hugetlb: do not use vma_hugecache_offset() for vma_prio_tree_foreach
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
7835e98b 33#include "internal.h"
1da177e4
LT
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9
DG
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
c3f38a38 53DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 54
90481622
DG
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93{
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112{
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
130 return subpool_inode(vma->vm_file->f_dentry->d_inode);
131}
132
96822904
AW
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
84afd99b
AW
136 *
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantion_mutex. To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation mutex:
141 *
32f84528 142 * down_write(&mm->mmap_sem);
84afd99b 143 * or
32f84528
CF
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
146 */
147struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
25985edc 226 /* We overlap with this area, if it extends further than
96822904
AW
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266}
267
84afd99b
AW
268static long region_count(struct list_head *head, long f, long t)
269{
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
275 long seg_from;
276 long seg_to;
84afd99b
AW
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290}
291
e7c4b0bf
AW
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
a5516438
AK
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 298{
a5516438
AK
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
301}
302
0fe6e20b
NH
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305{
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
08fba699
MG
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
322 return 1UL << (hstate->order + PAGE_SHIFT);
323}
f340ca0f 324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 325
3340289d
MG
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335 return vma_kernel_pagesize(vma);
336}
337#endif
338
84afd99b
AW
339/*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 347
a1e78772
MG
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
a1e78772 366 */
e7c4b0bf
AW
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369 return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374{
375 vma->vm_private_data = (void *)value;
376}
377
84afd99b
AW
378struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381};
382
2a4b3ded 383static struct resv_map *resv_map_alloc(void)
84afd99b
AW
384{
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393}
394
2a4b3ded 395static void resv_map_release(struct kref *ref)
84afd99b
AW
396{
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
405{
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 407 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
2a4b3ded 410 return NULL;
a1e78772
MG
411}
412
84afd99b 413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
414{
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 417
84afd99b
AW
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
04f2cbe3 424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
433
434 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
435}
436
437/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
438static void decrement_hugepage_resv_vma(struct hstate *h,
439 struct vm_area_struct *vma)
a1e78772 440{
c37f9fb1
AW
441 if (vma->vm_flags & VM_NORESERVE)
442 return;
443
f83a275d 444 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 445 /* Shared mappings always use reserves */
a5516438 446 h->resv_huge_pages--;
84afd99b 447 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
448 /*
449 * Only the process that called mmap() has reserves for
450 * private mappings.
451 */
a5516438 452 h->resv_huge_pages--;
a1e78772
MG
453 }
454}
455
04f2cbe3 456/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
457void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458{
459 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 460 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
461 vma->vm_private_data = (void *)0;
462}
463
464/* Returns true if the VMA has associated reserve pages */
7f09ca51 465static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 466{
f83a275d 467 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
468 return 1;
469 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 return 1;
471 return 0;
a1e78772
MG
472}
473
0ebabb41
NH
474static void copy_gigantic_page(struct page *dst, struct page *src)
475{
476 int i;
477 struct hstate *h = page_hstate(src);
478 struct page *dst_base = dst;
479 struct page *src_base = src;
480
481 for (i = 0; i < pages_per_huge_page(h); ) {
482 cond_resched();
483 copy_highpage(dst, src);
484
485 i++;
486 dst = mem_map_next(dst, dst_base, i);
487 src = mem_map_next(src, src_base, i);
488 }
489}
490
491void copy_huge_page(struct page *dst, struct page *src)
492{
493 int i;
494 struct hstate *h = page_hstate(src);
495
496 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 copy_gigantic_page(dst, src);
498 return;
499 }
500
501 might_sleep();
502 for (i = 0; i < pages_per_huge_page(h); i++) {
503 cond_resched();
504 copy_highpage(dst + i, src + i);
505 }
506}
507
a5516438 508static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
509{
510 int nid = page_to_nid(page);
0edaecfa 511 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
512 h->free_huge_pages++;
513 h->free_huge_pages_node[nid]++;
1da177e4
LT
514}
515
bf50bab2
NH
516static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517{
518 struct page *page;
519
520 if (list_empty(&h->hugepage_freelists[nid]))
521 return NULL;
522 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 523 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 524 set_page_refcounted(page);
bf50bab2
NH
525 h->free_huge_pages--;
526 h->free_huge_pages_node[nid]--;
527 return page;
528}
529
a5516438
AK
530static struct page *dequeue_huge_page_vma(struct hstate *h,
531 struct vm_area_struct *vma,
04f2cbe3 532 unsigned long address, int avoid_reserve)
1da177e4 533{
b1c12cbc 534 struct page *page = NULL;
480eccf9 535 struct mempolicy *mpol;
19770b32 536 nodemask_t *nodemask;
c0ff7453 537 struct zonelist *zonelist;
dd1a239f
MG
538 struct zone *zone;
539 struct zoneref *z;
cc9a6c87 540 unsigned int cpuset_mems_cookie;
1da177e4 541
cc9a6c87
MG
542retry_cpuset:
543 cpuset_mems_cookie = get_mems_allowed();
c0ff7453
MX
544 zonelist = huge_zonelist(vma, address,
545 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
546 /*
547 * A child process with MAP_PRIVATE mappings created by their parent
548 * have no page reserves. This check ensures that reservations are
549 * not "stolen". The child may still get SIGKILLed
550 */
7f09ca51 551 if (!vma_has_reserves(vma) &&
a5516438 552 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 553 goto err;
a1e78772 554
04f2cbe3 555 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 556 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 557 goto err;
04f2cbe3 558
19770b32
MG
559 for_each_zone_zonelist_nodemask(zone, z, zonelist,
560 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
561 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562 page = dequeue_huge_page_node(h, zone_to_nid(zone));
563 if (page) {
564 if (!avoid_reserve)
565 decrement_hugepage_resv_vma(h, vma);
566 break;
567 }
3abf7afd 568 }
1da177e4 569 }
cc9a6c87 570
52cd3b07 571 mpol_cond_put(mpol);
cc9a6c87
MG
572 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573 goto retry_cpuset;
1da177e4 574 return page;
cc9a6c87
MG
575
576err:
577 mpol_cond_put(mpol);
578 return NULL;
1da177e4
LT
579}
580
a5516438 581static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
582{
583 int i;
a5516438 584
18229df5
AW
585 VM_BUG_ON(h->order >= MAX_ORDER);
586
a5516438
AK
587 h->nr_huge_pages--;
588 h->nr_huge_pages_node[page_to_nid(page)]--;
589 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
590 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 1 << PG_referenced | 1 << PG_dirty |
592 1 << PG_active | 1 << PG_reserved |
593 1 << PG_private | 1 << PG_writeback);
6af2acb6 594 }
9dd540e2 595 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
7f2e9525 598 arch_release_hugepage(page);
a5516438 599 __free_pages(page, huge_page_order(h));
6af2acb6
AL
600}
601
e5ff2159
AK
602struct hstate *size_to_hstate(unsigned long size)
603{
604 struct hstate *h;
605
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
609 }
610 return NULL;
611}
612
27a85ef1
DG
613static void free_huge_page(struct page *page)
614{
a5516438
AK
615 /*
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
618 */
e5ff2159 619 struct hstate *h = page_hstate(page);
7893d1d5 620 int nid = page_to_nid(page);
90481622
DG
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
27a85ef1 623
e5df70ab 624 set_page_private(page, 0);
23be7468 625 page->mapping = NULL;
7893d1d5 626 BUG_ON(page_count(page));
0fe6e20b 627 BUG_ON(page_mapcount(page));
27a85ef1
DG
628
629 spin_lock(&hugetlb_lock);
6d76dcf4
AK
630 hugetlb_cgroup_uncharge_page(hstate_index(h),
631 pages_per_huge_page(h), page);
aa888a74 632 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
633 /* remove the page from active list */
634 list_del(&page->lru);
a5516438
AK
635 update_and_free_page(h, page);
636 h->surplus_huge_pages--;
637 h->surplus_huge_pages_node[nid]--;
7893d1d5 638 } else {
5d3a551c 639 arch_clear_hugepage_flags(page);
a5516438 640 enqueue_huge_page(h, page);
7893d1d5 641 }
27a85ef1 642 spin_unlock(&hugetlb_lock);
90481622 643 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
644}
645
a5516438 646static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 647{
0edaecfa 648 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
9dd540e2 651 set_hugetlb_cgroup(page, NULL);
a5516438
AK
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
656}
657
20a0307c
WF
658static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659{
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
663
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
58a84aa9 669 set_page_count(p, 0);
20a0307c
WF
670 p->first_page = page;
671 }
672}
673
674int PageHuge(struct page *page)
675{
676 compound_page_dtor *dtor;
677
678 if (!PageCompound(page))
679 return 0;
680
681 page = compound_head(page);
682 dtor = get_compound_page_dtor(page);
683
684 return dtor == free_huge_page;
685}
43131e14
NH
686EXPORT_SYMBOL_GPL(PageHuge);
687
a5516438 688static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 689{
1da177e4 690 struct page *page;
f96efd58 691
aa888a74
AK
692 if (h->order >= MAX_ORDER)
693 return NULL;
694
6484eb3e 695 page = alloc_pages_exact_node(nid,
551883ae
NA
696 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
697 __GFP_REPEAT|__GFP_NOWARN,
a5516438 698 huge_page_order(h));
1da177e4 699 if (page) {
7f2e9525 700 if (arch_prepare_hugepage(page)) {
caff3a2c 701 __free_pages(page, huge_page_order(h));
7b8ee84d 702 return NULL;
7f2e9525 703 }
a5516438 704 prep_new_huge_page(h, page, nid);
1da177e4 705 }
63b4613c
NA
706
707 return page;
708}
709
9a76db09 710/*
6ae11b27
LS
711 * common helper functions for hstate_next_node_to_{alloc|free}.
712 * We may have allocated or freed a huge page based on a different
713 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
714 * be outside of *nodes_allowed. Ensure that we use an allowed
715 * node for alloc or free.
9a76db09 716 */
6ae11b27 717static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 718{
6ae11b27 719 nid = next_node(nid, *nodes_allowed);
9a76db09 720 if (nid == MAX_NUMNODES)
6ae11b27 721 nid = first_node(*nodes_allowed);
9a76db09
LS
722 VM_BUG_ON(nid >= MAX_NUMNODES);
723
724 return nid;
725}
726
6ae11b27
LS
727static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
728{
729 if (!node_isset(nid, *nodes_allowed))
730 nid = next_node_allowed(nid, nodes_allowed);
731 return nid;
732}
733
5ced66c9 734/*
6ae11b27
LS
735 * returns the previously saved node ["this node"] from which to
736 * allocate a persistent huge page for the pool and advance the
737 * next node from which to allocate, handling wrap at end of node
738 * mask.
5ced66c9 739 */
6ae11b27
LS
740static int hstate_next_node_to_alloc(struct hstate *h,
741 nodemask_t *nodes_allowed)
5ced66c9 742{
6ae11b27
LS
743 int nid;
744
745 VM_BUG_ON(!nodes_allowed);
746
747 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
748 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 749
9a76db09 750 return nid;
5ced66c9
AK
751}
752
6ae11b27 753static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
754{
755 struct page *page;
756 int start_nid;
757 int next_nid;
758 int ret = 0;
759
6ae11b27 760 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 761 next_nid = start_nid;
63b4613c
NA
762
763 do {
e8c5c824 764 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 765 if (page) {
63b4613c 766 ret = 1;
9a76db09
LS
767 break;
768 }
6ae11b27 769 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 770 } while (next_nid != start_nid);
63b4613c 771
3b116300
AL
772 if (ret)
773 count_vm_event(HTLB_BUDDY_PGALLOC);
774 else
775 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
776
63b4613c 777 return ret;
1da177e4
LT
778}
779
e8c5c824 780/*
6ae11b27
LS
781 * helper for free_pool_huge_page() - return the previously saved
782 * node ["this node"] from which to free a huge page. Advance the
783 * next node id whether or not we find a free huge page to free so
784 * that the next attempt to free addresses the next node.
e8c5c824 785 */
6ae11b27 786static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 787{
6ae11b27
LS
788 int nid;
789
790 VM_BUG_ON(!nodes_allowed);
791
792 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
793 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 794
9a76db09 795 return nid;
e8c5c824
LS
796}
797
798/*
799 * Free huge page from pool from next node to free.
800 * Attempt to keep persistent huge pages more or less
801 * balanced over allowed nodes.
802 * Called with hugetlb_lock locked.
803 */
6ae11b27
LS
804static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
805 bool acct_surplus)
e8c5c824
LS
806{
807 int start_nid;
808 int next_nid;
809 int ret = 0;
810
6ae11b27 811 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
812 next_nid = start_nid;
813
814 do {
685f3457
LS
815 /*
816 * If we're returning unused surplus pages, only examine
817 * nodes with surplus pages.
818 */
819 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
820 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
821 struct page *page =
822 list_entry(h->hugepage_freelists[next_nid].next,
823 struct page, lru);
824 list_del(&page->lru);
825 h->free_huge_pages--;
826 h->free_huge_pages_node[next_nid]--;
685f3457
LS
827 if (acct_surplus) {
828 h->surplus_huge_pages--;
829 h->surplus_huge_pages_node[next_nid]--;
830 }
e8c5c824
LS
831 update_and_free_page(h, page);
832 ret = 1;
9a76db09 833 break;
e8c5c824 834 }
6ae11b27 835 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 836 } while (next_nid != start_nid);
e8c5c824
LS
837
838 return ret;
839}
840
bf50bab2 841static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
842{
843 struct page *page;
bf50bab2 844 unsigned int r_nid;
7893d1d5 845
aa888a74
AK
846 if (h->order >= MAX_ORDER)
847 return NULL;
848
d1c3fb1f
NA
849 /*
850 * Assume we will successfully allocate the surplus page to
851 * prevent racing processes from causing the surplus to exceed
852 * overcommit
853 *
854 * This however introduces a different race, where a process B
855 * tries to grow the static hugepage pool while alloc_pages() is
856 * called by process A. B will only examine the per-node
857 * counters in determining if surplus huge pages can be
858 * converted to normal huge pages in adjust_pool_surplus(). A
859 * won't be able to increment the per-node counter, until the
860 * lock is dropped by B, but B doesn't drop hugetlb_lock until
861 * no more huge pages can be converted from surplus to normal
862 * state (and doesn't try to convert again). Thus, we have a
863 * case where a surplus huge page exists, the pool is grown, and
864 * the surplus huge page still exists after, even though it
865 * should just have been converted to a normal huge page. This
866 * does not leak memory, though, as the hugepage will be freed
867 * once it is out of use. It also does not allow the counters to
868 * go out of whack in adjust_pool_surplus() as we don't modify
869 * the node values until we've gotten the hugepage and only the
870 * per-node value is checked there.
871 */
872 spin_lock(&hugetlb_lock);
a5516438 873 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
874 spin_unlock(&hugetlb_lock);
875 return NULL;
876 } else {
a5516438
AK
877 h->nr_huge_pages++;
878 h->surplus_huge_pages++;
d1c3fb1f
NA
879 }
880 spin_unlock(&hugetlb_lock);
881
bf50bab2
NH
882 if (nid == NUMA_NO_NODE)
883 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
884 __GFP_REPEAT|__GFP_NOWARN,
885 huge_page_order(h));
886 else
887 page = alloc_pages_exact_node(nid,
888 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
889 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 890
caff3a2c
GS
891 if (page && arch_prepare_hugepage(page)) {
892 __free_pages(page, huge_page_order(h));
ea5768c7 893 page = NULL;
caff3a2c
GS
894 }
895
d1c3fb1f 896 spin_lock(&hugetlb_lock);
7893d1d5 897 if (page) {
0edaecfa 898 INIT_LIST_HEAD(&page->lru);
bf50bab2 899 r_nid = page_to_nid(page);
7893d1d5 900 set_compound_page_dtor(page, free_huge_page);
9dd540e2 901 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
902 /*
903 * We incremented the global counters already
904 */
bf50bab2
NH
905 h->nr_huge_pages_node[r_nid]++;
906 h->surplus_huge_pages_node[r_nid]++;
3b116300 907 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 908 } else {
a5516438
AK
909 h->nr_huge_pages--;
910 h->surplus_huge_pages--;
3b116300 911 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 912 }
d1c3fb1f 913 spin_unlock(&hugetlb_lock);
7893d1d5
AL
914
915 return page;
916}
917
bf50bab2
NH
918/*
919 * This allocation function is useful in the context where vma is irrelevant.
920 * E.g. soft-offlining uses this function because it only cares physical
921 * address of error page.
922 */
923struct page *alloc_huge_page_node(struct hstate *h, int nid)
924{
925 struct page *page;
926
927 spin_lock(&hugetlb_lock);
928 page = dequeue_huge_page_node(h, nid);
929 spin_unlock(&hugetlb_lock);
930
94ae8ba7 931 if (!page)
bf50bab2
NH
932 page = alloc_buddy_huge_page(h, nid);
933
934 return page;
935}
936
e4e574b7 937/*
25985edc 938 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
939 * of size 'delta'.
940 */
a5516438 941static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
942{
943 struct list_head surplus_list;
944 struct page *page, *tmp;
945 int ret, i;
946 int needed, allocated;
28073b02 947 bool alloc_ok = true;
e4e574b7 948
a5516438 949 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 950 if (needed <= 0) {
a5516438 951 h->resv_huge_pages += delta;
e4e574b7 952 return 0;
ac09b3a1 953 }
e4e574b7
AL
954
955 allocated = 0;
956 INIT_LIST_HEAD(&surplus_list);
957
958 ret = -ENOMEM;
959retry:
960 spin_unlock(&hugetlb_lock);
961 for (i = 0; i < needed; i++) {
bf50bab2 962 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
963 if (!page) {
964 alloc_ok = false;
965 break;
966 }
e4e574b7
AL
967 list_add(&page->lru, &surplus_list);
968 }
28073b02 969 allocated += i;
e4e574b7
AL
970
971 /*
972 * After retaking hugetlb_lock, we need to recalculate 'needed'
973 * because either resv_huge_pages or free_huge_pages may have changed.
974 */
975 spin_lock(&hugetlb_lock);
a5516438
AK
976 needed = (h->resv_huge_pages + delta) -
977 (h->free_huge_pages + allocated);
28073b02
HD
978 if (needed > 0) {
979 if (alloc_ok)
980 goto retry;
981 /*
982 * We were not able to allocate enough pages to
983 * satisfy the entire reservation so we free what
984 * we've allocated so far.
985 */
986 goto free;
987 }
e4e574b7
AL
988 /*
989 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 990 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 991 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
992 * allocator. Commit the entire reservation here to prevent another
993 * process from stealing the pages as they are added to the pool but
994 * before they are reserved.
e4e574b7
AL
995 */
996 needed += allocated;
a5516438 997 h->resv_huge_pages += delta;
e4e574b7 998 ret = 0;
a9869b83 999
19fc3f0a 1000 /* Free the needed pages to the hugetlb pool */
e4e574b7 1001 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1002 if ((--needed) < 0)
1003 break;
a9869b83
NH
1004 /*
1005 * This page is now managed by the hugetlb allocator and has
1006 * no users -- drop the buddy allocator's reference.
1007 */
1008 put_page_testzero(page);
1009 VM_BUG_ON(page_count(page));
a5516438 1010 enqueue_huge_page(h, page);
19fc3f0a 1011 }
28073b02 1012free:
b0365c8d 1013 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1014
1015 /* Free unnecessary surplus pages to the buddy allocator */
1016 if (!list_empty(&surplus_list)) {
19fc3f0a 1017 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1018 put_page(page);
af767cbd 1019 }
e4e574b7 1020 }
a9869b83 1021 spin_lock(&hugetlb_lock);
e4e574b7
AL
1022
1023 return ret;
1024}
1025
1026/*
1027 * When releasing a hugetlb pool reservation, any surplus pages that were
1028 * allocated to satisfy the reservation must be explicitly freed if they were
1029 * never used.
685f3457 1030 * Called with hugetlb_lock held.
e4e574b7 1031 */
a5516438
AK
1032static void return_unused_surplus_pages(struct hstate *h,
1033 unsigned long unused_resv_pages)
e4e574b7 1034{
e4e574b7
AL
1035 unsigned long nr_pages;
1036
ac09b3a1 1037 /* Uncommit the reservation */
a5516438 1038 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1039
aa888a74
AK
1040 /* Cannot return gigantic pages currently */
1041 if (h->order >= MAX_ORDER)
1042 return;
1043
a5516438 1044 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1045
685f3457
LS
1046 /*
1047 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1048 * evenly across all nodes with memory. Iterate across these nodes
1049 * until we can no longer free unreserved surplus pages. This occurs
1050 * when the nodes with surplus pages have no free pages.
1051 * free_pool_huge_page() will balance the the freed pages across the
1052 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1053 */
1054 while (nr_pages--) {
9b5e5d0f 1055 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 1056 break;
e4e574b7
AL
1057 }
1058}
1059
c37f9fb1
AW
1060/*
1061 * Determine if the huge page at addr within the vma has an associated
1062 * reservation. Where it does not we will need to logically increase
90481622
DG
1063 * reservation and actually increase subpool usage before an allocation
1064 * can occur. Where any new reservation would be required the
1065 * reservation change is prepared, but not committed. Once the page
1066 * has been allocated from the subpool and instantiated the change should
1067 * be committed via vma_commit_reservation. No action is required on
1068 * failure.
c37f9fb1 1069 */
e2f17d94 1070static long vma_needs_reservation(struct hstate *h,
a5516438 1071 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1072{
1073 struct address_space *mapping = vma->vm_file->f_mapping;
1074 struct inode *inode = mapping->host;
1075
f83a275d 1076 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1077 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1078 return region_chg(&inode->i_mapping->private_list,
1079 idx, idx + 1);
1080
84afd99b
AW
1081 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1082 return 1;
c37f9fb1 1083
84afd99b 1084 } else {
e2f17d94 1085 long err;
a5516438 1086 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1087 struct resv_map *reservations = vma_resv_map(vma);
1088
1089 err = region_chg(&reservations->regions, idx, idx + 1);
1090 if (err < 0)
1091 return err;
1092 return 0;
1093 }
c37f9fb1 1094}
a5516438
AK
1095static void vma_commit_reservation(struct hstate *h,
1096 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1097{
1098 struct address_space *mapping = vma->vm_file->f_mapping;
1099 struct inode *inode = mapping->host;
1100
f83a275d 1101 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1102 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1103 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1104
1105 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1106 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1107 struct resv_map *reservations = vma_resv_map(vma);
1108
1109 /* Mark this page used in the map. */
1110 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1111 }
1112}
1113
a1e78772 1114static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1115 unsigned long addr, int avoid_reserve)
1da177e4 1116{
90481622 1117 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1118 struct hstate *h = hstate_vma(vma);
348ea204 1119 struct page *page;
e2f17d94 1120 long chg;
6d76dcf4
AK
1121 int ret, idx;
1122 struct hugetlb_cgroup *h_cg;
a1e78772 1123
6d76dcf4 1124 idx = hstate_index(h);
a1e78772 1125 /*
90481622
DG
1126 * Processes that did not create the mapping will have no
1127 * reserves and will not have accounted against subpool
1128 * limit. Check that the subpool limit can be made before
1129 * satisfying the allocation MAP_NORESERVE mappings may also
1130 * need pages and subpool limit allocated allocated if no reserve
1131 * mapping overlaps.
a1e78772 1132 */
a5516438 1133 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1134 if (chg < 0)
76dcee75 1135 return ERR_PTR(-ENOMEM);
c37f9fb1 1136 if (chg)
90481622 1137 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1138 return ERR_PTR(-ENOSPC);
1da177e4 1139
6d76dcf4
AK
1140 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1141 if (ret) {
1142 hugepage_subpool_put_pages(spool, chg);
1143 return ERR_PTR(-ENOSPC);
1144 }
1da177e4 1145 spin_lock(&hugetlb_lock);
a5516438 1146 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
94ae8ba7
AK
1147 if (page) {
1148 /* update page cgroup details */
1149 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1150 h_cg, page);
1151 spin_unlock(&hugetlb_lock);
1152 } else {
1153 spin_unlock(&hugetlb_lock);
bf50bab2 1154 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1155 if (!page) {
6d76dcf4
AK
1156 hugetlb_cgroup_uncharge_cgroup(idx,
1157 pages_per_huge_page(h),
1158 h_cg);
90481622 1159 hugepage_subpool_put_pages(spool, chg);
76dcee75 1160 return ERR_PTR(-ENOSPC);
68842c9b 1161 }
79dbb236 1162 spin_lock(&hugetlb_lock);
94ae8ba7
AK
1163 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1164 h_cg, page);
79dbb236
AK
1165 list_move(&page->lru, &h->hugepage_activelist);
1166 spin_unlock(&hugetlb_lock);
68842c9b 1167 }
348ea204 1168
90481622 1169 set_page_private(page, (unsigned long)spool);
90d8b7e6 1170
a5516438 1171 vma_commit_reservation(h, vma, addr);
90d8b7e6 1172 return page;
b45b5bd6
DG
1173}
1174
91f47662 1175int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1176{
1177 struct huge_bootmem_page *m;
9b5e5d0f 1178 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1179
1180 while (nr_nodes) {
1181 void *addr;
1182
1183 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1184 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1185 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1186 huge_page_size(h), huge_page_size(h), 0);
1187
1188 if (addr) {
1189 /*
1190 * Use the beginning of the huge page to store the
1191 * huge_bootmem_page struct (until gather_bootmem
1192 * puts them into the mem_map).
1193 */
1194 m = addr;
91f47662 1195 goto found;
aa888a74 1196 }
aa888a74
AK
1197 nr_nodes--;
1198 }
1199 return 0;
1200
1201found:
1202 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1203 /* Put them into a private list first because mem_map is not up yet */
1204 list_add(&m->list, &huge_boot_pages);
1205 m->hstate = h;
1206 return 1;
1207}
1208
18229df5
AW
1209static void prep_compound_huge_page(struct page *page, int order)
1210{
1211 if (unlikely(order > (MAX_ORDER - 1)))
1212 prep_compound_gigantic_page(page, order);
1213 else
1214 prep_compound_page(page, order);
1215}
1216
aa888a74
AK
1217/* Put bootmem huge pages into the standard lists after mem_map is up */
1218static void __init gather_bootmem_prealloc(void)
1219{
1220 struct huge_bootmem_page *m;
1221
1222 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1223 struct hstate *h = m->hstate;
ee8f248d
BB
1224 struct page *page;
1225
1226#ifdef CONFIG_HIGHMEM
1227 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1228 free_bootmem_late((unsigned long)m,
1229 sizeof(struct huge_bootmem_page));
1230#else
1231 page = virt_to_page(m);
1232#endif
aa888a74
AK
1233 __ClearPageReserved(page);
1234 WARN_ON(page_count(page) != 1);
18229df5 1235 prep_compound_huge_page(page, h->order);
aa888a74 1236 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1237 /*
1238 * If we had gigantic hugepages allocated at boot time, we need
1239 * to restore the 'stolen' pages to totalram_pages in order to
1240 * fix confusing memory reports from free(1) and another
1241 * side-effects, like CommitLimit going negative.
1242 */
1243 if (h->order > (MAX_ORDER - 1))
1244 totalram_pages += 1 << h->order;
aa888a74
AK
1245 }
1246}
1247
8faa8b07 1248static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1249{
1250 unsigned long i;
a5516438 1251
e5ff2159 1252 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1253 if (h->order >= MAX_ORDER) {
1254 if (!alloc_bootmem_huge_page(h))
1255 break;
9b5e5d0f
LS
1256 } else if (!alloc_fresh_huge_page(h,
1257 &node_states[N_HIGH_MEMORY]))
1da177e4 1258 break;
1da177e4 1259 }
8faa8b07 1260 h->max_huge_pages = i;
e5ff2159
AK
1261}
1262
1263static void __init hugetlb_init_hstates(void)
1264{
1265 struct hstate *h;
1266
1267 for_each_hstate(h) {
8faa8b07
AK
1268 /* oversize hugepages were init'ed in early boot */
1269 if (h->order < MAX_ORDER)
1270 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1271 }
1272}
1273
4abd32db
AK
1274static char * __init memfmt(char *buf, unsigned long n)
1275{
1276 if (n >= (1UL << 30))
1277 sprintf(buf, "%lu GB", n >> 30);
1278 else if (n >= (1UL << 20))
1279 sprintf(buf, "%lu MB", n >> 20);
1280 else
1281 sprintf(buf, "%lu KB", n >> 10);
1282 return buf;
1283}
1284
e5ff2159
AK
1285static void __init report_hugepages(void)
1286{
1287 struct hstate *h;
1288
1289 for_each_hstate(h) {
4abd32db
AK
1290 char buf[32];
1291 printk(KERN_INFO "HugeTLB registered %s page size, "
1292 "pre-allocated %ld pages\n",
1293 memfmt(buf, huge_page_size(h)),
1294 h->free_huge_pages);
e5ff2159
AK
1295 }
1296}
1297
1da177e4 1298#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1299static void try_to_free_low(struct hstate *h, unsigned long count,
1300 nodemask_t *nodes_allowed)
1da177e4 1301{
4415cc8d
CL
1302 int i;
1303
aa888a74
AK
1304 if (h->order >= MAX_ORDER)
1305 return;
1306
6ae11b27 1307 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1308 struct page *page, *next;
a5516438
AK
1309 struct list_head *freel = &h->hugepage_freelists[i];
1310 list_for_each_entry_safe(page, next, freel, lru) {
1311 if (count >= h->nr_huge_pages)
6b0c880d 1312 return;
1da177e4
LT
1313 if (PageHighMem(page))
1314 continue;
1315 list_del(&page->lru);
e5ff2159 1316 update_and_free_page(h, page);
a5516438
AK
1317 h->free_huge_pages--;
1318 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1319 }
1320 }
1321}
1322#else
6ae11b27
LS
1323static inline void try_to_free_low(struct hstate *h, unsigned long count,
1324 nodemask_t *nodes_allowed)
1da177e4
LT
1325{
1326}
1327#endif
1328
20a0307c
WF
1329/*
1330 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1331 * balanced by operating on them in a round-robin fashion.
1332 * Returns 1 if an adjustment was made.
1333 */
6ae11b27
LS
1334static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1335 int delta)
20a0307c 1336{
e8c5c824 1337 int start_nid, next_nid;
20a0307c
WF
1338 int ret = 0;
1339
1340 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1341
e8c5c824 1342 if (delta < 0)
6ae11b27 1343 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1344 else
6ae11b27 1345 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1346 next_nid = start_nid;
1347
1348 do {
1349 int nid = next_nid;
1350 if (delta < 0) {
e8c5c824
LS
1351 /*
1352 * To shrink on this node, there must be a surplus page
1353 */
9a76db09 1354 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1355 next_nid = hstate_next_node_to_alloc(h,
1356 nodes_allowed);
e8c5c824 1357 continue;
9a76db09 1358 }
e8c5c824
LS
1359 }
1360 if (delta > 0) {
e8c5c824
LS
1361 /*
1362 * Surplus cannot exceed the total number of pages
1363 */
1364 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1365 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1366 next_nid = hstate_next_node_to_free(h,
1367 nodes_allowed);
e8c5c824 1368 continue;
9a76db09 1369 }
e8c5c824 1370 }
20a0307c
WF
1371
1372 h->surplus_huge_pages += delta;
1373 h->surplus_huge_pages_node[nid] += delta;
1374 ret = 1;
1375 break;
e8c5c824 1376 } while (next_nid != start_nid);
20a0307c 1377
20a0307c
WF
1378 return ret;
1379}
1380
a5516438 1381#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1382static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1383 nodemask_t *nodes_allowed)
1da177e4 1384{
7893d1d5 1385 unsigned long min_count, ret;
1da177e4 1386
aa888a74
AK
1387 if (h->order >= MAX_ORDER)
1388 return h->max_huge_pages;
1389
7893d1d5
AL
1390 /*
1391 * Increase the pool size
1392 * First take pages out of surplus state. Then make up the
1393 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1394 *
1395 * We might race with alloc_buddy_huge_page() here and be unable
1396 * to convert a surplus huge page to a normal huge page. That is
1397 * not critical, though, it just means the overall size of the
1398 * pool might be one hugepage larger than it needs to be, but
1399 * within all the constraints specified by the sysctls.
7893d1d5 1400 */
1da177e4 1401 spin_lock(&hugetlb_lock);
a5516438 1402 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1403 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1404 break;
1405 }
1406
a5516438 1407 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1408 /*
1409 * If this allocation races such that we no longer need the
1410 * page, free_huge_page will handle it by freeing the page
1411 * and reducing the surplus.
1412 */
1413 spin_unlock(&hugetlb_lock);
6ae11b27 1414 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1415 spin_lock(&hugetlb_lock);
1416 if (!ret)
1417 goto out;
1418
536240f2
MG
1419 /* Bail for signals. Probably ctrl-c from user */
1420 if (signal_pending(current))
1421 goto out;
7893d1d5 1422 }
7893d1d5
AL
1423
1424 /*
1425 * Decrease the pool size
1426 * First return free pages to the buddy allocator (being careful
1427 * to keep enough around to satisfy reservations). Then place
1428 * pages into surplus state as needed so the pool will shrink
1429 * to the desired size as pages become free.
d1c3fb1f
NA
1430 *
1431 * By placing pages into the surplus state independent of the
1432 * overcommit value, we are allowing the surplus pool size to
1433 * exceed overcommit. There are few sane options here. Since
1434 * alloc_buddy_huge_page() is checking the global counter,
1435 * though, we'll note that we're not allowed to exceed surplus
1436 * and won't grow the pool anywhere else. Not until one of the
1437 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1438 */
a5516438 1439 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1440 min_count = max(count, min_count);
6ae11b27 1441 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1442 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1443 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1444 break;
1da177e4 1445 }
a5516438 1446 while (count < persistent_huge_pages(h)) {
6ae11b27 1447 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1448 break;
1449 }
1450out:
a5516438 1451 ret = persistent_huge_pages(h);
1da177e4 1452 spin_unlock(&hugetlb_lock);
7893d1d5 1453 return ret;
1da177e4
LT
1454}
1455
a3437870
NA
1456#define HSTATE_ATTR_RO(_name) \
1457 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1458
1459#define HSTATE_ATTR(_name) \
1460 static struct kobj_attribute _name##_attr = \
1461 __ATTR(_name, 0644, _name##_show, _name##_store)
1462
1463static struct kobject *hugepages_kobj;
1464static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1465
9a305230
LS
1466static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1467
1468static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1469{
1470 int i;
9a305230 1471
a3437870 1472 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1473 if (hstate_kobjs[i] == kobj) {
1474 if (nidp)
1475 *nidp = NUMA_NO_NODE;
a3437870 1476 return &hstates[i];
9a305230
LS
1477 }
1478
1479 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1480}
1481
06808b08 1482static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1483 struct kobj_attribute *attr, char *buf)
1484{
9a305230
LS
1485 struct hstate *h;
1486 unsigned long nr_huge_pages;
1487 int nid;
1488
1489 h = kobj_to_hstate(kobj, &nid);
1490 if (nid == NUMA_NO_NODE)
1491 nr_huge_pages = h->nr_huge_pages;
1492 else
1493 nr_huge_pages = h->nr_huge_pages_node[nid];
1494
1495 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1496}
adbe8726 1497
06808b08
LS
1498static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1499 struct kobject *kobj, struct kobj_attribute *attr,
1500 const char *buf, size_t len)
a3437870
NA
1501{
1502 int err;
9a305230 1503 int nid;
06808b08 1504 unsigned long count;
9a305230 1505 struct hstate *h;
bad44b5b 1506 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1507
06808b08 1508 err = strict_strtoul(buf, 10, &count);
73ae31e5 1509 if (err)
adbe8726 1510 goto out;
a3437870 1511
9a305230 1512 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1513 if (h->order >= MAX_ORDER) {
1514 err = -EINVAL;
1515 goto out;
1516 }
1517
9a305230
LS
1518 if (nid == NUMA_NO_NODE) {
1519 /*
1520 * global hstate attribute
1521 */
1522 if (!(obey_mempolicy &&
1523 init_nodemask_of_mempolicy(nodes_allowed))) {
1524 NODEMASK_FREE(nodes_allowed);
1525 nodes_allowed = &node_states[N_HIGH_MEMORY];
1526 }
1527 } else if (nodes_allowed) {
1528 /*
1529 * per node hstate attribute: adjust count to global,
1530 * but restrict alloc/free to the specified node.
1531 */
1532 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1533 init_nodemask_of_node(nodes_allowed, nid);
1534 } else
1535 nodes_allowed = &node_states[N_HIGH_MEMORY];
1536
06808b08 1537 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1538
9b5e5d0f 1539 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1540 NODEMASK_FREE(nodes_allowed);
1541
1542 return len;
adbe8726
EM
1543out:
1544 NODEMASK_FREE(nodes_allowed);
1545 return err;
06808b08
LS
1546}
1547
1548static ssize_t nr_hugepages_show(struct kobject *kobj,
1549 struct kobj_attribute *attr, char *buf)
1550{
1551 return nr_hugepages_show_common(kobj, attr, buf);
1552}
1553
1554static ssize_t nr_hugepages_store(struct kobject *kobj,
1555 struct kobj_attribute *attr, const char *buf, size_t len)
1556{
1557 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1558}
1559HSTATE_ATTR(nr_hugepages);
1560
06808b08
LS
1561#ifdef CONFIG_NUMA
1562
1563/*
1564 * hstate attribute for optionally mempolicy-based constraint on persistent
1565 * huge page alloc/free.
1566 */
1567static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1568 struct kobj_attribute *attr, char *buf)
1569{
1570 return nr_hugepages_show_common(kobj, attr, buf);
1571}
1572
1573static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1574 struct kobj_attribute *attr, const char *buf, size_t len)
1575{
1576 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1577}
1578HSTATE_ATTR(nr_hugepages_mempolicy);
1579#endif
1580
1581
a3437870
NA
1582static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1583 struct kobj_attribute *attr, char *buf)
1584{
9a305230 1585 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1586 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1587}
adbe8726 1588
a3437870
NA
1589static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1590 struct kobj_attribute *attr, const char *buf, size_t count)
1591{
1592 int err;
1593 unsigned long input;
9a305230 1594 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1595
adbe8726
EM
1596 if (h->order >= MAX_ORDER)
1597 return -EINVAL;
1598
a3437870
NA
1599 err = strict_strtoul(buf, 10, &input);
1600 if (err)
73ae31e5 1601 return err;
a3437870
NA
1602
1603 spin_lock(&hugetlb_lock);
1604 h->nr_overcommit_huge_pages = input;
1605 spin_unlock(&hugetlb_lock);
1606
1607 return count;
1608}
1609HSTATE_ATTR(nr_overcommit_hugepages);
1610
1611static ssize_t free_hugepages_show(struct kobject *kobj,
1612 struct kobj_attribute *attr, char *buf)
1613{
9a305230
LS
1614 struct hstate *h;
1615 unsigned long free_huge_pages;
1616 int nid;
1617
1618 h = kobj_to_hstate(kobj, &nid);
1619 if (nid == NUMA_NO_NODE)
1620 free_huge_pages = h->free_huge_pages;
1621 else
1622 free_huge_pages = h->free_huge_pages_node[nid];
1623
1624 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1625}
1626HSTATE_ATTR_RO(free_hugepages);
1627
1628static ssize_t resv_hugepages_show(struct kobject *kobj,
1629 struct kobj_attribute *attr, char *buf)
1630{
9a305230 1631 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1632 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1633}
1634HSTATE_ATTR_RO(resv_hugepages);
1635
1636static ssize_t surplus_hugepages_show(struct kobject *kobj,
1637 struct kobj_attribute *attr, char *buf)
1638{
9a305230
LS
1639 struct hstate *h;
1640 unsigned long surplus_huge_pages;
1641 int nid;
1642
1643 h = kobj_to_hstate(kobj, &nid);
1644 if (nid == NUMA_NO_NODE)
1645 surplus_huge_pages = h->surplus_huge_pages;
1646 else
1647 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1648
1649 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1650}
1651HSTATE_ATTR_RO(surplus_hugepages);
1652
1653static struct attribute *hstate_attrs[] = {
1654 &nr_hugepages_attr.attr,
1655 &nr_overcommit_hugepages_attr.attr,
1656 &free_hugepages_attr.attr,
1657 &resv_hugepages_attr.attr,
1658 &surplus_hugepages_attr.attr,
06808b08
LS
1659#ifdef CONFIG_NUMA
1660 &nr_hugepages_mempolicy_attr.attr,
1661#endif
a3437870
NA
1662 NULL,
1663};
1664
1665static struct attribute_group hstate_attr_group = {
1666 .attrs = hstate_attrs,
1667};
1668
094e9539
JM
1669static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1670 struct kobject **hstate_kobjs,
1671 struct attribute_group *hstate_attr_group)
a3437870
NA
1672{
1673 int retval;
972dc4de 1674 int hi = hstate_index(h);
a3437870 1675
9a305230
LS
1676 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1677 if (!hstate_kobjs[hi])
a3437870
NA
1678 return -ENOMEM;
1679
9a305230 1680 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1681 if (retval)
9a305230 1682 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1683
1684 return retval;
1685}
1686
1687static void __init hugetlb_sysfs_init(void)
1688{
1689 struct hstate *h;
1690 int err;
1691
1692 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1693 if (!hugepages_kobj)
1694 return;
1695
1696 for_each_hstate(h) {
9a305230
LS
1697 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1698 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1699 if (err)
1700 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1701 h->name);
1702 }
1703}
1704
9a305230
LS
1705#ifdef CONFIG_NUMA
1706
1707/*
1708 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1709 * with node devices in node_devices[] using a parallel array. The array
1710 * index of a node device or _hstate == node id.
1711 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1712 * the base kernel, on the hugetlb module.
1713 */
1714struct node_hstate {
1715 struct kobject *hugepages_kobj;
1716 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1717};
1718struct node_hstate node_hstates[MAX_NUMNODES];
1719
1720/*
10fbcf4c 1721 * A subset of global hstate attributes for node devices
9a305230
LS
1722 */
1723static struct attribute *per_node_hstate_attrs[] = {
1724 &nr_hugepages_attr.attr,
1725 &free_hugepages_attr.attr,
1726 &surplus_hugepages_attr.attr,
1727 NULL,
1728};
1729
1730static struct attribute_group per_node_hstate_attr_group = {
1731 .attrs = per_node_hstate_attrs,
1732};
1733
1734/*
10fbcf4c 1735 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1736 * Returns node id via non-NULL nidp.
1737 */
1738static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1739{
1740 int nid;
1741
1742 for (nid = 0; nid < nr_node_ids; nid++) {
1743 struct node_hstate *nhs = &node_hstates[nid];
1744 int i;
1745 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1746 if (nhs->hstate_kobjs[i] == kobj) {
1747 if (nidp)
1748 *nidp = nid;
1749 return &hstates[i];
1750 }
1751 }
1752
1753 BUG();
1754 return NULL;
1755}
1756
1757/*
10fbcf4c 1758 * Unregister hstate attributes from a single node device.
9a305230
LS
1759 * No-op if no hstate attributes attached.
1760 */
1761void hugetlb_unregister_node(struct node *node)
1762{
1763 struct hstate *h;
10fbcf4c 1764 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1765
1766 if (!nhs->hugepages_kobj)
9b5e5d0f 1767 return; /* no hstate attributes */
9a305230 1768
972dc4de
AK
1769 for_each_hstate(h) {
1770 int idx = hstate_index(h);
1771 if (nhs->hstate_kobjs[idx]) {
1772 kobject_put(nhs->hstate_kobjs[idx]);
1773 nhs->hstate_kobjs[idx] = NULL;
9a305230 1774 }
972dc4de 1775 }
9a305230
LS
1776
1777 kobject_put(nhs->hugepages_kobj);
1778 nhs->hugepages_kobj = NULL;
1779}
1780
1781/*
10fbcf4c 1782 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1783 * that have them.
1784 */
1785static void hugetlb_unregister_all_nodes(void)
1786{
1787 int nid;
1788
1789 /*
10fbcf4c 1790 * disable node device registrations.
9a305230
LS
1791 */
1792 register_hugetlbfs_with_node(NULL, NULL);
1793
1794 /*
1795 * remove hstate attributes from any nodes that have them.
1796 */
1797 for (nid = 0; nid < nr_node_ids; nid++)
1798 hugetlb_unregister_node(&node_devices[nid]);
1799}
1800
1801/*
10fbcf4c 1802 * Register hstate attributes for a single node device.
9a305230
LS
1803 * No-op if attributes already registered.
1804 */
1805void hugetlb_register_node(struct node *node)
1806{
1807 struct hstate *h;
10fbcf4c 1808 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1809 int err;
1810
1811 if (nhs->hugepages_kobj)
1812 return; /* already allocated */
1813
1814 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1815 &node->dev.kobj);
9a305230
LS
1816 if (!nhs->hugepages_kobj)
1817 return;
1818
1819 for_each_hstate(h) {
1820 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1821 nhs->hstate_kobjs,
1822 &per_node_hstate_attr_group);
1823 if (err) {
1824 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1825 " for node %d\n",
10fbcf4c 1826 h->name, node->dev.id);
9a305230
LS
1827 hugetlb_unregister_node(node);
1828 break;
1829 }
1830 }
1831}
1832
1833/*
9b5e5d0f 1834 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1835 * devices of nodes that have memory. All on-line nodes should have
1836 * registered their associated device by this time.
9a305230
LS
1837 */
1838static void hugetlb_register_all_nodes(void)
1839{
1840 int nid;
1841
9b5e5d0f 1842 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230 1843 struct node *node = &node_devices[nid];
10fbcf4c 1844 if (node->dev.id == nid)
9a305230
LS
1845 hugetlb_register_node(node);
1846 }
1847
1848 /*
10fbcf4c 1849 * Let the node device driver know we're here so it can
9a305230
LS
1850 * [un]register hstate attributes on node hotplug.
1851 */
1852 register_hugetlbfs_with_node(hugetlb_register_node,
1853 hugetlb_unregister_node);
1854}
1855#else /* !CONFIG_NUMA */
1856
1857static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1858{
1859 BUG();
1860 if (nidp)
1861 *nidp = -1;
1862 return NULL;
1863}
1864
1865static void hugetlb_unregister_all_nodes(void) { }
1866
1867static void hugetlb_register_all_nodes(void) { }
1868
1869#endif
1870
a3437870
NA
1871static void __exit hugetlb_exit(void)
1872{
1873 struct hstate *h;
1874
9a305230
LS
1875 hugetlb_unregister_all_nodes();
1876
a3437870 1877 for_each_hstate(h) {
972dc4de 1878 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1879 }
1880
1881 kobject_put(hugepages_kobj);
1882}
1883module_exit(hugetlb_exit);
1884
1885static int __init hugetlb_init(void)
1886{
0ef89d25
BH
1887 /* Some platform decide whether they support huge pages at boot
1888 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1889 * there is no such support
1890 */
1891 if (HPAGE_SHIFT == 0)
1892 return 0;
a3437870 1893
e11bfbfc
NP
1894 if (!size_to_hstate(default_hstate_size)) {
1895 default_hstate_size = HPAGE_SIZE;
1896 if (!size_to_hstate(default_hstate_size))
1897 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1898 }
972dc4de 1899 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1900 if (default_hstate_max_huge_pages)
1901 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1902
1903 hugetlb_init_hstates();
1904
aa888a74
AK
1905 gather_bootmem_prealloc();
1906
a3437870
NA
1907 report_hugepages();
1908
1909 hugetlb_sysfs_init();
1910
9a305230
LS
1911 hugetlb_register_all_nodes();
1912
a3437870
NA
1913 return 0;
1914}
1915module_init(hugetlb_init);
1916
1917/* Should be called on processing a hugepagesz=... option */
1918void __init hugetlb_add_hstate(unsigned order)
1919{
1920 struct hstate *h;
8faa8b07
AK
1921 unsigned long i;
1922
a3437870
NA
1923 if (size_to_hstate(PAGE_SIZE << order)) {
1924 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1925 return;
1926 }
47d38344 1927 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1928 BUG_ON(order == 0);
47d38344 1929 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1930 h->order = order;
1931 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1932 h->nr_huge_pages = 0;
1933 h->free_huge_pages = 0;
1934 for (i = 0; i < MAX_NUMNODES; ++i)
1935 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1936 INIT_LIST_HEAD(&h->hugepage_activelist);
9b5e5d0f
LS
1937 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1938 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1939 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1940 huge_page_size(h)/1024);
abb8206c
AK
1941 /*
1942 * Add cgroup control files only if the huge page consists
1943 * of more than two normal pages. This is because we use
1944 * page[2].lru.next for storing cgoup details.
1945 */
1946 if (order >= HUGETLB_CGROUP_MIN_ORDER)
1947 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
8faa8b07 1948
a3437870
NA
1949 parsed_hstate = h;
1950}
1951
e11bfbfc 1952static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1953{
1954 unsigned long *mhp;
8faa8b07 1955 static unsigned long *last_mhp;
a3437870
NA
1956
1957 /*
47d38344 1958 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1959 * so this hugepages= parameter goes to the "default hstate".
1960 */
47d38344 1961 if (!hugetlb_max_hstate)
a3437870
NA
1962 mhp = &default_hstate_max_huge_pages;
1963 else
1964 mhp = &parsed_hstate->max_huge_pages;
1965
8faa8b07
AK
1966 if (mhp == last_mhp) {
1967 printk(KERN_WARNING "hugepages= specified twice without "
1968 "interleaving hugepagesz=, ignoring\n");
1969 return 1;
1970 }
1971
a3437870
NA
1972 if (sscanf(s, "%lu", mhp) <= 0)
1973 *mhp = 0;
1974
8faa8b07
AK
1975 /*
1976 * Global state is always initialized later in hugetlb_init.
1977 * But we need to allocate >= MAX_ORDER hstates here early to still
1978 * use the bootmem allocator.
1979 */
47d38344 1980 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1981 hugetlb_hstate_alloc_pages(parsed_hstate);
1982
1983 last_mhp = mhp;
1984
a3437870
NA
1985 return 1;
1986}
e11bfbfc
NP
1987__setup("hugepages=", hugetlb_nrpages_setup);
1988
1989static int __init hugetlb_default_setup(char *s)
1990{
1991 default_hstate_size = memparse(s, &s);
1992 return 1;
1993}
1994__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1995
8a213460
NA
1996static unsigned int cpuset_mems_nr(unsigned int *array)
1997{
1998 int node;
1999 unsigned int nr = 0;
2000
2001 for_each_node_mask(node, cpuset_current_mems_allowed)
2002 nr += array[node];
2003
2004 return nr;
2005}
2006
2007#ifdef CONFIG_SYSCTL
06808b08
LS
2008static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2009 struct ctl_table *table, int write,
2010 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2011{
e5ff2159
AK
2012 struct hstate *h = &default_hstate;
2013 unsigned long tmp;
08d4a246 2014 int ret;
e5ff2159 2015
c033a93c 2016 tmp = h->max_huge_pages;
e5ff2159 2017
adbe8726
EM
2018 if (write && h->order >= MAX_ORDER)
2019 return -EINVAL;
2020
e5ff2159
AK
2021 table->data = &tmp;
2022 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2023 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2024 if (ret)
2025 goto out;
e5ff2159 2026
06808b08 2027 if (write) {
bad44b5b
DR
2028 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2029 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2030 if (!(obey_mempolicy &&
2031 init_nodemask_of_mempolicy(nodes_allowed))) {
2032 NODEMASK_FREE(nodes_allowed);
2033 nodes_allowed = &node_states[N_HIGH_MEMORY];
2034 }
2035 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2036
2037 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2038 NODEMASK_FREE(nodes_allowed);
2039 }
08d4a246
MH
2040out:
2041 return ret;
1da177e4 2042}
396faf03 2043
06808b08
LS
2044int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2045 void __user *buffer, size_t *length, loff_t *ppos)
2046{
2047
2048 return hugetlb_sysctl_handler_common(false, table, write,
2049 buffer, length, ppos);
2050}
2051
2052#ifdef CONFIG_NUMA
2053int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2054 void __user *buffer, size_t *length, loff_t *ppos)
2055{
2056 return hugetlb_sysctl_handler_common(true, table, write,
2057 buffer, length, ppos);
2058}
2059#endif /* CONFIG_NUMA */
2060
396faf03 2061int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2062 void __user *buffer,
396faf03
MG
2063 size_t *length, loff_t *ppos)
2064{
8d65af78 2065 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2066 if (hugepages_treat_as_movable)
2067 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2068 else
2069 htlb_alloc_mask = GFP_HIGHUSER;
2070 return 0;
2071}
2072
a3d0c6aa 2073int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2074 void __user *buffer,
a3d0c6aa
NA
2075 size_t *length, loff_t *ppos)
2076{
a5516438 2077 struct hstate *h = &default_hstate;
e5ff2159 2078 unsigned long tmp;
08d4a246 2079 int ret;
e5ff2159 2080
c033a93c 2081 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2082
adbe8726
EM
2083 if (write && h->order >= MAX_ORDER)
2084 return -EINVAL;
2085
e5ff2159
AK
2086 table->data = &tmp;
2087 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2088 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2089 if (ret)
2090 goto out;
e5ff2159
AK
2091
2092 if (write) {
2093 spin_lock(&hugetlb_lock);
2094 h->nr_overcommit_huge_pages = tmp;
2095 spin_unlock(&hugetlb_lock);
2096 }
08d4a246
MH
2097out:
2098 return ret;
a3d0c6aa
NA
2099}
2100
1da177e4
LT
2101#endif /* CONFIG_SYSCTL */
2102
e1759c21 2103void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2104{
a5516438 2105 struct hstate *h = &default_hstate;
e1759c21 2106 seq_printf(m,
4f98a2fe
RR
2107 "HugePages_Total: %5lu\n"
2108 "HugePages_Free: %5lu\n"
2109 "HugePages_Rsvd: %5lu\n"
2110 "HugePages_Surp: %5lu\n"
2111 "Hugepagesize: %8lu kB\n",
a5516438
AK
2112 h->nr_huge_pages,
2113 h->free_huge_pages,
2114 h->resv_huge_pages,
2115 h->surplus_huge_pages,
2116 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2117}
2118
2119int hugetlb_report_node_meminfo(int nid, char *buf)
2120{
a5516438 2121 struct hstate *h = &default_hstate;
1da177e4
LT
2122 return sprintf(buf,
2123 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2124 "Node %d HugePages_Free: %5u\n"
2125 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2126 nid, h->nr_huge_pages_node[nid],
2127 nid, h->free_huge_pages_node[nid],
2128 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2129}
2130
1da177e4
LT
2131/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2132unsigned long hugetlb_total_pages(void)
2133{
a5516438
AK
2134 struct hstate *h = &default_hstate;
2135 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 2136}
1da177e4 2137
a5516438 2138static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2139{
2140 int ret = -ENOMEM;
2141
2142 spin_lock(&hugetlb_lock);
2143 /*
2144 * When cpuset is configured, it breaks the strict hugetlb page
2145 * reservation as the accounting is done on a global variable. Such
2146 * reservation is completely rubbish in the presence of cpuset because
2147 * the reservation is not checked against page availability for the
2148 * current cpuset. Application can still potentially OOM'ed by kernel
2149 * with lack of free htlb page in cpuset that the task is in.
2150 * Attempt to enforce strict accounting with cpuset is almost
2151 * impossible (or too ugly) because cpuset is too fluid that
2152 * task or memory node can be dynamically moved between cpusets.
2153 *
2154 * The change of semantics for shared hugetlb mapping with cpuset is
2155 * undesirable. However, in order to preserve some of the semantics,
2156 * we fall back to check against current free page availability as
2157 * a best attempt and hopefully to minimize the impact of changing
2158 * semantics that cpuset has.
2159 */
2160 if (delta > 0) {
a5516438 2161 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2162 goto out;
2163
a5516438
AK
2164 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2165 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2166 goto out;
2167 }
2168 }
2169
2170 ret = 0;
2171 if (delta < 0)
a5516438 2172 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2173
2174out:
2175 spin_unlock(&hugetlb_lock);
2176 return ret;
2177}
2178
84afd99b
AW
2179static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2180{
2181 struct resv_map *reservations = vma_resv_map(vma);
2182
2183 /*
2184 * This new VMA should share its siblings reservation map if present.
2185 * The VMA will only ever have a valid reservation map pointer where
2186 * it is being copied for another still existing VMA. As that VMA
25985edc 2187 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2188 * after this open call completes. It is therefore safe to take a
2189 * new reference here without additional locking.
2190 */
2191 if (reservations)
2192 kref_get(&reservations->refs);
2193}
2194
c50ac050
DH
2195static void resv_map_put(struct vm_area_struct *vma)
2196{
2197 struct resv_map *reservations = vma_resv_map(vma);
2198
2199 if (!reservations)
2200 return;
2201 kref_put(&reservations->refs, resv_map_release);
2202}
2203
a1e78772
MG
2204static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2205{
a5516438 2206 struct hstate *h = hstate_vma(vma);
84afd99b 2207 struct resv_map *reservations = vma_resv_map(vma);
90481622 2208 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2209 unsigned long reserve;
2210 unsigned long start;
2211 unsigned long end;
2212
2213 if (reservations) {
a5516438
AK
2214 start = vma_hugecache_offset(h, vma, vma->vm_start);
2215 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2216
2217 reserve = (end - start) -
2218 region_count(&reservations->regions, start, end);
2219
c50ac050 2220 resv_map_put(vma);
84afd99b 2221
7251ff78 2222 if (reserve) {
a5516438 2223 hugetlb_acct_memory(h, -reserve);
90481622 2224 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2225 }
84afd99b 2226 }
a1e78772
MG
2227}
2228
1da177e4
LT
2229/*
2230 * We cannot handle pagefaults against hugetlb pages at all. They cause
2231 * handle_mm_fault() to try to instantiate regular-sized pages in the
2232 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2233 * this far.
2234 */
d0217ac0 2235static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2236{
2237 BUG();
d0217ac0 2238 return 0;
1da177e4
LT
2239}
2240
f0f37e2f 2241const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2242 .fault = hugetlb_vm_op_fault,
84afd99b 2243 .open = hugetlb_vm_op_open,
a1e78772 2244 .close = hugetlb_vm_op_close,
1da177e4
LT
2245};
2246
1e8f889b
DG
2247static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2248 int writable)
63551ae0
DG
2249{
2250 pte_t entry;
2251
1e8f889b 2252 if (writable) {
63551ae0
DG
2253 entry =
2254 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2255 } else {
7f2e9525 2256 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2257 }
2258 entry = pte_mkyoung(entry);
2259 entry = pte_mkhuge(entry);
d9ed9faa 2260 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2261
2262 return entry;
2263}
2264
1e8f889b
DG
2265static void set_huge_ptep_writable(struct vm_area_struct *vma,
2266 unsigned long address, pte_t *ptep)
2267{
2268 pte_t entry;
2269
7f2e9525 2270 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2271 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2272 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2273}
2274
2275
63551ae0
DG
2276int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2277 struct vm_area_struct *vma)
2278{
2279 pte_t *src_pte, *dst_pte, entry;
2280 struct page *ptepage;
1c59827d 2281 unsigned long addr;
1e8f889b 2282 int cow;
a5516438
AK
2283 struct hstate *h = hstate_vma(vma);
2284 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2285
2286 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2287
a5516438 2288 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2289 src_pte = huge_pte_offset(src, addr);
2290 if (!src_pte)
2291 continue;
a5516438 2292 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2293 if (!dst_pte)
2294 goto nomem;
c5c99429
LW
2295
2296 /* If the pagetables are shared don't copy or take references */
2297 if (dst_pte == src_pte)
2298 continue;
2299
c74df32c 2300 spin_lock(&dst->page_table_lock);
46478758 2301 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2302 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2303 if (cow)
7f2e9525
GS
2304 huge_ptep_set_wrprotect(src, addr, src_pte);
2305 entry = huge_ptep_get(src_pte);
1c59827d
HD
2306 ptepage = pte_page(entry);
2307 get_page(ptepage);
0fe6e20b 2308 page_dup_rmap(ptepage);
1c59827d
HD
2309 set_huge_pte_at(dst, addr, dst_pte, entry);
2310 }
2311 spin_unlock(&src->page_table_lock);
c74df32c 2312 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2313 }
2314 return 0;
2315
2316nomem:
2317 return -ENOMEM;
2318}
2319
290408d4
NH
2320static int is_hugetlb_entry_migration(pte_t pte)
2321{
2322 swp_entry_t swp;
2323
2324 if (huge_pte_none(pte) || pte_present(pte))
2325 return 0;
2326 swp = pte_to_swp_entry(pte);
32f84528 2327 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2328 return 1;
32f84528 2329 else
290408d4
NH
2330 return 0;
2331}
2332
fd6a03ed
NH
2333static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2334{
2335 swp_entry_t swp;
2336
2337 if (huge_pte_none(pte) || pte_present(pte))
2338 return 0;
2339 swp = pte_to_swp_entry(pte);
32f84528 2340 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2341 return 1;
32f84528 2342 else
fd6a03ed
NH
2343 return 0;
2344}
2345
24669e58
AK
2346void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2347 unsigned long start, unsigned long end,
2348 struct page *ref_page)
63551ae0 2349{
24669e58 2350 int force_flush = 0;
63551ae0
DG
2351 struct mm_struct *mm = vma->vm_mm;
2352 unsigned long address;
c7546f8f 2353 pte_t *ptep;
63551ae0
DG
2354 pte_t pte;
2355 struct page *page;
a5516438
AK
2356 struct hstate *h = hstate_vma(vma);
2357 unsigned long sz = huge_page_size(h);
2358
63551ae0 2359 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2360 BUG_ON(start & ~huge_page_mask(h));
2361 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2362
24669e58 2363 tlb_start_vma(tlb, vma);
cddb8a5c 2364 mmu_notifier_invalidate_range_start(mm, start, end);
24669e58 2365again:
508034a3 2366 spin_lock(&mm->page_table_lock);
a5516438 2367 for (address = start; address < end; address += sz) {
c7546f8f 2368 ptep = huge_pte_offset(mm, address);
4c887265 2369 if (!ptep)
c7546f8f
DG
2370 continue;
2371
39dde65c
KC
2372 if (huge_pmd_unshare(mm, &address, ptep))
2373 continue;
2374
6629326b
HD
2375 pte = huge_ptep_get(ptep);
2376 if (huge_pte_none(pte))
2377 continue;
2378
2379 /*
2380 * HWPoisoned hugepage is already unmapped and dropped reference
2381 */
2382 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2383 continue;
2384
2385 page = pte_page(pte);
04f2cbe3
MG
2386 /*
2387 * If a reference page is supplied, it is because a specific
2388 * page is being unmapped, not a range. Ensure the page we
2389 * are about to unmap is the actual page of interest.
2390 */
2391 if (ref_page) {
04f2cbe3
MG
2392 if (page != ref_page)
2393 continue;
2394
2395 /*
2396 * Mark the VMA as having unmapped its page so that
2397 * future faults in this VMA will fail rather than
2398 * looking like data was lost
2399 */
2400 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2401 }
2402
c7546f8f 2403 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2404 tlb_remove_tlb_entry(tlb, ptep, address);
6649a386
KC
2405 if (pte_dirty(pte))
2406 set_page_dirty(page);
9e81130b 2407
24669e58
AK
2408 page_remove_rmap(page);
2409 force_flush = !__tlb_remove_page(tlb, page);
2410 if (force_flush)
2411 break;
9e81130b
HD
2412 /* Bail out after unmapping reference page if supplied */
2413 if (ref_page)
2414 break;
63551ae0 2415 }
cd2934a3 2416 spin_unlock(&mm->page_table_lock);
24669e58
AK
2417 /*
2418 * mmu_gather ran out of room to batch pages, we break out of
2419 * the PTE lock to avoid doing the potential expensive TLB invalidate
2420 * and page-free while holding it.
2421 */
2422 if (force_flush) {
2423 force_flush = 0;
2424 tlb_flush_mmu(tlb);
2425 if (address < end && !ref_page)
2426 goto again;
fe1668ae 2427 }
24669e58
AK
2428 mmu_notifier_invalidate_range_end(mm, start, end);
2429 tlb_end_vma(tlb, vma);
1da177e4 2430}
63551ae0 2431
d833352a
MG
2432void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2433 struct vm_area_struct *vma, unsigned long start,
2434 unsigned long end, struct page *ref_page)
2435{
2436 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2437
2438 /*
2439 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2440 * test will fail on a vma being torn down, and not grab a page table
2441 * on its way out. We're lucky that the flag has such an appropriate
2442 * name, and can in fact be safely cleared here. We could clear it
2443 * before the __unmap_hugepage_range above, but all that's necessary
2444 * is to clear it before releasing the i_mmap_mutex. This works
2445 * because in the context this is called, the VMA is about to be
2446 * destroyed and the i_mmap_mutex is held.
2447 */
2448 vma->vm_flags &= ~VM_MAYSHARE;
2449}
2450
502717f4 2451void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2452 unsigned long end, struct page *ref_page)
502717f4 2453{
24669e58
AK
2454 struct mm_struct *mm;
2455 struct mmu_gather tlb;
2456
2457 mm = vma->vm_mm;
2458
2459 tlb_gather_mmu(&tlb, mm, 0);
2460 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2461 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2462}
2463
04f2cbe3
MG
2464/*
2465 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2466 * mappping it owns the reserve page for. The intention is to unmap the page
2467 * from other VMAs and let the children be SIGKILLed if they are faulting the
2468 * same region.
2469 */
2a4b3ded
HH
2470static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2471 struct page *page, unsigned long address)
04f2cbe3 2472{
7526674d 2473 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2474 struct vm_area_struct *iter_vma;
2475 struct address_space *mapping;
04f2cbe3
MG
2476 pgoff_t pgoff;
2477
2478 /*
2479 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2480 * from page cache lookup which is in HPAGE_SIZE units.
2481 */
7526674d 2482 address = address & huge_page_mask(h);
36e4f20a
MH
2483 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2484 vma->vm_pgoff;
90481622 2485 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
04f2cbe3 2486
4eb2b1dc
MG
2487 /*
2488 * Take the mapping lock for the duration of the table walk. As
2489 * this mapping should be shared between all the VMAs,
2490 * __unmap_hugepage_range() is called as the lock is already held
2491 */
3d48ae45 2492 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2493 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2494 /* Do not unmap the current VMA */
2495 if (iter_vma == vma)
2496 continue;
2497
2498 /*
2499 * Unmap the page from other VMAs without their own reserves.
2500 * They get marked to be SIGKILLed if they fault in these
2501 * areas. This is because a future no-page fault on this VMA
2502 * could insert a zeroed page instead of the data existing
2503 * from the time of fork. This would look like data corruption
2504 */
2505 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2506 unmap_hugepage_range(iter_vma, address,
2507 address + huge_page_size(h), page);
04f2cbe3 2508 }
3d48ae45 2509 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2510
2511 return 1;
2512}
2513
0fe6e20b
NH
2514/*
2515 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2516 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2517 * cannot race with other handlers or page migration.
2518 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2519 */
1e8f889b 2520static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2521 unsigned long address, pte_t *ptep, pte_t pte,
2522 struct page *pagecache_page)
1e8f889b 2523{
a5516438 2524 struct hstate *h = hstate_vma(vma);
1e8f889b 2525 struct page *old_page, *new_page;
79ac6ba4 2526 int avoidcopy;
04f2cbe3 2527 int outside_reserve = 0;
1e8f889b
DG
2528
2529 old_page = pte_page(pte);
2530
04f2cbe3 2531retry_avoidcopy:
1e8f889b
DG
2532 /* If no-one else is actually using this page, avoid the copy
2533 * and just make the page writable */
0fe6e20b 2534 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2535 if (avoidcopy) {
56c9cfb1
NH
2536 if (PageAnon(old_page))
2537 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2538 set_huge_ptep_writable(vma, address, ptep);
83c54070 2539 return 0;
1e8f889b
DG
2540 }
2541
04f2cbe3
MG
2542 /*
2543 * If the process that created a MAP_PRIVATE mapping is about to
2544 * perform a COW due to a shared page count, attempt to satisfy
2545 * the allocation without using the existing reserves. The pagecache
2546 * page is used to determine if the reserve at this address was
2547 * consumed or not. If reserves were used, a partial faulted mapping
2548 * at the time of fork() could consume its reserves on COW instead
2549 * of the full address range.
2550 */
f83a275d 2551 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2552 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2553 old_page != pagecache_page)
2554 outside_reserve = 1;
2555
1e8f889b 2556 page_cache_get(old_page);
b76c8cfb
LW
2557
2558 /* Drop page_table_lock as buddy allocator may be called */
2559 spin_unlock(&mm->page_table_lock);
04f2cbe3 2560 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2561
2fc39cec 2562 if (IS_ERR(new_page)) {
76dcee75 2563 long err = PTR_ERR(new_page);
1e8f889b 2564 page_cache_release(old_page);
04f2cbe3
MG
2565
2566 /*
2567 * If a process owning a MAP_PRIVATE mapping fails to COW,
2568 * it is due to references held by a child and an insufficient
2569 * huge page pool. To guarantee the original mappers
2570 * reliability, unmap the page from child processes. The child
2571 * may get SIGKILLed if it later faults.
2572 */
2573 if (outside_reserve) {
2574 BUG_ON(huge_pte_none(pte));
2575 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2576 BUG_ON(huge_pte_none(pte));
b76c8cfb 2577 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2578 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2579 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2580 goto retry_avoidcopy;
2581 /*
2582 * race occurs while re-acquiring page_table_lock, and
2583 * our job is done.
2584 */
2585 return 0;
04f2cbe3
MG
2586 }
2587 WARN_ON_ONCE(1);
2588 }
2589
b76c8cfb
LW
2590 /* Caller expects lock to be held */
2591 spin_lock(&mm->page_table_lock);
76dcee75
AK
2592 if (err == -ENOMEM)
2593 return VM_FAULT_OOM;
2594 else
2595 return VM_FAULT_SIGBUS;
1e8f889b
DG
2596 }
2597
0fe6e20b
NH
2598 /*
2599 * When the original hugepage is shared one, it does not have
2600 * anon_vma prepared.
2601 */
44e2aa93 2602 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2603 page_cache_release(new_page);
2604 page_cache_release(old_page);
44e2aa93
DN
2605 /* Caller expects lock to be held */
2606 spin_lock(&mm->page_table_lock);
0fe6e20b 2607 return VM_FAULT_OOM;
44e2aa93 2608 }
0fe6e20b 2609
47ad8475
AA
2610 copy_user_huge_page(new_page, old_page, address, vma,
2611 pages_per_huge_page(h));
0ed361de 2612 __SetPageUptodate(new_page);
1e8f889b 2613
b76c8cfb
LW
2614 /*
2615 * Retake the page_table_lock to check for racing updates
2616 * before the page tables are altered
2617 */
2618 spin_lock(&mm->page_table_lock);
a5516438 2619 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2620 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2621 /* Break COW */
3edd4fc9
DD
2622 mmu_notifier_invalidate_range_start(mm,
2623 address & huge_page_mask(h),
2624 (address & huge_page_mask(h)) + huge_page_size(h));
8fe627ec 2625 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2626 set_huge_pte_at(mm, address, ptep,
2627 make_huge_pte(vma, new_page, 1));
0fe6e20b 2628 page_remove_rmap(old_page);
cd67f0d2 2629 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2630 /* Make the old page be freed below */
2631 new_page = old_page;
3edd4fc9
DD
2632 mmu_notifier_invalidate_range_end(mm,
2633 address & huge_page_mask(h),
2634 (address & huge_page_mask(h)) + huge_page_size(h));
1e8f889b
DG
2635 }
2636 page_cache_release(new_page);
2637 page_cache_release(old_page);
83c54070 2638 return 0;
1e8f889b
DG
2639}
2640
04f2cbe3 2641/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2642static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2643 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2644{
2645 struct address_space *mapping;
e7c4b0bf 2646 pgoff_t idx;
04f2cbe3
MG
2647
2648 mapping = vma->vm_file->f_mapping;
a5516438 2649 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2650
2651 return find_lock_page(mapping, idx);
2652}
2653
3ae77f43
HD
2654/*
2655 * Return whether there is a pagecache page to back given address within VMA.
2656 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2657 */
2658static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2659 struct vm_area_struct *vma, unsigned long address)
2660{
2661 struct address_space *mapping;
2662 pgoff_t idx;
2663 struct page *page;
2664
2665 mapping = vma->vm_file->f_mapping;
2666 idx = vma_hugecache_offset(h, vma, address);
2667
2668 page = find_get_page(mapping, idx);
2669 if (page)
2670 put_page(page);
2671 return page != NULL;
2672}
2673
a1ed3dda 2674static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2675 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2676{
a5516438 2677 struct hstate *h = hstate_vma(vma);
ac9b9c66 2678 int ret = VM_FAULT_SIGBUS;
409eb8c2 2679 int anon_rmap = 0;
e7c4b0bf 2680 pgoff_t idx;
4c887265 2681 unsigned long size;
4c887265
AL
2682 struct page *page;
2683 struct address_space *mapping;
1e8f889b 2684 pte_t new_pte;
4c887265 2685
04f2cbe3
MG
2686 /*
2687 * Currently, we are forced to kill the process in the event the
2688 * original mapper has unmapped pages from the child due to a failed
25985edc 2689 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2690 */
2691 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2692 printk(KERN_WARNING
2693 "PID %d killed due to inadequate hugepage pool\n",
2694 current->pid);
2695 return ret;
2696 }
2697
4c887265 2698 mapping = vma->vm_file->f_mapping;
a5516438 2699 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2700
2701 /*
2702 * Use page lock to guard against racing truncation
2703 * before we get page_table_lock.
2704 */
6bda666a
CL
2705retry:
2706 page = find_lock_page(mapping, idx);
2707 if (!page) {
a5516438 2708 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2709 if (idx >= size)
2710 goto out;
04f2cbe3 2711 page = alloc_huge_page(vma, address, 0);
2fc39cec 2712 if (IS_ERR(page)) {
76dcee75
AK
2713 ret = PTR_ERR(page);
2714 if (ret == -ENOMEM)
2715 ret = VM_FAULT_OOM;
2716 else
2717 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2718 goto out;
2719 }
47ad8475 2720 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2721 __SetPageUptodate(page);
ac9b9c66 2722
f83a275d 2723 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2724 int err;
45c682a6 2725 struct inode *inode = mapping->host;
6bda666a
CL
2726
2727 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2728 if (err) {
2729 put_page(page);
6bda666a
CL
2730 if (err == -EEXIST)
2731 goto retry;
2732 goto out;
2733 }
45c682a6
KC
2734
2735 spin_lock(&inode->i_lock);
a5516438 2736 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2737 spin_unlock(&inode->i_lock);
23be7468 2738 } else {
6bda666a 2739 lock_page(page);
0fe6e20b
NH
2740 if (unlikely(anon_vma_prepare(vma))) {
2741 ret = VM_FAULT_OOM;
2742 goto backout_unlocked;
2743 }
409eb8c2 2744 anon_rmap = 1;
23be7468 2745 }
0fe6e20b 2746 } else {
998b4382
NH
2747 /*
2748 * If memory error occurs between mmap() and fault, some process
2749 * don't have hwpoisoned swap entry for errored virtual address.
2750 * So we need to block hugepage fault by PG_hwpoison bit check.
2751 */
2752 if (unlikely(PageHWPoison(page))) {
32f84528 2753 ret = VM_FAULT_HWPOISON |
972dc4de 2754 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2755 goto backout_unlocked;
2756 }
6bda666a 2757 }
1e8f889b 2758
57303d80
AW
2759 /*
2760 * If we are going to COW a private mapping later, we examine the
2761 * pending reservations for this page now. This will ensure that
2762 * any allocations necessary to record that reservation occur outside
2763 * the spinlock.
2764 */
788c7df4 2765 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2766 if (vma_needs_reservation(h, vma, address) < 0) {
2767 ret = VM_FAULT_OOM;
2768 goto backout_unlocked;
2769 }
57303d80 2770
ac9b9c66 2771 spin_lock(&mm->page_table_lock);
a5516438 2772 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2773 if (idx >= size)
2774 goto backout;
2775
83c54070 2776 ret = 0;
7f2e9525 2777 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2778 goto backout;
2779
409eb8c2
HD
2780 if (anon_rmap)
2781 hugepage_add_new_anon_rmap(page, vma, address);
2782 else
2783 page_dup_rmap(page);
1e8f889b
DG
2784 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2785 && (vma->vm_flags & VM_SHARED)));
2786 set_huge_pte_at(mm, address, ptep, new_pte);
2787
788c7df4 2788 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2789 /* Optimization, do the COW without a second fault */
04f2cbe3 2790 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2791 }
2792
ac9b9c66 2793 spin_unlock(&mm->page_table_lock);
4c887265
AL
2794 unlock_page(page);
2795out:
ac9b9c66 2796 return ret;
4c887265
AL
2797
2798backout:
2799 spin_unlock(&mm->page_table_lock);
2b26736c 2800backout_unlocked:
4c887265
AL
2801 unlock_page(page);
2802 put_page(page);
2803 goto out;
ac9b9c66
HD
2804}
2805
86e5216f 2806int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2807 unsigned long address, unsigned int flags)
86e5216f
AL
2808{
2809 pte_t *ptep;
2810 pte_t entry;
1e8f889b 2811 int ret;
0fe6e20b 2812 struct page *page = NULL;
57303d80 2813 struct page *pagecache_page = NULL;
3935baa9 2814 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2815 struct hstate *h = hstate_vma(vma);
86e5216f 2816
1e16a539
KH
2817 address &= huge_page_mask(h);
2818
fd6a03ed
NH
2819 ptep = huge_pte_offset(mm, address);
2820 if (ptep) {
2821 entry = huge_ptep_get(ptep);
290408d4
NH
2822 if (unlikely(is_hugetlb_entry_migration(entry))) {
2823 migration_entry_wait(mm, (pmd_t *)ptep, address);
2824 return 0;
2825 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2826 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2827 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2828 }
2829
a5516438 2830 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2831 if (!ptep)
2832 return VM_FAULT_OOM;
2833
3935baa9
DG
2834 /*
2835 * Serialize hugepage allocation and instantiation, so that we don't
2836 * get spurious allocation failures if two CPUs race to instantiate
2837 * the same page in the page cache.
2838 */
2839 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2840 entry = huge_ptep_get(ptep);
2841 if (huge_pte_none(entry)) {
788c7df4 2842 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2843 goto out_mutex;
3935baa9 2844 }
86e5216f 2845
83c54070 2846 ret = 0;
1e8f889b 2847
57303d80
AW
2848 /*
2849 * If we are going to COW the mapping later, we examine the pending
2850 * reservations for this page now. This will ensure that any
2851 * allocations necessary to record that reservation occur outside the
2852 * spinlock. For private mappings, we also lookup the pagecache
2853 * page now as it is used to determine if a reservation has been
2854 * consumed.
2855 */
788c7df4 2856 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2857 if (vma_needs_reservation(h, vma, address) < 0) {
2858 ret = VM_FAULT_OOM;
b4d1d99f 2859 goto out_mutex;
2b26736c 2860 }
57303d80 2861
f83a275d 2862 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2863 pagecache_page = hugetlbfs_pagecache_page(h,
2864 vma, address);
2865 }
2866
56c9cfb1
NH
2867 /*
2868 * hugetlb_cow() requires page locks of pte_page(entry) and
2869 * pagecache_page, so here we need take the former one
2870 * when page != pagecache_page or !pagecache_page.
2871 * Note that locking order is always pagecache_page -> page,
2872 * so no worry about deadlock.
2873 */
2874 page = pte_page(entry);
66aebce7 2875 get_page(page);
56c9cfb1 2876 if (page != pagecache_page)
0fe6e20b 2877 lock_page(page);
0fe6e20b 2878
1e8f889b
DG
2879 spin_lock(&mm->page_table_lock);
2880 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2881 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2882 goto out_page_table_lock;
2883
2884
788c7df4 2885 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2886 if (!pte_write(entry)) {
57303d80
AW
2887 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2888 pagecache_page);
b4d1d99f
DG
2889 goto out_page_table_lock;
2890 }
2891 entry = pte_mkdirty(entry);
2892 }
2893 entry = pte_mkyoung(entry);
788c7df4
HD
2894 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2895 flags & FAULT_FLAG_WRITE))
4b3073e1 2896 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2897
2898out_page_table_lock:
1e8f889b 2899 spin_unlock(&mm->page_table_lock);
57303d80
AW
2900
2901 if (pagecache_page) {
2902 unlock_page(pagecache_page);
2903 put_page(pagecache_page);
2904 }
1f64d69c
DN
2905 if (page != pagecache_page)
2906 unlock_page(page);
66aebce7 2907 put_page(page);
57303d80 2908
b4d1d99f 2909out_mutex:
3935baa9 2910 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2911
2912 return ret;
86e5216f
AL
2913}
2914
ceb86879
AK
2915/* Can be overriden by architectures */
2916__attribute__((weak)) struct page *
2917follow_huge_pud(struct mm_struct *mm, unsigned long address,
2918 pud_t *pud, int write)
2919{
2920 BUG();
2921 return NULL;
2922}
2923
63551ae0
DG
2924int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2925 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2926 unsigned long *position, int *length, int i,
2a15efc9 2927 unsigned int flags)
63551ae0 2928{
d5d4b0aa
KC
2929 unsigned long pfn_offset;
2930 unsigned long vaddr = *position;
63551ae0 2931 int remainder = *length;
a5516438 2932 struct hstate *h = hstate_vma(vma);
63551ae0 2933
1c59827d 2934 spin_lock(&mm->page_table_lock);
63551ae0 2935 while (vaddr < vma->vm_end && remainder) {
4c887265 2936 pte_t *pte;
2a15efc9 2937 int absent;
4c887265 2938 struct page *page;
63551ae0 2939
4c887265
AL
2940 /*
2941 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2942 * each hugepage. We have to make sure we get the
4c887265
AL
2943 * first, for the page indexing below to work.
2944 */
a5516438 2945 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2946 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2947
2948 /*
2949 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2950 * an error where there's an empty slot with no huge pagecache
2951 * to back it. This way, we avoid allocating a hugepage, and
2952 * the sparse dumpfile avoids allocating disk blocks, but its
2953 * huge holes still show up with zeroes where they need to be.
2a15efc9 2954 */
3ae77f43
HD
2955 if (absent && (flags & FOLL_DUMP) &&
2956 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2957 remainder = 0;
2958 break;
2959 }
63551ae0 2960
2a15efc9
HD
2961 if (absent ||
2962 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2963 int ret;
63551ae0 2964
4c887265 2965 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2966 ret = hugetlb_fault(mm, vma, vaddr,
2967 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2968 spin_lock(&mm->page_table_lock);
a89182c7 2969 if (!(ret & VM_FAULT_ERROR))
4c887265 2970 continue;
63551ae0 2971
4c887265 2972 remainder = 0;
4c887265
AL
2973 break;
2974 }
2975
a5516438 2976 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2977 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2978same_page:
d6692183 2979 if (pages) {
2a15efc9 2980 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2981 get_page(pages[i]);
d6692183 2982 }
63551ae0
DG
2983
2984 if (vmas)
2985 vmas[i] = vma;
2986
2987 vaddr += PAGE_SIZE;
d5d4b0aa 2988 ++pfn_offset;
63551ae0
DG
2989 --remainder;
2990 ++i;
d5d4b0aa 2991 if (vaddr < vma->vm_end && remainder &&
a5516438 2992 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
2993 /*
2994 * We use pfn_offset to avoid touching the pageframes
2995 * of this compound page.
2996 */
2997 goto same_page;
2998 }
63551ae0 2999 }
1c59827d 3000 spin_unlock(&mm->page_table_lock);
63551ae0
DG
3001 *length = remainder;
3002 *position = vaddr;
3003
2a15efc9 3004 return i ? i : -EFAULT;
63551ae0 3005}
8f860591
ZY
3006
3007void hugetlb_change_protection(struct vm_area_struct *vma,
3008 unsigned long address, unsigned long end, pgprot_t newprot)
3009{
3010 struct mm_struct *mm = vma->vm_mm;
3011 unsigned long start = address;
3012 pte_t *ptep;
3013 pte_t pte;
a5516438 3014 struct hstate *h = hstate_vma(vma);
8f860591
ZY
3015
3016 BUG_ON(address >= end);
3017 flush_cache_range(vma, address, end);
3018
3d48ae45 3019 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3020 spin_lock(&mm->page_table_lock);
a5516438 3021 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3022 ptep = huge_pte_offset(mm, address);
3023 if (!ptep)
3024 continue;
39dde65c
KC
3025 if (huge_pmd_unshare(mm, &address, ptep))
3026 continue;
7f2e9525 3027 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
3028 pte = huge_ptep_get_and_clear(mm, address, ptep);
3029 pte = pte_mkhuge(pte_modify(pte, newprot));
3030 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
3031 }
3032 }
3033 spin_unlock(&mm->page_table_lock);
d833352a
MG
3034 /*
3035 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3036 * may have cleared our pud entry and done put_page on the page table:
3037 * once we release i_mmap_mutex, another task can do the final put_page
3038 * and that page table be reused and filled with junk.
3039 */
8f860591 3040 flush_tlb_range(vma, start, end);
d833352a 3041 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591
ZY
3042}
3043
a1e78772
MG
3044int hugetlb_reserve_pages(struct inode *inode,
3045 long from, long to,
5a6fe125 3046 struct vm_area_struct *vma,
ca16d140 3047 vm_flags_t vm_flags)
e4e574b7 3048{
17c9d12e 3049 long ret, chg;
a5516438 3050 struct hstate *h = hstate_inode(inode);
90481622 3051 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3052
17c9d12e
MG
3053 /*
3054 * Only apply hugepage reservation if asked. At fault time, an
3055 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3056 * without using reserves
17c9d12e 3057 */
ca16d140 3058 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3059 return 0;
3060
a1e78772
MG
3061 /*
3062 * Shared mappings base their reservation on the number of pages that
3063 * are already allocated on behalf of the file. Private mappings need
3064 * to reserve the full area even if read-only as mprotect() may be
3065 * called to make the mapping read-write. Assume !vma is a shm mapping
3066 */
f83a275d 3067 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3068 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3069 else {
3070 struct resv_map *resv_map = resv_map_alloc();
3071 if (!resv_map)
3072 return -ENOMEM;
3073
a1e78772 3074 chg = to - from;
84afd99b 3075
17c9d12e
MG
3076 set_vma_resv_map(vma, resv_map);
3077 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3078 }
3079
c50ac050
DH
3080 if (chg < 0) {
3081 ret = chg;
3082 goto out_err;
3083 }
8a630112 3084
90481622 3085 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3086 if (hugepage_subpool_get_pages(spool, chg)) {
3087 ret = -ENOSPC;
3088 goto out_err;
3089 }
5a6fe125
MG
3090
3091 /*
17c9d12e 3092 * Check enough hugepages are available for the reservation.
90481622 3093 * Hand the pages back to the subpool if there are not
5a6fe125 3094 */
a5516438 3095 ret = hugetlb_acct_memory(h, chg);
68842c9b 3096 if (ret < 0) {
90481622 3097 hugepage_subpool_put_pages(spool, chg);
c50ac050 3098 goto out_err;
68842c9b 3099 }
17c9d12e
MG
3100
3101 /*
3102 * Account for the reservations made. Shared mappings record regions
3103 * that have reservations as they are shared by multiple VMAs.
3104 * When the last VMA disappears, the region map says how much
3105 * the reservation was and the page cache tells how much of
3106 * the reservation was consumed. Private mappings are per-VMA and
3107 * only the consumed reservations are tracked. When the VMA
3108 * disappears, the original reservation is the VMA size and the
3109 * consumed reservations are stored in the map. Hence, nothing
3110 * else has to be done for private mappings here
3111 */
f83a275d 3112 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3113 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3114 return 0;
c50ac050 3115out_err:
4523e145
DH
3116 if (vma)
3117 resv_map_put(vma);
c50ac050 3118 return ret;
a43a8c39
KC
3119}
3120
3121void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3122{
a5516438 3123 struct hstate *h = hstate_inode(inode);
a43a8c39 3124 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3125 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3126
3127 spin_lock(&inode->i_lock);
e4c6f8be 3128 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3129 spin_unlock(&inode->i_lock);
3130
90481622 3131 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3132 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3133}
93f70f90 3134
d5bd9106
AK
3135#ifdef CONFIG_MEMORY_FAILURE
3136
6de2b1aa
NH
3137/* Should be called in hugetlb_lock */
3138static int is_hugepage_on_freelist(struct page *hpage)
3139{
3140 struct page *page;
3141 struct page *tmp;
3142 struct hstate *h = page_hstate(hpage);
3143 int nid = page_to_nid(hpage);
3144
3145 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3146 if (page == hpage)
3147 return 1;
3148 return 0;
3149}
3150
93f70f90
NH
3151/*
3152 * This function is called from memory failure code.
3153 * Assume the caller holds page lock of the head page.
3154 */
6de2b1aa 3155int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3156{
3157 struct hstate *h = page_hstate(hpage);
3158 int nid = page_to_nid(hpage);
6de2b1aa 3159 int ret = -EBUSY;
93f70f90
NH
3160
3161 spin_lock(&hugetlb_lock);
6de2b1aa
NH
3162 if (is_hugepage_on_freelist(hpage)) {
3163 list_del(&hpage->lru);
8c6c2ecb 3164 set_page_refcounted(hpage);
6de2b1aa
NH
3165 h->free_huge_pages--;
3166 h->free_huge_pages_node[nid]--;
3167 ret = 0;
3168 }
93f70f90 3169 spin_unlock(&hugetlb_lock);
6de2b1aa 3170 return ret;
93f70f90 3171}
6de2b1aa 3172#endif