mm: fix slab->page flags corruption
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885
BH
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
95f72d1e
YL
21#include <linux/memblock.h>
22
fe091c20
TH
23static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
30
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
34
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
36};
95f72d1e 37
10d06439 38int memblock_debug __initdata_memblock;
1aadc056 39static int memblock_can_resize __initdata_memblock;
95f72d1e 40
142b45a7
BH
41/* inline so we don't get a warning when pr_debug is compiled out */
42static inline const char *memblock_type_name(struct memblock_type *type)
43{
44 if (type == &memblock.memory)
45 return "memory";
46 else if (type == &memblock.reserved)
47 return "reserved";
48 else
49 return "unknown";
50}
51
eb18f1b5
TH
52/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
54{
55 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
56}
57
6ed311b2
BH
58/*
59 * Address comparison utilities
60 */
10d06439 61static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 62 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
63{
64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65}
66
2d7d3eb2
HS
67static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
69{
70 unsigned long i;
71
72 for (i = 0; i < type->cnt; i++) {
73 phys_addr_t rgnbase = type->regions[i].base;
74 phys_addr_t rgnsize = type->regions[i].size;
75 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76 break;
77 }
78
79 return (i < type->cnt) ? i : -1;
80}
81
7bd0b0f0
TH
82/**
83 * memblock_find_in_range_node - find free area in given range and node
84 * @start: start of candidate range
85 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
86 * @size: size of free area to find
87 * @align: alignment of free area to find
88 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
89 *
90 * Find @size free area aligned to @align in the specified range and node.
91 *
92 * RETURNS:
93 * Found address on success, %0 on failure.
6ed311b2 94 */
7bd0b0f0
TH
95phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
96 phys_addr_t end, phys_addr_t size,
97 phys_addr_t align, int nid)
6ed311b2 98{
7bd0b0f0
TH
99 phys_addr_t this_start, this_end, cand;
100 u64 i;
6ed311b2 101
7bd0b0f0
TH
102 /* pump up @end */
103 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
104 end = memblock.current_limit;
f1af98c7 105
5d53cb27
TH
106 /* avoid allocating the first page */
107 start = max_t(phys_addr_t, start, PAGE_SIZE);
7bd0b0f0 108 end = max(start, end);
f1af98c7 109
7bd0b0f0
TH
110 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
111 this_start = clamp(this_start, start, end);
112 this_end = clamp(this_end, start, end);
6ed311b2 113
5d53cb27
TH
114 if (this_end < size)
115 continue;
116
7bd0b0f0
TH
117 cand = round_down(this_end - size, align);
118 if (cand >= this_start)
119 return cand;
120 }
1f5026a7 121 return 0;
6ed311b2
BH
122}
123
7bd0b0f0
TH
124/**
125 * memblock_find_in_range - find free area in given range
126 * @start: start of candidate range
127 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
128 * @size: size of free area to find
129 * @align: alignment of free area to find
130 *
131 * Find @size free area aligned to @align in the specified range.
132 *
133 * RETURNS:
134 * Found address on success, %0 on failure.
fc769a8e 135 */
7bd0b0f0
TH
136phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
137 phys_addr_t end, phys_addr_t size,
138 phys_addr_t align)
6ed311b2 139{
7bd0b0f0
TH
140 return memblock_find_in_range_node(start, end, size, align,
141 MAX_NUMNODES);
6ed311b2
BH
142}
143
7950c407
YL
144/*
145 * Free memblock.reserved.regions
146 */
147int __init_memblock memblock_free_reserved_regions(void)
148{
149 if (memblock.reserved.regions == memblock_reserved_init_regions)
150 return 0;
151
152 return memblock_free(__pa(memblock.reserved.regions),
153 sizeof(struct memblock_region) * memblock.reserved.max);
154}
155
156/*
157 * Reserve memblock.reserved.regions
158 */
159int __init_memblock memblock_reserve_reserved_regions(void)
160{
161 if (memblock.reserved.regions == memblock_reserved_init_regions)
162 return 0;
163
164 return memblock_reserve(__pa(memblock.reserved.regions),
165 sizeof(struct memblock_region) * memblock.reserved.max);
166}
167
10d06439 168static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 169{
1440c4e2 170 type->total_size -= type->regions[r].size;
7c0caeb8
TH
171 memmove(&type->regions[r], &type->regions[r + 1],
172 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 173 type->cnt--;
95f72d1e 174
8f7a6605
BH
175 /* Special case for empty arrays */
176 if (type->cnt == 0) {
1440c4e2 177 WARN_ON(type->total_size != 0);
8f7a6605
BH
178 type->cnt = 1;
179 type->regions[0].base = 0;
180 type->regions[0].size = 0;
7c0caeb8 181 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 182 }
95f72d1e
YL
183}
184
10d06439 185static int __init_memblock memblock_double_array(struct memblock_type *type)
142b45a7
BH
186{
187 struct memblock_region *new_array, *old_array;
188 phys_addr_t old_size, new_size, addr;
189 int use_slab = slab_is_available();
190
191 /* We don't allow resizing until we know about the reserved regions
192 * of memory that aren't suitable for allocation
193 */
194 if (!memblock_can_resize)
195 return -1;
196
142b45a7
BH
197 /* Calculate new doubled size */
198 old_size = type->max * sizeof(struct memblock_region);
199 new_size = old_size << 1;
200
201 /* Try to find some space for it.
202 *
203 * WARNING: We assume that either slab_is_available() and we use it or
204 * we use MEMBLOCK for allocations. That means that this is unsafe to use
205 * when bootmem is currently active (unless bootmem itself is implemented
206 * on top of MEMBLOCK which isn't the case yet)
207 *
208 * This should however not be an issue for now, as we currently only
209 * call into MEMBLOCK while it's still active, or much later when slab is
210 * active for memory hotplug operations
211 */
212 if (use_slab) {
213 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 214 addr = new_array ? __pa(new_array) : 0;
142b45a7 215 } else
fc769a8e 216 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
1f5026a7 217 if (!addr) {
142b45a7
BH
218 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
219 memblock_type_name(type), type->max, type->max * 2);
220 return -1;
221 }
222 new_array = __va(addr);
223
ea9e4376
YL
224 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
225 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
226
142b45a7
BH
227 /* Found space, we now need to move the array over before
228 * we add the reserved region since it may be our reserved
229 * array itself that is full.
230 */
231 memcpy(new_array, type->regions, old_size);
232 memset(new_array + type->max, 0, old_size);
233 old_array = type->regions;
234 type->regions = new_array;
235 type->max <<= 1;
236
237 /* If we use SLAB that's it, we are done */
238 if (use_slab)
239 return 0;
240
241 /* Add the new reserved region now. Should not fail ! */
9c8c27e2 242 BUG_ON(memblock_reserve(addr, new_size));
142b45a7
BH
243
244 /* If the array wasn't our static init one, then free it. We only do
245 * that before SLAB is available as later on, we don't know whether
246 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
247 * anyways
248 */
249 if (old_array != memblock_memory_init_regions &&
250 old_array != memblock_reserved_init_regions)
251 memblock_free(__pa(old_array), old_size);
252
253 return 0;
254}
255
784656f9
TH
256/**
257 * memblock_merge_regions - merge neighboring compatible regions
258 * @type: memblock type to scan
259 *
260 * Scan @type and merge neighboring compatible regions.
261 */
262static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 263{
784656f9 264 int i = 0;
95f72d1e 265
784656f9
TH
266 /* cnt never goes below 1 */
267 while (i < type->cnt - 1) {
268 struct memblock_region *this = &type->regions[i];
269 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 270
7c0caeb8
TH
271 if (this->base + this->size != next->base ||
272 memblock_get_region_node(this) !=
273 memblock_get_region_node(next)) {
784656f9
TH
274 BUG_ON(this->base + this->size > next->base);
275 i++;
276 continue;
8f7a6605
BH
277 }
278
784656f9
TH
279 this->size += next->size;
280 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
281 type->cnt--;
95f72d1e 282 }
784656f9 283}
95f72d1e 284
784656f9
TH
285/**
286 * memblock_insert_region - insert new memblock region
287 * @type: memblock type to insert into
288 * @idx: index for the insertion point
289 * @base: base address of the new region
290 * @size: size of the new region
291 *
292 * Insert new memblock region [@base,@base+@size) into @type at @idx.
293 * @type must already have extra room to accomodate the new region.
294 */
295static void __init_memblock memblock_insert_region(struct memblock_type *type,
296 int idx, phys_addr_t base,
7c0caeb8 297 phys_addr_t size, int nid)
784656f9
TH
298{
299 struct memblock_region *rgn = &type->regions[idx];
300
301 BUG_ON(type->cnt >= type->max);
302 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
303 rgn->base = base;
304 rgn->size = size;
7c0caeb8 305 memblock_set_region_node(rgn, nid);
784656f9 306 type->cnt++;
1440c4e2 307 type->total_size += size;
784656f9
TH
308}
309
310/**
311 * memblock_add_region - add new memblock region
312 * @type: memblock type to add new region into
313 * @base: base address of the new region
314 * @size: size of the new region
7fb0bc3f 315 * @nid: nid of the new region
784656f9
TH
316 *
317 * Add new memblock region [@base,@base+@size) into @type. The new region
318 * is allowed to overlap with existing ones - overlaps don't affect already
319 * existing regions. @type is guaranteed to be minimal (all neighbouring
320 * compatible regions are merged) after the addition.
321 *
322 * RETURNS:
323 * 0 on success, -errno on failure.
324 */
581adcbe 325static int __init_memblock memblock_add_region(struct memblock_type *type,
7fb0bc3f 326 phys_addr_t base, phys_addr_t size, int nid)
784656f9
TH
327{
328 bool insert = false;
eb18f1b5
TH
329 phys_addr_t obase = base;
330 phys_addr_t end = base + memblock_cap_size(base, &size);
784656f9
TH
331 int i, nr_new;
332
b3dc627c
TH
333 if (!size)
334 return 0;
335
784656f9
TH
336 /* special case for empty array */
337 if (type->regions[0].size == 0) {
1440c4e2 338 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
339 type->regions[0].base = base;
340 type->regions[0].size = size;
7fb0bc3f 341 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 342 type->total_size = size;
8f7a6605 343 return 0;
95f72d1e 344 }
784656f9
TH
345repeat:
346 /*
347 * The following is executed twice. Once with %false @insert and
348 * then with %true. The first counts the number of regions needed
349 * to accomodate the new area. The second actually inserts them.
142b45a7 350 */
784656f9
TH
351 base = obase;
352 nr_new = 0;
95f72d1e 353
784656f9
TH
354 for (i = 0; i < type->cnt; i++) {
355 struct memblock_region *rgn = &type->regions[i];
356 phys_addr_t rbase = rgn->base;
357 phys_addr_t rend = rbase + rgn->size;
358
359 if (rbase >= end)
95f72d1e 360 break;
784656f9
TH
361 if (rend <= base)
362 continue;
363 /*
364 * @rgn overlaps. If it separates the lower part of new
365 * area, insert that portion.
366 */
367 if (rbase > base) {
368 nr_new++;
369 if (insert)
370 memblock_insert_region(type, i++, base,
7fb0bc3f 371 rbase - base, nid);
95f72d1e 372 }
784656f9
TH
373 /* area below @rend is dealt with, forget about it */
374 base = min(rend, end);
95f72d1e 375 }
784656f9
TH
376
377 /* insert the remaining portion */
378 if (base < end) {
379 nr_new++;
380 if (insert)
7fb0bc3f 381 memblock_insert_region(type, i, base, end - base, nid);
95f72d1e 382 }
95f72d1e 383
784656f9
TH
384 /*
385 * If this was the first round, resize array and repeat for actual
386 * insertions; otherwise, merge and return.
142b45a7 387 */
784656f9
TH
388 if (!insert) {
389 while (type->cnt + nr_new > type->max)
390 if (memblock_double_array(type) < 0)
391 return -ENOMEM;
392 insert = true;
393 goto repeat;
394 } else {
395 memblock_merge_regions(type);
396 return 0;
142b45a7 397 }
95f72d1e
YL
398}
399
7fb0bc3f
TH
400int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
401 int nid)
402{
403 return memblock_add_region(&memblock.memory, base, size, nid);
404}
405
581adcbe 406int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
95f72d1e 407{
7fb0bc3f 408 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
95f72d1e
YL
409}
410
6a9ceb31
TH
411/**
412 * memblock_isolate_range - isolate given range into disjoint memblocks
413 * @type: memblock type to isolate range for
414 * @base: base of range to isolate
415 * @size: size of range to isolate
416 * @start_rgn: out parameter for the start of isolated region
417 * @end_rgn: out parameter for the end of isolated region
418 *
419 * Walk @type and ensure that regions don't cross the boundaries defined by
420 * [@base,@base+@size). Crossing regions are split at the boundaries,
421 * which may create at most two more regions. The index of the first
422 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
423 *
424 * RETURNS:
425 * 0 on success, -errno on failure.
426 */
427static int __init_memblock memblock_isolate_range(struct memblock_type *type,
428 phys_addr_t base, phys_addr_t size,
429 int *start_rgn, int *end_rgn)
430{
eb18f1b5 431 phys_addr_t end = base + memblock_cap_size(base, &size);
6a9ceb31
TH
432 int i;
433
434 *start_rgn = *end_rgn = 0;
435
b3dc627c
TH
436 if (!size)
437 return 0;
438
6a9ceb31
TH
439 /* we'll create at most two more regions */
440 while (type->cnt + 2 > type->max)
441 if (memblock_double_array(type) < 0)
442 return -ENOMEM;
443
444 for (i = 0; i < type->cnt; i++) {
445 struct memblock_region *rgn = &type->regions[i];
446 phys_addr_t rbase = rgn->base;
447 phys_addr_t rend = rbase + rgn->size;
448
449 if (rbase >= end)
450 break;
451 if (rend <= base)
452 continue;
453
454 if (rbase < base) {
455 /*
456 * @rgn intersects from below. Split and continue
457 * to process the next region - the new top half.
458 */
459 rgn->base = base;
1440c4e2
TH
460 rgn->size -= base - rbase;
461 type->total_size -= base - rbase;
6a9ceb31 462 memblock_insert_region(type, i, rbase, base - rbase,
71936180 463 memblock_get_region_node(rgn));
6a9ceb31
TH
464 } else if (rend > end) {
465 /*
466 * @rgn intersects from above. Split and redo the
467 * current region - the new bottom half.
468 */
469 rgn->base = end;
1440c4e2
TH
470 rgn->size -= end - rbase;
471 type->total_size -= end - rbase;
6a9ceb31 472 memblock_insert_region(type, i--, rbase, end - rbase,
71936180 473 memblock_get_region_node(rgn));
6a9ceb31
TH
474 } else {
475 /* @rgn is fully contained, record it */
476 if (!*end_rgn)
477 *start_rgn = i;
478 *end_rgn = i + 1;
479 }
480 }
481
482 return 0;
483}
6a9ceb31 484
581adcbe
TH
485static int __init_memblock __memblock_remove(struct memblock_type *type,
486 phys_addr_t base, phys_addr_t size)
95f72d1e 487{
71936180
TH
488 int start_rgn, end_rgn;
489 int i, ret;
95f72d1e 490
71936180
TH
491 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
492 if (ret)
493 return ret;
95f72d1e 494
71936180
TH
495 for (i = end_rgn - 1; i >= start_rgn; i--)
496 memblock_remove_region(type, i);
8f7a6605 497 return 0;
95f72d1e
YL
498}
499
581adcbe 500int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e
YL
501{
502 return __memblock_remove(&memblock.memory, base, size);
503}
504
581adcbe 505int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 506{
24aa0788 507 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
a150439c
PA
508 (unsigned long long)base,
509 (unsigned long long)base + size,
510 (void *)_RET_IP_);
24aa0788 511
95f72d1e
YL
512 return __memblock_remove(&memblock.reserved, base, size);
513}
514
581adcbe 515int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 516{
e3239ff9 517 struct memblock_type *_rgn = &memblock.reserved;
95f72d1e 518
24aa0788 519 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
a150439c
PA
520 (unsigned long long)base,
521 (unsigned long long)base + size,
522 (void *)_RET_IP_);
95f72d1e 523
7fb0bc3f 524 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
95f72d1e
YL
525}
526
35fd0808
TH
527/**
528 * __next_free_mem_range - next function for for_each_free_mem_range()
529 * @idx: pointer to u64 loop variable
530 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
531 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
532 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
533 * @p_nid: ptr to int for nid of the range, can be %NULL
534 *
535 * Find the first free area from *@idx which matches @nid, fill the out
536 * parameters, and update *@idx for the next iteration. The lower 32bit of
537 * *@idx contains index into memory region and the upper 32bit indexes the
538 * areas before each reserved region. For example, if reserved regions
539 * look like the following,
540 *
541 * 0:[0-16), 1:[32-48), 2:[128-130)
542 *
543 * The upper 32bit indexes the following regions.
544 *
545 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
546 *
547 * As both region arrays are sorted, the function advances the two indices
548 * in lockstep and returns each intersection.
549 */
550void __init_memblock __next_free_mem_range(u64 *idx, int nid,
551 phys_addr_t *out_start,
552 phys_addr_t *out_end, int *out_nid)
553{
554 struct memblock_type *mem = &memblock.memory;
555 struct memblock_type *rsv = &memblock.reserved;
556 int mi = *idx & 0xffffffff;
557 int ri = *idx >> 32;
558
559 for ( ; mi < mem->cnt; mi++) {
560 struct memblock_region *m = &mem->regions[mi];
561 phys_addr_t m_start = m->base;
562 phys_addr_t m_end = m->base + m->size;
563
564 /* only memory regions are associated with nodes, check it */
565 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
566 continue;
567
568 /* scan areas before each reservation for intersection */
569 for ( ; ri < rsv->cnt + 1; ri++) {
570 struct memblock_region *r = &rsv->regions[ri];
571 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
572 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
573
574 /* if ri advanced past mi, break out to advance mi */
575 if (r_start >= m_end)
576 break;
577 /* if the two regions intersect, we're done */
578 if (m_start < r_end) {
579 if (out_start)
580 *out_start = max(m_start, r_start);
581 if (out_end)
582 *out_end = min(m_end, r_end);
583 if (out_nid)
584 *out_nid = memblock_get_region_node(m);
585 /*
586 * The region which ends first is advanced
587 * for the next iteration.
588 */
589 if (m_end <= r_end)
590 mi++;
591 else
592 ri++;
593 *idx = (u32)mi | (u64)ri << 32;
594 return;
595 }
596 }
597 }
598
599 /* signal end of iteration */
600 *idx = ULLONG_MAX;
601}
602
7bd0b0f0
TH
603/**
604 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
605 * @idx: pointer to u64 loop variable
606 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
607 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
608 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
609 * @p_nid: ptr to int for nid of the range, can be %NULL
610 *
611 * Reverse of __next_free_mem_range().
612 */
613void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
614 phys_addr_t *out_start,
615 phys_addr_t *out_end, int *out_nid)
616{
617 struct memblock_type *mem = &memblock.memory;
618 struct memblock_type *rsv = &memblock.reserved;
619 int mi = *idx & 0xffffffff;
620 int ri = *idx >> 32;
621
622 if (*idx == (u64)ULLONG_MAX) {
623 mi = mem->cnt - 1;
624 ri = rsv->cnt;
625 }
626
627 for ( ; mi >= 0; mi--) {
628 struct memblock_region *m = &mem->regions[mi];
629 phys_addr_t m_start = m->base;
630 phys_addr_t m_end = m->base + m->size;
631
632 /* only memory regions are associated with nodes, check it */
633 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
634 continue;
635
636 /* scan areas before each reservation for intersection */
637 for ( ; ri >= 0; ri--) {
638 struct memblock_region *r = &rsv->regions[ri];
639 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
640 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
641
642 /* if ri advanced past mi, break out to advance mi */
643 if (r_end <= m_start)
644 break;
645 /* if the two regions intersect, we're done */
646 if (m_end > r_start) {
647 if (out_start)
648 *out_start = max(m_start, r_start);
649 if (out_end)
650 *out_end = min(m_end, r_end);
651 if (out_nid)
652 *out_nid = memblock_get_region_node(m);
653
654 if (m_start >= r_start)
655 mi--;
656 else
657 ri--;
658 *idx = (u32)mi | (u64)ri << 32;
659 return;
660 }
661 }
662 }
663
664 *idx = ULLONG_MAX;
665}
666
7c0caeb8
TH
667#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
668/*
669 * Common iterator interface used to define for_each_mem_range().
670 */
671void __init_memblock __next_mem_pfn_range(int *idx, int nid,
672 unsigned long *out_start_pfn,
673 unsigned long *out_end_pfn, int *out_nid)
674{
675 struct memblock_type *type = &memblock.memory;
676 struct memblock_region *r;
677
678 while (++*idx < type->cnt) {
679 r = &type->regions[*idx];
680
681 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
682 continue;
683 if (nid == MAX_NUMNODES || nid == r->nid)
684 break;
685 }
686 if (*idx >= type->cnt) {
687 *idx = -1;
688 return;
689 }
690
691 if (out_start_pfn)
692 *out_start_pfn = PFN_UP(r->base);
693 if (out_end_pfn)
694 *out_end_pfn = PFN_DOWN(r->base + r->size);
695 if (out_nid)
696 *out_nid = r->nid;
697}
698
699/**
700 * memblock_set_node - set node ID on memblock regions
701 * @base: base of area to set node ID for
702 * @size: size of area to set node ID for
703 * @nid: node ID to set
704 *
705 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
706 * Regions which cross the area boundaries are split as necessary.
707 *
708 * RETURNS:
709 * 0 on success, -errno on failure.
710 */
711int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
712 int nid)
713{
714 struct memblock_type *type = &memblock.memory;
6a9ceb31
TH
715 int start_rgn, end_rgn;
716 int i, ret;
7c0caeb8 717
6a9ceb31
TH
718 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
719 if (ret)
720 return ret;
7c0caeb8 721
6a9ceb31
TH
722 for (i = start_rgn; i < end_rgn; i++)
723 type->regions[i].nid = nid;
7c0caeb8
TH
724
725 memblock_merge_regions(type);
726 return 0;
727}
728#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
729
7bd0b0f0
TH
730static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
731 phys_addr_t align, phys_addr_t max_addr,
732 int nid)
95f72d1e 733{
6ed311b2 734 phys_addr_t found;
95f72d1e 735
847854f5
TH
736 /* align @size to avoid excessive fragmentation on reserved array */
737 size = round_up(size, align);
738
7bd0b0f0 739 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
9c8c27e2 740 if (found && !memblock_reserve(found, size))
6ed311b2 741 return found;
95f72d1e 742
6ed311b2 743 return 0;
95f72d1e
YL
744}
745
7bd0b0f0
TH
746phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
747{
748 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
749}
750
751phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
752{
753 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
754}
755
6ed311b2 756phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 757{
6ed311b2
BH
758 phys_addr_t alloc;
759
760 alloc = __memblock_alloc_base(size, align, max_addr);
761
762 if (alloc == 0)
763 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
764 (unsigned long long) size, (unsigned long long) max_addr);
765
766 return alloc;
95f72d1e
YL
767}
768
6ed311b2 769phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 770{
6ed311b2
BH
771 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
772}
95f72d1e 773
9d1e2492
BH
774phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
775{
776 phys_addr_t res = memblock_alloc_nid(size, align, nid);
777
778 if (res)
779 return res;
15fb0972 780 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
781}
782
9d1e2492
BH
783
784/*
785 * Remaining API functions
786 */
787
2898cc4c 788phys_addr_t __init memblock_phys_mem_size(void)
95f72d1e 789{
1440c4e2 790 return memblock.memory.total_size;
95f72d1e
YL
791}
792
0a93ebef
SR
793/* lowest address */
794phys_addr_t __init_memblock memblock_start_of_DRAM(void)
795{
796 return memblock.memory.regions[0].base;
797}
798
10d06439 799phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
800{
801 int idx = memblock.memory.cnt - 1;
802
e3239ff9 803 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
804}
805
c0ce8fef 806void __init memblock_enforce_memory_limit(phys_addr_t limit)
95f72d1e
YL
807{
808 unsigned long i;
c0ce8fef 809 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
95f72d1e 810
c0ce8fef 811 if (!limit)
95f72d1e
YL
812 return;
813
c0ce8fef 814 /* find out max address */
95f72d1e 815 for (i = 0; i < memblock.memory.cnt; i++) {
c0ce8fef 816 struct memblock_region *r = &memblock.memory.regions[i];
95f72d1e 817
c0ce8fef
TH
818 if (limit <= r->size) {
819 max_addr = r->base + limit;
820 break;
95f72d1e 821 }
c0ce8fef 822 limit -= r->size;
95f72d1e 823 }
c0ce8fef
TH
824
825 /* truncate both memory and reserved regions */
826 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
827 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
95f72d1e
YL
828}
829
cd79481d 830static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
831{
832 unsigned int left = 0, right = type->cnt;
833
834 do {
835 unsigned int mid = (right + left) / 2;
836
837 if (addr < type->regions[mid].base)
838 right = mid;
839 else if (addr >= (type->regions[mid].base +
840 type->regions[mid].size))
841 left = mid + 1;
842 else
843 return mid;
844 } while (left < right);
845 return -1;
846}
847
2898cc4c 848int __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 849{
72d4b0b4
BH
850 return memblock_search(&memblock.reserved, addr) != -1;
851}
95f72d1e 852
3661ca66 853int __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
854{
855 return memblock_search(&memblock.memory, addr) != -1;
856}
857
3661ca66 858int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 859{
abb65272 860 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 861 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
862
863 if (idx == -1)
864 return 0;
abb65272
TV
865 return memblock.memory.regions[idx].base <= base &&
866 (memblock.memory.regions[idx].base +
eb18f1b5 867 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
868}
869
10d06439 870int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 871{
eb18f1b5 872 memblock_cap_size(base, &size);
f1c2c19c 873 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
95f72d1e
YL
874}
875
e63075a3 876
3661ca66 877void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
878{
879 memblock.current_limit = limit;
880}
881
7c0caeb8 882static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
6ed311b2
BH
883{
884 unsigned long long base, size;
885 int i;
886
7c0caeb8 887 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
6ed311b2 888
7c0caeb8
TH
889 for (i = 0; i < type->cnt; i++) {
890 struct memblock_region *rgn = &type->regions[i];
891 char nid_buf[32] = "";
892
893 base = rgn->base;
894 size = rgn->size;
895#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
896 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
897 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
898 memblock_get_region_node(rgn));
899#endif
900 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
901 name, i, base, base + size - 1, size, nid_buf);
6ed311b2
BH
902 }
903}
904
4ff7b82f 905void __init_memblock __memblock_dump_all(void)
6ed311b2 906{
6ed311b2 907 pr_info("MEMBLOCK configuration:\n");
1440c4e2
TH
908 pr_info(" memory size = %#llx reserved size = %#llx\n",
909 (unsigned long long)memblock.memory.total_size,
910 (unsigned long long)memblock.reserved.total_size);
6ed311b2
BH
911
912 memblock_dump(&memblock.memory, "memory");
913 memblock_dump(&memblock.reserved, "reserved");
914}
915
1aadc056 916void __init memblock_allow_resize(void)
6ed311b2 917{
142b45a7 918 memblock_can_resize = 1;
6ed311b2
BH
919}
920
6ed311b2
BH
921static int __init early_memblock(char *p)
922{
923 if (p && strstr(p, "debug"))
924 memblock_debug = 1;
925 return 0;
926}
927early_param("memblock", early_memblock);
928
c378ddd5 929#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
930
931static int memblock_debug_show(struct seq_file *m, void *private)
932{
933 struct memblock_type *type = m->private;
934 struct memblock_region *reg;
935 int i;
936
937 for (i = 0; i < type->cnt; i++) {
938 reg = &type->regions[i];
939 seq_printf(m, "%4d: ", i);
940 if (sizeof(phys_addr_t) == 4)
941 seq_printf(m, "0x%08lx..0x%08lx\n",
942 (unsigned long)reg->base,
943 (unsigned long)(reg->base + reg->size - 1));
944 else
945 seq_printf(m, "0x%016llx..0x%016llx\n",
946 (unsigned long long)reg->base,
947 (unsigned long long)(reg->base + reg->size - 1));
948
949 }
950 return 0;
951}
952
953static int memblock_debug_open(struct inode *inode, struct file *file)
954{
955 return single_open(file, memblock_debug_show, inode->i_private);
956}
957
958static const struct file_operations memblock_debug_fops = {
959 .open = memblock_debug_open,
960 .read = seq_read,
961 .llseek = seq_lseek,
962 .release = single_release,
963};
964
965static int __init memblock_init_debugfs(void)
966{
967 struct dentry *root = debugfs_create_dir("memblock", NULL);
968 if (!root)
969 return -ENXIO;
970 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
971 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
972
973 return 0;
974}
975__initcall(memblock_init_debugfs);
976
977#endif /* CONFIG_DEBUG_FS */