
1115 else if (!prev)
1116 reclaim->generation = iter->generation;
9f3a0d09 1117 }
5ac8fb31 1118
542f85f9
MH
1119out_unlock:
1120 rcu_read_unlock();
5ac8fb31 1121out:
c40046f3
MH
1122 if (prev && prev != root)
1123 css_put(&prev->css);
1124
9f3a0d09 1125 return memcg;
14067bb3 1126}
7d74b06f 1127
5660048c
JW
1128/**
1129 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1130 * @root: hierarchy root
1131 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1132 */
1133void mem_cgroup_iter_break(struct mem_cgroup *root,
1134 struct mem_cgroup *prev)
9f3a0d09
JW
1135{
1136 if (!root)
1137 root = root_mem_cgroup;
1138 if (prev && prev != root)
1139 css_put(&prev->css);
1140}
7d74b06f 1141
9f3a0d09
JW
1142/*
1143 * Iteration constructs for visiting all cgroups (under a tree). If
1144 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1145 * be used for reference counting.
1146 */
1147#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1148 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1149 iter != NULL; \
527a5ec9 1150 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1151
9f3a0d09 1152#define for_each_mem_cgroup(iter) \
527a5ec9 1153 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1154 iter != NULL; \
527a5ec9 1155 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1156
68ae564b 1157void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1158{
c0ff4b85 1159 struct mem_cgroup *memcg;
456f998e 1160
456f998e 1161 rcu_read_lock();
c0ff4b85
R
1162 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1163 if (unlikely(!memcg))
456f998e
YH
1164 goto out;
1165
1166 switch (idx) {
456f998e 1167 case PGFAULT:
0e574a93
JW
1168 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1169 break;
1170 case PGMAJFAULT:
1171 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1172 break;
1173 default:
1174 BUG();
1175 }
1176out:
1177 rcu_read_unlock();
1178}
68ae564b 1179EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1180
925b7673
JW
1181/**
1182 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1183 * @zone: zone of the wanted lruvec
fa9add64 1184 * @memcg: memcg of the wanted lruvec
925b7673
JW
1185 *
1186 * Returns the lru list vector holding pages for the given @zone and
1187 * @mem. This can be the global zone lruvec, if the memory controller
1188 * is disabled.
1189 */
1190struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1191 struct mem_cgroup *memcg)
1192{
1193 struct mem_cgroup_per_zone *mz;
bea8c150 1194 struct lruvec *lruvec;
925b7673 1195
bea8c150
HD
1196 if (mem_cgroup_disabled()) {
1197 lruvec = &zone->lruvec;
1198 goto out;
1199 }
925b7673 1200
e231875b 1201 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1202 lruvec = &mz->lruvec;
1203out:
1204 /*
1205 * Since a node can be onlined after the mem_cgroup was created,
1206 * we have to be prepared to initialize lruvec->zone here;
1207 * and if offlined then reonlined, we need to reinitialize it.
1208 */
1209 if (unlikely(lruvec->zone != zone))
1210 lruvec->zone = zone;
1211 return lruvec;
925b7673
JW
1212}
1213
925b7673 1214/**
dfe0e773 1215 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1216 * @page: the page
fa9add64 1217 * @zone: zone of the page
dfe0e773
JW
1218 *
1219 * This function is only safe when following the LRU page isolation
1220 * and putback protocol: the LRU lock must be held, and the page must
1221 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1222 */
fa9add64 1223struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1224{
08e552c6 1225 struct mem_cgroup_per_zone *mz;
925b7673 1226 struct mem_cgroup *memcg;
bea8c150 1227 struct lruvec *lruvec;
6d12e2d8 1228
bea8c150
HD
1229 if (mem_cgroup_disabled()) {
1230 lruvec = &zone->lruvec;
1231 goto out;
1232 }
925b7673 1233
1306a85a 1234 memcg = page->mem_cgroup;
7512102c 1235 /*
dfe0e773 1236 * Swapcache readahead pages are added to the LRU - and
29833315 1237 * possibly migrated - before they are charged.
7512102c 1238 */
29833315
JW
1239 if (!memcg)
1240 memcg = root_mem_cgroup;
7512102c 1241
e231875b 1242 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1243 lruvec = &mz->lruvec;
1244out:
1245 /*
1246 * Since a node can be onlined after the mem_cgroup was created,
1247 * we have to be prepared to initialize lruvec->zone here;
1248 * and if offlined then reonlined, we need to reinitialize it.
1249 */
1250 if (unlikely(lruvec->zone != zone))
1251 lruvec->zone = zone;
1252 return lruvec;
08e552c6 1253}
b69408e8 1254
925b7673 1255/**
fa9add64
HD
1256 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1257 * @lruvec: mem_cgroup per zone lru vector
1258 * @lru: index of lru list the page is sitting on
1259 * @nr_pages: positive when adding or negative when removing
925b7673 1260 *
fa9add64
HD
1261 * This function must be called when a page is added to or removed from an
1262 * lru list.
3f58a829 1263 */
fa9add64
HD
1264void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1265 int nr_pages)
3f58a829
MK
1266{
1267 struct mem_cgroup_per_zone *mz;
fa9add64 1268 unsigned long *lru_size;
3f58a829
MK
1269
1270 if (mem_cgroup_disabled())
1271 return;
1272
fa9add64
HD
1273 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1274 lru_size = mz->lru_size + lru;
1275 *lru_size += nr_pages;
1276 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1277}
544122e5 1278
2314b42d 1279bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1280{
2314b42d 1281 if (root == memcg)
91c63734 1282 return true;
2314b42d 1283 if (!root->use_hierarchy)
91c63734 1284 return false;
2314b42d 1285 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1286}
1287
2314b42d 1288bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1289{
2314b42d 1290 struct mem_cgroup *task_memcg;
158e0a2d 1291 struct task_struct *p;
ffbdccf5 1292 bool ret;
4c4a2214 1293
158e0a2d 1294 p = find_lock_task_mm(task);
de077d22 1295 if (p) {
2314b42d 1296 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1297 task_unlock(p);
1298 } else {
1299 /*
1300 * All threads may have already detached their mm's, but the oom
1301 * killer still needs to detect if they have already been oom
1302 * killed to prevent needlessly killing additional tasks.
1303 */
ffbdccf5 1304 rcu_read_lock();
2314b42d
JW
1305 task_memcg = mem_cgroup_from_task(task);
1306 css_get(&task_memcg->css);
ffbdccf5 1307 rcu_read_unlock();
de077d22 1308 }
2314b42d
JW
1309 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1310 css_put(&task_memcg->css);
4c4a2214
DR
1311 return ret;
1312}
1313
c56d5c7d 1314int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1315{
9b272977 1316 unsigned long inactive_ratio;
14797e23 1317 unsigned long inactive;
9b272977 1318 unsigned long active;
c772be93 1319 unsigned long gb;
14797e23 1320
4d7dcca2
HD
1321 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1322 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1323
c772be93
KM
1324 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1325 if (gb)
1326 inactive_ratio = int_sqrt(10 * gb);
1327 else
1328 inactive_ratio = 1;
1329
9b272977 1330 return inactive * inactive_ratio < active;
14797e23
KM
1331}
1332
90cbc250
VD
1333bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1334{
1335 struct mem_cgroup_per_zone *mz;
1336 struct mem_cgroup *memcg;
1337
1338 if (mem_cgroup_disabled())
1339 return true;
1340
1341 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1342 memcg = mz->memcg;
1343
1344 return !!(memcg->css.flags & CSS_ONLINE);
1345}
1346
3e32cb2e 1347#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1348 container_of(counter, struct mem_cgroup, member)
1349
19942822 1350/**
9d11ea9f 1351 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1352 * @memcg: the memory cgroup
19942822 1353 *
9d11ea9f 1354 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1355 * pages.
19942822 1356 */
c0ff4b85 1357static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1358{
3e32cb2e
JW
1359 unsigned long margin = 0;
1360 unsigned long count;
1361 unsigned long limit;
9d11ea9f 1362
3e32cb2e 1363 count = page_counter_read(&memcg->memory);
4db0c3c2 1364 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1365 if (count < limit)
1366 margin = limit - count;
1367
1368 if (do_swap_account) {
1369 count = page_counter_read(&memcg->memsw);
4db0c3c2 1370 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1371 if (count <= limit)
1372 margin = min(margin, limit - count);
1373 }
1374
1375 return margin;
19942822
JW
1376}
1377
1f4c025b 1378int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1379{
a7885eb8 1380 /* root ? */
14208b0e 1381 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1382 return vm_swappiness;
1383
bf1ff263 1384 return memcg->swappiness;
a7885eb8
KM
1385}
1386
32047e2a 1387/*
bdcbb659 1388 * A routine for checking "mem" is under move_account() or not.
32047e2a 1389 *
bdcbb659
QH
1390 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1391 * moving cgroups. This is for waiting at high-memory pressure
1392 * caused by "move".
32047e2a 1393 */
c0ff4b85 1394static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1395{
2bd9bb20
KH
1396 struct mem_cgroup *from;
1397 struct mem_cgroup *to;
4b534334 1398 bool ret = false;
2bd9bb20
KH
1399 /*
1400 * Unlike task_move routines, we access mc.to, mc.from not under
1401 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1402 */
1403 spin_lock(&mc.lock);
1404 from = mc.from;
1405 to = mc.to;
1406 if (!from)
1407 goto unlock;
3e92041d 1408
2314b42d
JW
1409 ret = mem_cgroup_is_descendant(from, memcg) ||
1410 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1411unlock:
1412 spin_unlock(&mc.lock);
4b534334
KH
1413 return ret;
1414}
1415
c0ff4b85 1416static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1417{
1418 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1419 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1420 DEFINE_WAIT(wait);
1421 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1422 /* moving charge context might have finished. */
1423 if (mc.moving_task)
1424 schedule();
1425 finish_wait(&mc.waitq, &wait);
1426 return true;
1427 }
1428 }
1429 return false;
1430}
1431
58cf188e 1432#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1433/**
58cf188e 1434 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1435 * @memcg: The memory cgroup that went over limit
1436 * @p: Task that is going to be killed
1437 *
1438 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1439 * enabled
1440 */
1441void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1442{
e61734c5 1443 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1444 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1445 struct mem_cgroup *iter;
1446 unsigned int i;
e222432b 1447
08088cb9 1448 mutex_lock(&oom_info_lock);
e222432b
BS
1449 rcu_read_lock();
1450
2415b9f5
BV
1451 if (p) {
1452 pr_info("Task in ");
1453 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1454 pr_cont(" killed as a result of limit of ");
1455 } else {
1456 pr_info("Memory limit reached of cgroup ");
1457 }
1458
e61734c5 1459 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1460 pr_cont("\n");
e222432b 1461
e222432b
BS
1462 rcu_read_unlock();
1463
3e32cb2e
JW
1464 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1465 K((u64)page_counter_read(&memcg->memory)),
1466 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1467 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1468 K((u64)page_counter_read(&memcg->memsw)),
1469 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1470 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1471 K((u64)page_counter_read(&memcg->kmem)),
1472 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1473
1474 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1475 pr_info("Memory cgroup stats for ");
1476 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1477 pr_cont(":");
1478
1479 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1480 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1481 continue;
1482 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1483 K(mem_cgroup_read_stat(iter, i)));
1484 }
1485
1486 for (i = 0; i < NR_LRU_LISTS; i++)
1487 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1488 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1489
1490 pr_cont("\n");
1491 }
08088cb9 1492 mutex_unlock(&oom_info_lock);
e222432b
BS
1493}
1494
81d39c20
KH
1495/*
1496 * This function returns the number of memcg under hierarchy tree. Returns
1497 * 1(self count) if no children.
1498 */
c0ff4b85 1499static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1500{
1501 int num = 0;
7d74b06f
KH
1502 struct mem_cgroup *iter;
1503
c0ff4b85 1504 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1505 num++;
81d39c20
KH
1506 return num;
1507}
1508
a63d83f4
DR
1509/*
1510 * Return the memory (and swap, if configured) limit for a memcg.
1511 */
3e32cb2e 1512static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1513{
3e32cb2e 1514 unsigned long limit;
f3e8eb70 1515
3e32cb2e 1516 limit = memcg->memory.limit;
9a5a8f19 1517 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1518 unsigned long memsw_limit;
9a5a8f19 1519
3e32cb2e
JW
1520 memsw_limit = memcg->memsw.limit;
1521 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1522 }
9a5a8f19 1523 return limit;
a63d83f4
DR
1524}
1525
19965460
DR
1526static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1527 int order)
9cbb78bb
DR
1528{
1529 struct mem_cgroup *iter;
1530 unsigned long chosen_points = 0;
1531 unsigned long totalpages;
1532 unsigned int points = 0;
1533 struct task_struct *chosen = NULL;
1534
876aafbf 1535 /*
465adcf1
DR
1536 * If current has a pending SIGKILL or is exiting, then automatically
1537 * select it. The goal is to allow it to allocate so that it may
1538 * quickly exit and free its memory.
876aafbf 1539 */
d003f371 1540 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
49550b60 1541 mark_tsk_oom_victim(current);
876aafbf
DR
1542 return;
1543 }
1544
2415b9f5 1545 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
3e32cb2e 1546 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1547 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1548 struct css_task_iter it;
9cbb78bb
DR
1549 struct task_struct *task;
1550
72ec7029
TH
1551 css_task_iter_start(&iter->css, &it);
1552 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1553 switch (oom_scan_process_thread(task, totalpages, NULL,
1554 false)) {
1555 case OOM_SCAN_SELECT:
1556 if (chosen)
1557 put_task_struct(chosen);
1558 chosen = task;
1559 chosen_points = ULONG_MAX;
1560 get_task_struct(chosen);
1561 /* fall through */
1562 case OOM_SCAN_CONTINUE:
1563 continue;
1564 case OOM_SCAN_ABORT:
72ec7029 1565 css_task_iter_end(&it);
9cbb78bb
DR
1566 mem_cgroup_iter_break(memcg, iter);
1567 if (chosen)
1568 put_task_struct(chosen);
1569 return;
1570 case OOM_SCAN_OK:
1571 break;
1572 };
1573 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1574 if (!points || points < chosen_points)
1575 continue;
1576 /* Prefer thread group leaders for display purposes */
1577 if (points == chosen_points &&
1578 thread_group_leader(chosen))
1579 continue;
1580
1581 if (chosen)
1582 put_task_struct(chosen);
1583 chosen = task;
1584 chosen_points = points;
1585 get_task_struct(chosen);
9cbb78bb 1586 }
72ec7029 1587 css_task_iter_end(&it);
9cbb78bb
DR
1588 }
1589
1590 if (!chosen)
1591 return;
1592 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1593 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1594 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1595}
1596
ae6e71d3
MC
1597#if MAX_NUMNODES > 1
1598
4d0c066d
KH
1599/**
1600 * test_mem_cgroup_node_reclaimable
dad7557e 1601 * @memcg: the target memcg
4d0c066d
KH
1602 * @nid: the node ID to be checked.
1603 * @noswap : specify true here if the user wants flle only information.
1604 *
1605 * This function returns whether the specified memcg contains any
1606 * reclaimable pages on a node. Returns true if there are any reclaimable
1607 * pages in the node.
1608 */
c0ff4b85 1609static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1610 int nid, bool noswap)
1611{
c0ff4b85 1612 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1613 return true;
1614 if (noswap || !total_swap_pages)
1615 return false;
c0ff4b85 1616 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1617 return true;
1618 return false;
1619
1620}
889976db
YH
1621
1622/*
1623 * Always updating the nodemask is not very good - even if we have an empty
1624 * list or the wrong list here, we can start from some node and traverse all
1625 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1626 *
1627 */
c0ff4b85 1628static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1629{
1630 int nid;
453a9bf3
KH
1631 /*
1632 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1633 * pagein/pageout changes since the last update.
1634 */
c0ff4b85 1635 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1636 return;
c0ff4b85 1637 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1638 return;
1639
889976db 1640 /* make a nodemask where this memcg uses memory from */
31aaea4a 1641 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1642
31aaea4a 1643 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1644
c0ff4b85
R
1645 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1646 node_clear(nid, memcg->scan_nodes);
889976db 1647 }
453a9bf3 1648
c0ff4b85
R
1649 atomic_set(&memcg->numainfo_events, 0);
1650 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1651}
1652
1653/*
1654 * Selecting a node where we start reclaim from. Because what we need is just
1655 * reducing usage counter, start from anywhere is O,K. Considering
1656 * memory reclaim from current node, there are pros. and cons.
1657 *
1658 * Freeing memory from current node means freeing memory from a node which
1659 * we'll use or we've used. So, it may make LRU bad. And if several threads
1660 * hit limits, it will see a contention on a node. But freeing from remote
1661 * node means more costs for memory reclaim because of memory latency.
1662 *
1663 * Now, we use round-robin. Better algorithm is welcomed.
1664 */
c0ff4b85 1665int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1666{
1667 int node;
1668
c0ff4b85
R
1669 mem_cgroup_may_update_nodemask(memcg);
1670 node = memcg->last_scanned_node;
889976db 1671
c0ff4b85 1672 node = next_node(node, memcg->scan_nodes);
889976db 1673 if (node == MAX_NUMNODES)
c0ff4b85 1674 node = first_node(memcg->scan_nodes);
889976db
YH
1675 /*
1676 * We call this when we hit limit, not when pages are added to LRU.
1677 * No LRU may hold pages because all pages are UNEVICTABLE or
1678 * memcg is too small and all pages are not on LRU. In that case,
1679 * we use curret node.
1680 */
1681 if (unlikely(node == MAX_NUMNODES))
1682 node = numa_node_id();
1683
c0ff4b85 1684 memcg->last_scanned_node = node;
889976db
YH
1685 return node;
1686}
889976db 1687#else
c0ff4b85 1688int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1689{
1690 return 0;
1691}
1692#endif
1693
0608f43d
AM
1694static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1695 struct zone *zone,
1696 gfp_t gfp_mask,
1697 unsigned long *total_scanned)
1698{
1699 struct mem_cgroup *victim = NULL;
1700 int total = 0;
1701 int loop = 0;
1702 unsigned long excess;
1703 unsigned long nr_scanned;
1704 struct mem_cgroup_reclaim_cookie reclaim = {
1705 .zone = zone,
1706 .priority = 0,
1707 };
1708
3e32cb2e 1709 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1710
1711 while (1) {
1712 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1713 if (!victim) {
1714 loop++;
1715 if (loop >= 2) {
1716 /*
1717 * If we have not been able to reclaim
1718 * anything, it might because there are
1719 * no reclaimable pages under this hierarchy
1720 */
1721 if (!total)
1722 break;
1723 /*
1724 * We want to do more targeted reclaim.
1725 * excess >> 2 is not to excessive so as to
1726 * reclaim too much, nor too less that we keep
1727 * coming back to reclaim from this cgroup
1728 */
1729 if (total >= (excess >> 2) ||
1730 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1731 break;
1732 }
1733 continue;
1734 }
0608f43d
AM
1735 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1736 zone, &nr_scanned);
1737 *total_scanned += nr_scanned;
3e32cb2e 1738 if (!soft_limit_excess(root_memcg))
0608f43d 1739 break;
6d61ef40 1740 }
0608f43d
AM
1741 mem_cgroup_iter_break(root_memcg, victim);
1742 return total;
6d61ef40
BS
1743}
1744
0056f4e6
JW
1745#ifdef CONFIG_LOCKDEP
1746static struct lockdep_map memcg_oom_lock_dep_map = {
1747 .name = "memcg_oom_lock",
1748};
1749#endif
1750
fb2a6fc5
JW
1751static DEFINE_SPINLOCK(memcg_oom_lock);
1752
867578cb
KH
1753/*
1754 * Check OOM-Killer is already running under our hierarchy.
1755 * If someone is running, return false.
1756 */
fb2a6fc5 1757static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1758{
79dfdacc 1759 struct mem_cgroup *iter, *failed = NULL;
a636b327 1760
fb2a6fc5
JW
1761 spin_lock(&memcg_oom_lock);
1762
9f3a0d09 1763 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1764 if (iter->oom_lock) {
79dfdacc
MH
1765 /*
1766 * this subtree of our hierarchy is already locked
1767 * so we cannot give a lock.
1768 */
79dfdacc 1769 failed = iter;
9f3a0d09
JW
1770 mem_cgroup_iter_break(memcg, iter);
1771 break;
23751be0
JW
1772 } else
1773 iter->oom_lock = true;
7d74b06f 1774 }
867578cb 1775
fb2a6fc5
JW
1776 if (failed) {
1777 /*
1778 * OK, we failed to lock the whole subtree so we have
1779 * to clean up what we set up to the failing subtree
1780 */
1781 for_each_mem_cgroup_tree(iter, memcg) {
1782 if (iter == failed) {
1783 mem_cgroup_iter_break(memcg, iter);
1784 break;
1785 }
1786 iter->oom_lock = false;
79dfdacc 1787 }
0056f4e6
JW
1788 } else
1789 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1790
1791 spin_unlock(&memcg_oom_lock);
1792
1793 return !failed;
a636b327 1794}
0b7f569e 1795
fb2a6fc5 1796static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1797{
7d74b06f
KH
1798 struct mem_cgroup *iter;
1799
fb2a6fc5 1800 spin_lock(&memcg_oom_lock);
0056f4e6 1801 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1802 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1803 iter->oom_lock = false;
fb2a6fc5 1804 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1805}
1806
c0ff4b85 1807static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1808{
1809 struct mem_cgroup *iter;
1810
c0ff4b85 1811 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1812 atomic_inc(&iter->under_oom);
1813}
1814
c0ff4b85 1815static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1816{
1817 struct mem_cgroup *iter;
1818
867578cb
KH
1819 /*
1820 * When a new child is created while the hierarchy is under oom,
1821 * mem_cgroup_oom_lock() may not be called. We have to use
1822 * atomic_add_unless() here.
1823 */
c0ff4b85 1824 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1825 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1826}
1827
867578cb
KH
1828static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1829
dc98df5a 1830struct oom_wait_info {
d79154bb 1831 struct mem_cgroup *memcg;
dc98df5a
KH
1832 wait_queue_t wait;
1833};
1834
1835static int memcg_oom_wake_function(wait_queue_t *wait,
1836 unsigned mode, int sync, void *arg)
1837{
d79154bb
HD
1838 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1839 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1840 struct oom_wait_info *oom_wait_info;
1841
1842 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1843 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1844
2314b42d
JW
1845 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1846 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1847 return 0;
dc98df5a
KH
1848 return autoremove_wake_function(wait, mode, sync, arg);
1849}
1850
c0ff4b85 1851static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1852{
3812c8c8 1853 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1854 /* for filtering, pass "memcg" as argument. */
1855 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1856}
1857
c0ff4b85 1858static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1859{
c0ff4b85
R
1860 if (memcg && atomic_read(&memcg->under_oom))
1861 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1862}
1863
3812c8c8 1864static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1865{
3812c8c8
JW
1866 if (!current->memcg_oom.may_oom)
1867 return;
867578cb 1868 /*
49426420
JW
1869 * We are in the middle of the charge context here, so we
1870 * don't want to block when potentially sitting on a callstack
1871 * that holds all kinds of filesystem and mm locks.
1872 *
1873 * Also, the caller may handle a failed allocation gracefully
1874 * (like optional page cache readahead) and so an OOM killer
1875 * invocation might not even be necessary.
1876 *
1877 * That's why we don't do anything here except remember the
1878 * OOM context and then deal with it at the end of the page
1879 * fault when the stack is unwound, the locks are released,
1880 * and when we know whether the fault was overall successful.
867578cb 1881 */
49426420
JW
1882 css_get(&memcg->css);
1883 current->memcg_oom.memcg = memcg;
1884 current->memcg_oom.gfp_mask = mask;
1885 current->memcg_oom.order = order;
3812c8c8
JW
1886}
1887
1888/**
1889 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1890 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1891 *
49426420
JW
1892 * This has to be called at the end of a page fault if the memcg OOM
1893 * handler was enabled.
3812c8c8 1894 *
49426420 1895 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1896 * sleep on a waitqueue until the userspace task resolves the
1897 * situation. Sleeping directly in the charge context with all kinds
1898 * of locks held is not a good idea, instead we remember an OOM state
1899 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1900 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1901 *
1902 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1903 * completed, %false otherwise.
3812c8c8 1904 */
49426420 1905bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1906{
49426420 1907 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1908 struct oom_wait_info owait;
49426420 1909 bool locked;
3812c8c8
JW
1910
1911 /* OOM is global, do not handle */
3812c8c8 1912 if (!memcg)
49426420 1913 return false;
3812c8c8 1914
c32b3cbe 1915 if (!handle || oom_killer_disabled)
49426420 1916 goto cleanup;
3812c8c8
JW
1917
1918 owait.memcg = memcg;
1919 owait.wait.flags = 0;
1920 owait.wait.func = memcg_oom_wake_function;
1921 owait.wait.private = current;
1922 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1923
3812c8c8 1924 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1925 mem_cgroup_mark_under_oom(memcg);
1926
1927 locked = mem_cgroup_oom_trylock(memcg);
1928
1929 if (locked)
1930 mem_cgroup_oom_notify(memcg);
1931
1932 if (locked && !memcg->oom_kill_disable) {
1933 mem_cgroup_unmark_under_oom(memcg);
1934 finish_wait(&memcg_oom_waitq, &owait.wait);
1935 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1936 current->memcg_oom.order);
1937 } else {
3812c8c8 1938 schedule();
49426420
JW
1939 mem_cgroup_unmark_under_oom(memcg);
1940 finish_wait(&memcg_oom_waitq, &owait.wait);
1941 }
1942
1943 if (locked) {
fb2a6fc5
JW
1944 mem_cgroup_oom_unlock(memcg);
1945 /*
1946 * There is no guarantee that an OOM-lock contender
1947 * sees the wakeups triggered by the OOM kill
1948 * uncharges. Wake any sleepers explicitely.
1949 */
1950 memcg_oom_recover(memcg);
1951 }
49426420
JW
1952cleanup:
1953 current->memcg_oom.memcg = NULL;
3812c8c8 1954 css_put(&memcg->css);
867578cb 1955 return true;
0b7f569e
KH
1956}
1957
d7365e78
JW
1958/**
1959 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1960 * @page: page that is going to change accounted state
32047e2a 1961 *
d7365e78
JW
1962 * This function must mark the beginning of an accounted page state
1963 * change to prevent double accounting when the page is concurrently
1964 * being moved to another memcg:
32047e2a 1965 *
6de22619 1966 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1967 * if (TestClearPageState(page))
1968 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1969 * mem_cgroup_end_page_stat(memcg);
d69b042f 1970 */
6de22619 1971struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1972{
1973 struct mem_cgroup *memcg;
6de22619 1974 unsigned long flags;
89c06bd5 1975
6de22619
JW
1976 /*
1977 * The RCU lock is held throughout the transaction. The fast
1978 * path can get away without acquiring the memcg->move_lock
1979 * because page moving starts with an RCU grace period.
1980 *
1981 * The RCU lock also protects the memcg from being freed when
1982 * the page state that is going to change is the only thing
1983 * preventing the page from being uncharged.
1984 * E.g. end-writeback clearing PageWriteback(), which allows
1985 * migration to go ahead and uncharge the page before the
1986 * account transaction might be complete.
1987 */
d7365e78
JW
1988 rcu_read_lock();
1989
1990 if (mem_cgroup_disabled())
1991 return NULL;
89c06bd5 1992again:
1306a85a 1993 memcg = page->mem_cgroup;
29833315 1994 if (unlikely(!memcg))
d7365e78
JW
1995 return NULL;
1996
bdcbb659 1997 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1998 return memcg;
89c06bd5 1999
6de22619 2000 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2001 if (memcg != page->mem_cgroup) {
6de22619 2002 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2003 goto again;
2004 }
6de22619
JW
2005
2006 /*
2007 * When charge migration first begins, we can have locked and
2008 * unlocked page stat updates happening concurrently. Track
2009 * the task who has the lock for mem_cgroup_end_page_stat().
2010 */
2011 memcg->move_lock_task = current;
2012 memcg->move_lock_flags = flags;
d7365e78
JW
2013
2014 return memcg;
89c06bd5 2015}
c4843a75 2016EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 2017
d7365e78
JW
2018/**
2019 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2020 * @memcg: the memcg that was accounted against
d7365e78 2021 */
6de22619 2022void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2023{
6de22619
JW
2024 if (memcg && memcg->move_lock_task == current) {
2025 unsigned long flags = memcg->move_lock_flags;
2026
2027 memcg->move_lock_task = NULL;
2028 memcg->move_lock_flags = 0;
2029
2030 spin_unlock_irqrestore(&memcg->move_lock, flags);
2031 }
89c06bd5 2032
d7365e78 2033 rcu_read_unlock();
89c06bd5 2034}
c4843a75 2035EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 2036
d7365e78
JW
2037/**
2038 * mem_cgroup_update_page_stat - update page state statistics
2039 * @memcg: memcg to account against
2040 * @idx: page state item to account
2041 * @val: number of pages (positive or negative)
2042 *
2043 * See mem_cgroup_begin_page_stat() for locking requirements.
2044 */
2045void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2046 enum mem_cgroup_stat_index idx, int val)
d69b042f 2047{
658b72c5 2048 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2049
d7365e78
JW
2050 if (memcg)
2051 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2052}
26174efd 2053
cdec2e42
KH
2054/*
2055 * size of first charge trial. "32" comes from vmscan.c's magic value.
2056 * TODO: maybe necessary to use big numbers in big irons.
2057 */
7ec99d62 2058#define CHARGE_BATCH 32U
cdec2e42
KH
2059struct memcg_stock_pcp {
2060 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2061 unsigned int nr_pages;
cdec2e42 2062 struct work_struct work;
26fe6168 2063 unsigned long flags;
a0db00fc 2064#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2065};
2066static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2067static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2068
a0956d54
SS
2069/**
2070 * consume_stock: Try to consume stocked charge on this cpu.
2071 * @memcg: memcg to consume from.
2072 * @nr_pages: how many pages to charge.
2073 *
2074 * The charges will only happen if @memcg matches the current cpu's memcg
2075 * stock, and at least @nr_pages are available in that stock. Failure to
2076 * service an allocation will refill the stock.
2077 *
2078 * returns true if successful, false otherwise.
cdec2e42 2079 */
a0956d54 2080static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2081{
2082 struct memcg_stock_pcp *stock;
3e32cb2e 2083 bool ret = false;
cdec2e42 2084
a0956d54 2085 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2086 return ret;
a0956d54 2087
cdec2e42 2088 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2089 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2090 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2091 ret = true;
2092 }
cdec2e42
KH
2093 put_cpu_var(memcg_stock);
2094 return ret;
2095}
2096
2097/*
3e32cb2e 2098 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2099 */
2100static void drain_stock(struct memcg_stock_pcp *stock)
2101{
2102 struct mem_cgroup *old = stock->cached;
2103
11c9ea4e 2104 if (stock->nr_pages) {
3e32cb2e 2105 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2106 if (do_swap_account)
3e32cb2e 2107 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2108 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2109 stock->nr_pages = 0;
cdec2e42
KH
2110 }
2111 stock->cached = NULL;
cdec2e42
KH
2112}
2113
2114/*
2115 * This must be called under preempt disabled or must be called by
2116 * a thread which is pinned to local cpu.
2117 */
2118static void drain_local_stock(struct work_struct *dummy)
2119{
7c8e0181 2120 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2121 drain_stock(stock);
26fe6168 2122 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2123}
2124
2125/*
3e32cb2e 2126 * Cache charges(val) to local per_cpu area.
320cc51d 2127 * This will be consumed by consume_stock() function, later.
cdec2e42 2128 */
c0ff4b85 2129static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2130{
2131 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2132
c0ff4b85 2133 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2134 drain_stock(stock);
c0ff4b85 2135 stock->cached = memcg;
cdec2e42 2136 }
11c9ea4e 2137 stock->nr_pages += nr_pages;
cdec2e42
KH
2138 put_cpu_var(memcg_stock);
2139}
2140
2141/*
c0ff4b85 2142 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2143 * of the hierarchy under it.
cdec2e42 2144 */
6d3d6aa2 2145static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2146{
26fe6168 2147 int cpu, curcpu;
d38144b7 2148
6d3d6aa2
JW
2149 /* If someone's already draining, avoid adding running more workers. */
2150 if (!mutex_trylock(&percpu_charge_mutex))
2151 return;
cdec2e42 2152 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2153 get_online_cpus();
5af12d0e 2154 curcpu = get_cpu();
cdec2e42
KH
2155 for_each_online_cpu(cpu) {
2156 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2157 struct mem_cgroup *memcg;
26fe6168 2158
c0ff4b85
R
2159 memcg = stock->cached;
2160 if (!memcg || !stock->nr_pages)
26fe6168 2161 continue;
2314b42d 2162 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2163 continue;
d1a05b69
MH
2164 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2165 if (cpu == curcpu)
2166 drain_local_stock(&stock->work);
2167 else
2168 schedule_work_on(cpu, &stock->work);
2169 }
cdec2e42 2170 }
5af12d0e 2171 put_cpu();
f894ffa8 2172 put_online_cpus();
9f50fad6 2173 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2174}
2175
711d3d2c
KH
2176/*
2177 * This function drains percpu counter value from DEAD cpu and
2178 * move it to local cpu. Note that this function can be preempted.
2179 */
c0ff4b85 2180static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2181{
2182 int i;
2183
c0ff4b85 2184 spin_lock(&memcg->pcp_counter_lock);
6104621d 2185 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2186 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2187
c0ff4b85
R
2188 per_cpu(memcg->stat->count[i], cpu) = 0;
2189 memcg->nocpu_base.count[i] += x;
711d3d2c 2190 }
e9f8974f 2191 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2192 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2193
c0ff4b85
R
2194 per_cpu(memcg->stat->events[i], cpu) = 0;
2195 memcg->nocpu_base.events[i] += x;
e9f8974f 2196 }
c0ff4b85 2197 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2198}
2199
0db0628d 2200static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2201 unsigned long action,
2202 void *hcpu)
2203{
2204 int cpu = (unsigned long)hcpu;
2205 struct memcg_stock_pcp *stock;
711d3d2c 2206 struct mem_cgroup *iter;
cdec2e42 2207
619d094b 2208 if (action == CPU_ONLINE)
1489ebad 2209 return NOTIFY_OK;
1489ebad 2210
d833049b 2211 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2212 return NOTIFY_OK;
711d3d2c 2213
9f3a0d09 2214 for_each_mem_cgroup(iter)
711d3d2c
KH
2215 mem_cgroup_drain_pcp_counter(iter, cpu);
2216
cdec2e42
KH
2217 stock = &per_cpu(memcg_stock, cpu);
2218 drain_stock(stock);
2219 return NOTIFY_OK;
2220}
2221
00501b53
JW
2222static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2223 unsigned int nr_pages)
8a9f3ccd 2224{
7ec99d62 2225 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2226 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2227 struct mem_cgroup *mem_over_limit;
3e32cb2e 2228 struct page_counter *counter;
6539cc05 2229 unsigned long nr_reclaimed;
b70a2a21
JW
2230 bool may_swap = true;
2231 bool drained = false;
05b84301 2232 int ret = 0;
a636b327 2233
ce00a967
JW
2234 if (mem_cgroup_is_root(memcg))
2235 goto done;
6539cc05 2236retry:
b6b6cc72
MH
2237 if (consume_stock(memcg, nr_pages))
2238 goto done;
8a9f3ccd 2239
3fbe7244 2240 if (!do_swap_account ||
3e32cb2e
JW
2241 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2242 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2243 goto done_restock;
3fbe7244 2244 if (do_swap_account)
3e32cb2e
JW
2245 page_counter_uncharge(&memcg->memsw, batch);
2246 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2247 } else {
3e32cb2e 2248 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2249 may_swap = false;
3fbe7244 2250 }
7a81b88c 2251
6539cc05
JW
2252 if (batch > nr_pages) {
2253 batch = nr_pages;
2254 goto retry;
2255 }
6d61ef40 2256
06b078fc
JW
2257 /*
2258 * Unlike in global OOM situations, memcg is not in a physical
2259 * memory shortage. Allow dying and OOM-killed tasks to
2260 * bypass the last charges so that they can exit quickly and
2261 * free their memory.
2262 */
2263 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2264 fatal_signal_pending(current) ||
2265 current->flags & PF_EXITING))
2266 goto bypass;
2267
2268 if (unlikely(task_in_memcg_oom(current)))
2269 goto nomem;
2270
6539cc05
JW
2271 if (!(gfp_mask & __GFP_WAIT))
2272 goto nomem;
4b534334 2273
241994ed
JW
2274 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2275
b70a2a21
JW
2276 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2277 gfp_mask, may_swap);
6539cc05 2278
61e02c74 2279 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2280 goto retry;
28c34c29 2281
b70a2a21 2282 if (!drained) {
6d3d6aa2 2283 drain_all_stock(mem_over_limit);
b70a2a21
JW
2284 drained = true;
2285 goto retry;
2286 }
2287
28c34c29
JW
2288 if (gfp_mask & __GFP_NORETRY)
2289 goto nomem;
6539cc05
JW
2290 /*
2291 * Even though the limit is exceeded at this point, reclaim
2292 * may have been able to free some pages. Retry the charge
2293 * before killing the task.
2294 *
2295 * Only for regular pages, though: huge pages are rather
2296 * unlikely to succeed so close to the limit, and we fall back
2297 * to regular pages anyway in case of failure.
2298 */
61e02c74 2299 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2300 goto retry;
2301 /*
2302 * At task move, charge accounts can be doubly counted. So, it's
2303 * better to wait until the end of task_move if something is going on.
2304 */
2305 if (mem_cgroup_wait_acct_move(mem_over_limit))
2306 goto retry;
2307
9b130619
JW
2308 if (nr_retries--)
2309 goto retry;
2310
06b078fc
JW
2311 if (gfp_mask & __GFP_NOFAIL)
2312 goto bypass;
2313
6539cc05
JW
2314 if (fatal_signal_pending(current))
2315 goto bypass;
2316
241994ed
JW
2317 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2318
61e02c74 2319 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2320nomem:
6d1fdc48 2321 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2322 return -ENOMEM;
867578cb 2323bypass:
ce00a967 2324 return -EINTR;
6539cc05
JW
2325
2326done_restock:
e8ea14cc 2327 css_get_many(&memcg->css, batch);
6539cc05
JW
2328 if (batch > nr_pages)
2329 refill_stock(memcg, batch - nr_pages);
241994ed
JW
2330 /*
2331 * If the hierarchy is above the normal consumption range,
2332 * make the charging task trim their excess contribution.
2333 */
2334 do {
2335 if (page_counter_read(&memcg->memory) <= memcg->high)
2336 continue;
2337 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2338 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2339 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2340done:
05b84301 2341 return ret;
7a81b88c 2342}
8a9f3ccd 2343
00501b53 2344static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2345{
ce00a967
JW
2346 if (mem_cgroup_is_root(memcg))
2347 return;
2348
3e32cb2e 2349 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2350 if (do_swap_account)
3e32cb2e 2351 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2352
e8ea14cc 2353 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2354}
2355
0a31bc97
JW
2356/*
2357 * try_get_mem_cgroup_from_page - look up page's memcg association
2358 * @page: the page
2359 *
2360 * Look up, get a css reference, and return the memcg that owns @page.
2361 *
2362 * The page must be locked to prevent racing with swap-in and page
2363 * cache charges. If coming from an unlocked page table, the caller
2364 * must ensure the page is on the LRU or this can race with charging.
2365 */
e42d9d5d 2366struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2367{
29833315 2368 struct mem_cgroup *memcg;
a3b2d692 2369 unsigned short id;
b5a84319
KH
2370 swp_entry_t ent;
2371
309381fe 2372 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2373
1306a85a 2374 memcg = page->mem_cgroup;
29833315
JW
2375 if (memcg) {
2376 if (!css_tryget_online(&memcg->css))
c0ff4b85 2377 memcg = NULL;
e42d9d5d 2378 } else if (PageSwapCache(page)) {
3c776e64 2379 ent.val = page_private(page);
9fb4b7cc 2380 id = lookup_swap_cgroup_id(ent);
a3b2d692 2381 rcu_read_lock();
adbe427b 2382 memcg = mem_cgroup_from_id(id);
ec903c0c 2383 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2384 memcg = NULL;
a3b2d692 2385 rcu_read_unlock();
3c776e64 2386 }
c0ff4b85 2387 return memcg;
b5a84319
KH
2388}
2389
0a31bc97
JW
2390static void lock_page_lru(struct page *page, int *isolated)
2391{
2392 struct zone *zone = page_zone(page);
2393
2394 spin_lock_irq(&zone->lru_lock);
2395 if (PageLRU(page)) {
2396 struct lruvec *lruvec;
2397
2398 lruvec = mem_cgroup_page_lruvec(page, zone);
2399 ClearPageLRU(page);
2400 del_page_from_lru_list(page, lruvec, page_lru(page));
2401 *isolated = 1;
2402 } else
2403 *isolated = 0;
2404}
2405
2406static void unlock_page_lru(struct page *page, int isolated)
2407{
2408 struct zone *zone = page_zone(page);
2409
2410 if (isolated) {
2411 struct lruvec *lruvec;
2412
2413 lruvec = mem_cgroup_page_lruvec(page, zone);
2414 VM_BUG_ON_PAGE(PageLRU(page), page);
2415 SetPageLRU(page);
2416 add_page_to_lru_list(page, lruvec, page_lru(page));
2417 }
2418 spin_unlock_irq(&zone->lru_lock);
2419}
2420
00501b53 2421static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2422 bool lrucare)
7a81b88c 2423{
0a31bc97 2424 int isolated;
9ce70c02 2425
1306a85a 2426 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2427
2428 /*
2429 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2430 * may already be on some other mem_cgroup's LRU. Take care of it.
2431 */
0a31bc97
JW
2432 if (lrucare)
2433 lock_page_lru(page, &isolated);
9ce70c02 2434
0a31bc97
JW
2435 /*
2436 * Nobody should be changing or seriously looking at
1306a85a 2437 * page->mem_cgroup at this point:
0a31bc97
JW
2438 *
2439 * - the page is uncharged
2440 *
2441 * - the page is off-LRU
2442 *
2443 * - an anonymous fault has exclusive page access, except for
2444 * a locked page table
2445 *
2446 * - a page cache insertion, a swapin fault, or a migration
2447 * have the page locked
2448 */
1306a85a 2449 page->mem_cgroup = memcg;
9ce70c02 2450
0a31bc97
JW
2451 if (lrucare)
2452 unlock_page_lru(page, isolated);
7a81b88c 2453}
66e1707b 2454
7ae1e1d0 2455#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2456int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2457 unsigned long nr_pages)
7ae1e1d0 2458{
3e32cb2e 2459 struct page_counter *counter;
7ae1e1d0 2460 int ret = 0;
7ae1e1d0 2461
3e32cb2e
JW
2462 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2463 if (ret < 0)
7ae1e1d0
GC
2464 return ret;
2465
3e32cb2e 2466 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2467 if (ret == -EINTR) {
2468 /*
00501b53
JW
2469 * try_charge() chose to bypass to root due to OOM kill or
2470 * fatal signal. Since our only options are to either fail
2471 * the allocation or charge it to this cgroup, do it as a
2472 * temporary condition. But we can't fail. From a kmem/slab
2473 * perspective, the cache has already been selected, by
2474 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2475 * our minds.
2476 *
2477 * This condition will only trigger if the task entered
00501b53
JW
2478 * memcg_charge_kmem in a sane state, but was OOM-killed
2479 * during try_charge() above. Tasks that were already dying
2480 * when the allocation triggers should have been already
7ae1e1d0
GC
2481 * directed to the root cgroup in memcontrol.h
2482 */
3e32cb2e 2483 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2484 if (do_swap_account)
3e32cb2e 2485 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2486 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2487 ret = 0;
2488 } else if (ret)
3e32cb2e 2489 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2490
2491 return ret;
2492}
2493
dbf22eb6 2494void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2495{
3e32cb2e 2496 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2497 if (do_swap_account)
3e32cb2e 2498 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2499
64f21993 2500 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2501
e8ea14cc 2502 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2503}
2504
2633d7a0
GC
2505/*
2506 * helper for acessing a memcg's index. It will be used as an index in the
2507 * child cache array in kmem_cache, and also to derive its name. This function
2508 * will return -1 when this is not a kmem-limited memcg.
2509 */
2510int memcg_cache_id(struct mem_cgroup *memcg)
2511{
2512 return memcg ? memcg->kmemcg_id : -1;
2513}
2514
f3bb3043 2515static int memcg_alloc_cache_id(void)
55007d84 2516{
f3bb3043
VD
2517 int id, size;
2518 int err;
2519
dbcf73e2 2520 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2521 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2522 if (id < 0)
2523 return id;
55007d84 2524
dbcf73e2 2525 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2526 return id;
2527
2528 /*
2529 * There's no space for the new id in memcg_caches arrays,
2530 * so we have to grow them.
2531 */
05257a1a 2532 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2533
2534 size = 2 * (id + 1);
55007d84
GC
2535 if (size < MEMCG_CACHES_MIN_SIZE)
2536 size = MEMCG_CACHES_MIN_SIZE;
2537 else if (size > MEMCG_CACHES_MAX_SIZE)
2538 size = MEMCG_CACHES_MAX_SIZE;
2539
f3bb3043 2540 err = memcg_update_all_caches(size);
60d3fd32
VD
2541 if (!err)
2542 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2543 if (!err)
2544 memcg_nr_cache_ids = size;
2545
2546 up_write(&memcg_cache_ids_sem);
2547
f3bb3043 2548 if (err) {
dbcf73e2 2549 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2550 return err;
2551 }
2552 return id;
2553}
2554
2555static void memcg_free_cache_id(int id)
2556{
dbcf73e2 2557 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2558}
2559
d5b3cf71 2560struct memcg_kmem_cache_create_work {
5722d094
VD
2561 struct mem_cgroup *memcg;
2562 struct kmem_cache *cachep;
2563 struct work_struct work;
2564};
2565
d5b3cf71 2566static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2567{
d5b3cf71
VD
2568 struct memcg_kmem_cache_create_work *cw =
2569 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2570 struct mem_cgroup *memcg = cw->memcg;
2571 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2572
d5b3cf71 2573 memcg_create_kmem_cache(memcg, cachep);
bd673145 2574
5722d094 2575 css_put(&memcg->css);
d7f25f8a
GC
2576 kfree(cw);
2577}
2578
2579/*
2580 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2581 */
d5b3cf71
VD
2582static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2583 struct kmem_cache *cachep)
d7f25f8a 2584{
d5b3cf71 2585 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2586
776ed0f0 2587 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2588 if (!cw)
d7f25f8a 2589 return;
8135be5a
VD
2590
2591 css_get(&memcg->css);
d7f25f8a
GC
2592
2593 cw->memcg = memcg;
2594 cw->cachep = cachep;
d5b3cf71 2595 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2596
d7f25f8a
GC
2597 schedule_work(&cw->work);
2598}
2599
d5b3cf71
VD
2600static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2601 struct kmem_cache *cachep)
0e9d92f2
GC
2602{
2603 /*
2604 * We need to stop accounting when we kmalloc, because if the
2605 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2606 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2607 *
2608 * However, it is better to enclose the whole function. Depending on
2609 * the debugging options enabled, INIT_WORK(), for instance, can
2610 * trigger an allocation. This too, will make us recurse. Because at
2611 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2612 * the safest choice is to do it like this, wrapping the whole function.
2613 */
6f185c29 2614 current->memcg_kmem_skip_account = 1;
d5b3cf71 2615 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2616 current->memcg_kmem_skip_account = 0;
0e9d92f2 2617}
c67a8a68 2618
d7f25f8a
GC
2619/*
2620 * Return the kmem_cache we're supposed to use for a slab allocation.
2621 * We try to use the current memcg's version of the cache.
2622 *
2623 * If the cache does not exist yet, if we are the first user of it,
2624 * we either create it immediately, if possible, or create it asynchronously
2625 * in a workqueue.
2626 * In the latter case, we will let the current allocation go through with
2627 * the original cache.
2628 *
2629 * Can't be called in interrupt context or from kernel threads.
2630 * This function needs to be called with rcu_read_lock() held.
2631 */
056b7cce 2632struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2633{
2634 struct mem_cgroup *memcg;
959c8963 2635 struct kmem_cache *memcg_cachep;
2a4db7eb 2636 int kmemcg_id;
d7f25f8a 2637
f7ce3190 2638 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2639
9d100c5e 2640 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2641 return cachep;
2642
8135be5a 2643 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2644 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2645 if (kmemcg_id < 0)
ca0dde97 2646 goto out;
d7f25f8a 2647
2a4db7eb 2648 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2649 if (likely(memcg_cachep))
2650 return memcg_cachep;
ca0dde97
LZ
2651
2652 /*
2653 * If we are in a safe context (can wait, and not in interrupt
2654 * context), we could be be predictable and return right away.
2655 * This would guarantee that the allocation being performed
2656 * already belongs in the new cache.
2657 *
2658 * However, there are some clashes that can arrive from locking.
2659 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2660 * memcg_create_kmem_cache, this means no further allocation
2661 * could happen with the slab_mutex held. So it's better to
2662 * defer everything.
ca0dde97 2663 */
d5b3cf71 2664 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2665out:
8135be5a 2666 css_put(&memcg->css);
ca0dde97 2667 return cachep;
d7f25f8a 2668}
d7f25f8a 2669
8135be5a
VD
2670void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2671{
2672 if (!is_root_cache(cachep))
f7ce3190 2673 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2674}
2675
7ae1e1d0
GC
2676/*
2677 * We need to verify if the allocation against current->mm->owner's memcg is
2678 * possible for the given order. But the page is not allocated yet, so we'll
2679 * need a further commit step to do the final arrangements.
2680 *
2681 * It is possible for the task to switch cgroups in this mean time, so at
2682 * commit time, we can't rely on task conversion any longer. We'll then use
2683 * the handle argument to return to the caller which cgroup we should commit
2684 * against. We could also return the memcg directly and avoid the pointer
2685 * passing, but a boolean return value gives better semantics considering
2686 * the compiled-out case as well.
2687 *
2688 * Returning true means the allocation is possible.
2689 */
2690bool
2691__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2692{
2693 struct mem_cgroup *memcg;
2694 int ret;
2695
2696 *_memcg = NULL;
6d42c232 2697
df381975 2698 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2699
cf2b8fbf 2700 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2701 css_put(&memcg->css);
2702 return true;
2703 }
2704
3e32cb2e 2705 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2706 if (!ret)
2707 *_memcg = memcg;
7ae1e1d0
GC
2708
2709 css_put(&memcg->css);
2710 return (ret == 0);
2711}
2712
2713void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2714 int order)
2715{
7ae1e1d0
GC
2716 VM_BUG_ON(mem_cgroup_is_root(memcg));
2717
2718 /* The page allocation failed. Revert */
2719 if (!page) {
3e32cb2e 2720 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2721 return;
2722 }
1306a85a 2723 page->mem_cgroup = memcg;
7ae1e1d0
GC
2724}
2725
2726void __memcg_kmem_uncharge_pages(struct page *page, int order)
2727{
1306a85a 2728 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2729
7ae1e1d0
GC
2730 if (!memcg)
2731 return;
2732
309381fe 2733 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2734
3e32cb2e 2735 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2736 page->mem_cgroup = NULL;
7ae1e1d0 2737}
60d3fd32
VD
2738
2739struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2740{
2741 struct mem_cgroup *memcg = NULL;
2742 struct kmem_cache *cachep;
2743 struct page *page;
2744
2745 page = virt_to_head_page(ptr);
2746 if (PageSlab(page)) {
2747 cachep = page->slab_cache;
2748 if (!is_root_cache(cachep))
f7ce3190 2749 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2750 } else
2751 /* page allocated by alloc_kmem_pages */
2752 memcg = page->mem_cgroup;
2753
2754 return memcg;
2755}
7ae1e1d0
GC
2756#endif /* CONFIG_MEMCG_KMEM */
2757
ca3e0214
KH
2758#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2759
ca3e0214
KH
2760/*
2761 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2762 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2763 * charge/uncharge will be never happen and move_account() is done under
2764 * compound_lock(), so we don't have to take care of races.
ca3e0214 2765 */
e94c8a9c 2766void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2767{
e94c8a9c 2768 int i;
ca3e0214 2769
3d37c4a9
KH
2770 if (mem_cgroup_disabled())
2771 return;
b070e65c 2772
29833315 2773 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2774 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2775
1306a85a 2776 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2777 HPAGE_PMD_NR);
ca3e0214 2778}
12d27107 2779#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2780
c255a458 2781#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2782static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2783 bool charge)
d13d1443 2784{
0a31bc97
JW
2785 int val = (charge) ? 1 : -1;
2786 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2787}
02491447
DN
2788
2789/**
2790 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2791 * @entry: swap entry to be moved
2792 * @from: mem_cgroup which the entry is moved from
2793 * @to: mem_cgroup which the entry is moved to
2794 *
2795 * It succeeds only when the swap_cgroup's record for this entry is the same
2796 * as the mem_cgroup's id of @from.
2797 *
2798 * Returns 0 on success, -EINVAL on failure.
2799 *
3e32cb2e 2800 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2801 * both res and memsw, and called css_get().
2802 */
2803static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2804 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2805{
2806 unsigned short old_id, new_id;
2807
34c00c31
LZ
2808 old_id = mem_cgroup_id(from);
2809 new_id = mem_cgroup_id(to);
02491447
DN
2810
2811 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2812 mem_cgroup_swap_statistics(from, false);
483c30b5 2813 mem_cgroup_swap_statistics(to, true);
02491447
DN
2814 return 0;
2815 }
2816 return -EINVAL;
2817}
2818#else
2819static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2820 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2821{
2822 return -EINVAL;
2823}
8c7c6e34 2824#endif
d13d1443 2825
3e32cb2e 2826static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2827
d38d2a75 2828static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2829 unsigned long limit)
628f4235 2830{
3e32cb2e
JW
2831 unsigned long curusage;
2832 unsigned long oldusage;
2833 bool enlarge = false;
81d39c20 2834 int retry_count;
3e32cb2e 2835 int ret;
81d39c20
KH
2836
2837 /*
2838 * For keeping hierarchical_reclaim simple, how long we should retry
2839 * is depends on callers. We set our retry-count to be function
2840 * of # of children which we should visit in this loop.
2841 */
3e32cb2e
JW
2842 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2843 mem_cgroup_count_children(memcg);
81d39c20 2844
3e32cb2e 2845 oldusage = page_counter_read(&memcg->memory);
628f4235 2846
3e32cb2e 2847 do {
628f4235
KH
2848 if (signal_pending(current)) {
2849 ret = -EINTR;
2850 break;
2851 }
3e32cb2e
JW
2852
2853 mutex_lock(&memcg_limit_mutex);
2854 if (limit > memcg->memsw.limit) {
2855 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2856 ret = -EINVAL;
628f4235
KH
2857 break;
2858 }
3e32cb2e
JW
2859 if (limit > memcg->memory.limit)
2860 enlarge = true;
2861 ret = page_counter_limit(&memcg->memory, limit);
2862 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2863
2864 if (!ret)
2865 break;
2866
b70a2a21
JW
2867 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2868
3e32cb2e 2869 curusage = page_counter_read(&memcg->memory);
81d39c20 2870 /* Usage is reduced ? */
f894ffa8 2871 if (curusage >= oldusage)
81d39c20
KH
2872 retry_count--;
2873 else
2874 oldusage = curusage;
3e32cb2e
JW
2875 } while (retry_count);
2876
3c11ecf4
KH
2877 if (!ret && enlarge)
2878 memcg_oom_recover(memcg);
14797e23 2879
8c7c6e34
KH
2880 return ret;
2881}
2882
338c8431 2883static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2884 unsigned long limit)
8c7c6e34 2885{
3e32cb2e
JW
2886 unsigned long curusage;
2887 unsigned long oldusage;
2888 bool enlarge = false;
81d39c20 2889 int retry_count;
3e32cb2e 2890 int ret;
8c7c6e34 2891
81d39c20 2892 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2893 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2894 mem_cgroup_count_children(memcg);
2895
2896 oldusage = page_counter_read(&memcg->memsw);
2897
2898 do {
8c7c6e34
KH
2899 if (signal_pending(current)) {
2900 ret = -EINTR;
2901 break;
2902 }
3e32cb2e
JW
2903
2904 mutex_lock(&memcg_limit_mutex);
2905 if (limit < memcg->memory.limit) {
2906 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2907 ret = -EINVAL;
8c7c6e34
KH
2908 break;
2909 }
3e32cb2e
JW
2910 if (limit > memcg->memsw.limit)
2911 enlarge = true;
2912 ret = page_counter_limit(&memcg->memsw, limit);
2913 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2914
2915 if (!ret)
2916 break;
2917
b70a2a21
JW
2918 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2919
3e32cb2e 2920 curusage = page_counter_read(&memcg->memsw);
81d39c20 2921 /* Usage is reduced ? */
8c7c6e34 2922 if (curusage >= oldusage)
628f4235 2923 retry_count--;
81d39c20
KH
2924 else
2925 oldusage = curusage;
3e32cb2e
JW
2926 } while (retry_count);
2927
3c11ecf4
KH
2928 if (!ret && enlarge)
2929 memcg_oom_recover(memcg);
3e32cb2e 2930
628f4235
KH
2931 return ret;
2932}
2933
0608f43d
AM
2934unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2935 gfp_t gfp_mask,
2936 unsigned long *total_scanned)
2937{
2938 unsigned long nr_reclaimed = 0;
2939 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2940 unsigned long reclaimed;
2941 int loop = 0;
2942 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2943 unsigned long excess;
0608f43d
AM
2944 unsigned long nr_scanned;
2945
2946 if (order > 0)
2947 return 0;
2948
2949 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2950 /*
2951 * This loop can run a while, specially if mem_cgroup's continuously
2952 * keep exceeding their soft limit and putting the system under
2953 * pressure
2954 */
2955 do {
2956 if (next_mz)
2957 mz = next_mz;
2958 else
2959 mz = mem_cgroup_largest_soft_limit_node(mctz);
2960 if (!mz)
2961 break;
2962
2963 nr_scanned = 0;
2964 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2965 gfp_mask, &nr_scanned);
2966 nr_reclaimed += reclaimed;
2967 *total_scanned += nr_scanned;
0a31bc97 2968 spin_lock_irq(&mctz->lock);
bc2f2e7f 2969 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2970
2971 /*
2972 * If we failed to reclaim anything from this memory cgroup
2973 * it is time to move on to the next cgroup
2974 */
2975 next_mz = NULL;
bc2f2e7f
VD
2976 if (!reclaimed)
2977 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2978
3e32cb2e 2979 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2980 /*
2981 * One school of thought says that we should not add
2982 * back the node to the tree if reclaim returns 0.
2983 * But our reclaim could return 0, simply because due
2984 * to priority we are exposing a smaller subset of
2985 * memory to reclaim from. Consider this as a longer
2986 * term TODO.
2987 */
2988 /* If excess == 0, no tree ops */
cf2c8127 2989 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2990 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2991 css_put(&mz->memcg->css);
2992 loop++;
2993 /*
2994 * Could not reclaim anything and there are no more
2995 * mem cgroups to try or we seem to be looping without
2996 * reclaiming anything.
2997 */
2998 if (!nr_reclaimed &&
2999 (next_mz == NULL ||
3000 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3001 break;
3002 } while (!nr_reclaimed);
3003 if (next_mz)
3004 css_put(&next_mz->memcg->css);
3005 return nr_reclaimed;
3006}
3007
ea280e7b
TH
3008/*
3009 * Test whether @memcg has children, dead or alive. Note that this
3010 * function doesn't care whether @memcg has use_hierarchy enabled and
3011 * returns %true if there are child csses according to the cgroup
3012 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3013 */
b5f99b53
GC
3014static inline bool memcg_has_children(struct mem_cgroup *memcg)
3015{
ea280e7b
TH
3016 bool ret;
3017
696ac172 3018 /*
ea280e7b
TH
3019 * The lock does not prevent addition or deletion of children, but
3020 * it prevents a new child from being initialized based on this
3021 * parent in css_online(), so it's enough to decide whether
3022 * hierarchically inherited attributes can still be changed or not.
696ac172 3023 */
ea280e7b
TH
3024 lockdep_assert_held(&memcg_create_mutex);
3025
3026 rcu_read_lock();
3027 ret = css_next_child(NULL, &memcg->css);
3028 rcu_read_unlock();
3029 return ret;
b5f99b53
GC
3030}
3031
c26251f9
MH
3032/*
3033 * Reclaims as many pages from the given memcg as possible and moves
3034 * the rest to the parent.
3035 *
3036 * Caller is responsible for holding css reference for memcg.
3037 */
3038static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3039{
3040 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3041
c1e862c1
KH
3042 /* we call try-to-free pages for make this cgroup empty */
3043 lru_add_drain_all();
f817ed48 3044 /* try to free all pages in this cgroup */
3e32cb2e 3045 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3046 int progress;
c1e862c1 3047
c26251f9
MH
3048 if (signal_pending(current))
3049 return -EINTR;
3050
b70a2a21
JW
3051 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3052 GFP_KERNEL, true);
c1e862c1 3053 if (!progress) {
f817ed48 3054 nr_retries--;
c1e862c1 3055 /* maybe some writeback is necessary */
8aa7e847 3056 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3057 }
f817ed48
KH
3058
3059 }
ab5196c2
MH
3060
3061 return 0;
cc847582
KH
3062}
3063
6770c64e
TH
3064static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3065 char *buf, size_t nbytes,
3066 loff_t off)
c1e862c1 3067{
6770c64e 3068 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3069
d8423011
MH
3070 if (mem_cgroup_is_root(memcg))
3071 return -EINVAL;
6770c64e 3072 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3073}
3074
182446d0
TH
3075static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3076 struct cftype *cft)
18f59ea7 3077{
182446d0 3078 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3079}
3080
182446d0
TH
3081static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3082 struct cftype *cft, u64 val)
18f59ea7
BS
3083{
3084 int retval = 0;
182446d0 3085 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3086 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3087
0999821b 3088 mutex_lock(&memcg_create_mutex);
567fb435
GC
3089
3090 if (memcg->use_hierarchy == val)
3091 goto out;
3092
18f59ea7 3093 /*
af901ca1 3094 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3095 * in the child subtrees. If it is unset, then the change can
3096 * occur, provided the current cgroup has no children.
3097 *
3098 * For the root cgroup, parent_mem is NULL, we allow value to be
3099 * set if there are no children.
3100 */
c0ff4b85 3101 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3102 (val == 1 || val == 0)) {
ea280e7b 3103 if (!memcg_has_children(memcg))
c0ff4b85 3104 memcg->use_hierarchy = val;
18f59ea7
BS
3105 else
3106 retval = -EBUSY;
3107 } else
3108 retval = -EINVAL;
567fb435
GC
3109
3110out:
0999821b 3111 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3112
3113 return retval;
3114}
3115
3e32cb2e
JW
3116static unsigned long tree_stat(struct mem_cgroup *memcg,
3117 enum mem_cgroup_stat_index idx)
ce00a967
JW
3118{
3119 struct mem_cgroup *iter;
3120 long val = 0;
3121
3122 /* Per-cpu values can be negative, use a signed accumulator */
3123 for_each_mem_cgroup_tree(iter, memcg)
3124 val += mem_cgroup_read_stat(iter, idx);
3125
3126 if (val < 0) /* race ? */
3127 val = 0;
3128 return val;
3129}
3130
3131static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3132{
3133 u64 val;
3134
3e32cb2e
JW
3135 if (mem_cgroup_is_root(memcg)) {
3136 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3137 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3138 if (swap)
3139 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3140 } else {
ce00a967 3141 if (!swap)
3e32cb2e 3142 val = page_counter_read(&memcg->memory);
ce00a967 3143 else
3e32cb2e 3144 val = page_counter_read(&memcg->memsw);
ce00a967 3145 }
ce00a967
JW
3146 return val << PAGE_SHIFT;
3147}
3148
3e32cb2e
JW
3149enum {
3150 RES_USAGE,
3151 RES_LIMIT,
3152 RES_MAX_USAGE,
3153 RES_FAILCNT,
3154 RES_SOFT_LIMIT,
3155};
ce00a967 3156
791badbd 3157static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3158 struct cftype *cft)
8cdea7c0 3159{
182446d0 3160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3161 struct page_counter *counter;
af36f906 3162
3e32cb2e 3163 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3164 case _MEM:
3e32cb2e
JW
3165 counter = &memcg->memory;
3166 break;
8c7c6e34 3167 case _MEMSWAP:
3e32cb2e
JW
3168 counter = &memcg->memsw;
3169 break;
510fc4e1 3170 case _KMEM:
3e32cb2e 3171 counter = &memcg->kmem;
510fc4e1 3172 break;
8c7c6e34
KH
3173 default:
3174 BUG();
8c7c6e34 3175 }
3e32cb2e
JW
3176
3177 switch (MEMFILE_ATTR(cft->private)) {
3178 case RES_USAGE:
3179 if (counter == &memcg->memory)
3180 return mem_cgroup_usage(memcg, false);
3181 if (counter == &memcg->memsw)
3182 return mem_cgroup_usage(memcg, true);
3183 return (u64)page_counter_read(counter) * PAGE_SIZE;
3184 case RES_LIMIT:
3185 return (u64)counter->limit * PAGE_SIZE;
3186 case RES_MAX_USAGE:
3187 return (u64)counter->watermark * PAGE_SIZE;
3188 case RES_FAILCNT:
3189 return counter->failcnt;
3190 case RES_SOFT_LIMIT:
3191 return (u64)memcg->soft_limit * PAGE_SIZE;
3192 default:
3193 BUG();
3194 }
8cdea7c0 3195}
510fc4e1 3196
510fc4e1 3197#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3198static int memcg_activate_kmem(struct mem_cgroup *memcg,
3199 unsigned long nr_pages)
d6441637
VD
3200{
3201 int err = 0;
3202 int memcg_id;
3203
2a4db7eb 3204 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 3205 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 3206 BUG_ON(memcg->kmem_acct_active);
d6441637 3207
510fc4e1
GC
3208 /*
3209 * For simplicity, we won't allow this to be disabled. It also can't
3210 * be changed if the cgroup has children already, or if tasks had
3211 * already joined.
3212 *
3213 * If tasks join before we set the limit, a person looking at
3214 * kmem.usage_in_bytes will have no way to determine when it took
3215 * place, which makes the value quite meaningless.
3216 *
3217 * After it first became limited, changes in the value of the limit are
3218 * of course permitted.
510fc4e1 3219 */
0999821b 3220 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3221 if (cgroup_has_tasks(memcg->css.cgroup) ||
3222 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3223 err = -EBUSY;
3224 mutex_unlock(&memcg_create_mutex);
3225 if (err)
3226 goto out;
510fc4e1 3227
f3bb3043 3228 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3229 if (memcg_id < 0) {
3230 err = memcg_id;
3231 goto out;
3232 }
3233
d6441637 3234 /*
900a38f0
VD
3235 * We couldn't have accounted to this cgroup, because it hasn't got
3236 * activated yet, so this should succeed.
d6441637 3237 */
3e32cb2e 3238 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3239 VM_BUG_ON(err);
3240
3241 static_key_slow_inc(&memcg_kmem_enabled_key);
3242 /*
900a38f0
VD
3243 * A memory cgroup is considered kmem-active as soon as it gets
3244 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3245 * guarantee no one starts accounting before all call sites are
3246 * patched.
3247 */
900a38f0 3248 memcg->kmemcg_id = memcg_id;
2788cf0c 3249 memcg->kmem_acct_activated = true;
2a4db7eb 3250 memcg->kmem_acct_active = true;
510fc4e1 3251out:
d6441637 3252 return err;
d6441637
VD
3253}
3254
d6441637 3255static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3256 unsigned long limit)
d6441637
VD
3257{
3258 int ret;
3259
3e32cb2e 3260 mutex_lock(&memcg_limit_mutex);
d6441637 3261 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3262 ret = memcg_activate_kmem(memcg, limit);
d6441637 3263 else
3e32cb2e
JW
3264 ret = page_counter_limit(&memcg->kmem, limit);
3265 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3266 return ret;
3267}
3268
55007d84 3269static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3270{
55007d84 3271 int ret = 0;
510fc4e1 3272 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3273
d6441637
VD
3274 if (!parent)
3275 return 0;
55007d84 3276
8c0145b6 3277 mutex_lock(&memcg_limit_mutex);
55007d84 3278 /*
d6441637
VD
3279 * If the parent cgroup is not kmem-active now, it cannot be activated
3280 * after this point, because it has at least one child already.
55007d84 3281 */
d6441637 3282 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3283 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3284 mutex_unlock(&memcg_limit_mutex);
55007d84 3285 return ret;
510fc4e1 3286}
d6441637
VD
3287#else
3288static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3289 unsigned long limit)
d6441637
VD
3290{
3291 return -EINVAL;
3292}
6d043990 3293#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3294
628f4235
KH
3295/*
3296 * The user of this function is...
3297 * RES_LIMIT.
3298 */
451af504
TH
3299static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3300 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3301{
451af504 3302 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3303 unsigned long nr_pages;
628f4235
KH
3304 int ret;
3305
451af504 3306 buf = strstrip(buf);
650c5e56 3307 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3308 if (ret)
3309 return ret;
af36f906 3310
3e32cb2e 3311 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3312 case RES_LIMIT:
4b3bde4c
BS
3313 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3314 ret = -EINVAL;
3315 break;
3316 }
3e32cb2e
JW
3317 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3318 case _MEM:
3319 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3320 break;
3e32cb2e
JW
3321 case _MEMSWAP:
3322 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3323 break;
3e32cb2e
JW
3324 case _KMEM:
3325 ret = memcg_update_kmem_limit(memcg, nr_pages);
3326 break;
3327 }
296c81d8 3328 break;
3e32cb2e
JW
3329 case RES_SOFT_LIMIT:
3330 memcg->soft_limit = nr_pages;
3331 ret = 0;
628f4235
KH
3332 break;
3333 }
451af504 3334 return ret ?: nbytes;
8cdea7c0
BS
3335}
3336
6770c64e
TH
3337static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3338 size_t nbytes, loff_t off)
c84872e1 3339{
6770c64e 3340 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3341 struct page_counter *counter;
c84872e1 3342
3e32cb2e
JW
3343 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3344 case _MEM:
3345 counter = &memcg->memory;
3346 break;
3347 case _MEMSWAP:
3348 counter = &memcg->memsw;
3349 break;
3350 case _KMEM:
3351 counter = &memcg->kmem;
3352 break;
3353 default:
3354 BUG();
3355 }
af36f906 3356
3e32cb2e 3357 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3358 case RES_MAX_USAGE:
3e32cb2e 3359 page_counter_reset_watermark(counter);
29f2a4da
PE
3360 break;
3361 case RES_FAILCNT:
3e32cb2e 3362 counter->failcnt = 0;
29f2a4da 3363 break;
3e32cb2e
JW
3364 default:
3365 BUG();
29f2a4da 3366 }
f64c3f54 3367
6770c64e 3368 return nbytes;
c84872e1
PE
3369}
3370
182446d0 3371static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3372 struct cftype *cft)
3373{
182446d0 3374 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3375}
3376
02491447 3377#ifdef CONFIG_MMU
182446d0 3378static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3379 struct cftype *cft, u64 val)
3380{
182446d0 3381 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3382
1dfab5ab 3383 if (val & ~MOVE_MASK)
7dc74be0 3384 return -EINVAL;
ee5e8472 3385
7dc74be0 3386 /*
ee5e8472
GC
3387 * No kind of locking is needed in here, because ->can_attach() will
3388 * check this value once in the beginning of the process, and then carry
3389 * on with stale data. This means that changes to this value will only
3390 * affect task migrations starting after the change.
7dc74be0 3391 */
c0ff4b85 3392 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3393 return 0;
3394}
02491447 3395#else
182446d0 3396static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3397 struct cftype *cft, u64 val)
3398{
3399 return -ENOSYS;
3400}
3401#endif
7dc74be0 3402
406eb0c9 3403#ifdef CONFIG_NUMA
2da8ca82 3404static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3405{
25485de6
GT
3406 struct numa_stat {
3407 const char *name;
3408 unsigned int lru_mask;
3409 };
3410
3411 static const struct numa_stat stats[] = {
3412 { "total", LRU_ALL },
3413 { "file", LRU_ALL_FILE },
3414 { "anon", LRU_ALL_ANON },
3415 { "unevictable", BIT(LRU_UNEVICTABLE) },
3416 };
3417 const struct numa_stat *stat;
406eb0c9 3418 int nid;
25485de6 3419 unsigned long nr;
2da8ca82 3420 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3421
25485de6
GT
3422 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3423 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3424 seq_printf(m, "%s=%lu", stat->name, nr);
3425 for_each_node_state(nid, N_MEMORY) {
3426 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3427 stat->lru_mask);
3428 seq_printf(m, " N%d=%lu", nid, nr);
3429 }
3430 seq_putc(m, '\n');
406eb0c9 3431 }
406eb0c9 3432
071aee13
YH
3433 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3434 struct mem_cgroup *iter;
3435
3436 nr = 0;
3437 for_each_mem_cgroup_tree(iter, memcg)
3438 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3439 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3440 for_each_node_state(nid, N_MEMORY) {
3441 nr = 0;
3442 for_each_mem_cgroup_tree(iter, memcg)
3443 nr += mem_cgroup_node_nr_lru_pages(
3444 iter, nid, stat->lru_mask);
3445 seq_printf(m, " N%d=%lu", nid, nr);
3446 }
3447 seq_putc(m, '\n');
406eb0c9 3448 }
406eb0c9 3449
406eb0c9
YH
3450 return 0;
3451}
3452#endif /* CONFIG_NUMA */
3453
2da8ca82 3454static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3455{
2da8ca82 3456 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3457 unsigned long memory, memsw;
af7c4b0e
JW
3458 struct mem_cgroup *mi;
3459 unsigned int i;
406eb0c9 3460
0ca44b14
GT
3461 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3462 MEM_CGROUP_STAT_NSTATS);
3463 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3464 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3465 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3466
af7c4b0e 3467 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3468 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3469 continue;
af7c4b0e
JW
3470 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3471 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3472 }
7b854121 3473
af7c4b0e
JW
3474 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3475 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3476 mem_cgroup_read_events(memcg, i));
3477
3478 for (i = 0; i < NR_LRU_LISTS; i++)
3479 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3480 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3481
14067bb3 3482 /* Hierarchical information */
3e32cb2e
JW
3483 memory = memsw = PAGE_COUNTER_MAX;
3484 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3485 memory = min(memory, mi->memory.limit);
3486 memsw = min(memsw, mi->memsw.limit);
fee7b548 3487 }
3e32cb2e
JW
3488 seq_printf(m, "hierarchical_memory_limit %llu\n",
3489 (u64)memory * PAGE_SIZE);
3490 if (do_swap_account)
3491 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3492 (u64)memsw * PAGE_SIZE);
7f016ee8 3493
af7c4b0e
JW
3494 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3495 long long val = 0;
3496
bff6bb83 3497 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3498 continue;
af7c4b0e
JW
3499 for_each_mem_cgroup_tree(mi, memcg)
3500 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3501 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3502 }
3503
3504 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3505 unsigned long long val = 0;
3506
3507 for_each_mem_cgroup_tree(mi, memcg)
3508 val += mem_cgroup_read_events(mi, i);
3509 seq_printf(m, "total_%s %llu\n",
3510 mem_cgroup_events_names[i], val);
3511 }
3512
3513 for (i = 0; i < NR_LRU_LISTS; i++) {
3514 unsigned long long val = 0;
3515
3516 for_each_mem_cgroup_tree(mi, memcg)
3517 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3518 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3519 }
14067bb3 3520
7f016ee8 3521#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3522 {
3523 int nid, zid;
3524 struct mem_cgroup_per_zone *mz;
89abfab1 3525 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3526 unsigned long recent_rotated[2] = {0, 0};
3527 unsigned long recent_scanned[2] = {0, 0};
3528
3529 for_each_online_node(nid)
3530 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3531 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3532 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3533
89abfab1
HD
3534 recent_rotated[0] += rstat->recent_rotated[0];
3535 recent_rotated[1] += rstat->recent_rotated[1];
3536 recent_scanned[0] += rstat->recent_scanned[0];
3537 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3538 }
78ccf5b5
JW
3539 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3540 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3541 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3542 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3543 }
3544#endif
3545
d2ceb9b7
KH
3546 return 0;
3547}
3548
182446d0
TH
3549static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3550 struct cftype *cft)
a7885eb8 3551{
182446d0 3552 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3553
1f4c025b 3554 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3555}
3556
182446d0
TH
3557static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3558 struct cftype *cft, u64 val)
a7885eb8 3559{
182446d0 3560 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3561
3dae7fec 3562 if (val > 100)
a7885eb8
KM
3563 return -EINVAL;
3564
14208b0e 3565 if (css->parent)
3dae7fec
JW
3566 memcg->swappiness = val;
3567 else
3568 vm_swappiness = val;
068b38c1 3569
a7885eb8
KM
3570 return 0;
3571}
3572
2e72b634
KS
3573static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3574{
3575 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3576 unsigned long usage;
2e72b634
KS
3577 int i;
3578
3579 rcu_read_lock();
3580 if (!swap)
2c488db2 3581 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3582 else
2c488db2 3583 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3584
3585 if (!t)
3586 goto unlock;
3587
ce00a967 3588 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3589
3590 /*
748dad36 3591 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3592 * If it's not true, a threshold was crossed after last
3593 * call of __mem_cgroup_threshold().
3594 */
5407a562 3595 i = t->current_threshold;
2e72b634
KS
3596
3597 /*
3598 * Iterate backward over array of thresholds starting from
3599 * current_threshold and check if a threshold is crossed.
3600 * If none of thresholds below usage is crossed, we read
3601 * only one element of the array here.
3602 */
3603 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3604 eventfd_signal(t->entries[i].eventfd, 1);
3605
3606 /* i = current_threshold + 1 */
3607 i++;
3608
3609 /*
3610 * Iterate forward over array of thresholds starting from
3611 * current_threshold+1 and check if a threshold is crossed.
3612 * If none of thresholds above usage is crossed, we read
3613 * only one element of the array here.
3614 */
3615 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3616 eventfd_signal(t->entries[i].eventfd, 1);
3617
3618 /* Update current_threshold */
5407a562 3619 t->current_threshold = i - 1;
2e72b634
KS
3620unlock:
3621 rcu_read_unlock();
3622}
3623
3624static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3625{
ad4ca5f4
KS
3626 while (memcg) {
3627 __mem_cgroup_threshold(memcg, false);
3628 if (do_swap_account)
3629 __mem_cgroup_threshold(memcg, true);
3630
3631 memcg = parent_mem_cgroup(memcg);
3632 }
2e72b634
KS
3633}
3634
3635static int compare_thresholds(const void *a, const void *b)
3636{
3637 const struct mem_cgroup_threshold *_a = a;
3638 const struct mem_cgroup_threshold *_b = b;
3639
2bff24a3
GT
3640 if (_a->threshold > _b->threshold)
3641 return 1;
3642
3643 if (_a->threshold < _b->threshold)
3644 return -1;
3645
3646 return 0;
2e72b634
KS
3647}
3648
c0ff4b85 3649static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3650{
3651 struct mem_cgroup_eventfd_list *ev;
3652
2bcf2e92
MH
3653 spin_lock(&memcg_oom_lock);
3654
c0ff4b85 3655 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3656 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3657
3658 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3659 return 0;
3660}
3661
c0ff4b85 3662static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3663{
7d74b06f
KH
3664 struct mem_cgroup *iter;
3665
c0ff4b85 3666 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3667 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3668}
3669
59b6f873 3670static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3671 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3672{
2c488db2
KS
3673 struct mem_cgroup_thresholds *thresholds;
3674 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3675 unsigned long threshold;
3676 unsigned long usage;
2c488db2 3677 int i, size, ret;
2e72b634 3678
650c5e56 3679 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3680 if (ret)
3681 return ret;
3682
3683 mutex_lock(&memcg->thresholds_lock);
2c488db2 3684
05b84301 3685 if (type == _MEM) {
2c488db2 3686 thresholds = &memcg->thresholds;
ce00a967 3687 usage = mem_cgroup_usage(memcg, false);
05b84301 3688 } else if (type == _MEMSWAP) {
2c488db2 3689 thresholds = &memcg->memsw_thresholds;
ce00a967 3690 usage = mem_cgroup_usage(memcg, true);
05b84301 3691 } else
2e72b634
KS
3692 BUG();
3693
2e72b634 3694 /* Check if a threshold crossed before adding a new one */
2c488db2 3695 if (thresholds->primary)
2e72b634
KS
3696 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3697
2c488db2 3698 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3699
3700 /* Allocate memory for new array of thresholds */
2c488db2 3701 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3702 GFP_KERNEL);
2c488db2 3703 if (!new) {
2e72b634
KS
3704 ret = -ENOMEM;
3705 goto unlock;
3706 }
2c488db2 3707 new->size = size;
2e72b634
KS
3708
3709 /* Copy thresholds (if any) to new array */
2c488db2
KS
3710 if (thresholds->primary) {
3711 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3712 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3713 }
3714
2e72b634 3715 /* Add new threshold */
2c488db2
KS
3716 new->entries[size - 1].eventfd = eventfd;
3717 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3718
3719 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3720 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3721 compare_thresholds, NULL);
3722
3723 /* Find current threshold */
2c488db2 3724 new->current_threshold = -1;
2e72b634 3725 for (i = 0; i < size; i++) {
748dad36 3726 if (new->entries[i].threshold <= usage) {
2e72b634 3727 /*
2c488db2
KS
3728 * new->current_threshold will not be used until
3729 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3730 * it here.
3731 */
2c488db2 3732 ++new->current_threshold;
748dad36
SZ
3733 } else
3734 break;
2e72b634
KS
3735 }
3736
2c488db2
KS
3737 /* Free old spare buffer and save old primary buffer as spare */
3738 kfree(thresholds->spare);
3739 thresholds->spare = thresholds->primary;
3740
3741 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3742
907860ed 3743 /* To be sure that nobody uses thresholds */
2e72b634
KS
3744 synchronize_rcu();
3745
2e72b634
KS
3746unlock:
3747 mutex_unlock(&memcg->thresholds_lock);
3748
3749 return ret;
3750}
3751
59b6f873 3752static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3753 struct eventfd_ctx *eventfd, const char *args)
3754{
59b6f873 3755 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3756}
3757
59b6f873 3758static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3759 struct eventfd_ctx *eventfd, const char *args)
3760{
59b6f873 3761 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3762}
3763
59b6f873 3764static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3765 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3766{
2c488db2
KS
3767 struct mem_cgroup_thresholds *thresholds;
3768 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3769 unsigned long usage;
2c488db2 3770 int i, j, size;
2e72b634
KS
3771
3772 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3773
3774 if (type == _MEM) {
2c488db2 3775 thresholds = &memcg->thresholds;
ce00a967 3776 usage = mem_cgroup_usage(memcg, false);
05b84301 3777 } else if (type == _MEMSWAP) {
2c488db2 3778 thresholds = &memcg->memsw_thresholds;
ce00a967 3779 usage = mem_cgroup_usage(memcg, true);
05b84301 3780 } else
2e72b634
KS
3781 BUG();
3782
371528ca
AV
3783 if (!thresholds->primary)
3784 goto unlock;
3785
2e72b634
KS
3786 /* Check if a threshold crossed before removing */
3787 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3788
3789 /* Calculate new number of threshold */
2c488db2
KS
3790 size = 0;
3791 for (i = 0; i < thresholds->primary->size; i++) {
3792 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3793 size++;
3794 }
3795
2c488db2 3796 new = thresholds->spare;
907860ed 3797
2e72b634
KS
3798 /* Set thresholds array to NULL if we don't have thresholds */
3799 if (!size) {
2c488db2
KS
3800 kfree(new);
3801 new = NULL;
907860ed 3802 goto swap_buffers;
2e72b634
KS
3803 }
3804
2c488db2 3805 new->size = size;
2e72b634
KS
3806
3807 /* Copy thresholds and find current threshold */
2c488db2
KS
3808 new->current_threshold = -1;
3809 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3810 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3811 continue;
3812
2c488db2 3813 new->entries[j] = thresholds->primary->entries[i];
748dad36 3814 if (new->entries[j].threshold <= usage) {
2e72b634 3815 /*
2c488db2 3816 * new->current_threshold will not be used
2e72b634
KS
3817 * until rcu_assign_pointer(), so it's safe to increment
3818 * it here.
3819 */
2c488db2 3820 ++new->current_threshold;
2e72b634
KS
3821 }
3822 j++;
3823 }
3824
907860ed 3825swap_buffers:
2c488db2
KS
3826 /* Swap primary and spare array */
3827 thresholds->spare = thresholds->primary;
8c757763
SZ
3828 /* If all events are unregistered, free the spare array */
3829 if (!new) {
3830 kfree(thresholds->spare);
3831 thresholds->spare = NULL;
3832 }
3833
2c488db2 3834 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3835
907860ed 3836 /* To be sure that nobody uses thresholds */
2e72b634 3837 synchronize_rcu();
371528ca 3838unlock:
2e72b634 3839 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3840}
c1e862c1 3841
59b6f873 3842static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3843 struct eventfd_ctx *eventfd)
3844{
59b6f873 3845 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3846}
3847
59b6f873 3848static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3849 struct eventfd_ctx *eventfd)
3850{
59b6f873 3851 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3852}
3853
59b6f873 3854static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3855 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3856{
9490ff27 3857 struct mem_cgroup_eventfd_list *event;
9490ff27 3858
9490ff27
KH
3859 event = kmalloc(sizeof(*event), GFP_KERNEL);
3860 if (!event)
3861 return -ENOMEM;
3862
1af8efe9 3863 spin_lock(&memcg_oom_lock);
9490ff27
KH
3864
3865 event->eventfd = eventfd;
3866 list_add(&event->list, &memcg->oom_notify);
3867
3868 /* already in OOM ? */
79dfdacc 3869 if (atomic_read(&memcg->under_oom))
9490ff27 3870 eventfd_signal(eventfd, 1);
1af8efe9 3871 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3872
3873 return 0;
3874}
3875
59b6f873 3876static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3877 struct eventfd_ctx *eventfd)
9490ff27 3878{
9490ff27 3879 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3880
1af8efe9 3881 spin_lock(&memcg_oom_lock);
9490ff27 3882
c0ff4b85 3883 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3884 if (ev->eventfd == eventfd) {
3885 list_del(&ev->list);
3886 kfree(ev);
3887 }
3888 }
3889
1af8efe9 3890 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3891}
3892
2da8ca82 3893static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3894{
2da8ca82 3895 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3896
791badbd
TH
3897 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3898 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3899 return 0;
3900}
3901
182446d0 3902static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3903 struct cftype *cft, u64 val)
3904{
182446d0 3905 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3906
3907 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3908 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3909 return -EINVAL;
3910
c0ff4b85 3911 memcg->oom_kill_disable = val;
4d845ebf 3912 if (!val)
c0ff4b85 3913 memcg_oom_recover(memcg);
3dae7fec 3914
3c11ecf4
KH
3915 return 0;
3916}
3917
c255a458 3918#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3919static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3920{
55007d84
GC
3921 int ret;
3922
55007d84
GC
3923 ret = memcg_propagate_kmem(memcg);
3924 if (ret)
3925 return ret;
2633d7a0 3926
1d62e436 3927 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3928}
e5671dfa 3929
2a4db7eb
VD
3930static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3931{
2788cf0c
VD
3932 struct cgroup_subsys_state *css;
3933 struct mem_cgroup *parent, *child;
3934 int kmemcg_id;
3935
2a4db7eb
VD
3936 if (!memcg->kmem_acct_active)
3937 return;
3938
3939 /*
3940 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3941 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3942 * guarantees no cache will be created for this cgroup after we are
3943 * done (see memcg_create_kmem_cache()).
3944 */
3945 memcg->kmem_acct_active = false;
3946
3947 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3948
3949 kmemcg_id = memcg->kmemcg_id;
3950 BUG_ON(kmemcg_id < 0);
3951
3952 parent = parent_mem_cgroup(memcg);
3953 if (!parent)
3954 parent = root_mem_cgroup;
3955
3956 /*
3957 * Change kmemcg_id of this cgroup and all its descendants to the
3958 * parent's id, and then move all entries from this cgroup's list_lrus
3959 * to ones of the parent. After we have finished, all list_lrus
3960 * corresponding to this cgroup are guaranteed to remain empty. The
3961 * ordering is imposed by list_lru_node->lock taken by
3962 * memcg_drain_all_list_lrus().
3963 */
3964 css_for_each_descendant_pre(css, &memcg->css) {
3965 child = mem_cgroup_from_css(css);
3966 BUG_ON(child->kmemcg_id != kmemcg_id);
3967 child->kmemcg_id = parent->kmemcg_id;
3968 if (!memcg->use_hierarchy)
3969 break;
3970 }
3971 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3972
3973 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3974}
3975
10d5ebf4 3976static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3977{
f48b80a5
VD
3978 if (memcg->kmem_acct_activated) {
3979 memcg_destroy_kmem_caches(memcg);
3980 static_key_slow_dec(&memcg_kmem_enabled_key);
3981 WARN_ON(page_counter_read(&memcg->kmem));
3982 }
1d62e436 3983 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3984}
e5671dfa 3985#else
cbe128e3 3986static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3987{
3988 return 0;
3989}
d1a4c0b3 3990
2a4db7eb
VD
3991static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3992{
3993}
3994
10d5ebf4
LZ
3995static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3996{
3997}
e5671dfa
GC
3998#endif
3999
3bc942f3
TH
4000/*
4001 * DO NOT USE IN NEW FILES.
4002 *
4003 * "cgroup.event_control" implementation.
4004 *
4005 * This is way over-engineered. It tries to support fully configurable
4006 * events for each user. Such level of flexibility is completely
4007 * unnecessary especially in the light of the planned unified hierarchy.
4008 *
4009 * Please deprecate this and replace with something simpler if at all
4010 * possible.
4011 */
4012
79bd9814
TH
4013/*
4014 * Unregister event and free resources.
4015 *
4016 * Gets called from workqueue.
4017 */
3bc942f3 4018static void memcg_event_remove(struct work_struct *work)
79bd9814 4019{
3bc942f3
TH
4020 struct mem_cgroup_event *event =
4021 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4022 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4023
4024 remove_wait_queue(event->wqh, &event->wait);
4025
59b6f873 4026 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4027
4028 /* Notify userspace the event is going away. */
4029 eventfd_signal(event->eventfd, 1);
4030
4031 eventfd_ctx_put(event->eventfd);
4032 kfree(event);
59b6f873 4033 css_put(&memcg->css);
79bd9814
TH
4034}
4035
4036/*
4037 * Gets called on POLLHUP on eventfd when user closes it.
4038 *
4039 * Called with wqh->lock held and interrupts disabled.
4040 */
3bc942f3
TH
4041static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4042 int sync, void *key)
79bd9814 4043{
3bc942f3
TH
4044 struct mem_cgroup_event *event =
4045 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4046 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4047 unsigned long flags = (unsigned long)key;
4048
4049 if (flags & POLLHUP) {
4050 /*
4051 * If the event has been detached at cgroup removal, we
4052 * can simply return knowing the other side will cleanup
4053 * for us.
4054 *
4055 * We can't race against event freeing since the other
4056 * side will require wqh->lock via remove_wait_queue(),
4057 * which we hold.
4058 */
fba94807 4059 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4060 if (!list_empty(&event->list)) {
4061 list_del_init(&event->list);
4062 /*
4063 * We are in atomic context, but cgroup_event_remove()
4064 * may sleep, so we have to call it in workqueue.
4065 */
4066 schedule_work(&event->remove);
4067 }
fba94807 4068 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4069 }
4070
4071 return 0;
4072}
4073
3bc942f3 4074static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4075 wait_queue_head_t *wqh, poll_table *pt)
4076{
3bc942f3
TH
4077 struct mem_cgroup_event *event =
4078 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4079
4080 event->wqh = wqh;
4081 add_wait_queue(wqh, &event->wait);
4082}
4083
4084/*
3bc942f3
TH
4085 * DO NOT USE IN NEW FILES.
4086 *
79bd9814
TH
4087 * Parse input and register new cgroup event handler.
4088 *
4089 * Input must be in format '<event_fd> <control_fd> <args>'.
4090 * Interpretation of args is defined by control file implementation.
4091 */
451af504
TH
4092static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4093 char *buf, size_t nbytes, loff_t off)
79bd9814 4094{
451af504 4095 struct cgroup_subsys_state *css = of_css(of);
fba94807 4096 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4097 struct mem_cgroup_event *event;
79bd9814
TH
4098 struct cgroup_subsys_state *cfile_css;
4099 unsigned int efd, cfd;
4100 struct fd efile;
4101 struct fd cfile;
fba94807 4102 const char *name;
79bd9814
TH
4103 char *endp;
4104 int ret;
4105
451af504
TH
4106 buf = strstrip(buf);
4107
4108 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4109 if (*endp != ' ')
4110 return -EINVAL;
451af504 4111 buf = endp + 1;
79bd9814 4112
451af504 4113 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4114 if ((*endp != ' ') && (*endp != '\0'))
4115 return -EINVAL;
451af504 4116 buf = endp + 1;
79bd9814
TH
4117
4118 event = kzalloc(sizeof(*event), GFP_KERNEL);
4119 if (!event)
4120 return -ENOMEM;
4121
59b6f873 4122 event->memcg = memcg;
79bd9814 4123 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4124 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4125 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4126 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4127
4128 efile = fdget(efd);
4129 if (!efile.file) {
4130 ret = -EBADF;
4131 goto out_kfree;
4132 }
4133
4134 event->eventfd = eventfd_ctx_fileget(efile.file);
4135 if (IS_ERR(event->eventfd)) {
4136 ret = PTR_ERR(event->eventfd);
4137 goto out_put_efile;
4138 }
4139
4140 cfile = fdget(cfd);
4141 if (!cfile.file) {
4142 ret = -EBADF;
4143 goto out_put_eventfd;
4144 }
4145
4146 /* the process need read permission on control file */
4147 /* AV: shouldn't we check that it's been opened for read instead? */
4148 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4149 if (ret < 0)
4150 goto out_put_cfile;
4151
fba94807
TH
4152 /*
4153 * Determine the event callbacks and set them in @event. This used
4154 * to be done via struct cftype but cgroup core no longer knows
4155 * about these events. The following is crude but the whole thing
4156 * is for compatibility anyway.
3bc942f3
TH
4157 *
4158 * DO NOT ADD NEW FILES.
fba94807 4159 */
b583043e 4160 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4161
4162 if (!strcmp(name, "memory.usage_in_bytes")) {
4163 event->register_event = mem_cgroup_usage_register_event;
4164 event->unregister_event = mem_cgroup_usage_unregister_event;
4165 } else if (!strcmp(name, "memory.oom_control")) {
4166 event->register_event = mem_cgroup_oom_register_event;
4167 event->unregister_event = mem_cgroup_oom_unregister_event;
4168 } else if (!strcmp(name, "memory.pressure_level")) {
4169 event->register_event = vmpressure_register_event;
4170 event->unregister_event = vmpressure_unregister_event;
4171 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4172 event->register_event = memsw_cgroup_usage_register_event;
4173 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4174 } else {
4175 ret = -EINVAL;
4176 goto out_put_cfile;
4177 }
4178
79bd9814 4179 /*
b5557c4c
TH
4180 * Verify @cfile should belong to @css. Also, remaining events are
4181 * automatically removed on cgroup destruction but the removal is
4182 * asynchronous, so take an extra ref on @css.
79bd9814 4183 */
b583043e 4184 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4185 &memory_cgrp_subsys);
79bd9814 4186 ret = -EINVAL;
5a17f543 4187 if (IS_ERR(cfile_css))
79bd9814 4188 goto out_put_cfile;
5a17f543
TH
4189 if (cfile_css != css) {
4190 css_put(cfile_css);
79bd9814 4191 goto out_put_cfile;
5a17f543 4192 }
79bd9814 4193
451af504 4194 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4195 if (ret)
4196 goto out_put_css;
4197
4198 efile.file->f_op->poll(efile.file, &event->pt);
4199
fba94807
TH
4200 spin_lock(&memcg->event_list_lock);
4201 list_add(&event->list, &memcg->event_list);
4202 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4203
4204 fdput(cfile);
4205 fdput(efile);
4206
451af504 4207 return nbytes;
79bd9814
TH
4208
4209out_put_css:
b5557c4c 4210 css_put(css);
79bd9814
TH
4211out_put_cfile:
4212 fdput(cfile);
4213out_put_eventfd:
4214 eventfd_ctx_put(event->eventfd);
4215out_put_efile:
4216 fdput(efile);
4217out_kfree:
4218 kfree(event);
4219
4220 return ret;
4221}
4222
241994ed 4223static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4224 {
0eea1030 4225 .name = "usage_in_bytes",
8c7c6e34 4226 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4227 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4228 },
c84872e1
PE
4229 {
4230 .name = "max_usage_in_bytes",
8c7c6e34 4231 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4232 .write = mem_cgroup_reset,
791badbd 4233 .read_u64 = mem_cgroup_read_u64,
c84872e1 4234 },
8cdea7c0 4235 {
0eea1030 4236 .name = "limit_in_bytes",
8c7c6e34 4237 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4238 .write = mem_cgroup_write,
791badbd 4239 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4240 },
296c81d8
BS
4241 {
4242 .name = "soft_limit_in_bytes",
4243 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4244 .write = mem_cgroup_write,
791badbd 4245 .read_u64 = mem_cgroup_read_u64,
296c81d8 4246 },
8cdea7c0
BS
4247 {
4248 .name = "failcnt",
8c7c6e34 4249 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4250 .write = mem_cgroup_reset,
791badbd 4251 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4252 },
d2ceb9b7
KH
4253 {
4254 .name = "stat",
2da8ca82 4255 .seq_show = memcg_stat_show,
d2ceb9b7 4256 },
c1e862c1
KH
4257 {
4258 .name = "force_empty",
6770c64e 4259 .write = mem_cgroup_force_empty_write,
c1e862c1 4260 },
18f59ea7
BS
4261 {
4262 .name = "use_hierarchy",
4263 .write_u64 = mem_cgroup_hierarchy_write,
4264 .read_u64 = mem_cgroup_hierarchy_read,
4265 },
79bd9814 4266 {
3bc942f3 4267 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4268 .write = memcg_write_event_control,
79bd9814
TH
4269 .flags = CFTYPE_NO_PREFIX,
4270 .mode = S_IWUGO,
4271 },
a7885eb8
KM
4272 {
4273 .name = "swappiness",
4274 .read_u64 = mem_cgroup_swappiness_read,
4275 .write_u64 = mem_cgroup_swappiness_write,
4276 },
7dc74be0
DN
4277 {
4278 .name = "move_charge_at_immigrate",
4279 .read_u64 = mem_cgroup_move_charge_read,
4280 .write_u64 = mem_cgroup_move_charge_write,
4281 },
9490ff27
KH
4282 {
4283 .name = "oom_control",
2da8ca82 4284 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4285 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4286 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4287 },
70ddf637
AV
4288 {
4289 .name = "pressure_level",
70ddf637 4290 },
406eb0c9
YH
4291#ifdef CONFIG_NUMA
4292 {
4293 .name = "numa_stat",
2da8ca82 4294 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4295 },
4296#endif
510fc4e1
GC
4297#ifdef CONFIG_MEMCG_KMEM
4298 {
4299 .name = "kmem.limit_in_bytes",
4300 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4301 .write = mem_cgroup_write,
791badbd 4302 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4303 },
4304 {
4305 .name = "kmem.usage_in_bytes",
4306 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4307 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4308 },
4309 {
4310 .name = "kmem.failcnt",
4311 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4312 .write = mem_cgroup_reset,
791badbd 4313 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4314 },
4315 {
4316 .name = "kmem.max_usage_in_bytes",
4317 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4318 .write = mem_cgroup_reset,
791badbd 4319 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4320 },
749c5415
GC
4321#ifdef CONFIG_SLABINFO
4322 {
4323 .name = "kmem.slabinfo",
b047501c
VD
4324 .seq_start = slab_start,
4325 .seq_next = slab_next,
4326 .seq_stop = slab_stop,
4327 .seq_show = memcg_slab_show,
749c5415
GC
4328 },
4329#endif
8c7c6e34 4330#endif
6bc10349 4331 { }, /* terminate */
af36f906 4332};
8c7c6e34 4333
c0ff4b85 4334static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4335{
4336 struct mem_cgroup_per_node *pn;
1ecaab2b 4337 struct mem_cgroup_per_zone *mz;
41e3355d 4338 int zone, tmp = node;
1ecaab2b
KH
4339 /*
4340 * This routine is called against possible nodes.
4341 * But it's BUG to call kmalloc() against offline node.
4342 *
4343 * TODO: this routine can waste much memory for nodes which will
4344 * never be onlined. It's better to use memory hotplug callback
4345 * function.
4346 */
41e3355d
KH
4347 if (!node_state(node, N_NORMAL_MEMORY))
4348 tmp = -1;
17295c88 4349 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4350 if (!pn)
4351 return 1;
1ecaab2b 4352
1ecaab2b
KH
4353 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4354 mz = &pn->zoneinfo[zone];
bea8c150 4355 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4356 mz->usage_in_excess = 0;
4357 mz->on_tree = false;
d79154bb 4358 mz->memcg = memcg;
1ecaab2b 4359 }
54f72fe0 4360 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4361 return 0;
4362}
4363
c0ff4b85 4364static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4365{
54f72fe0 4366 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4367}
4368
33327948
KH
4369static struct mem_cgroup *mem_cgroup_alloc(void)
4370{
d79154bb 4371 struct mem_cgroup *memcg;
8ff69e2c 4372 size_t size;
33327948 4373
8ff69e2c
VD
4374 size = sizeof(struct mem_cgroup);
4375 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4376
8ff69e2c 4377 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4378 if (!memcg)
e7bbcdf3
DC
4379 return NULL;
4380
d79154bb
HD
4381 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4382 if (!memcg->stat)
d2e61b8d 4383 goto out_free;
d79154bb
HD
4384 spin_lock_init(&memcg->pcp_counter_lock);
4385 return memcg;
d2e61b8d
DC
4386
4387out_free:
8ff69e2c 4388 kfree(memcg);
d2e61b8d 4389 return NULL;
33327948
KH
4390}
4391
59927fb9 4392/*
c8b2a36f
GC
4393 * At destroying mem_cgroup, references from swap_cgroup can remain.
4394 * (scanning all at force_empty is too costly...)
4395 *
4396 * Instead of clearing all references at force_empty, we remember
4397 * the number of reference from swap_cgroup and free mem_cgroup when
4398 * it goes down to 0.
4399 *
4400 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4401 */
c8b2a36f
GC
4402
4403static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4404{
c8b2a36f 4405 int node;
59927fb9 4406
bb4cc1a8 4407 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4408
4409 for_each_node(node)
4410 free_mem_cgroup_per_zone_info(memcg, node);
4411
4412 free_percpu(memcg->stat);
8ff69e2c 4413 kfree(memcg);
59927fb9 4414}
3afe36b1 4415
7bcc1bb1
DN
4416/*
4417 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4418 */
e1aab161 4419struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4420{
3e32cb2e 4421 if (!memcg->memory.parent)
7bcc1bb1 4422 return NULL;
3e32cb2e 4423 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4424}
e1aab161 4425EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4426
0eb253e2 4427static struct cgroup_subsys_state * __ref
eb95419b 4428mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4429{
d142e3e6 4430 struct mem_cgroup *memcg;
04046e1a 4431 long error = -ENOMEM;
6d12e2d8 4432 int node;
8cdea7c0 4433
c0ff4b85
R
4434 memcg = mem_cgroup_alloc();
4435 if (!memcg)
04046e1a 4436 return ERR_PTR(error);
78fb7466 4437
3ed28fa1 4438 for_each_node(node)
c0ff4b85 4439 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4440 goto free_out;
f64c3f54 4441
c077719b 4442 /* root ? */
eb95419b 4443 if (parent_css == NULL) {
a41c58a6 4444 root_mem_cgroup = memcg;
56161634 4445 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4446 page_counter_init(&memcg->memory, NULL);
241994ed 4447 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4448 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4449 page_counter_init(&memcg->memsw, NULL);
4450 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4451 }
28dbc4b6 4452
d142e3e6
GC
4453 memcg->last_scanned_node = MAX_NUMNODES;
4454 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4455 memcg->move_charge_at_immigrate = 0;
4456 mutex_init(&memcg->thresholds_lock);
4457 spin_lock_init(&memcg->move_lock);
70ddf637 4458 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4459 INIT_LIST_HEAD(&memcg->event_list);
4460 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4461#ifdef CONFIG_MEMCG_KMEM
4462 memcg->kmemcg_id = -1;
900a38f0 4463#endif
d142e3e6
GC
4464
4465 return &memcg->css;
4466
4467free_out:
4468 __mem_cgroup_free(memcg);
4469 return ERR_PTR(error);
4470}
4471
4472static int
eb95419b 4473mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4474{
eb95419b 4475 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4476 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4477 int ret;
d142e3e6 4478
15a4c835 4479 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4480 return -ENOSPC;
4481
63876986 4482 if (!parent)
d142e3e6
GC
4483 return 0;
4484
0999821b 4485 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4486
4487 memcg->use_hierarchy = parent->use_hierarchy;
4488 memcg->oom_kill_disable = parent->oom_kill_disable;
4489 memcg->swappiness = mem_cgroup_swappiness(parent);
4490
4491 if (parent->use_hierarchy) {
3e32cb2e 4492 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4493 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4494 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4495 page_counter_init(&memcg->memsw, &parent->memsw);
4496 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4497
7bcc1bb1 4498 /*
8d76a979
LZ
4499 * No need to take a reference to the parent because cgroup
4500 * core guarantees its existence.
7bcc1bb1 4501 */
18f59ea7 4502 } else {
3e32cb2e 4503 page_counter_init(&memcg->memory, NULL);
241994ed 4504 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4505 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4506 page_counter_init(&memcg->memsw, NULL);
4507 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4508 /*
4509 * Deeper hierachy with use_hierarchy == false doesn't make
4510 * much sense so let cgroup subsystem know about this
4511 * unfortunate state in our controller.
4512 */
d142e3e6 4513 if (parent != root_mem_cgroup)
073219e9 4514 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4515 }
0999821b 4516 mutex_unlock(&memcg_create_mutex);
d6441637 4517
2f7dd7a4
JW
4518 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4519 if (ret)
4520 return ret;
4521
4522 /*
4523 * Make sure the memcg is initialized: mem_cgroup_iter()
4524 * orders reading memcg->initialized against its callers
4525 * reading the memcg members.
4526 */
4527 smp_store_release(&memcg->initialized, 1);
4528
4529 return 0;
8cdea7c0
BS
4530}
4531
eb95419b 4532static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4533{
eb95419b 4534 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4535 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4536
4537 /*
4538 * Unregister events and notify userspace.
4539 * Notify userspace about cgroup removing only after rmdir of cgroup
4540 * directory to avoid race between userspace and kernelspace.
4541 */
fba94807
TH
4542 spin_lock(&memcg->event_list_lock);
4543 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4544 list_del_init(&event->list);
4545 schedule_work(&event->remove);
4546 }
fba94807 4547 spin_unlock(&memcg->event_list_lock);
ec64f515 4548
33cb876e 4549 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4550
4551 memcg_deactivate_kmem(memcg);
df878fb0
KH
4552}
4553
eb95419b 4554static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4555{
eb95419b 4556 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4557
10d5ebf4 4558 memcg_destroy_kmem(memcg);
465939a1 4559 __mem_cgroup_free(memcg);
8cdea7c0
BS
4560}
4561
1ced953b
TH
4562/**
4563 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4564 * @css: the target css
4565 *
4566 * Reset the states of the mem_cgroup associated with @css. This is
4567 * invoked when the userland requests disabling on the default hierarchy
4568 * but the memcg is pinned through dependency. The memcg should stop
4569 * applying policies and should revert to the vanilla state as it may be
4570 * made visible again.
4571 *
4572 * The current implementation only resets the essential configurations.
4573 * This needs to be expanded to cover all the visible parts.
4574 */
4575static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4576{
4577 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4578
3e32cb2e
JW
4579 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4580 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4581 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4582 memcg->low = 0;
4583 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4584 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4585}
4586
02491447 4587#ifdef CONFIG_MMU
7dc74be0 4588/* Handlers for move charge at task migration. */
854ffa8d 4589static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4590{
05b84301 4591 int ret;
9476db97
JW
4592
4593 /* Try a single bulk charge without reclaim first */
00501b53 4594 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4595 if (!ret) {
854ffa8d 4596 mc.precharge += count;
854ffa8d
DN
4597 return ret;
4598 }
692e7c45 4599 if (ret == -EINTR) {
00501b53 4600 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4601 return ret;
4602 }
9476db97
JW
4603
4604 /* Try charges one by one with reclaim */
854ffa8d 4605 while (count--) {
00501b53 4606 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4607 /*
4608 * In case of failure, any residual charges against
4609 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4610 * later on. However, cancel any charges that are
4611 * bypassed to root right away or they'll be lost.
9476db97 4612 */
692e7c45 4613 if (ret == -EINTR)
00501b53 4614 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4615 if (ret)
38c5d72f 4616 return ret;
854ffa8d 4617 mc.precharge++;
9476db97 4618 cond_resched();
854ffa8d 4619 }
9476db97 4620 return 0;
4ffef5fe
DN
4621}
4622
4623/**
8d32ff84 4624 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4625 * @vma: the vma the pte to be checked belongs
4626 * @addr: the address corresponding to the pte to be checked
4627 * @ptent: the pte to be checked
02491447 4628 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4629 *
4630 * Returns
4631 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4632 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4633 * move charge. if @target is not NULL, the page is stored in target->page
4634 * with extra refcnt got(Callers should handle it).
02491447
DN
4635 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4636 * target for charge migration. if @target is not NULL, the entry is stored
4637 * in target->ent.
4ffef5fe
DN
4638 *
4639 * Called with pte lock held.
4640 */
4ffef5fe
DN
4641union mc_target {
4642 struct page *page;
02491447 4643 swp_entry_t ent;
4ffef5fe
DN
4644};
4645
4ffef5fe 4646enum mc_target_type {
8d32ff84 4647 MC_TARGET_NONE = 0,
4ffef5fe 4648 MC_TARGET_PAGE,
02491447 4649 MC_TARGET_SWAP,
4ffef5fe
DN
4650};
4651
90254a65
DN
4652static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4653 unsigned long addr, pte_t ptent)
4ffef5fe 4654{
90254a65 4655 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4656
90254a65
DN
4657 if (!page || !page_mapped(page))
4658 return NULL;
4659 if (PageAnon(page)) {
1dfab5ab 4660 if (!(mc.flags & MOVE_ANON))
90254a65 4661 return NULL;
1dfab5ab
JW
4662 } else {
4663 if (!(mc.flags & MOVE_FILE))
4664 return NULL;
4665 }
90254a65
DN
4666 if (!get_page_unless_zero(page))
4667 return NULL;
4668
4669 return page;
4670}
4671
4b91355e 4672#ifdef CONFIG_SWAP
90254a65
DN
4673static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4674 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4675{
90254a65
DN
4676 struct page *page = NULL;
4677 swp_entry_t ent = pte_to_swp_entry(ptent);
4678
1dfab5ab 4679 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4680 return NULL;
4b91355e
KH
4681 /*
4682 * Because lookup_swap_cache() updates some statistics counter,
4683 * we call find_get_page() with swapper_space directly.
4684 */
33806f06 4685 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4686 if (do_swap_account)
4687 entry->val = ent.val;
4688
4689 return page;
4690}
4b91355e
KH
4691#else
4692static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4693 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4694{
4695 return NULL;
4696}
4697#endif
90254a65 4698
87946a72
DN
4699static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4700 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4701{
4702 struct page *page = NULL;
87946a72
DN
4703 struct address_space *mapping;
4704 pgoff_t pgoff;
4705
4706 if (!vma->vm_file) /* anonymous vma */
4707 return NULL;
1dfab5ab 4708 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4709 return NULL;
4710
87946a72 4711 mapping = vma->vm_file->f_mapping;
0661a336 4712 pgoff = linear_page_index(vma, addr);
87946a72
DN
4713
4714 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4715#ifdef CONFIG_SWAP
4716 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4717 if (shmem_mapping(mapping)) {
4718 page = find_get_entry(mapping, pgoff);
4719 if (radix_tree_exceptional_entry(page)) {
4720 swp_entry_t swp = radix_to_swp_entry(page);
4721 if (do_swap_account)
4722 *entry = swp;
4723 page = find_get_page(swap_address_space(swp), swp.val);
4724 }
4725 } else
4726 page = find_get_page(mapping, pgoff);
4727#else
4728 page = find_get_page(mapping, pgoff);
aa3b1895 4729#endif
87946a72
DN
4730 return page;
4731}
4732
b1b0deab
CG
4733/**
4734 * mem_cgroup_move_account - move account of the page
4735 * @page: the page
4736 * @nr_pages: number of regular pages (>1 for huge pages)
4737 * @from: mem_cgroup which the page is moved from.
4738 * @to: mem_cgroup which the page is moved to. @from != @to.
4739 *
4740 * The caller must confirm following.
4741 * - page is not on LRU (isolate_page() is useful.)
4742 * - compound_lock is held when nr_pages > 1
4743 *
4744 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4745 * from old cgroup.
4746 */
4747static int mem_cgroup_move_account(struct page *page,
4748 unsigned int nr_pages,
4749 struct mem_cgroup *from,
4750 struct mem_cgroup *to)
4751{
4752 unsigned long flags;
4753 int ret;
c4843a75 4754 bool anon;
b1b0deab
CG
4755
4756 VM_BUG_ON(from == to);
4757 VM_BUG_ON_PAGE(PageLRU(page), page);
4758 /*
4759 * The page is isolated from LRU. So, collapse function
4760 * will not handle this page. But page splitting can happen.
4761 * Do this check under compound_page_lock(). The caller should
4762 * hold it.
4763 */
4764 ret = -EBUSY;
4765 if (nr_pages > 1 && !PageTransHuge(page))
4766 goto out;
4767
4768 /*
4769 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4770 * of its source page while we change it: page migration takes
4771 * both pages off the LRU, but page cache replacement doesn't.
4772 */
4773 if (!trylock_page(page))
4774 goto out;
4775
4776 ret = -EINVAL;
4777 if (page->mem_cgroup != from)
4778 goto out_unlock;
4779
c4843a75
GT
4780 anon = PageAnon(page);
4781
b1b0deab
CG
4782 spin_lock_irqsave(&from->move_lock, flags);
4783
c4843a75 4784 if (!anon && page_mapped(page)) {
b1b0deab
CG
4785 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4786 nr_pages);
4787 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4788 nr_pages);
4789 }
4790
c4843a75
GT
4791 /*
4792 * move_lock grabbed above and caller set from->moving_account, so
4793 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4794 * So mapping should be stable for dirty pages.
4795 */
4796 if (!anon && PageDirty(page)) {
4797 struct address_space *mapping = page_mapping(page);
4798
4799 if (mapping_cap_account_dirty(mapping)) {
4800 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4801 nr_pages);
4802 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4803 nr_pages);
4804 }
4805 }
4806
b1b0deab
CG
4807 if (PageWriteback(page)) {
4808 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4809 nr_pages);
4810 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4811 nr_pages);
4812 }
4813
4814 /*
4815 * It is safe to change page->mem_cgroup here because the page
4816 * is referenced, charged, and isolated - we can't race with
4817 * uncharging, charging, migration, or LRU putback.
4818 */
4819
4820 /* caller should have done css_get */
4821 page->mem_cgroup = to;
4822 spin_unlock_irqrestore(&from->move_lock, flags);
4823
4824 ret = 0;
4825
4826 local_irq_disable();
4827 mem_cgroup_charge_statistics(to, page, nr_pages);
4828 memcg_check_events(to, page);
4829 mem_cgroup_charge_statistics(from, page, -nr_pages);
4830 memcg_check_events(from, page);
4831 local_irq_enable();
4832out_unlock:
4833 unlock_page(page);
4834out:
4835 return ret;
4836}
4837
8d32ff84 4838static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4839 unsigned long addr, pte_t ptent, union mc_target *target)
4840{
4841 struct page *page = NULL;
8d32ff84 4842 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4843 swp_entry_t ent = { .val = 0 };
4844
4845 if (pte_present(ptent))
4846 page = mc_handle_present_pte(vma, addr, ptent);
4847 else if (is_swap_pte(ptent))
4848 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4849 else if (pte_none(ptent))
87946a72 4850 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4851
4852 if (!page && !ent.val)
8d32ff84 4853 return ret;
02491447 4854 if (page) {
02491447 4855 /*
0a31bc97 4856 * Do only loose check w/o serialization.
1306a85a 4857 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4858 * not under LRU exclusion.
02491447 4859 */
1306a85a 4860 if (page->mem_cgroup == mc.from) {
02491447
DN
4861 ret = MC_TARGET_PAGE;
4862 if (target)
4863 target->page = page;
4864 }
4865 if (!ret || !target)
4866 put_page(page);
4867 }
90254a65
DN
4868 /* There is a swap entry and a page doesn't exist or isn't charged */
4869 if (ent.val && !ret &&
34c00c31 4870 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4871 ret = MC_TARGET_SWAP;
4872 if (target)
4873 target->ent = ent;
4ffef5fe 4874 }
4ffef5fe
DN
4875 return ret;
4876}
4877
12724850
NH
4878#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4879/*
4880 * We don't consider swapping or file mapped pages because THP does not
4881 * support them for now.
4882 * Caller should make sure that pmd_trans_huge(pmd) is true.
4883 */
4884static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4885 unsigned long addr, pmd_t pmd, union mc_target *target)
4886{
4887 struct page *page = NULL;
12724850
NH
4888 enum mc_target_type ret = MC_TARGET_NONE;
4889
4890 page = pmd_page(pmd);
309381fe 4891 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4892 if (!(mc.flags & MOVE_ANON))
12724850 4893 return ret;
1306a85a 4894 if (page->mem_cgroup == mc.from) {
12724850
NH
4895 ret = MC_TARGET_PAGE;
4896 if (target) {
4897 get_page(page);
4898 target->page = page;
4899 }
4900 }
4901 return ret;
4902}
4903#else
4904static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4905 unsigned long addr, pmd_t pmd, union mc_target *target)
4906{
4907 return MC_TARGET_NONE;
4908}
4909#endif
4910
4ffef5fe
DN
4911static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4912 unsigned long addr, unsigned long end,
4913 struct mm_walk *walk)
4914{
26bcd64a 4915 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4916 pte_t *pte;
4917 spinlock_t *ptl;
4918
bf929152 4919 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4920 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4921 mc.precharge += HPAGE_PMD_NR;
bf929152 4922 spin_unlock(ptl);
1a5a9906 4923 return 0;
12724850 4924 }
03319327 4925
45f83cef
AA
4926 if (pmd_trans_unstable(pmd))
4927 return 0;
4ffef5fe
DN
4928 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4929 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4930 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4931 mc.precharge++; /* increment precharge temporarily */
4932 pte_unmap_unlock(pte - 1, ptl);
4933 cond_resched();
4934
7dc74be0
DN
4935 return 0;
4936}
4937
4ffef5fe
DN
4938static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4939{
4940 unsigned long precharge;
4ffef5fe 4941
26bcd64a
NH
4942 struct mm_walk mem_cgroup_count_precharge_walk = {
4943 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4944 .mm = mm,
4945 };
dfe076b0 4946 down_read(&mm->mmap_sem);
26bcd64a 4947 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4948 up_read(&mm->mmap_sem);
4ffef5fe
DN
4949
4950 precharge = mc.precharge;
4951 mc.precharge = 0;
4952
4953 return precharge;
4954}
4955
4ffef5fe
DN
4956static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4957{
dfe076b0
DN
4958 unsigned long precharge = mem_cgroup_count_precharge(mm);
4959
4960 VM_BUG_ON(mc.moving_task);
4961 mc.moving_task = current;
4962 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4963}
4964
dfe076b0
DN
4965/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4966static void __mem_cgroup_clear_mc(void)
4ffef5fe 4967{
2bd9bb20
KH
4968 struct mem_cgroup *from = mc.from;
4969 struct mem_cgroup *to = mc.to;
4970
4ffef5fe 4971 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4972 if (mc.precharge) {
00501b53 4973 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4974 mc.precharge = 0;
4975 }
4976 /*
4977 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4978 * we must uncharge here.
4979 */
4980 if (mc.moved_charge) {
00501b53 4981 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4982 mc.moved_charge = 0;
4ffef5fe 4983 }
483c30b5
DN
4984 /* we must fixup refcnts and charges */
4985 if (mc.moved_swap) {
483c30b5 4986 /* uncharge swap account from the old cgroup */
ce00a967 4987 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4988 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4989
05b84301 4990 /*
3e32cb2e
JW
4991 * we charged both to->memory and to->memsw, so we
4992 * should uncharge to->memory.
05b84301 4993 */
ce00a967 4994 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4995 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4996
e8ea14cc 4997 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4998
4050377b 4999 /* we've already done css_get(mc.to) */
483c30b5
DN
5000 mc.moved_swap = 0;
5001 }
dfe076b0
DN
5002 memcg_oom_recover(from);
5003 memcg_oom_recover(to);
5004 wake_up_all(&mc.waitq);
5005}
5006
5007static void mem_cgroup_clear_mc(void)
5008{
dfe076b0
DN
5009 /*
5010 * we must clear moving_task before waking up waiters at the end of
5011 * task migration.
5012 */
5013 mc.moving_task = NULL;
5014 __mem_cgroup_clear_mc();
2bd9bb20 5015 spin_lock(&mc.lock);
4ffef5fe
DN
5016 mc.from = NULL;
5017 mc.to = NULL;
2bd9bb20 5018 spin_unlock(&mc.lock);
4ffef5fe
DN
5019}
5020
eb95419b 5021static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5022 struct cgroup_taskset *tset)
7dc74be0 5023{
2f7ee569 5024 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5025 int ret = 0;
eb95419b 5026 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 5027 unsigned long move_flags;
7dc74be0 5028
ee5e8472
GC
5029 /*
5030 * We are now commited to this value whatever it is. Changes in this
5031 * tunable will only affect upcoming migrations, not the current one.
5032 * So we need to save it, and keep it going.
5033 */
4db0c3c2 5034 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1dfab5ab 5035 if (move_flags) {
7dc74be0
DN
5036 struct mm_struct *mm;
5037 struct mem_cgroup *from = mem_cgroup_from_task(p);
5038
c0ff4b85 5039 VM_BUG_ON(from == memcg);
7dc74be0
DN
5040
5041 mm = get_task_mm(p);
5042 if (!mm)
5043 return 0;
7dc74be0 5044 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5045 if (mm->owner == p) {
5046 VM_BUG_ON(mc.from);
5047 VM_BUG_ON(mc.to);
5048 VM_BUG_ON(mc.precharge);
854ffa8d 5049 VM_BUG_ON(mc.moved_charge);
483c30b5 5050 VM_BUG_ON(mc.moved_swap);
247b1447 5051
2bd9bb20 5052 spin_lock(&mc.lock);
4ffef5fe 5053 mc.from = from;
c0ff4b85 5054 mc.to = memcg;
1dfab5ab 5055 mc.flags = move_flags;
2bd9bb20 5056 spin_unlock(&mc.lock);
dfe076b0 5057 /* We set mc.moving_task later */
4ffef5fe
DN
5058
5059 ret = mem_cgroup_precharge_mc(mm);
5060 if (ret)
5061 mem_cgroup_clear_mc();
dfe076b0
DN
5062 }
5063 mmput(mm);
7dc74be0
DN
5064 }
5065 return ret;
5066}
5067
eb95419b 5068static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5069 struct cgroup_taskset *tset)
7dc74be0 5070{
4e2f245d
JW
5071 if (mc.to)
5072 mem_cgroup_clear_mc();
7dc74be0
DN
5073}
5074
4ffef5fe
DN
5075static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5076 unsigned long addr, unsigned long end,
5077 struct mm_walk *walk)
7dc74be0 5078{
4ffef5fe 5079 int ret = 0;
26bcd64a 5080 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5081 pte_t *pte;
5082 spinlock_t *ptl;
12724850
NH
5083 enum mc_target_type target_type;
5084 union mc_target target;
5085 struct page *page;
4ffef5fe 5086
12724850
NH
5087 /*
5088 * We don't take compound_lock() here but no race with splitting thp
5089 * happens because:
5090 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5091 * under splitting, which means there's no concurrent thp split,
5092 * - if another thread runs into split_huge_page() just after we
5093 * entered this if-block, the thread must wait for page table lock
5094 * to be unlocked in __split_huge_page_splitting(), where the main
5095 * part of thp split is not executed yet.
5096 */
bf929152 5097 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5098 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5099 spin_unlock(ptl);
12724850
NH
5100 return 0;
5101 }
5102 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5103 if (target_type == MC_TARGET_PAGE) {
5104 page = target.page;
5105 if (!isolate_lru_page(page)) {
12724850 5106 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5107 mc.from, mc.to)) {
12724850
NH
5108 mc.precharge -= HPAGE_PMD_NR;
5109 mc.moved_charge += HPAGE_PMD_NR;
5110 }
5111 putback_lru_page(page);
5112 }
5113 put_page(page);
5114 }
bf929152 5115 spin_unlock(ptl);
1a5a9906 5116 return 0;
12724850
NH
5117 }
5118
45f83cef
AA
5119 if (pmd_trans_unstable(pmd))
5120 return 0;
4ffef5fe
DN
5121retry:
5122 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5123 for (; addr != end; addr += PAGE_SIZE) {
5124 pte_t ptent = *(pte++);
02491447 5125 swp_entry_t ent;
4ffef5fe
DN
5126
5127 if (!mc.precharge)
5128 break;
5129
8d32ff84 5130 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5131 case MC_TARGET_PAGE:
5132 page = target.page;
5133 if (isolate_lru_page(page))
5134 goto put;
1306a85a 5135 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5136 mc.precharge--;
854ffa8d
DN
5137 /* we uncharge from mc.from later. */
5138 mc.moved_charge++;
4ffef5fe
DN
5139 }
5140 putback_lru_page(page);
8d32ff84 5141put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5142 put_page(page);
5143 break;
02491447
DN
5144 case MC_TARGET_SWAP:
5145 ent = target.ent;
e91cbb42 5146 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5147 mc.precharge--;
483c30b5
DN
5148 /* we fixup refcnts and charges later. */
5149 mc.moved_swap++;
5150 }
02491447 5151 break;
4ffef5fe
DN
5152 default:
5153 break;
5154 }
5155 }
5156 pte_unmap_unlock(pte - 1, ptl);
5157 cond_resched();
5158
5159 if (addr != end) {
5160 /*
5161 * We have consumed all precharges we got in can_attach().
5162 * We try charge one by one, but don't do any additional
5163 * charges to mc.to if we have failed in charge once in attach()
5164 * phase.
5165 */
854ffa8d 5166 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5167 if (!ret)
5168 goto retry;
5169 }
5170
5171 return ret;
5172}
5173
5174static void mem_cgroup_move_charge(struct mm_struct *mm)
5175{
26bcd64a
NH
5176 struct mm_walk mem_cgroup_move_charge_walk = {
5177 .pmd_entry = mem_cgroup_move_charge_pte_range,
5178 .mm = mm,
5179 };
4ffef5fe
DN
5180
5181 lru_add_drain_all();
312722cb
JW
5182 /*
5183 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5184 * move_lock while we're moving its pages to another memcg.
5185 * Then wait for already started RCU-only updates to finish.
5186 */
5187 atomic_inc(&mc.from->moving_account);
5188 synchronize_rcu();
dfe076b0
DN
5189retry:
5190 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5191 /*
5192 * Someone who are holding the mmap_sem might be waiting in
5193 * waitq. So we cancel all extra charges, wake up all waiters,
5194 * and retry. Because we cancel precharges, we might not be able
5195 * to move enough charges, but moving charge is a best-effort
5196 * feature anyway, so it wouldn't be a big problem.
5197 */
5198 __mem_cgroup_clear_mc();
5199 cond_resched();
5200 goto retry;
5201 }
26bcd64a
NH
5202 /*
5203 * When we have consumed all precharges and failed in doing
5204 * additional charge, the page walk just aborts.
5205 */
5206 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5207 up_read(&mm->mmap_sem);
312722cb 5208 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5209}
5210
eb95419b 5211static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5212 struct cgroup_taskset *tset)
67e465a7 5213{
2f7ee569 5214 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5215 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5216
dfe076b0 5217 if (mm) {
a433658c
KM
5218 if (mc.to)
5219 mem_cgroup_move_charge(mm);
dfe076b0
DN
5220 mmput(mm);
5221 }
a433658c
KM
5222 if (mc.to)
5223 mem_cgroup_clear_mc();
67e465a7 5224}
5cfb80a7 5225#else /* !CONFIG_MMU */
eb95419b 5226static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5227 struct cgroup_taskset *tset)
5cfb80a7
DN
5228{
5229 return 0;
5230}
eb95419b 5231static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5232 struct cgroup_taskset *tset)
5cfb80a7
DN
5233{
5234}
eb95419b 5235static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5236 struct cgroup_taskset *tset)
5cfb80a7
DN
5237{
5238}
5239#endif
67e465a7 5240
f00baae7
TH
5241/*
5242 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5243 * to verify whether we're attached to the default hierarchy on each mount
5244 * attempt.
f00baae7 5245 */
eb95419b 5246static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5247{
5248 /*
aa6ec29b 5249 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5250 * guarantees that @root doesn't have any children, so turning it
5251 * on for the root memcg is enough.
5252 */
aa6ec29b 5253 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5254 root_mem_cgroup->use_hierarchy = true;
5255 else
5256 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5257}
5258
241994ed
JW
5259static u64 memory_current_read(struct cgroup_subsys_state *css,
5260 struct cftype *cft)
5261{
5262 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5263}
5264
5265static int memory_low_show(struct seq_file *m, void *v)
5266{
5267 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5268 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5269
5270 if (low == PAGE_COUNTER_MAX)
d2973697 5271 seq_puts(m, "max\n");
241994ed
JW
5272 else
5273 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5274
5275 return 0;
5276}
5277
5278static ssize_t memory_low_write(struct kernfs_open_file *of,
5279 char *buf, size_t nbytes, loff_t off)
5280{
5281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5282 unsigned long low;
5283 int err;
5284
5285 buf = strstrip(buf);
d2973697 5286 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5287 if (err)
5288 return err;
5289
5290 memcg->low = low;
5291
5292 return nbytes;
5293}
5294
5295static int memory_high_show(struct seq_file *m, void *v)
5296{
5297 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5298 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5299
5300 if (high == PAGE_COUNTER_MAX)
d2973697 5301 seq_puts(m, "max\n");
241994ed
JW
5302 else
5303 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5304
5305 return 0;
5306}
5307
5308static ssize_t memory_high_write(struct kernfs_open_file *of,
5309 char *buf, size_t nbytes, loff_t off)
5310{
5311 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5312 unsigned long high;
5313 int err;
5314
5315 buf = strstrip(buf);
d2973697 5316 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5317 if (err)
5318 return err;
5319
5320 memcg->high = high;
5321
5322 return nbytes;
5323}
5324
5325static int memory_max_show(struct seq_file *m, void *v)
5326{
5327 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5328 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5329
5330 if (max == PAGE_COUNTER_MAX)
d2973697 5331 seq_puts(m, "max\n");
241994ed
JW
5332 else
5333 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5334
5335 return 0;
5336}
5337
5338static ssize_t memory_max_write(struct kernfs_open_file *of,
5339 char *buf, size_t nbytes, loff_t off)
5340{
5341 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5342 unsigned long max;
5343 int err;
5344
5345 buf = strstrip(buf);
d2973697 5346 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5347 if (err)
5348 return err;
5349
5350 err = mem_cgroup_resize_limit(memcg, max);
5351 if (err)
5352 return err;
5353
5354 return nbytes;
5355}
5356
5357static int memory_events_show(struct seq_file *m, void *v)
5358{
5359 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5360
5361 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5362 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5363 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5364 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5365
5366 return 0;
5367}
5368
5369static struct cftype memory_files[] = {
5370 {
5371 .name = "current",
5372 .read_u64 = memory_current_read,
5373 },
5374 {
5375 .name = "low",
5376 .flags = CFTYPE_NOT_ON_ROOT,
5377 .seq_show = memory_low_show,
5378 .write = memory_low_write,
5379 },
5380 {
5381 .name = "high",
5382 .flags = CFTYPE_NOT_ON_ROOT,
5383 .seq_show = memory_high_show,
5384 .write = memory_high_write,
5385 },
5386 {
5387 .name = "max",
5388 .flags = CFTYPE_NOT_ON_ROOT,
5389 .seq_show = memory_max_show,
5390 .write = memory_max_write,
5391 },
5392 {
5393 .name = "events",
5394 .flags = CFTYPE_NOT_ON_ROOT,
5395 .seq_show = memory_events_show,
5396 },
5397 { } /* terminate */
5398};
5399
073219e9 5400struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5401 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5402 .css_online = mem_cgroup_css_online,
92fb9748
TH
5403 .css_offline = mem_cgroup_css_offline,
5404 .css_free = mem_cgroup_css_free,
1ced953b 5405 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5406 .can_attach = mem_cgroup_can_attach,
5407 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5408 .attach = mem_cgroup_move_task,
f00baae7 5409 .bind = mem_cgroup_bind,
241994ed
JW
5410 .dfl_cftypes = memory_files,
5411 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5412 .early_init = 0,
8cdea7c0 5413};
c077719b 5414
241994ed
JW
5415/**
5416 * mem_cgroup_events - count memory events against a cgroup
5417 * @memcg: the memory cgroup
5418 * @idx: the event index
5419 * @nr: the number of events to account for
5420 */
5421void mem_cgroup_events(struct mem_cgroup *memcg,
5422 enum mem_cgroup_events_index idx,
5423 unsigned int nr)
5424{
5425 this_cpu_add(memcg->stat->events[idx], nr);
5426}
5427
5428/**
5429 * mem_cgroup_low - check if memory consumption is below the normal range
5430 * @root: the highest ancestor to consider
5431 * @memcg: the memory cgroup to check
5432 *
5433 * Returns %true if memory consumption of @memcg, and that of all
5434 * configurable ancestors up to @root, is below the normal range.
5435 */
5436bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5437{
5438 if (mem_cgroup_disabled())
5439 return false;
5440
5441 /*
5442 * The toplevel group doesn't have a configurable range, so
5443 * it's never low when looked at directly, and it is not
5444 * considered an ancestor when assessing the hierarchy.
5445 */
5446
5447 if (memcg == root_mem_cgroup)
5448 return false;
5449
4e54dede 5450 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5451 return false;
5452
5453 while (memcg != root) {
5454 memcg = parent_mem_cgroup(memcg);
5455
5456 if (memcg == root_mem_cgroup)
5457 break;
5458
4e54dede 5459 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5460 return false;
5461 }
5462 return true;
5463}
5464
00501b53
JW
5465/**
5466 * mem_cgroup_try_charge - try charging a page
5467 * @page: page to charge
5468 * @mm: mm context of the victim
5469 * @gfp_mask: reclaim mode
5470 * @memcgp: charged memcg return
5471 *
5472 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5473 * pages according to @gfp_mask if necessary.
5474 *
5475 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5476 * Otherwise, an error code is returned.
5477 *
5478 * After page->mapping has been set up, the caller must finalize the
5479 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5480 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5481 */
5482int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5483 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5484{
5485 struct mem_cgroup *memcg = NULL;
5486 unsigned int nr_pages = 1;
5487 int ret = 0;
5488
5489 if (mem_cgroup_disabled())
5490 goto out;
5491
5492 if (PageSwapCache(page)) {
00501b53
JW
5493 /*
5494 * Every swap fault against a single page tries to charge the
5495 * page, bail as early as possible. shmem_unuse() encounters
5496 * already charged pages, too. The USED bit is protected by
5497 * the page lock, which serializes swap cache removal, which
5498 * in turn serializes uncharging.
5499 */
1306a85a 5500 if (page->mem_cgroup)
00501b53
JW
5501 goto out;
5502 }
5503
5504 if (PageTransHuge(page)) {
5505 nr_pages <<= compound_order(page);
5506 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5507 }
5508
5509 if (do_swap_account && PageSwapCache(page))
5510 memcg = try_get_mem_cgroup_from_page(page);
5511 if (!memcg)
5512 memcg = get_mem_cgroup_from_mm(mm);
5513
5514 ret = try_charge(memcg, gfp_mask, nr_pages);
5515
5516 css_put(&memcg->css);
5517
5518 if (ret == -EINTR) {
5519 memcg = root_mem_cgroup;
5520 ret = 0;
5521 }
5522out:
5523 *memcgp = memcg;
5524 return ret;
5525}
5526
5527/**
5528 * mem_cgroup_commit_charge - commit a page charge
5529 * @page: page to charge
5530 * @memcg: memcg to charge the page to
5531 * @lrucare: page might be on LRU already
5532 *
5533 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5534 * after page->mapping has been set up. This must happen atomically
5535 * as part of the page instantiation, i.e. under the page table lock
5536 * for anonymous pages, under the page lock for page and swap cache.
5537 *
5538 * In addition, the page must not be on the LRU during the commit, to
5539 * prevent racing with task migration. If it might be, use @lrucare.
5540 *
5541 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5542 */
5543void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5544 bool lrucare)
5545{
5546 unsigned int nr_pages = 1;
5547
5548 VM_BUG_ON_PAGE(!page->mapping, page);
5549 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5550
5551 if (mem_cgroup_disabled())
5552 return;
5553 /*
5554 * Swap faults will attempt to charge the same page multiple
5555 * times. But reuse_swap_page() might have removed the page
5556 * from swapcache already, so we can't check PageSwapCache().
5557 */
5558 if (!memcg)
5559 return;
5560
6abb5a86
JW
5561 commit_charge(page, memcg, lrucare);
5562
00501b53
JW
5563 if (PageTransHuge(page)) {
5564 nr_pages <<= compound_order(page);
5565 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5566 }
5567
6abb5a86
JW
5568 local_irq_disable();
5569 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5570 memcg_check_events(memcg, page);
5571 local_irq_enable();
00501b53
JW
5572
5573 if (do_swap_account && PageSwapCache(page)) {
5574 swp_entry_t entry = { .val = page_private(page) };
5575 /*
5576 * The swap entry might not get freed for a long time,
5577 * let's not wait for it. The page already received a
5578 * memory+swap charge, drop the swap entry duplicate.
5579 */
5580 mem_cgroup_uncharge_swap(entry);
5581 }
5582}
5583
5584/**
5585 * mem_cgroup_cancel_charge - cancel a page charge
5586 * @page: page to charge
5587 * @memcg: memcg to charge the page to
5588 *
5589 * Cancel a charge transaction started by mem_cgroup_try_charge().
5590 */
5591void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5592{
5593 unsigned int nr_pages = 1;
5594
5595 if (mem_cgroup_disabled())
5596 return;
5597 /*
5598 * Swap faults will attempt to charge the same page multiple
5599 * times. But reuse_swap_page() might have removed the page
5600 * from swapcache already, so we can't check PageSwapCache().
5601 */
5602 if (!memcg)
5603 return;
5604
5605 if (PageTransHuge(page)) {
5606 nr_pages <<= compound_order(page);
5607 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5608 }
5609
5610 cancel_charge(memcg, nr_pages);
5611}
5612
747db954 5613static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5614 unsigned long nr_anon, unsigned long nr_file,
5615 unsigned long nr_huge, struct page *dummy_page)
5616{
18eca2e6 5617 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5618 unsigned long flags;
5619
ce00a967 5620 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5621 page_counter_uncharge(&memcg->memory, nr_pages);
5622 if (do_swap_account)
5623 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5624 memcg_oom_recover(memcg);
5625 }
747db954
JW
5626
5627 local_irq_save(flags);
5628 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5629 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5630 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5631 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5632 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5633 memcg_check_events(memcg, dummy_page);
5634 local_irq_restore(flags);
e8ea14cc
JW
5635
5636 if (!mem_cgroup_is_root(memcg))
18eca2e6 5637 css_put_many(&memcg->css, nr_pages);
747db954
JW
5638}
5639
5640static void uncharge_list(struct list_head *page_list)
5641{
5642 struct mem_cgroup *memcg = NULL;
747db954
JW
5643 unsigned long nr_anon = 0;
5644 unsigned long nr_file = 0;
5645 unsigned long nr_huge = 0;
5646 unsigned long pgpgout = 0;
747db954
JW
5647 struct list_head *next;
5648 struct page *page;
5649
5650 next = page_list->next;
5651 do {
5652 unsigned int nr_pages = 1;
747db954
JW
5653
5654 page = list_entry(next, struct page, lru);
5655 next = page->lru.next;
5656
5657 VM_BUG_ON_PAGE(PageLRU(page), page);
5658 VM_BUG_ON_PAGE(page_count(page), page);
5659
1306a85a 5660 if (!page->mem_cgroup)
747db954
JW
5661 continue;
5662
5663 /*
5664 * Nobody should be changing or seriously looking at
1306a85a 5665 * page->mem_cgroup at this point, we have fully
29833315 5666 * exclusive access to the page.
747db954
JW
5667 */
5668
1306a85a 5669 if (memcg != page->mem_cgroup) {
747db954 5670 if (memcg) {
18eca2e6
JW
5671 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5672 nr_huge, page);
5673 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5674 }
1306a85a 5675 memcg = page->mem_cgroup;
747db954
JW
5676 }
5677
5678 if (PageTransHuge(page)) {
5679 nr_pages <<= compound_order(page);
5680 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5681 nr_huge += nr_pages;
5682 }
5683
5684 if (PageAnon(page))
5685 nr_anon += nr_pages;
5686 else
5687 nr_file += nr_pages;
5688
1306a85a 5689 page->mem_cgroup = NULL;
747db954
JW
5690
5691 pgpgout++;
5692 } while (next != page_list);
5693
5694 if (memcg)
18eca2e6
JW
5695 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5696 nr_huge, page);
747db954
JW
5697}
5698
0a31bc97
JW
5699/**
5700 * mem_cgroup_uncharge - uncharge a page
5701 * @page: page to uncharge
5702 *
5703 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5704 * mem_cgroup_commit_charge().
5705 */
5706void mem_cgroup_uncharge(struct page *page)
5707{
0a31bc97
JW
5708 if (mem_cgroup_disabled())
5709 return;
5710
747db954 5711 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5712 if (!page->mem_cgroup)
0a31bc97
JW
5713 return;
5714
747db954
JW
5715 INIT_LIST_HEAD(&page->lru);
5716 uncharge_list(&page->lru);
5717}
0a31bc97 5718
747db954
JW
5719/**
5720 * mem_cgroup_uncharge_list - uncharge a list of page
5721 * @page_list: list of pages to uncharge
5722 *
5723 * Uncharge a list of pages previously charged with
5724 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5725 */
5726void mem_cgroup_uncharge_list(struct list_head *page_list)
5727{
5728 if (mem_cgroup_disabled())
5729 return;
0a31bc97 5730
747db954
JW
5731 if (!list_empty(page_list))
5732 uncharge_list(page_list);
0a31bc97
JW
5733}
5734
5735/**
5736 * mem_cgroup_migrate - migrate a charge to another page
5737 * @oldpage: currently charged page
5738 * @newpage: page to transfer the charge to
f5e03a49 5739 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5740 *
5741 * Migrate the charge from @oldpage to @newpage.
5742 *
5743 * Both pages must be locked, @newpage->mapping must be set up.
5744 */
5745void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5746 bool lrucare)
5747{
29833315 5748 struct mem_cgroup *memcg;
0a31bc97
JW
5749 int isolated;
5750
5751 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5752 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5753 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5754 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5755 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5756 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5757 newpage);
0a31bc97
JW
5758
5759 if (mem_cgroup_disabled())
5760 return;
5761
5762 /* Page cache replacement: new page already charged? */
1306a85a 5763 if (newpage->mem_cgroup)
0a31bc97
JW
5764 return;
5765
7d5e3245
JW
5766 /*
5767 * Swapcache readahead pages can get migrated before being
5768 * charged, and migration from compaction can happen to an
5769 * uncharged page when the PFN walker finds a page that
5770 * reclaim just put back on the LRU but has not released yet.
5771 */
1306a85a 5772 memcg = oldpage->mem_cgroup;
29833315 5773 if (!memcg)
0a31bc97
JW
5774 return;
5775
0a31bc97
JW
5776 if (lrucare)
5777 lock_page_lru(oldpage, &isolated);
5778
1306a85a 5779 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5780
5781 if (lrucare)
5782 unlock_page_lru(oldpage, isolated);
5783
29833315 5784 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5785}
5786
2d11085e 5787/*
1081312f
MH
5788 * subsys_initcall() for memory controller.
5789 *
5790 * Some parts like hotcpu_notifier() have to be initialized from this context
5791 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5792 * everything that doesn't depend on a specific mem_cgroup structure should
5793 * be initialized from here.
2d11085e
MH
5794 */
5795static int __init mem_cgroup_init(void)
5796{
95a045f6
JW
5797 int cpu, node;
5798
2d11085e 5799 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5800
5801 for_each_possible_cpu(cpu)
5802 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5803 drain_local_stock);
5804
5805 for_each_node(node) {
5806 struct mem_cgroup_tree_per_node *rtpn;
5807 int zone;
5808
5809 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5810 node_online(node) ? node : NUMA_NO_NODE);
5811
5812 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5813 struct mem_cgroup_tree_per_zone *rtpz;
5814
5815 rtpz = &rtpn->rb_tree_per_zone[zone];
5816 rtpz->rb_root = RB_ROOT;
5817 spin_lock_init(&rtpz->lock);
5818 }
5819 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5820 }
5821
2d11085e
MH
5822 return 0;
5823}
5824subsys_initcall(mem_cgroup_init);
21afa38e
JW
5825
5826#ifdef CONFIG_MEMCG_SWAP
5827/**
5828 * mem_cgroup_swapout - transfer a memsw charge to swap
5829 * @page: page whose memsw charge to transfer
5830 * @entry: swap entry to move the charge to
5831 *
5832 * Transfer the memsw charge of @page to @entry.
5833 */
5834void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5835{
5836 struct mem_cgroup *memcg;
5837 unsigned short oldid;
5838
5839 VM_BUG_ON_PAGE(PageLRU(page), page);
5840 VM_BUG_ON_PAGE(page_count(page), page);
5841
5842 if (!do_swap_account)
5843 return;
5844
5845 memcg = page->mem_cgroup;
5846
5847 /* Readahead page, never charged */
5848 if (!memcg)
5849 return;
5850
5851 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5852 VM_BUG_ON_PAGE(oldid, page);
5853 mem_cgroup_swap_statistics(memcg, true);
5854
5855 page->mem_cgroup = NULL;
5856
5857 if (!mem_cgroup_is_root(memcg))
5858 page_counter_uncharge(&memcg->memory, 1);
5859
5860 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5861 VM_BUG_ON(!irqs_disabled());
5862
5863 mem_cgroup_charge_statistics(memcg, page, -1);
5864 memcg_check_events(memcg, page);
5865}
5866
5867/**
5868 * mem_cgroup_uncharge_swap - uncharge a swap entry
5869 * @entry: swap entry to uncharge
5870 *
5871 * Drop the memsw charge associated with @entry.
5872 */
5873void mem_cgroup_uncharge_swap(swp_entry_t entry)
5874{
5875 struct mem_cgroup *memcg;
5876 unsigned short id;
5877
5878 if (!do_swap_account)
5879 return;
5880
5881 id = swap_cgroup_record(entry, 0);
5882 rcu_read_lock();
adbe427b 5883 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5884 if (memcg) {
5885 if (!mem_cgroup_is_root(memcg))
5886 page_counter_uncharge(&memcg->memsw, 1);
5887 mem_cgroup_swap_statistics(memcg, false);
5888 css_put(&memcg->css);
5889 }
5890 rcu_read_unlock();
5891}
5892
5893/* for remember boot option*/
5894#ifdef CONFIG_MEMCG_SWAP_ENABLED
5895static int really_do_swap_account __initdata = 1;
5896#else
5897static int really_do_swap_account __initdata;
5898#endif
5899
5900static int __init enable_swap_account(char *s)
5901{
5902 if (!strcmp(s, "1"))
5903 really_do_swap_account = 1;
5904 else if (!strcmp(s, "0"))
5905 really_do_swap_account = 0;
5906 return 1;
5907}
5908__setup("swapaccount=", enable_swap_account);
5909
5910static struct cftype memsw_cgroup_files[] = {
5911 {
5912 .name = "memsw.usage_in_bytes",
5913 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5914 .read_u64 = mem_cgroup_read_u64,
5915 },
5916 {
5917 .name = "memsw.max_usage_in_bytes",
5918 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5919 .write = mem_cgroup_reset,
5920 .read_u64 = mem_cgroup_read_u64,
5921 },
5922 {
5923 .name = "memsw.limit_in_bytes",
5924 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5925 .write = mem_cgroup_write,
5926 .read_u64 = mem_cgroup_read_u64,
5927 },
5928 {
5929 .name = "memsw.failcnt",
5930 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5931 .write = mem_cgroup_reset,
5932 .read_u64 = mem_cgroup_read_u64,
5933 },
5934 { }, /* terminate */
5935};
5936
5937static int __init mem_cgroup_swap_init(void)
5938{
5939 if (!mem_cgroup_disabled() && really_do_swap_account) {
5940 do_swap_account = 1;
5941 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5942 memsw_cgroup_files));
5943 }
5944 return 0;
5945}
5946subsys_initcall(mem_cgroup_swap_init);
5947
5948#endif /* CONFIG_MEMCG_SWAP */