ksm: fix mlockfreed to munlocked
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/mmu_notifier.h>
2c6854fd 33#include <linux/swap.h>
f8af4da3
HD
34#include <linux/ksm.h>
35
31dbd01f 36#include <asm/tlbflush.h>
73848b46 37#include "internal.h"
31dbd01f
IE
38
39/*
40 * A few notes about the KSM scanning process,
41 * to make it easier to understand the data structures below:
42 *
43 * In order to reduce excessive scanning, KSM sorts the memory pages by their
44 * contents into a data structure that holds pointers to the pages' locations.
45 *
46 * Since the contents of the pages may change at any moment, KSM cannot just
47 * insert the pages into a normal sorted tree and expect it to find anything.
48 * Therefore KSM uses two data structures - the stable and the unstable tree.
49 *
50 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
51 * by their contents. Because each such page is write-protected, searching on
52 * this tree is fully assured to be working (except when pages are unmapped),
53 * and therefore this tree is called the stable tree.
54 *
55 * In addition to the stable tree, KSM uses a second data structure called the
56 * unstable tree: this tree holds pointers to pages which have been found to
57 * be "unchanged for a period of time". The unstable tree sorts these pages
58 * by their contents, but since they are not write-protected, KSM cannot rely
59 * upon the unstable tree to work correctly - the unstable tree is liable to
60 * be corrupted as its contents are modified, and so it is called unstable.
61 *
62 * KSM solves this problem by several techniques:
63 *
64 * 1) The unstable tree is flushed every time KSM completes scanning all
65 * memory areas, and then the tree is rebuilt again from the beginning.
66 * 2) KSM will only insert into the unstable tree, pages whose hash value
67 * has not changed since the previous scan of all memory areas.
68 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
69 * colors of the nodes and not on their contents, assuring that even when
70 * the tree gets "corrupted" it won't get out of balance, so scanning time
71 * remains the same (also, searching and inserting nodes in an rbtree uses
72 * the same algorithm, so we have no overhead when we flush and rebuild).
73 * 4) KSM never flushes the stable tree, which means that even if it were to
74 * take 10 attempts to find a page in the unstable tree, once it is found,
75 * it is secured in the stable tree. (When we scan a new page, we first
76 * compare it against the stable tree, and then against the unstable tree.)
77 */
78
79/**
80 * struct mm_slot - ksm information per mm that is being scanned
81 * @link: link to the mm_slots hash list
82 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 83 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
84 * @mm: the mm that this information is valid for
85 */
86struct mm_slot {
87 struct hlist_node link;
88 struct list_head mm_list;
6514d511 89 struct rmap_item *rmap_list;
31dbd01f
IE
90 struct mm_struct *mm;
91};
92
93/**
94 * struct ksm_scan - cursor for scanning
95 * @mm_slot: the current mm_slot we are scanning
96 * @address: the next address inside that to be scanned
6514d511 97 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
98 * @seqnr: count of completed full scans (needed when removing unstable node)
99 *
100 * There is only the one ksm_scan instance of this cursor structure.
101 */
102struct ksm_scan {
103 struct mm_slot *mm_slot;
104 unsigned long address;
6514d511 105 struct rmap_item **rmap_list;
31dbd01f
IE
106 unsigned long seqnr;
107};
108
7b6ba2c7
HD
109/**
110 * struct stable_node - node of the stable rbtree
08beca44 111 * @page: pointer to struct page of the ksm page
7b6ba2c7
HD
112 * @node: rb node of this ksm page in the stable tree
113 * @hlist: hlist head of rmap_items using this ksm page
114 */
115struct stable_node {
08beca44 116 struct page *page;
7b6ba2c7
HD
117 struct rb_node node;
118 struct hlist_head hlist;
119};
120
31dbd01f
IE
121/**
122 * struct rmap_item - reverse mapping item for virtual addresses
6514d511
HD
123 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
124 * @filler: unused space we're making available in this patch
31dbd01f
IE
125 * @mm: the memory structure this rmap_item is pointing into
126 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
127 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
128 * @node: rb node of this rmap_item in the unstable tree
129 * @head: pointer to stable_node heading this list in the stable tree
130 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
131 */
132struct rmap_item {
6514d511
HD
133 struct rmap_item *rmap_list;
134 unsigned long filler;
31dbd01f
IE
135 struct mm_struct *mm;
136 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 137 unsigned int oldchecksum; /* when unstable */
31dbd01f 138 union {
7b6ba2c7
HD
139 struct rb_node node; /* when node of unstable tree */
140 struct { /* when listed from stable tree */
141 struct stable_node *head;
142 struct hlist_node hlist;
143 };
31dbd01f
IE
144 };
145};
146
147#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
148#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
149#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
150
151/* The stable and unstable tree heads */
152static struct rb_root root_stable_tree = RB_ROOT;
153static struct rb_root root_unstable_tree = RB_ROOT;
154
155#define MM_SLOTS_HASH_HEADS 1024
156static struct hlist_head *mm_slots_hash;
157
158static struct mm_slot ksm_mm_head = {
159 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
160};
161static struct ksm_scan ksm_scan = {
162 .mm_slot = &ksm_mm_head,
163};
164
165static struct kmem_cache *rmap_item_cache;
7b6ba2c7 166static struct kmem_cache *stable_node_cache;
31dbd01f
IE
167static struct kmem_cache *mm_slot_cache;
168
169/* The number of nodes in the stable tree */
b4028260 170static unsigned long ksm_pages_shared;
31dbd01f 171
e178dfde 172/* The number of page slots additionally sharing those nodes */
b4028260 173static unsigned long ksm_pages_sharing;
31dbd01f 174
473b0ce4
HD
175/* The number of nodes in the unstable tree */
176static unsigned long ksm_pages_unshared;
177
178/* The number of rmap_items in use: to calculate pages_volatile */
179static unsigned long ksm_rmap_items;
180
31dbd01f 181/* Limit on the number of unswappable pages used */
2c6854fd 182static unsigned long ksm_max_kernel_pages;
31dbd01f
IE
183
184/* Number of pages ksmd should scan in one batch */
2c6854fd 185static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
186
187/* Milliseconds ksmd should sleep between batches */
2ffd8679 188static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f
IE
189
190#define KSM_RUN_STOP 0
191#define KSM_RUN_MERGE 1
192#define KSM_RUN_UNMERGE 2
2c6854fd 193static unsigned int ksm_run = KSM_RUN_STOP;
31dbd01f
IE
194
195static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
196static DEFINE_MUTEX(ksm_thread_mutex);
197static DEFINE_SPINLOCK(ksm_mmlist_lock);
198
199#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
200 sizeof(struct __struct), __alignof__(struct __struct),\
201 (__flags), NULL)
202
203static int __init ksm_slab_init(void)
204{
205 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
206 if (!rmap_item_cache)
207 goto out;
208
7b6ba2c7
HD
209 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
210 if (!stable_node_cache)
211 goto out_free1;
212
31dbd01f
IE
213 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
214 if (!mm_slot_cache)
7b6ba2c7 215 goto out_free2;
31dbd01f
IE
216
217 return 0;
218
7b6ba2c7
HD
219out_free2:
220 kmem_cache_destroy(stable_node_cache);
221out_free1:
31dbd01f
IE
222 kmem_cache_destroy(rmap_item_cache);
223out:
224 return -ENOMEM;
225}
226
227static void __init ksm_slab_free(void)
228{
229 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 230 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
231 kmem_cache_destroy(rmap_item_cache);
232 mm_slot_cache = NULL;
233}
234
235static inline struct rmap_item *alloc_rmap_item(void)
236{
473b0ce4
HD
237 struct rmap_item *rmap_item;
238
239 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
240 if (rmap_item)
241 ksm_rmap_items++;
242 return rmap_item;
31dbd01f
IE
243}
244
245static inline void free_rmap_item(struct rmap_item *rmap_item)
246{
473b0ce4 247 ksm_rmap_items--;
31dbd01f
IE
248 rmap_item->mm = NULL; /* debug safety */
249 kmem_cache_free(rmap_item_cache, rmap_item);
250}
251
7b6ba2c7
HD
252static inline struct stable_node *alloc_stable_node(void)
253{
254 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
255}
256
257static inline void free_stable_node(struct stable_node *stable_node)
258{
259 kmem_cache_free(stable_node_cache, stable_node);
260}
261
31dbd01f
IE
262static inline struct mm_slot *alloc_mm_slot(void)
263{
264 if (!mm_slot_cache) /* initialization failed */
265 return NULL;
266 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
267}
268
269static inline void free_mm_slot(struct mm_slot *mm_slot)
270{
271 kmem_cache_free(mm_slot_cache, mm_slot);
272}
273
274static int __init mm_slots_hash_init(void)
275{
276 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
277 GFP_KERNEL);
278 if (!mm_slots_hash)
279 return -ENOMEM;
280 return 0;
281}
282
283static void __init mm_slots_hash_free(void)
284{
285 kfree(mm_slots_hash);
286}
287
288static struct mm_slot *get_mm_slot(struct mm_struct *mm)
289{
290 struct mm_slot *mm_slot;
291 struct hlist_head *bucket;
292 struct hlist_node *node;
293
294 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
295 % MM_SLOTS_HASH_HEADS];
296 hlist_for_each_entry(mm_slot, node, bucket, link) {
297 if (mm == mm_slot->mm)
298 return mm_slot;
299 }
300 return NULL;
301}
302
303static void insert_to_mm_slots_hash(struct mm_struct *mm,
304 struct mm_slot *mm_slot)
305{
306 struct hlist_head *bucket;
307
308 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
309 % MM_SLOTS_HASH_HEADS];
310 mm_slot->mm = mm;
31dbd01f
IE
311 hlist_add_head(&mm_slot->link, bucket);
312}
313
314static inline int in_stable_tree(struct rmap_item *rmap_item)
315{
316 return rmap_item->address & STABLE_FLAG;
317}
318
a913e182
HD
319/*
320 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
321 * page tables after it has passed through ksm_exit() - which, if necessary,
322 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
323 * a special flag: they can just back out as soon as mm_users goes to zero.
324 * ksm_test_exit() is used throughout to make this test for exit: in some
325 * places for correctness, in some places just to avoid unnecessary work.
326 */
327static inline bool ksm_test_exit(struct mm_struct *mm)
328{
329 return atomic_read(&mm->mm_users) == 0;
330}
331
31dbd01f
IE
332/*
333 * We use break_ksm to break COW on a ksm page: it's a stripped down
334 *
335 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
336 * put_page(page);
337 *
338 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
339 * in case the application has unmapped and remapped mm,addr meanwhile.
340 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
341 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
342 */
d952b791 343static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
344{
345 struct page *page;
d952b791 346 int ret = 0;
31dbd01f
IE
347
348 do {
349 cond_resched();
350 page = follow_page(vma, addr, FOLL_GET);
351 if (!page)
352 break;
353 if (PageKsm(page))
354 ret = handle_mm_fault(vma->vm_mm, vma, addr,
355 FAULT_FLAG_WRITE);
356 else
357 ret = VM_FAULT_WRITE;
358 put_page(page);
d952b791
HD
359 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
360 /*
361 * We must loop because handle_mm_fault() may back out if there's
362 * any difficulty e.g. if pte accessed bit gets updated concurrently.
363 *
364 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
365 * COW has been broken, even if the vma does not permit VM_WRITE;
366 * but note that a concurrent fault might break PageKsm for us.
367 *
368 * VM_FAULT_SIGBUS could occur if we race with truncation of the
369 * backing file, which also invalidates anonymous pages: that's
370 * okay, that truncation will have unmapped the PageKsm for us.
371 *
372 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
373 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
374 * current task has TIF_MEMDIE set, and will be OOM killed on return
375 * to user; and ksmd, having no mm, would never be chosen for that.
376 *
377 * But if the mm is in a limited mem_cgroup, then the fault may fail
378 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
379 * even ksmd can fail in this way - though it's usually breaking ksm
380 * just to undo a merge it made a moment before, so unlikely to oom.
381 *
382 * That's a pity: we might therefore have more kernel pages allocated
383 * than we're counting as nodes in the stable tree; but ksm_do_scan
384 * will retry to break_cow on each pass, so should recover the page
385 * in due course. The important thing is to not let VM_MERGEABLE
386 * be cleared while any such pages might remain in the area.
387 */
388 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
389}
390
8dd3557a 391static void break_cow(struct rmap_item *rmap_item)
31dbd01f 392{
8dd3557a
HD
393 struct mm_struct *mm = rmap_item->mm;
394 unsigned long addr = rmap_item->address;
31dbd01f
IE
395 struct vm_area_struct *vma;
396
81464e30 397 down_read(&mm->mmap_sem);
9ba69294
HD
398 if (ksm_test_exit(mm))
399 goto out;
31dbd01f
IE
400 vma = find_vma(mm, addr);
401 if (!vma || vma->vm_start > addr)
81464e30 402 goto out;
31dbd01f 403 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
81464e30 404 goto out;
31dbd01f 405 break_ksm(vma, addr);
81464e30 406out:
31dbd01f
IE
407 up_read(&mm->mmap_sem);
408}
409
410static struct page *get_mergeable_page(struct rmap_item *rmap_item)
411{
412 struct mm_struct *mm = rmap_item->mm;
413 unsigned long addr = rmap_item->address;
414 struct vm_area_struct *vma;
415 struct page *page;
416
417 down_read(&mm->mmap_sem);
9ba69294
HD
418 if (ksm_test_exit(mm))
419 goto out;
31dbd01f
IE
420 vma = find_vma(mm, addr);
421 if (!vma || vma->vm_start > addr)
422 goto out;
423 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
424 goto out;
425
426 page = follow_page(vma, addr, FOLL_GET);
427 if (!page)
428 goto out;
429 if (PageAnon(page)) {
430 flush_anon_page(vma, page, addr);
431 flush_dcache_page(page);
432 } else {
433 put_page(page);
434out: page = NULL;
435 }
436 up_read(&mm->mmap_sem);
437 return page;
438}
439
31dbd01f
IE
440/*
441 * Removing rmap_item from stable or unstable tree.
442 * This function will clean the information from the stable/unstable tree.
443 */
444static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
445{
7b6ba2c7
HD
446 if (rmap_item->address & STABLE_FLAG) {
447 struct stable_node *stable_node;
31dbd01f 448
7b6ba2c7
HD
449 stable_node = rmap_item->head;
450 hlist_del(&rmap_item->hlist);
451 if (stable_node->hlist.first)
e178dfde 452 ksm_pages_sharing--;
7b6ba2c7 453 else {
08beca44
HD
454 set_page_stable_node(stable_node->page, NULL);
455 put_page(stable_node->page);
456
7b6ba2c7
HD
457 rb_erase(&stable_node->node, &root_stable_tree);
458 free_stable_node(stable_node);
459 ksm_pages_shared--;
31dbd01f
IE
460 }
461
93d17715 462 rmap_item->address &= PAGE_MASK;
31dbd01f 463
7b6ba2c7 464 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
465 unsigned char age;
466 /*
9ba69294 467 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 468 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
469 * But be careful when an mm is exiting: do the rb_erase
470 * if this rmap_item was inserted by this scan, rather
471 * than left over from before.
31dbd01f
IE
472 */
473 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 474 BUG_ON(age > 1);
31dbd01f
IE
475 if (!age)
476 rb_erase(&rmap_item->node, &root_unstable_tree);
93d17715 477
473b0ce4 478 ksm_pages_unshared--;
93d17715 479 rmap_item->address &= PAGE_MASK;
31dbd01f
IE
480 }
481
31dbd01f
IE
482 cond_resched(); /* we're called from many long loops */
483}
484
31dbd01f 485static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 486 struct rmap_item **rmap_list)
31dbd01f 487{
6514d511
HD
488 while (*rmap_list) {
489 struct rmap_item *rmap_item = *rmap_list;
490 *rmap_list = rmap_item->rmap_list;
31dbd01f 491 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
492 free_rmap_item(rmap_item);
493 }
494}
495
496/*
497 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
498 * than check every pte of a given vma, the locking doesn't quite work for
499 * that - an rmap_item is assigned to the stable tree after inserting ksm
500 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
501 * rmap_items from parent to child at fork time (so as not to waste time
502 * if exit comes before the next scan reaches it).
81464e30
HD
503 *
504 * Similarly, although we'd like to remove rmap_items (so updating counts
505 * and freeing memory) when unmerging an area, it's easier to leave that
506 * to the next pass of ksmd - consider, for example, how ksmd might be
507 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 508 */
d952b791
HD
509static int unmerge_ksm_pages(struct vm_area_struct *vma,
510 unsigned long start, unsigned long end)
31dbd01f
IE
511{
512 unsigned long addr;
d952b791 513 int err = 0;
31dbd01f 514
d952b791 515 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
516 if (ksm_test_exit(vma->vm_mm))
517 break;
d952b791
HD
518 if (signal_pending(current))
519 err = -ERESTARTSYS;
520 else
521 err = break_ksm(vma, addr);
522 }
523 return err;
31dbd01f
IE
524}
525
2ffd8679
HD
526#ifdef CONFIG_SYSFS
527/*
528 * Only called through the sysfs control interface:
529 */
d952b791 530static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
531{
532 struct mm_slot *mm_slot;
533 struct mm_struct *mm;
534 struct vm_area_struct *vma;
d952b791
HD
535 int err = 0;
536
537 spin_lock(&ksm_mmlist_lock);
9ba69294 538 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
539 struct mm_slot, mm_list);
540 spin_unlock(&ksm_mmlist_lock);
31dbd01f 541
9ba69294
HD
542 for (mm_slot = ksm_scan.mm_slot;
543 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
544 mm = mm_slot->mm;
545 down_read(&mm->mmap_sem);
546 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
547 if (ksm_test_exit(mm))
548 break;
31dbd01f
IE
549 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
550 continue;
d952b791
HD
551 err = unmerge_ksm_pages(vma,
552 vma->vm_start, vma->vm_end);
9ba69294
HD
553 if (err)
554 goto error;
31dbd01f 555 }
9ba69294 556
6514d511 557 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
558
559 spin_lock(&ksm_mmlist_lock);
9ba69294 560 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 561 struct mm_slot, mm_list);
9ba69294
HD
562 if (ksm_test_exit(mm)) {
563 hlist_del(&mm_slot->link);
564 list_del(&mm_slot->mm_list);
565 spin_unlock(&ksm_mmlist_lock);
566
567 free_mm_slot(mm_slot);
568 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
569 up_read(&mm->mmap_sem);
570 mmdrop(mm);
571 } else {
572 spin_unlock(&ksm_mmlist_lock);
573 up_read(&mm->mmap_sem);
574 }
31dbd01f
IE
575 }
576
d952b791 577 ksm_scan.seqnr = 0;
9ba69294
HD
578 return 0;
579
580error:
581 up_read(&mm->mmap_sem);
31dbd01f 582 spin_lock(&ksm_mmlist_lock);
d952b791 583 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 584 spin_unlock(&ksm_mmlist_lock);
d952b791 585 return err;
31dbd01f 586}
2ffd8679 587#endif /* CONFIG_SYSFS */
31dbd01f 588
31dbd01f
IE
589static u32 calc_checksum(struct page *page)
590{
591 u32 checksum;
592 void *addr = kmap_atomic(page, KM_USER0);
593 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
594 kunmap_atomic(addr, KM_USER0);
595 return checksum;
596}
597
598static int memcmp_pages(struct page *page1, struct page *page2)
599{
600 char *addr1, *addr2;
601 int ret;
602
603 addr1 = kmap_atomic(page1, KM_USER0);
604 addr2 = kmap_atomic(page2, KM_USER1);
605 ret = memcmp(addr1, addr2, PAGE_SIZE);
606 kunmap_atomic(addr2, KM_USER1);
607 kunmap_atomic(addr1, KM_USER0);
608 return ret;
609}
610
611static inline int pages_identical(struct page *page1, struct page *page2)
612{
613 return !memcmp_pages(page1, page2);
614}
615
616static int write_protect_page(struct vm_area_struct *vma, struct page *page,
617 pte_t *orig_pte)
618{
619 struct mm_struct *mm = vma->vm_mm;
620 unsigned long addr;
621 pte_t *ptep;
622 spinlock_t *ptl;
623 int swapped;
624 int err = -EFAULT;
625
626 addr = page_address_in_vma(page, vma);
627 if (addr == -EFAULT)
628 goto out;
629
630 ptep = page_check_address(page, mm, addr, &ptl, 0);
631 if (!ptep)
632 goto out;
633
634 if (pte_write(*ptep)) {
635 pte_t entry;
636
637 swapped = PageSwapCache(page);
638 flush_cache_page(vma, addr, page_to_pfn(page));
639 /*
640 * Ok this is tricky, when get_user_pages_fast() run it doesnt
641 * take any lock, therefore the check that we are going to make
642 * with the pagecount against the mapcount is racey and
643 * O_DIRECT can happen right after the check.
644 * So we clear the pte and flush the tlb before the check
645 * this assure us that no O_DIRECT can happen after the check
646 * or in the middle of the check.
647 */
648 entry = ptep_clear_flush(vma, addr, ptep);
649 /*
650 * Check that no O_DIRECT or similar I/O is in progress on the
651 * page
652 */
31e855ea 653 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
31dbd01f
IE
654 set_pte_at_notify(mm, addr, ptep, entry);
655 goto out_unlock;
656 }
657 entry = pte_wrprotect(entry);
658 set_pte_at_notify(mm, addr, ptep, entry);
659 }
660 *orig_pte = *ptep;
661 err = 0;
662
663out_unlock:
664 pte_unmap_unlock(ptep, ptl);
665out:
666 return err;
667}
668
669/**
670 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
671 * @vma: vma that holds the pte pointing to page
672 * @page: the page we are replacing by kpage
673 * @kpage: the ksm page we replace page by
31dbd01f
IE
674 * @orig_pte: the original value of the pte
675 *
676 * Returns 0 on success, -EFAULT on failure.
677 */
8dd3557a
HD
678static int replace_page(struct vm_area_struct *vma, struct page *page,
679 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
680{
681 struct mm_struct *mm = vma->vm_mm;
682 pgd_t *pgd;
683 pud_t *pud;
684 pmd_t *pmd;
685 pte_t *ptep;
686 spinlock_t *ptl;
687 unsigned long addr;
31dbd01f
IE
688 int err = -EFAULT;
689
8dd3557a 690 addr = page_address_in_vma(page, vma);
31dbd01f
IE
691 if (addr == -EFAULT)
692 goto out;
693
694 pgd = pgd_offset(mm, addr);
695 if (!pgd_present(*pgd))
696 goto out;
697
698 pud = pud_offset(pgd, addr);
699 if (!pud_present(*pud))
700 goto out;
701
702 pmd = pmd_offset(pud, addr);
703 if (!pmd_present(*pmd))
704 goto out;
705
706 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
707 if (!pte_same(*ptep, orig_pte)) {
708 pte_unmap_unlock(ptep, ptl);
709 goto out;
710 }
711
8dd3557a
HD
712 get_page(kpage);
713 page_add_ksm_rmap(kpage);
31dbd01f
IE
714
715 flush_cache_page(vma, addr, pte_pfn(*ptep));
716 ptep_clear_flush(vma, addr, ptep);
8dd3557a 717 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 718
8dd3557a
HD
719 page_remove_rmap(page);
720 put_page(page);
31dbd01f
IE
721
722 pte_unmap_unlock(ptep, ptl);
723 err = 0;
724out:
725 return err;
726}
727
728/*
729 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
730 * @vma: the vma that holds the pte pointing to page
731 * @page: the PageAnon page that we want to replace with kpage
08beca44 732 * @kpage: the PageKsm page that we want to map instead of page
31dbd01f
IE
733 *
734 * This function returns 0 if the pages were merged, -EFAULT otherwise.
735 */
736static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 737 struct page *page, struct page *kpage)
31dbd01f
IE
738{
739 pte_t orig_pte = __pte(0);
740 int err = -EFAULT;
741
742 if (!(vma->vm_flags & VM_MERGEABLE))
743 goto out;
8dd3557a 744 if (!PageAnon(page))
31dbd01f
IE
745 goto out;
746
31dbd01f
IE
747 /*
748 * We need the page lock to read a stable PageSwapCache in
749 * write_protect_page(). We use trylock_page() instead of
750 * lock_page() because we don't want to wait here - we
751 * prefer to continue scanning and merging different pages,
752 * then come back to this page when it is unlocked.
753 */
8dd3557a 754 if (!trylock_page(page))
31e855ea 755 goto out;
31dbd01f
IE
756 /*
757 * If this anonymous page is mapped only here, its pte may need
758 * to be write-protected. If it's mapped elsewhere, all of its
759 * ptes are necessarily already write-protected. But in either
760 * case, we need to lock and check page_count is not raised.
761 */
8dd3557a
HD
762 if (write_protect_page(vma, page, &orig_pte) == 0 &&
763 pages_identical(page, kpage))
764 err = replace_page(vma, page, kpage, orig_pte);
31dbd01f 765
73848b46
HD
766 if ((vma->vm_flags & VM_LOCKED) && !err)
767 munlock_vma_page(page);
768
8dd3557a 769 unlock_page(page);
31dbd01f
IE
770out:
771 return err;
772}
773
81464e30
HD
774/*
775 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
776 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
777 *
778 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 779 */
8dd3557a
HD
780static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
781 struct page *page, struct page *kpage)
81464e30 782{
8dd3557a 783 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
784 struct vm_area_struct *vma;
785 int err = -EFAULT;
786
08beca44
HD
787 if (page == kpage) /* ksm page forked */
788 return 0;
789
8dd3557a
HD
790 down_read(&mm->mmap_sem);
791 if (ksm_test_exit(mm))
9ba69294 792 goto out;
8dd3557a
HD
793 vma = find_vma(mm, rmap_item->address);
794 if (!vma || vma->vm_start > rmap_item->address)
81464e30
HD
795 goto out;
796
8dd3557a 797 err = try_to_merge_one_page(vma, page, kpage);
81464e30 798out:
8dd3557a 799 up_read(&mm->mmap_sem);
81464e30
HD
800 return err;
801}
802
31dbd01f
IE
803/*
804 * try_to_merge_two_pages - take two identical pages and prepare them
805 * to be merged into one page.
806 *
8dd3557a
HD
807 * This function returns the kpage if we successfully merged two identical
808 * pages into one ksm page, NULL otherwise.
31dbd01f
IE
809 *
810 * Note that this function allocates a new kernel page: if one of the pages
811 * is already a ksm page, try_to_merge_with_ksm_page should be used.
812 */
8dd3557a
HD
813static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
814 struct page *page,
815 struct rmap_item *tree_rmap_item,
816 struct page *tree_page)
31dbd01f 817{
8dd3557a 818 struct mm_struct *mm = rmap_item->mm;
31dbd01f
IE
819 struct vm_area_struct *vma;
820 struct page *kpage;
821 int err = -EFAULT;
822
823 /*
824 * The number of nodes in the stable tree
825 * is the number of kernel pages that we hold.
826 */
827 if (ksm_max_kernel_pages &&
b4028260 828 ksm_max_kernel_pages <= ksm_pages_shared)
8dd3557a 829 return NULL;
31dbd01f
IE
830
831 kpage = alloc_page(GFP_HIGHUSER);
832 if (!kpage)
8dd3557a 833 return NULL;
31dbd01f 834
8dd3557a
HD
835 down_read(&mm->mmap_sem);
836 if (ksm_test_exit(mm))
837 goto up;
838 vma = find_vma(mm, rmap_item->address);
839 if (!vma || vma->vm_start > rmap_item->address)
840 goto up;
841
842 copy_user_highpage(kpage, page, rmap_item->address, vma);
08beca44
HD
843
844 set_page_stable_node(kpage, NULL); /* mark it PageKsm */
845
8dd3557a
HD
846 err = try_to_merge_one_page(vma, page, kpage);
847up:
848 up_read(&mm->mmap_sem);
31dbd01f
IE
849
850 if (!err) {
8dd3557a
HD
851 err = try_to_merge_with_ksm_page(tree_rmap_item,
852 tree_page, kpage);
31dbd01f 853 /*
81464e30
HD
854 * If that fails, we have a ksm page with only one pte
855 * pointing to it: so break it.
31dbd01f
IE
856 */
857 if (err)
8dd3557a 858 break_cow(rmap_item);
31dbd01f 859 }
8dd3557a
HD
860 if (err) {
861 put_page(kpage);
862 kpage = NULL;
863 }
864 return kpage;
31dbd01f
IE
865}
866
31dbd01f 867/*
8dd3557a 868 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
869 *
870 * This function checks if there is a page inside the stable tree
871 * with identical content to the page that we are scanning right now.
872 *
7b6ba2c7 873 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
874 * NULL otherwise.
875 */
08beca44 876static struct stable_node *stable_tree_search(struct page *page)
31dbd01f
IE
877{
878 struct rb_node *node = root_stable_tree.rb_node;
7b6ba2c7 879 struct stable_node *stable_node;
31dbd01f 880
08beca44
HD
881 stable_node = page_stable_node(page);
882 if (stable_node) { /* ksm page forked */
883 get_page(page);
884 return stable_node;
885 }
886
31dbd01f 887 while (node) {
31dbd01f
IE
888 int ret;
889
08beca44 890 cond_resched();
7b6ba2c7 891 stable_node = rb_entry(node, struct stable_node, node);
31dbd01f 892
08beca44 893 ret = memcmp_pages(page, stable_node->page);
31dbd01f 894
08beca44 895 if (ret < 0)
31dbd01f 896 node = node->rb_left;
08beca44 897 else if (ret > 0)
31dbd01f 898 node = node->rb_right;
08beca44
HD
899 else {
900 get_page(stable_node->page);
7b6ba2c7 901 return stable_node;
31dbd01f
IE
902 }
903 }
904
905 return NULL;
906}
907
908/*
909 * stable_tree_insert - insert rmap_item pointing to new ksm page
910 * into the stable tree.
911 *
7b6ba2c7
HD
912 * This function returns the stable tree node just allocated on success,
913 * NULL otherwise.
31dbd01f 914 */
7b6ba2c7 915static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f
IE
916{
917 struct rb_node **new = &root_stable_tree.rb_node;
918 struct rb_node *parent = NULL;
7b6ba2c7 919 struct stable_node *stable_node;
31dbd01f
IE
920
921 while (*new) {
31dbd01f
IE
922 int ret;
923
08beca44 924 cond_resched();
7b6ba2c7 925 stable_node = rb_entry(*new, struct stable_node, node);
31dbd01f 926
08beca44 927 ret = memcmp_pages(kpage, stable_node->page);
31dbd01f
IE
928
929 parent = *new;
930 if (ret < 0)
931 new = &parent->rb_left;
932 else if (ret > 0)
933 new = &parent->rb_right;
934 else {
935 /*
936 * It is not a bug that stable_tree_search() didn't
937 * find this node: because at that time our page was
938 * not yet write-protected, so may have changed since.
939 */
940 return NULL;
941 }
942 }
943
7b6ba2c7
HD
944 stable_node = alloc_stable_node();
945 if (!stable_node)
946 return NULL;
31dbd01f 947
7b6ba2c7
HD
948 rb_link_node(&stable_node->node, parent, new);
949 rb_insert_color(&stable_node->node, &root_stable_tree);
950
951 INIT_HLIST_HEAD(&stable_node->hlist);
952
08beca44
HD
953 get_page(kpage);
954 stable_node->page = kpage;
955 set_page_stable_node(kpage, stable_node);
956
7b6ba2c7 957 return stable_node;
31dbd01f
IE
958}
959
960/*
8dd3557a
HD
961 * unstable_tree_search_insert - search for identical page,
962 * else insert rmap_item into the unstable tree.
31dbd01f
IE
963 *
964 * This function searches for a page in the unstable tree identical to the
965 * page currently being scanned; and if no identical page is found in the
966 * tree, we insert rmap_item as a new object into the unstable tree.
967 *
968 * This function returns pointer to rmap_item found to be identical
969 * to the currently scanned page, NULL otherwise.
970 *
971 * This function does both searching and inserting, because they share
972 * the same walking algorithm in an rbtree.
973 */
8dd3557a
HD
974static
975struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
976 struct page *page,
977 struct page **tree_pagep)
978
31dbd01f
IE
979{
980 struct rb_node **new = &root_unstable_tree.rb_node;
981 struct rb_node *parent = NULL;
982
983 while (*new) {
984 struct rmap_item *tree_rmap_item;
8dd3557a 985 struct page *tree_page;
31dbd01f
IE
986 int ret;
987
d178f27f 988 cond_resched();
31dbd01f 989 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a
HD
990 tree_page = get_mergeable_page(tree_rmap_item);
991 if (!tree_page)
31dbd01f
IE
992 return NULL;
993
994 /*
8dd3557a 995 * Don't substitute a ksm page for a forked page.
31dbd01f 996 */
8dd3557a
HD
997 if (page == tree_page) {
998 put_page(tree_page);
31dbd01f
IE
999 return NULL;
1000 }
1001
8dd3557a 1002 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1003
1004 parent = *new;
1005 if (ret < 0) {
8dd3557a 1006 put_page(tree_page);
31dbd01f
IE
1007 new = &parent->rb_left;
1008 } else if (ret > 0) {
8dd3557a 1009 put_page(tree_page);
31dbd01f
IE
1010 new = &parent->rb_right;
1011 } else {
8dd3557a 1012 *tree_pagep = tree_page;
31dbd01f
IE
1013 return tree_rmap_item;
1014 }
1015 }
1016
7b6ba2c7 1017 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f
IE
1018 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1019 rb_link_node(&rmap_item->node, parent, new);
1020 rb_insert_color(&rmap_item->node, &root_unstable_tree);
1021
473b0ce4 1022 ksm_pages_unshared++;
31dbd01f
IE
1023 return NULL;
1024}
1025
1026/*
1027 * stable_tree_append - add another rmap_item to the linked list of
1028 * rmap_items hanging off a given node of the stable tree, all sharing
1029 * the same ksm page.
1030 */
1031static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1032 struct stable_node *stable_node)
31dbd01f 1033{
7b6ba2c7 1034 rmap_item->head = stable_node;
31dbd01f 1035 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1036 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1037
7b6ba2c7
HD
1038 if (rmap_item->hlist.next)
1039 ksm_pages_sharing++;
1040 else
1041 ksm_pages_shared++;
31dbd01f
IE
1042}
1043
1044/*
81464e30
HD
1045 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1046 * if not, compare checksum to previous and if it's the same, see if page can
1047 * be inserted into the unstable tree, or merged with a page already there and
1048 * both transferred to the stable tree.
31dbd01f
IE
1049 *
1050 * @page: the page that we are searching identical page to.
1051 * @rmap_item: the reverse mapping into the virtual address of this page
1052 */
1053static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1054{
31dbd01f 1055 struct rmap_item *tree_rmap_item;
8dd3557a 1056 struct page *tree_page = NULL;
7b6ba2c7 1057 struct stable_node *stable_node;
8dd3557a 1058 struct page *kpage;
31dbd01f
IE
1059 unsigned int checksum;
1060 int err;
1061
93d17715 1062 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1063
1064 /* We first start with searching the page inside the stable tree */
08beca44 1065 stable_node = stable_tree_search(page);
7b6ba2c7 1066 if (stable_node) {
08beca44
HD
1067 kpage = stable_node->page;
1068 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1069 if (!err) {
1070 /*
1071 * The page was successfully merged:
1072 * add its rmap_item to the stable tree.
1073 */
7b6ba2c7 1074 stable_tree_append(rmap_item, stable_node);
31dbd01f 1075 }
8dd3557a 1076 put_page(kpage);
31dbd01f
IE
1077 return;
1078 }
1079
1080 /*
1081 * A ksm page might have got here by fork, but its other
1082 * references have already been removed from the stable tree.
d952b791
HD
1083 * Or it might be left over from a break_ksm which failed
1084 * when the mem_cgroup had reached its limit: try again now.
31dbd01f
IE
1085 */
1086 if (PageKsm(page))
8dd3557a 1087 break_cow(rmap_item);
31dbd01f
IE
1088
1089 /*
1090 * In case the hash value of the page was changed from the last time we
1091 * have calculated it, this page to be changed frequely, therefore we
1092 * don't want to insert it to the unstable tree, and we don't want to
1093 * waste our time to search if there is something identical to it there.
1094 */
1095 checksum = calc_checksum(page);
1096 if (rmap_item->oldchecksum != checksum) {
1097 rmap_item->oldchecksum = checksum;
1098 return;
1099 }
1100
8dd3557a
HD
1101 tree_rmap_item =
1102 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1103 if (tree_rmap_item) {
8dd3557a
HD
1104 kpage = try_to_merge_two_pages(rmap_item, page,
1105 tree_rmap_item, tree_page);
1106 put_page(tree_page);
31dbd01f
IE
1107 /*
1108 * As soon as we merge this page, we want to remove the
1109 * rmap_item of the page we have merged with from the unstable
1110 * tree, and insert it instead as new node in the stable tree.
1111 */
8dd3557a 1112 if (kpage) {
93d17715 1113 remove_rmap_item_from_tree(tree_rmap_item);
473b0ce4 1114
7b6ba2c7
HD
1115 stable_node = stable_tree_insert(kpage);
1116 if (stable_node) {
1117 stable_tree_append(tree_rmap_item, stable_node);
1118 stable_tree_append(rmap_item, stable_node);
1119 }
1120 put_page(kpage);
1121
31dbd01f
IE
1122 /*
1123 * If we fail to insert the page into the stable tree,
1124 * we will have 2 virtual addresses that are pointing
1125 * to a ksm page left outside the stable tree,
1126 * in which case we need to break_cow on both.
1127 */
7b6ba2c7 1128 if (!stable_node) {
8dd3557a
HD
1129 break_cow(tree_rmap_item);
1130 break_cow(rmap_item);
31dbd01f
IE
1131 }
1132 }
31dbd01f
IE
1133 }
1134}
1135
1136static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1137 struct rmap_item **rmap_list,
31dbd01f
IE
1138 unsigned long addr)
1139{
1140 struct rmap_item *rmap_item;
1141
6514d511
HD
1142 while (*rmap_list) {
1143 rmap_item = *rmap_list;
93d17715 1144 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1145 return rmap_item;
31dbd01f
IE
1146 if (rmap_item->address > addr)
1147 break;
6514d511 1148 *rmap_list = rmap_item->rmap_list;
31dbd01f 1149 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1150 free_rmap_item(rmap_item);
1151 }
1152
1153 rmap_item = alloc_rmap_item();
1154 if (rmap_item) {
1155 /* It has already been zeroed */
1156 rmap_item->mm = mm_slot->mm;
1157 rmap_item->address = addr;
6514d511
HD
1158 rmap_item->rmap_list = *rmap_list;
1159 *rmap_list = rmap_item;
31dbd01f
IE
1160 }
1161 return rmap_item;
1162}
1163
1164static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1165{
1166 struct mm_struct *mm;
1167 struct mm_slot *slot;
1168 struct vm_area_struct *vma;
1169 struct rmap_item *rmap_item;
1170
1171 if (list_empty(&ksm_mm_head.mm_list))
1172 return NULL;
1173
1174 slot = ksm_scan.mm_slot;
1175 if (slot == &ksm_mm_head) {
1176 root_unstable_tree = RB_ROOT;
1177
1178 spin_lock(&ksm_mmlist_lock);
1179 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1180 ksm_scan.mm_slot = slot;
1181 spin_unlock(&ksm_mmlist_lock);
1182next_mm:
1183 ksm_scan.address = 0;
6514d511 1184 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1185 }
1186
1187 mm = slot->mm;
1188 down_read(&mm->mmap_sem);
9ba69294
HD
1189 if (ksm_test_exit(mm))
1190 vma = NULL;
1191 else
1192 vma = find_vma(mm, ksm_scan.address);
1193
1194 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1195 if (!(vma->vm_flags & VM_MERGEABLE))
1196 continue;
1197 if (ksm_scan.address < vma->vm_start)
1198 ksm_scan.address = vma->vm_start;
1199 if (!vma->anon_vma)
1200 ksm_scan.address = vma->vm_end;
1201
1202 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1203 if (ksm_test_exit(mm))
1204 break;
31dbd01f
IE
1205 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1206 if (*page && PageAnon(*page)) {
1207 flush_anon_page(vma, *page, ksm_scan.address);
1208 flush_dcache_page(*page);
1209 rmap_item = get_next_rmap_item(slot,
6514d511 1210 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1211 if (rmap_item) {
6514d511
HD
1212 ksm_scan.rmap_list =
1213 &rmap_item->rmap_list;
31dbd01f
IE
1214 ksm_scan.address += PAGE_SIZE;
1215 } else
1216 put_page(*page);
1217 up_read(&mm->mmap_sem);
1218 return rmap_item;
1219 }
1220 if (*page)
1221 put_page(*page);
1222 ksm_scan.address += PAGE_SIZE;
1223 cond_resched();
1224 }
1225 }
1226
9ba69294
HD
1227 if (ksm_test_exit(mm)) {
1228 ksm_scan.address = 0;
6514d511 1229 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1230 }
31dbd01f
IE
1231 /*
1232 * Nuke all the rmap_items that are above this current rmap:
1233 * because there were no VM_MERGEABLE vmas with such addresses.
1234 */
6514d511 1235 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1236
1237 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1238 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1239 struct mm_slot, mm_list);
1240 if (ksm_scan.address == 0) {
1241 /*
1242 * We've completed a full scan of all vmas, holding mmap_sem
1243 * throughout, and found no VM_MERGEABLE: so do the same as
1244 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1245 * This applies either when cleaning up after __ksm_exit
1246 * (but beware: we can reach here even before __ksm_exit),
1247 * or when all VM_MERGEABLE areas have been unmapped (and
1248 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97
HD
1249 */
1250 hlist_del(&slot->link);
1251 list_del(&slot->mm_list);
9ba69294
HD
1252 spin_unlock(&ksm_mmlist_lock);
1253
cd551f97
HD
1254 free_mm_slot(slot);
1255 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1256 up_read(&mm->mmap_sem);
1257 mmdrop(mm);
1258 } else {
1259 spin_unlock(&ksm_mmlist_lock);
1260 up_read(&mm->mmap_sem);
cd551f97 1261 }
31dbd01f
IE
1262
1263 /* Repeat until we've completed scanning the whole list */
cd551f97 1264 slot = ksm_scan.mm_slot;
31dbd01f
IE
1265 if (slot != &ksm_mm_head)
1266 goto next_mm;
1267
31dbd01f
IE
1268 ksm_scan.seqnr++;
1269 return NULL;
1270}
1271
1272/**
1273 * ksm_do_scan - the ksm scanner main worker function.
1274 * @scan_npages - number of pages we want to scan before we return.
1275 */
1276static void ksm_do_scan(unsigned int scan_npages)
1277{
1278 struct rmap_item *rmap_item;
1279 struct page *page;
1280
1281 while (scan_npages--) {
1282 cond_resched();
1283 rmap_item = scan_get_next_rmap_item(&page);
1284 if (!rmap_item)
1285 return;
1286 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1287 cmp_and_merge_page(page, rmap_item);
26465d3e
HD
1288 else if (page_mapcount(page) == 1) {
1289 /*
1290 * Replace now-unshared ksm page by ordinary page.
1291 */
8dd3557a 1292 break_cow(rmap_item);
26465d3e
HD
1293 remove_rmap_item_from_tree(rmap_item);
1294 rmap_item->oldchecksum = calc_checksum(page);
1295 }
31dbd01f
IE
1296 put_page(page);
1297 }
1298}
1299
6e158384
HD
1300static int ksmd_should_run(void)
1301{
1302 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1303}
1304
31dbd01f
IE
1305static int ksm_scan_thread(void *nothing)
1306{
339aa624 1307 set_user_nice(current, 5);
31dbd01f
IE
1308
1309 while (!kthread_should_stop()) {
6e158384
HD
1310 mutex_lock(&ksm_thread_mutex);
1311 if (ksmd_should_run())
31dbd01f 1312 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1313 mutex_unlock(&ksm_thread_mutex);
1314
1315 if (ksmd_should_run()) {
31dbd01f
IE
1316 schedule_timeout_interruptible(
1317 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1318 } else {
1319 wait_event_interruptible(ksm_thread_wait,
6e158384 1320 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1321 }
1322 }
1323 return 0;
1324}
1325
f8af4da3
HD
1326int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1327 unsigned long end, int advice, unsigned long *vm_flags)
1328{
1329 struct mm_struct *mm = vma->vm_mm;
d952b791 1330 int err;
f8af4da3
HD
1331
1332 switch (advice) {
1333 case MADV_MERGEABLE:
1334 /*
1335 * Be somewhat over-protective for now!
1336 */
1337 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1338 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1339 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1340 VM_MIXEDMAP | VM_SAO))
1341 return 0; /* just ignore the advice */
1342
d952b791
HD
1343 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1344 err = __ksm_enter(mm);
1345 if (err)
1346 return err;
1347 }
f8af4da3
HD
1348
1349 *vm_flags |= VM_MERGEABLE;
1350 break;
1351
1352 case MADV_UNMERGEABLE:
1353 if (!(*vm_flags & VM_MERGEABLE))
1354 return 0; /* just ignore the advice */
1355
d952b791
HD
1356 if (vma->anon_vma) {
1357 err = unmerge_ksm_pages(vma, start, end);
1358 if (err)
1359 return err;
1360 }
f8af4da3
HD
1361
1362 *vm_flags &= ~VM_MERGEABLE;
1363 break;
1364 }
1365
1366 return 0;
1367}
1368
1369int __ksm_enter(struct mm_struct *mm)
1370{
6e158384
HD
1371 struct mm_slot *mm_slot;
1372 int needs_wakeup;
1373
1374 mm_slot = alloc_mm_slot();
31dbd01f
IE
1375 if (!mm_slot)
1376 return -ENOMEM;
1377
6e158384
HD
1378 /* Check ksm_run too? Would need tighter locking */
1379 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1380
31dbd01f
IE
1381 spin_lock(&ksm_mmlist_lock);
1382 insert_to_mm_slots_hash(mm, mm_slot);
1383 /*
1384 * Insert just behind the scanning cursor, to let the area settle
1385 * down a little; when fork is followed by immediate exec, we don't
1386 * want ksmd to waste time setting up and tearing down an rmap_list.
1387 */
1388 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1389 spin_unlock(&ksm_mmlist_lock);
1390
f8af4da3 1391 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1392 atomic_inc(&mm->mm_count);
6e158384
HD
1393
1394 if (needs_wakeup)
1395 wake_up_interruptible(&ksm_thread_wait);
1396
f8af4da3
HD
1397 return 0;
1398}
1399
1c2fb7a4 1400void __ksm_exit(struct mm_struct *mm)
f8af4da3 1401{
cd551f97 1402 struct mm_slot *mm_slot;
9ba69294 1403 int easy_to_free = 0;
cd551f97 1404
31dbd01f 1405 /*
9ba69294
HD
1406 * This process is exiting: if it's straightforward (as is the
1407 * case when ksmd was never running), free mm_slot immediately.
1408 * But if it's at the cursor or has rmap_items linked to it, use
1409 * mmap_sem to synchronize with any break_cows before pagetables
1410 * are freed, and leave the mm_slot on the list for ksmd to free.
1411 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1412 */
9ba69294 1413
cd551f97
HD
1414 spin_lock(&ksm_mmlist_lock);
1415 mm_slot = get_mm_slot(mm);
9ba69294 1416 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1417 if (!mm_slot->rmap_list) {
9ba69294
HD
1418 hlist_del(&mm_slot->link);
1419 list_del(&mm_slot->mm_list);
1420 easy_to_free = 1;
1421 } else {
1422 list_move(&mm_slot->mm_list,
1423 &ksm_scan.mm_slot->mm_list);
1424 }
cd551f97 1425 }
cd551f97
HD
1426 spin_unlock(&ksm_mmlist_lock);
1427
9ba69294
HD
1428 if (easy_to_free) {
1429 free_mm_slot(mm_slot);
1430 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1431 mmdrop(mm);
1432 } else if (mm_slot) {
9ba69294
HD
1433 down_write(&mm->mmap_sem);
1434 up_write(&mm->mmap_sem);
9ba69294 1435 }
31dbd01f
IE
1436}
1437
2ffd8679
HD
1438#ifdef CONFIG_SYSFS
1439/*
1440 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1441 */
1442
31dbd01f
IE
1443#define KSM_ATTR_RO(_name) \
1444 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1445#define KSM_ATTR(_name) \
1446 static struct kobj_attribute _name##_attr = \
1447 __ATTR(_name, 0644, _name##_show, _name##_store)
1448
1449static ssize_t sleep_millisecs_show(struct kobject *kobj,
1450 struct kobj_attribute *attr, char *buf)
1451{
1452 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1453}
1454
1455static ssize_t sleep_millisecs_store(struct kobject *kobj,
1456 struct kobj_attribute *attr,
1457 const char *buf, size_t count)
1458{
1459 unsigned long msecs;
1460 int err;
1461
1462 err = strict_strtoul(buf, 10, &msecs);
1463 if (err || msecs > UINT_MAX)
1464 return -EINVAL;
1465
1466 ksm_thread_sleep_millisecs = msecs;
1467
1468 return count;
1469}
1470KSM_ATTR(sleep_millisecs);
1471
1472static ssize_t pages_to_scan_show(struct kobject *kobj,
1473 struct kobj_attribute *attr, char *buf)
1474{
1475 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1476}
1477
1478static ssize_t pages_to_scan_store(struct kobject *kobj,
1479 struct kobj_attribute *attr,
1480 const char *buf, size_t count)
1481{
1482 int err;
1483 unsigned long nr_pages;
1484
1485 err = strict_strtoul(buf, 10, &nr_pages);
1486 if (err || nr_pages > UINT_MAX)
1487 return -EINVAL;
1488
1489 ksm_thread_pages_to_scan = nr_pages;
1490
1491 return count;
1492}
1493KSM_ATTR(pages_to_scan);
1494
1495static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1496 char *buf)
1497{
1498 return sprintf(buf, "%u\n", ksm_run);
1499}
1500
1501static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1502 const char *buf, size_t count)
1503{
1504 int err;
1505 unsigned long flags;
1506
1507 err = strict_strtoul(buf, 10, &flags);
1508 if (err || flags > UINT_MAX)
1509 return -EINVAL;
1510 if (flags > KSM_RUN_UNMERGE)
1511 return -EINVAL;
1512
1513 /*
1514 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1515 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
b4028260 1516 * breaking COW to free the unswappable pages_shared (but leaves
31dbd01f
IE
1517 * mm_slots on the list for when ksmd may be set running again).
1518 */
1519
1520 mutex_lock(&ksm_thread_mutex);
1521 if (ksm_run != flags) {
1522 ksm_run = flags;
d952b791 1523 if (flags & KSM_RUN_UNMERGE) {
35451bee 1524 current->flags |= PF_OOM_ORIGIN;
d952b791 1525 err = unmerge_and_remove_all_rmap_items();
35451bee 1526 current->flags &= ~PF_OOM_ORIGIN;
d952b791
HD
1527 if (err) {
1528 ksm_run = KSM_RUN_STOP;
1529 count = err;
1530 }
1531 }
31dbd01f
IE
1532 }
1533 mutex_unlock(&ksm_thread_mutex);
1534
1535 if (flags & KSM_RUN_MERGE)
1536 wake_up_interruptible(&ksm_thread_wait);
1537
1538 return count;
1539}
1540KSM_ATTR(run);
1541
31dbd01f
IE
1542static ssize_t max_kernel_pages_store(struct kobject *kobj,
1543 struct kobj_attribute *attr,
1544 const char *buf, size_t count)
1545{
1546 int err;
1547 unsigned long nr_pages;
1548
1549 err = strict_strtoul(buf, 10, &nr_pages);
1550 if (err)
1551 return -EINVAL;
1552
1553 ksm_max_kernel_pages = nr_pages;
1554
1555 return count;
1556}
1557
1558static ssize_t max_kernel_pages_show(struct kobject *kobj,
1559 struct kobj_attribute *attr, char *buf)
1560{
1561 return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1562}
1563KSM_ATTR(max_kernel_pages);
1564
b4028260
HD
1565static ssize_t pages_shared_show(struct kobject *kobj,
1566 struct kobj_attribute *attr, char *buf)
1567{
1568 return sprintf(buf, "%lu\n", ksm_pages_shared);
1569}
1570KSM_ATTR_RO(pages_shared);
1571
1572static ssize_t pages_sharing_show(struct kobject *kobj,
1573 struct kobj_attribute *attr, char *buf)
1574{
e178dfde 1575 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
1576}
1577KSM_ATTR_RO(pages_sharing);
1578
473b0ce4
HD
1579static ssize_t pages_unshared_show(struct kobject *kobj,
1580 struct kobj_attribute *attr, char *buf)
1581{
1582 return sprintf(buf, "%lu\n", ksm_pages_unshared);
1583}
1584KSM_ATTR_RO(pages_unshared);
1585
1586static ssize_t pages_volatile_show(struct kobject *kobj,
1587 struct kobj_attribute *attr, char *buf)
1588{
1589 long ksm_pages_volatile;
1590
1591 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1592 - ksm_pages_sharing - ksm_pages_unshared;
1593 /*
1594 * It was not worth any locking to calculate that statistic,
1595 * but it might therefore sometimes be negative: conceal that.
1596 */
1597 if (ksm_pages_volatile < 0)
1598 ksm_pages_volatile = 0;
1599 return sprintf(buf, "%ld\n", ksm_pages_volatile);
1600}
1601KSM_ATTR_RO(pages_volatile);
1602
1603static ssize_t full_scans_show(struct kobject *kobj,
1604 struct kobj_attribute *attr, char *buf)
1605{
1606 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1607}
1608KSM_ATTR_RO(full_scans);
1609
31dbd01f
IE
1610static struct attribute *ksm_attrs[] = {
1611 &sleep_millisecs_attr.attr,
1612 &pages_to_scan_attr.attr,
1613 &run_attr.attr,
31dbd01f 1614 &max_kernel_pages_attr.attr,
b4028260
HD
1615 &pages_shared_attr.attr,
1616 &pages_sharing_attr.attr,
473b0ce4
HD
1617 &pages_unshared_attr.attr,
1618 &pages_volatile_attr.attr,
1619 &full_scans_attr.attr,
31dbd01f
IE
1620 NULL,
1621};
1622
1623static struct attribute_group ksm_attr_group = {
1624 .attrs = ksm_attrs,
1625 .name = "ksm",
1626};
2ffd8679 1627#endif /* CONFIG_SYSFS */
31dbd01f
IE
1628
1629static int __init ksm_init(void)
1630{
1631 struct task_struct *ksm_thread;
1632 int err;
1633
c73602ad 1634 ksm_max_kernel_pages = totalram_pages / 4;
2c6854fd 1635
31dbd01f
IE
1636 err = ksm_slab_init();
1637 if (err)
1638 goto out;
1639
1640 err = mm_slots_hash_init();
1641 if (err)
1642 goto out_free1;
1643
1644 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1645 if (IS_ERR(ksm_thread)) {
1646 printk(KERN_ERR "ksm: creating kthread failed\n");
1647 err = PTR_ERR(ksm_thread);
1648 goto out_free2;
1649 }
1650
2ffd8679 1651#ifdef CONFIG_SYSFS
31dbd01f
IE
1652 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1653 if (err) {
1654 printk(KERN_ERR "ksm: register sysfs failed\n");
2ffd8679
HD
1655 kthread_stop(ksm_thread);
1656 goto out_free2;
31dbd01f 1657 }
c73602ad
HD
1658#else
1659 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
1660
2ffd8679 1661#endif /* CONFIG_SYSFS */
31dbd01f
IE
1662
1663 return 0;
1664
31dbd01f
IE
1665out_free2:
1666 mm_slots_hash_free();
1667out_free1:
1668 ksm_slab_free();
1669out:
1670 return err;
f8af4da3 1671}
31dbd01f 1672module_init(ksm_init)