memblock: Kill early_node_map[]
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885
BH
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
95f72d1e
YL
21#include <linux/memblock.h>
22
fe091c20
TH
23static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
30
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
34
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
36};
95f72d1e 37
10d06439 38int memblock_debug __initdata_memblock;
1aadc056 39static int memblock_can_resize __initdata_memblock;
95f72d1e 40
142b45a7
BH
41/* inline so we don't get a warning when pr_debug is compiled out */
42static inline const char *memblock_type_name(struct memblock_type *type)
43{
44 if (type == &memblock.memory)
45 return "memory";
46 else if (type == &memblock.reserved)
47 return "reserved";
48 else
49 return "unknown";
50}
51
eb18f1b5
TH
52/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
54{
55 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
56}
57
6ed311b2
BH
58/*
59 * Address comparison utilities
60 */
10d06439 61static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 62 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
63{
64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65}
66
2d7d3eb2
HS
67static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
69{
70 unsigned long i;
71
72 for (i = 0; i < type->cnt; i++) {
73 phys_addr_t rgnbase = type->regions[i].base;
74 phys_addr_t rgnsize = type->regions[i].size;
75 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76 break;
77 }
78
79 return (i < type->cnt) ? i : -1;
80}
81
82/*
83 * Find, allocate, deallocate or reserve unreserved regions. All allocations
84 * are top-down.
85 */
86
cd79481d 87static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
6ed311b2
BH
88 phys_addr_t size, phys_addr_t align)
89{
90 phys_addr_t base, res_base;
91 long j;
92
f1af98c7
YL
93 /* In case, huge size is requested */
94 if (end < size)
1f5026a7 95 return 0;
f1af98c7 96
348968eb 97 base = round_down(end - size, align);
f1af98c7 98
25818f0f
BH
99 /* Prevent allocations returning 0 as it's also used to
100 * indicate an allocation failure
101 */
102 if (start == 0)
103 start = PAGE_SIZE;
104
6ed311b2
BH
105 while (start <= base) {
106 j = memblock_overlaps_region(&memblock.reserved, base, size);
107 if (j < 0)
108 return base;
109 res_base = memblock.reserved.regions[j].base;
110 if (res_base < size)
111 break;
348968eb 112 base = round_down(res_base - size, align);
6ed311b2
BH
113 }
114
1f5026a7 115 return 0;
6ed311b2
BH
116}
117
fc769a8e
TH
118/*
119 * Find a free area with specified alignment in a specific range.
120 */
121phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end,
122 phys_addr_t size, phys_addr_t align)
6ed311b2
BH
123{
124 long i;
6ed311b2
BH
125
126 BUG_ON(0 == size);
127
6ed311b2 128 /* Pump up max_addr */
fef501d4
BH
129 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
130 end = memblock.current_limit;
6ed311b2
BH
131
132 /* We do a top-down search, this tends to limit memory
133 * fragmentation by keeping early boot allocs near the
134 * top of memory
135 */
136 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
137 phys_addr_t memblockbase = memblock.memory.regions[i].base;
138 phys_addr_t memblocksize = memblock.memory.regions[i].size;
fef501d4 139 phys_addr_t bottom, top, found;
6ed311b2
BH
140
141 if (memblocksize < size)
142 continue;
fef501d4
BH
143 if ((memblockbase + memblocksize) <= start)
144 break;
145 bottom = max(memblockbase, start);
146 top = min(memblockbase + memblocksize, end);
147 if (bottom >= top)
148 continue;
149 found = memblock_find_region(bottom, top, size, align);
1f5026a7 150 if (found)
fef501d4 151 return found;
6ed311b2 152 }
1f5026a7 153 return 0;
6ed311b2
BH
154}
155
7950c407
YL
156/*
157 * Free memblock.reserved.regions
158 */
159int __init_memblock memblock_free_reserved_regions(void)
160{
161 if (memblock.reserved.regions == memblock_reserved_init_regions)
162 return 0;
163
164 return memblock_free(__pa(memblock.reserved.regions),
165 sizeof(struct memblock_region) * memblock.reserved.max);
166}
167
168/*
169 * Reserve memblock.reserved.regions
170 */
171int __init_memblock memblock_reserve_reserved_regions(void)
172{
173 if (memblock.reserved.regions == memblock_reserved_init_regions)
174 return 0;
175
176 return memblock_reserve(__pa(memblock.reserved.regions),
177 sizeof(struct memblock_region) * memblock.reserved.max);
178}
179
10d06439 180static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 181{
1440c4e2 182 type->total_size -= type->regions[r].size;
7c0caeb8
TH
183 memmove(&type->regions[r], &type->regions[r + 1],
184 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 185 type->cnt--;
95f72d1e 186
8f7a6605
BH
187 /* Special case for empty arrays */
188 if (type->cnt == 0) {
1440c4e2 189 WARN_ON(type->total_size != 0);
8f7a6605
BH
190 type->cnt = 1;
191 type->regions[0].base = 0;
192 type->regions[0].size = 0;
7c0caeb8 193 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 194 }
95f72d1e
YL
195}
196
10d06439 197static int __init_memblock memblock_double_array(struct memblock_type *type)
142b45a7
BH
198{
199 struct memblock_region *new_array, *old_array;
200 phys_addr_t old_size, new_size, addr;
201 int use_slab = slab_is_available();
202
203 /* We don't allow resizing until we know about the reserved regions
204 * of memory that aren't suitable for allocation
205 */
206 if (!memblock_can_resize)
207 return -1;
208
142b45a7
BH
209 /* Calculate new doubled size */
210 old_size = type->max * sizeof(struct memblock_region);
211 new_size = old_size << 1;
212
213 /* Try to find some space for it.
214 *
215 * WARNING: We assume that either slab_is_available() and we use it or
216 * we use MEMBLOCK for allocations. That means that this is unsafe to use
217 * when bootmem is currently active (unless bootmem itself is implemented
218 * on top of MEMBLOCK which isn't the case yet)
219 *
220 * This should however not be an issue for now, as we currently only
221 * call into MEMBLOCK while it's still active, or much later when slab is
222 * active for memory hotplug operations
223 */
224 if (use_slab) {
225 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 226 addr = new_array ? __pa(new_array) : 0;
142b45a7 227 } else
fc769a8e 228 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
1f5026a7 229 if (!addr) {
142b45a7
BH
230 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
231 memblock_type_name(type), type->max, type->max * 2);
232 return -1;
233 }
234 new_array = __va(addr);
235
ea9e4376
YL
236 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
237 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
238
142b45a7
BH
239 /* Found space, we now need to move the array over before
240 * we add the reserved region since it may be our reserved
241 * array itself that is full.
242 */
243 memcpy(new_array, type->regions, old_size);
244 memset(new_array + type->max, 0, old_size);
245 old_array = type->regions;
246 type->regions = new_array;
247 type->max <<= 1;
248
249 /* If we use SLAB that's it, we are done */
250 if (use_slab)
251 return 0;
252
253 /* Add the new reserved region now. Should not fail ! */
9c8c27e2 254 BUG_ON(memblock_reserve(addr, new_size));
142b45a7
BH
255
256 /* If the array wasn't our static init one, then free it. We only do
257 * that before SLAB is available as later on, we don't know whether
258 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
259 * anyways
260 */
261 if (old_array != memblock_memory_init_regions &&
262 old_array != memblock_reserved_init_regions)
263 memblock_free(__pa(old_array), old_size);
264
265 return 0;
266}
267
784656f9
TH
268/**
269 * memblock_merge_regions - merge neighboring compatible regions
270 * @type: memblock type to scan
271 *
272 * Scan @type and merge neighboring compatible regions.
273 */
274static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 275{
784656f9 276 int i = 0;
95f72d1e 277
784656f9
TH
278 /* cnt never goes below 1 */
279 while (i < type->cnt - 1) {
280 struct memblock_region *this = &type->regions[i];
281 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 282
7c0caeb8
TH
283 if (this->base + this->size != next->base ||
284 memblock_get_region_node(this) !=
285 memblock_get_region_node(next)) {
784656f9
TH
286 BUG_ON(this->base + this->size > next->base);
287 i++;
288 continue;
8f7a6605
BH
289 }
290
784656f9
TH
291 this->size += next->size;
292 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
293 type->cnt--;
95f72d1e 294 }
784656f9 295}
95f72d1e 296
784656f9
TH
297/**
298 * memblock_insert_region - insert new memblock region
299 * @type: memblock type to insert into
300 * @idx: index for the insertion point
301 * @base: base address of the new region
302 * @size: size of the new region
303 *
304 * Insert new memblock region [@base,@base+@size) into @type at @idx.
305 * @type must already have extra room to accomodate the new region.
306 */
307static void __init_memblock memblock_insert_region(struct memblock_type *type,
308 int idx, phys_addr_t base,
7c0caeb8 309 phys_addr_t size, int nid)
784656f9
TH
310{
311 struct memblock_region *rgn = &type->regions[idx];
312
313 BUG_ON(type->cnt >= type->max);
314 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
315 rgn->base = base;
316 rgn->size = size;
7c0caeb8 317 memblock_set_region_node(rgn, nid);
784656f9 318 type->cnt++;
1440c4e2 319 type->total_size += size;
784656f9
TH
320}
321
322/**
323 * memblock_add_region - add new memblock region
324 * @type: memblock type to add new region into
325 * @base: base address of the new region
326 * @size: size of the new region
7fb0bc3f 327 * @nid: nid of the new region
784656f9
TH
328 *
329 * Add new memblock region [@base,@base+@size) into @type. The new region
330 * is allowed to overlap with existing ones - overlaps don't affect already
331 * existing regions. @type is guaranteed to be minimal (all neighbouring
332 * compatible regions are merged) after the addition.
333 *
334 * RETURNS:
335 * 0 on success, -errno on failure.
336 */
581adcbe 337static int __init_memblock memblock_add_region(struct memblock_type *type,
7fb0bc3f 338 phys_addr_t base, phys_addr_t size, int nid)
784656f9
TH
339{
340 bool insert = false;
eb18f1b5
TH
341 phys_addr_t obase = base;
342 phys_addr_t end = base + memblock_cap_size(base, &size);
784656f9
TH
343 int i, nr_new;
344
345 /* special case for empty array */
346 if (type->regions[0].size == 0) {
1440c4e2 347 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
348 type->regions[0].base = base;
349 type->regions[0].size = size;
7fb0bc3f 350 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 351 type->total_size = size;
8f7a6605 352 return 0;
95f72d1e 353 }
784656f9
TH
354repeat:
355 /*
356 * The following is executed twice. Once with %false @insert and
357 * then with %true. The first counts the number of regions needed
358 * to accomodate the new area. The second actually inserts them.
142b45a7 359 */
784656f9
TH
360 base = obase;
361 nr_new = 0;
95f72d1e 362
784656f9
TH
363 for (i = 0; i < type->cnt; i++) {
364 struct memblock_region *rgn = &type->regions[i];
365 phys_addr_t rbase = rgn->base;
366 phys_addr_t rend = rbase + rgn->size;
367
368 if (rbase >= end)
95f72d1e 369 break;
784656f9
TH
370 if (rend <= base)
371 continue;
372 /*
373 * @rgn overlaps. If it separates the lower part of new
374 * area, insert that portion.
375 */
376 if (rbase > base) {
377 nr_new++;
378 if (insert)
379 memblock_insert_region(type, i++, base,
7fb0bc3f 380 rbase - base, nid);
95f72d1e 381 }
784656f9
TH
382 /* area below @rend is dealt with, forget about it */
383 base = min(rend, end);
95f72d1e 384 }
784656f9
TH
385
386 /* insert the remaining portion */
387 if (base < end) {
388 nr_new++;
389 if (insert)
7fb0bc3f 390 memblock_insert_region(type, i, base, end - base, nid);
95f72d1e 391 }
95f72d1e 392
784656f9
TH
393 /*
394 * If this was the first round, resize array and repeat for actual
395 * insertions; otherwise, merge and return.
142b45a7 396 */
784656f9
TH
397 if (!insert) {
398 while (type->cnt + nr_new > type->max)
399 if (memblock_double_array(type) < 0)
400 return -ENOMEM;
401 insert = true;
402 goto repeat;
403 } else {
404 memblock_merge_regions(type);
405 return 0;
142b45a7 406 }
95f72d1e
YL
407}
408
7fb0bc3f
TH
409int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
410 int nid)
411{
412 return memblock_add_region(&memblock.memory, base, size, nid);
413}
414
581adcbe 415int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
95f72d1e 416{
7fb0bc3f 417 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
95f72d1e
YL
418}
419
6a9ceb31
TH
420/**
421 * memblock_isolate_range - isolate given range into disjoint memblocks
422 * @type: memblock type to isolate range for
423 * @base: base of range to isolate
424 * @size: size of range to isolate
425 * @start_rgn: out parameter for the start of isolated region
426 * @end_rgn: out parameter for the end of isolated region
427 *
428 * Walk @type and ensure that regions don't cross the boundaries defined by
429 * [@base,@base+@size). Crossing regions are split at the boundaries,
430 * which may create at most two more regions. The index of the first
431 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
432 *
433 * RETURNS:
434 * 0 on success, -errno on failure.
435 */
436static int __init_memblock memblock_isolate_range(struct memblock_type *type,
437 phys_addr_t base, phys_addr_t size,
438 int *start_rgn, int *end_rgn)
439{
eb18f1b5 440 phys_addr_t end = base + memblock_cap_size(base, &size);
6a9ceb31
TH
441 int i;
442
443 *start_rgn = *end_rgn = 0;
444
445 /* we'll create at most two more regions */
446 while (type->cnt + 2 > type->max)
447 if (memblock_double_array(type) < 0)
448 return -ENOMEM;
449
450 for (i = 0; i < type->cnt; i++) {
451 struct memblock_region *rgn = &type->regions[i];
452 phys_addr_t rbase = rgn->base;
453 phys_addr_t rend = rbase + rgn->size;
454
455 if (rbase >= end)
456 break;
457 if (rend <= base)
458 continue;
459
460 if (rbase < base) {
461 /*
462 * @rgn intersects from below. Split and continue
463 * to process the next region - the new top half.
464 */
465 rgn->base = base;
1440c4e2
TH
466 rgn->size -= base - rbase;
467 type->total_size -= base - rbase;
6a9ceb31 468 memblock_insert_region(type, i, rbase, base - rbase,
71936180 469 memblock_get_region_node(rgn));
6a9ceb31
TH
470 } else if (rend > end) {
471 /*
472 * @rgn intersects from above. Split and redo the
473 * current region - the new bottom half.
474 */
475 rgn->base = end;
1440c4e2
TH
476 rgn->size -= end - rbase;
477 type->total_size -= end - rbase;
6a9ceb31 478 memblock_insert_region(type, i--, rbase, end - rbase,
71936180 479 memblock_get_region_node(rgn));
6a9ceb31
TH
480 } else {
481 /* @rgn is fully contained, record it */
482 if (!*end_rgn)
483 *start_rgn = i;
484 *end_rgn = i + 1;
485 }
486 }
487
488 return 0;
489}
6a9ceb31 490
581adcbe
TH
491static int __init_memblock __memblock_remove(struct memblock_type *type,
492 phys_addr_t base, phys_addr_t size)
95f72d1e 493{
71936180
TH
494 int start_rgn, end_rgn;
495 int i, ret;
95f72d1e 496
71936180
TH
497 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
498 if (ret)
499 return ret;
95f72d1e 500
71936180
TH
501 for (i = end_rgn - 1; i >= start_rgn; i--)
502 memblock_remove_region(type, i);
8f7a6605 503 return 0;
95f72d1e
YL
504}
505
581adcbe 506int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e
YL
507{
508 return __memblock_remove(&memblock.memory, base, size);
509}
510
581adcbe 511int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 512{
24aa0788 513 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
a150439c
PA
514 (unsigned long long)base,
515 (unsigned long long)base + size,
516 (void *)_RET_IP_);
24aa0788 517
95f72d1e
YL
518 return __memblock_remove(&memblock.reserved, base, size);
519}
520
581adcbe 521int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 522{
e3239ff9 523 struct memblock_type *_rgn = &memblock.reserved;
95f72d1e 524
24aa0788 525 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
a150439c
PA
526 (unsigned long long)base,
527 (unsigned long long)base + size,
528 (void *)_RET_IP_);
95f72d1e
YL
529 BUG_ON(0 == size);
530
7fb0bc3f 531 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
95f72d1e
YL
532}
533
35fd0808
TH
534/**
535 * __next_free_mem_range - next function for for_each_free_mem_range()
536 * @idx: pointer to u64 loop variable
537 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
538 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
539 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
540 * @p_nid: ptr to int for nid of the range, can be %NULL
541 *
542 * Find the first free area from *@idx which matches @nid, fill the out
543 * parameters, and update *@idx for the next iteration. The lower 32bit of
544 * *@idx contains index into memory region and the upper 32bit indexes the
545 * areas before each reserved region. For example, if reserved regions
546 * look like the following,
547 *
548 * 0:[0-16), 1:[32-48), 2:[128-130)
549 *
550 * The upper 32bit indexes the following regions.
551 *
552 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
553 *
554 * As both region arrays are sorted, the function advances the two indices
555 * in lockstep and returns each intersection.
556 */
557void __init_memblock __next_free_mem_range(u64 *idx, int nid,
558 phys_addr_t *out_start,
559 phys_addr_t *out_end, int *out_nid)
560{
561 struct memblock_type *mem = &memblock.memory;
562 struct memblock_type *rsv = &memblock.reserved;
563 int mi = *idx & 0xffffffff;
564 int ri = *idx >> 32;
565
566 for ( ; mi < mem->cnt; mi++) {
567 struct memblock_region *m = &mem->regions[mi];
568 phys_addr_t m_start = m->base;
569 phys_addr_t m_end = m->base + m->size;
570
571 /* only memory regions are associated with nodes, check it */
572 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
573 continue;
574
575 /* scan areas before each reservation for intersection */
576 for ( ; ri < rsv->cnt + 1; ri++) {
577 struct memblock_region *r = &rsv->regions[ri];
578 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
579 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
580
581 /* if ri advanced past mi, break out to advance mi */
582 if (r_start >= m_end)
583 break;
584 /* if the two regions intersect, we're done */
585 if (m_start < r_end) {
586 if (out_start)
587 *out_start = max(m_start, r_start);
588 if (out_end)
589 *out_end = min(m_end, r_end);
590 if (out_nid)
591 *out_nid = memblock_get_region_node(m);
592 /*
593 * The region which ends first is advanced
594 * for the next iteration.
595 */
596 if (m_end <= r_end)
597 mi++;
598 else
599 ri++;
600 *idx = (u32)mi | (u64)ri << 32;
601 return;
602 }
603 }
604 }
605
606 /* signal end of iteration */
607 *idx = ULLONG_MAX;
608}
609
7c0caeb8
TH
610#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
611/*
612 * Common iterator interface used to define for_each_mem_range().
613 */
614void __init_memblock __next_mem_pfn_range(int *idx, int nid,
615 unsigned long *out_start_pfn,
616 unsigned long *out_end_pfn, int *out_nid)
617{
618 struct memblock_type *type = &memblock.memory;
619 struct memblock_region *r;
620
621 while (++*idx < type->cnt) {
622 r = &type->regions[*idx];
623
624 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
625 continue;
626 if (nid == MAX_NUMNODES || nid == r->nid)
627 break;
628 }
629 if (*idx >= type->cnt) {
630 *idx = -1;
631 return;
632 }
633
634 if (out_start_pfn)
635 *out_start_pfn = PFN_UP(r->base);
636 if (out_end_pfn)
637 *out_end_pfn = PFN_DOWN(r->base + r->size);
638 if (out_nid)
639 *out_nid = r->nid;
640}
641
642/**
643 * memblock_set_node - set node ID on memblock regions
644 * @base: base of area to set node ID for
645 * @size: size of area to set node ID for
646 * @nid: node ID to set
647 *
648 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
649 * Regions which cross the area boundaries are split as necessary.
650 *
651 * RETURNS:
652 * 0 on success, -errno on failure.
653 */
654int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
655 int nid)
656{
657 struct memblock_type *type = &memblock.memory;
6a9ceb31
TH
658 int start_rgn, end_rgn;
659 int i, ret;
7c0caeb8 660
6a9ceb31
TH
661 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
662 if (ret)
663 return ret;
7c0caeb8 664
6a9ceb31
TH
665 for (i = start_rgn; i < end_rgn; i++)
666 type->regions[i].nid = nid;
7c0caeb8
TH
667
668 memblock_merge_regions(type);
669 return 0;
670}
671#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
672
6ed311b2 673phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 674{
6ed311b2 675 phys_addr_t found;
95f72d1e 676
6ed311b2
BH
677 /* We align the size to limit fragmentation. Without this, a lot of
678 * small allocs quickly eat up the whole reserve array on sparc
679 */
348968eb 680 size = round_up(size, align);
95f72d1e 681
fc769a8e 682 found = memblock_find_in_range(0, max_addr, size, align);
9c8c27e2 683 if (found && !memblock_reserve(found, size))
6ed311b2 684 return found;
95f72d1e 685
6ed311b2 686 return 0;
95f72d1e
YL
687}
688
6ed311b2 689phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 690{
6ed311b2
BH
691 phys_addr_t alloc;
692
693 alloc = __memblock_alloc_base(size, align, max_addr);
694
695 if (alloc == 0)
696 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
697 (unsigned long long) size, (unsigned long long) max_addr);
698
699 return alloc;
95f72d1e
YL
700}
701
6ed311b2 702phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 703{
6ed311b2
BH
704 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
705}
95f72d1e 706
95f72d1e 707
6ed311b2 708/*
34e18455 709 * Additional node-local top-down allocators.
c196f76f
BH
710 *
711 * WARNING: Only available after early_node_map[] has been populated,
712 * on some architectures, that is after all the calls to add_active_range()
713 * have been done to populate it.
6ed311b2 714 */
95f72d1e 715
34e18455
TH
716static phys_addr_t __init memblock_nid_range_rev(phys_addr_t start,
717 phys_addr_t end, int *nid)
c3f72b57 718{
0ee332c1 719#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c196f76f
BH
720 unsigned long start_pfn, end_pfn;
721 int i;
722
b2fea988 723 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, nid)
34e18455
TH
724 if (end > PFN_PHYS(start_pfn) && end <= PFN_PHYS(end_pfn))
725 return max(start, PFN_PHYS(start_pfn));
c196f76f 726#endif
c3f72b57 727 *nid = 0;
34e18455 728 return start;
c3f72b57
BH
729}
730
e6498040
TH
731phys_addr_t __init memblock_find_in_range_node(phys_addr_t start,
732 phys_addr_t end,
2898cc4c
BH
733 phys_addr_t size,
734 phys_addr_t align, int nid)
95f72d1e 735{
e6498040
TH
736 struct memblock_type *mem = &memblock.memory;
737 int i;
95f72d1e 738
e6498040 739 BUG_ON(0 == size);
95f72d1e 740
e6498040
TH
741 /* Pump up max_addr */
742 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
743 end = memblock.current_limit;
95f72d1e 744
e6498040
TH
745 for (i = mem->cnt - 1; i >= 0; i--) {
746 struct memblock_region *r = &mem->regions[i];
747 phys_addr_t base = max(start, r->base);
748 phys_addr_t top = min(end, r->base + r->size);
749
750 while (base < top) {
751 phys_addr_t tbase, ret;
752 int tnid;
753
754 tbase = memblock_nid_range_rev(base, top, &tnid);
755 if (nid == MAX_NUMNODES || tnid == nid) {
756 ret = memblock_find_region(tbase, top, size, align);
757 if (ret)
758 return ret;
759 }
760 top = tbase;
95f72d1e 761 }
95f72d1e 762 }
e6498040 763
1f5026a7 764 return 0;
95f72d1e
YL
765}
766
2898cc4c 767phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
95f72d1e 768{
e6498040 769 phys_addr_t found;
95f72d1e 770
e6498040
TH
771 /*
772 * We align the size to limit fragmentation. Without this, a lot of
7f219c73
BH
773 * small allocs quickly eat up the whole reserve array on sparc
774 */
348968eb 775 size = round_up(size, align);
7f219c73 776
e6498040
TH
777 found = memblock_find_in_range_node(0, MEMBLOCK_ALLOC_ACCESSIBLE,
778 size, align, nid);
9c8c27e2 779 if (found && !memblock_reserve(found, size))
e6498040 780 return found;
95f72d1e 781
9d1e2492
BH
782 return 0;
783}
784
785phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
786{
787 phys_addr_t res = memblock_alloc_nid(size, align, nid);
788
789 if (res)
790 return res;
15fb0972 791 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
792}
793
9d1e2492
BH
794
795/*
796 * Remaining API functions
797 */
798
2898cc4c 799phys_addr_t __init memblock_phys_mem_size(void)
95f72d1e 800{
1440c4e2 801 return memblock.memory.total_size;
95f72d1e
YL
802}
803
0a93ebef
SR
804/* lowest address */
805phys_addr_t __init_memblock memblock_start_of_DRAM(void)
806{
807 return memblock.memory.regions[0].base;
808}
809
10d06439 810phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
811{
812 int idx = memblock.memory.cnt - 1;
813
e3239ff9 814 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
815}
816
c0ce8fef 817void __init memblock_enforce_memory_limit(phys_addr_t limit)
95f72d1e
YL
818{
819 unsigned long i;
c0ce8fef 820 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
95f72d1e 821
c0ce8fef 822 if (!limit)
95f72d1e
YL
823 return;
824
c0ce8fef 825 /* find out max address */
95f72d1e 826 for (i = 0; i < memblock.memory.cnt; i++) {
c0ce8fef 827 struct memblock_region *r = &memblock.memory.regions[i];
95f72d1e 828
c0ce8fef
TH
829 if (limit <= r->size) {
830 max_addr = r->base + limit;
831 break;
95f72d1e 832 }
c0ce8fef 833 limit -= r->size;
95f72d1e 834 }
c0ce8fef
TH
835
836 /* truncate both memory and reserved regions */
837 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
838 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
95f72d1e
YL
839}
840
cd79481d 841static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
842{
843 unsigned int left = 0, right = type->cnt;
844
845 do {
846 unsigned int mid = (right + left) / 2;
847
848 if (addr < type->regions[mid].base)
849 right = mid;
850 else if (addr >= (type->regions[mid].base +
851 type->regions[mid].size))
852 left = mid + 1;
853 else
854 return mid;
855 } while (left < right);
856 return -1;
857}
858
2898cc4c 859int __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 860{
72d4b0b4
BH
861 return memblock_search(&memblock.reserved, addr) != -1;
862}
95f72d1e 863
3661ca66 864int __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
865{
866 return memblock_search(&memblock.memory, addr) != -1;
867}
868
3661ca66 869int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 870{
abb65272 871 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 872 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
873
874 if (idx == -1)
875 return 0;
abb65272
TV
876 return memblock.memory.regions[idx].base <= base &&
877 (memblock.memory.regions[idx].base +
eb18f1b5 878 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
879}
880
10d06439 881int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 882{
eb18f1b5 883 memblock_cap_size(base, &size);
f1c2c19c 884 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
95f72d1e
YL
885}
886
e63075a3 887
3661ca66 888void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
889{
890 memblock.current_limit = limit;
891}
892
7c0caeb8 893static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
6ed311b2
BH
894{
895 unsigned long long base, size;
896 int i;
897
7c0caeb8 898 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
6ed311b2 899
7c0caeb8
TH
900 for (i = 0; i < type->cnt; i++) {
901 struct memblock_region *rgn = &type->regions[i];
902 char nid_buf[32] = "";
903
904 base = rgn->base;
905 size = rgn->size;
906#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
907 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
908 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
909 memblock_get_region_node(rgn));
910#endif
911 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
912 name, i, base, base + size - 1, size, nid_buf);
6ed311b2
BH
913 }
914}
915
4ff7b82f 916void __init_memblock __memblock_dump_all(void)
6ed311b2 917{
6ed311b2 918 pr_info("MEMBLOCK configuration:\n");
1440c4e2
TH
919 pr_info(" memory size = %#llx reserved size = %#llx\n",
920 (unsigned long long)memblock.memory.total_size,
921 (unsigned long long)memblock.reserved.total_size);
6ed311b2
BH
922
923 memblock_dump(&memblock.memory, "memory");
924 memblock_dump(&memblock.reserved, "reserved");
925}
926
1aadc056 927void __init memblock_allow_resize(void)
6ed311b2 928{
142b45a7 929 memblock_can_resize = 1;
6ed311b2
BH
930}
931
6ed311b2
BH
932static int __init early_memblock(char *p)
933{
934 if (p && strstr(p, "debug"))
935 memblock_debug = 1;
936 return 0;
937}
938early_param("memblock", early_memblock);
939
c378ddd5 940#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
941
942static int memblock_debug_show(struct seq_file *m, void *private)
943{
944 struct memblock_type *type = m->private;
945 struct memblock_region *reg;
946 int i;
947
948 for (i = 0; i < type->cnt; i++) {
949 reg = &type->regions[i];
950 seq_printf(m, "%4d: ", i);
951 if (sizeof(phys_addr_t) == 4)
952 seq_printf(m, "0x%08lx..0x%08lx\n",
953 (unsigned long)reg->base,
954 (unsigned long)(reg->base + reg->size - 1));
955 else
956 seq_printf(m, "0x%016llx..0x%016llx\n",
957 (unsigned long long)reg->base,
958 (unsigned long long)(reg->base + reg->size - 1));
959
960 }
961 return 0;
962}
963
964static int memblock_debug_open(struct inode *inode, struct file *file)
965{
966 return single_open(file, memblock_debug_show, inode->i_private);
967}
968
969static const struct file_operations memblock_debug_fops = {
970 .open = memblock_debug_open,
971 .read = seq_read,
972 .llseek = seq_lseek,
973 .release = single_release,
974};
975
976static int __init memblock_init_debugfs(void)
977{
978 struct dentry *root = debugfs_create_dir("memblock", NULL);
979 if (!root)
980 return -ENXIO;
981 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
982 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
983
984 return 0;
985}
986__initcall(memblock_init_debugfs);
987
988#endif /* CONFIG_DEBUG_FS */