zram: user per-cpu compression streams
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
6843d925 24#include <linux/page-isolation.h>
d6606683 25
63551ae0
DG
26#include <asm/page.h>
27#include <asm/pgtable.h>
24669e58 28#include <asm/tlb.h>
63551ae0 29
24669e58 30#include <linux/io.h>
63551ae0 31#include <linux/hugetlb.h>
9dd540e2 32#include <linux/hugetlb_cgroup.h>
9a305230 33#include <linux/node.h>
7835e98b 34#include "internal.h"
1da177e4
LT
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
37static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38unsigned long hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
53ba51d2
JT
44__initdata LIST_HEAD(huge_boot_pages);
45
e5ff2159
AK
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 49static unsigned long __initdata default_hstate_size;
e5ff2159 50
3935baa9
DG
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
496ad9aa 131 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b
AW
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
32f84528 143 * down_write(&mm->mmap_sem);
84afd99b 144 * or
32f84528
CF
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
147 */
148struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
25985edc 227 /* We overlap with this area, if it extends further than
96822904
AW
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267}
268
84afd99b
AW
269static long region_count(struct list_head *head, long f, long t)
270{
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
276 long seg_from;
277 long seg_to;
84afd99b
AW
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291}
292
e7c4b0bf
AW
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
a5516438
AK
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 299{
a5516438
AK
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
302}
303
0fe6e20b
NH
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306{
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
08fba699
MG
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324}
f340ca0f 325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 326
3340289d
MG
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336 return vma_kernel_pagesize(vma);
337}
338#endif
339
84afd99b
AW
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 348
a1e78772
MG
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
a1e78772 367 */
e7c4b0bf
AW
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370 return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375{
376 vma->vm_private_data = (void *)value;
377}
378
84afd99b
AW
379struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382};
383
2a4b3ded 384static struct resv_map *resv_map_alloc(void)
84afd99b
AW
385{
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394}
395
2a4b3ded 396static void resv_map_release(struct kref *ref)
84afd99b
AW
397{
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
406{
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 408 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
2a4b3ded 411 return NULL;
a1e78772
MG
412}
413
84afd99b 414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
415{
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 418
84afd99b
AW
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
04f2cbe3 425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
434
435 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
436}
437
04f2cbe3 438/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
439void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440{
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 442 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
443 vma->vm_private_data = (void *)0;
444}
445
446/* Returns true if the VMA has associated reserve pages */
3c2a0909 447static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 448{
3c2a0909
S
449 if (vma->vm_flags & VM_NORESERVE) {
450 /*
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
458 */
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 return 1;
461 else
462 return 0;
463 }
464
465 /* Shared mappings always use reserves */
f83a275d 466 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 467 return 1;
3c2a0909
S
468
469 /*
470 * Only the process that called mmap() has reserves for
471 * private mappings.
472 */
7f09ca51
MG
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 return 1;
3c2a0909 475
7f09ca51 476 return 0;
a1e78772
MG
477}
478
0ebabb41
NH
479static void copy_gigantic_page(struct page *dst, struct page *src)
480{
481 int i;
482 struct hstate *h = page_hstate(src);
483 struct page *dst_base = dst;
484 struct page *src_base = src;
485
486 for (i = 0; i < pages_per_huge_page(h); ) {
487 cond_resched();
488 copy_highpage(dst, src);
489
490 i++;
491 dst = mem_map_next(dst, dst_base, i);
492 src = mem_map_next(src, src_base, i);
493 }
494}
495
496void copy_huge_page(struct page *dst, struct page *src)
497{
498 int i;
499 struct hstate *h = page_hstate(src);
500
501 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502 copy_gigantic_page(dst, src);
503 return;
504 }
505
506 might_sleep();
507 for (i = 0; i < pages_per_huge_page(h); i++) {
508 cond_resched();
509 copy_highpage(dst + i, src + i);
510 }
511}
512
a5516438 513static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
514{
515 int nid = page_to_nid(page);
0edaecfa 516 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
517 h->free_huge_pages++;
518 h->free_huge_pages_node[nid]++;
1da177e4
LT
519}
520
bf50bab2
NH
521static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522{
523 struct page *page;
524
6843d925
XQ
525 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
526 if (!is_migrate_isolate_page(page))
527 break;
528 /*
529 * if 'non-isolated free hugepage' not found on the list,
530 * the allocation fails.
531 */
532 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 533 return NULL;
0edaecfa 534 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 535 set_page_refcounted(page);
bf50bab2
NH
536 h->free_huge_pages--;
537 h->free_huge_pages_node[nid]--;
538 return page;
539}
540
a5516438
AK
541static struct page *dequeue_huge_page_vma(struct hstate *h,
542 struct vm_area_struct *vma,
3c2a0909
S
543 unsigned long address, int avoid_reserve,
544 long chg)
1da177e4 545{
b1c12cbc 546 struct page *page = NULL;
480eccf9 547 struct mempolicy *mpol;
19770b32 548 nodemask_t *nodemask;
c0ff7453 549 struct zonelist *zonelist;
dd1a239f
MG
550 struct zone *zone;
551 struct zoneref *z;
cc9a6c87 552 unsigned int cpuset_mems_cookie;
1da177e4 553
cc9a6c87
MG
554retry_cpuset:
555 cpuset_mems_cookie = get_mems_allowed();
c0ff7453
MX
556 zonelist = huge_zonelist(vma, address,
557 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
558 /*
559 * A child process with MAP_PRIVATE mappings created by their parent
560 * have no page reserves. This check ensures that reservations are
561 * not "stolen". The child may still get SIGKILLed
562 */
3c2a0909 563 if (!vma_has_reserves(vma, chg) &&
a5516438 564 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 565 goto err;
a1e78772 566
04f2cbe3 567 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 568 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 569 goto err;
04f2cbe3 570
19770b32
MG
571 for_each_zone_zonelist_nodemask(zone, z, zonelist,
572 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
573 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
574 page = dequeue_huge_page_node(h, zone_to_nid(zone));
575 if (page) {
3c2a0909
S
576 if (avoid_reserve)
577 break;
578 if (!vma_has_reserves(vma, chg))
579 break;
580
581 SetPagePrivate(page);
582 h->resv_huge_pages--;
bf50bab2
NH
583 break;
584 }
3abf7afd 585 }
1da177e4 586 }
cc9a6c87 587
52cd3b07 588 mpol_cond_put(mpol);
cc9a6c87
MG
589 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
590 goto retry_cpuset;
1da177e4 591 return page;
cc9a6c87
MG
592
593err:
594 mpol_cond_put(mpol);
595 return NULL;
1da177e4
LT
596}
597
a5516438 598static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
599{
600 int i;
a5516438 601
18229df5
AW
602 VM_BUG_ON(h->order >= MAX_ORDER);
603
a5516438
AK
604 h->nr_huge_pages--;
605 h->nr_huge_pages_node[page_to_nid(page)]--;
606 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
607 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
608 1 << PG_referenced | 1 << PG_dirty |
609 1 << PG_active | 1 << PG_reserved |
610 1 << PG_private | 1 << PG_writeback);
6af2acb6 611 }
9dd540e2 612 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
613 set_compound_page_dtor(page, NULL);
614 set_page_refcounted(page);
7f2e9525 615 arch_release_hugepage(page);
a5516438 616 __free_pages(page, huge_page_order(h));
6af2acb6
AL
617}
618
e5ff2159
AK
619struct hstate *size_to_hstate(unsigned long size)
620{
621 struct hstate *h;
622
623 for_each_hstate(h) {
624 if (huge_page_size(h) == size)
625 return h;
626 }
627 return NULL;
628}
629
27a85ef1
DG
630static void free_huge_page(struct page *page)
631{
a5516438
AK
632 /*
633 * Can't pass hstate in here because it is called from the
634 * compound page destructor.
635 */
e5ff2159 636 struct hstate *h = page_hstate(page);
7893d1d5 637 int nid = page_to_nid(page);
90481622
DG
638 struct hugepage_subpool *spool =
639 (struct hugepage_subpool *)page_private(page);
3c2a0909 640 bool restore_reserve;
27a85ef1 641
e5df70ab 642 set_page_private(page, 0);
23be7468 643 page->mapping = NULL;
7893d1d5 644 BUG_ON(page_count(page));
0fe6e20b 645 BUG_ON(page_mapcount(page));
3c2a0909 646 restore_reserve = PagePrivate(page);
27a85ef1
DG
647
648 spin_lock(&hugetlb_lock);
6d76dcf4
AK
649 hugetlb_cgroup_uncharge_page(hstate_index(h),
650 pages_per_huge_page(h), page);
3c2a0909
S
651 if (restore_reserve)
652 h->resv_huge_pages++;
653
aa888a74 654 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
655 /* remove the page from active list */
656 list_del(&page->lru);
a5516438
AK
657 update_and_free_page(h, page);
658 h->surplus_huge_pages--;
659 h->surplus_huge_pages_node[nid]--;
7893d1d5 660 } else {
5d3a551c 661 arch_clear_hugepage_flags(page);
a5516438 662 enqueue_huge_page(h, page);
7893d1d5 663 }
27a85ef1 664 spin_unlock(&hugetlb_lock);
90481622 665 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
666}
667
a5516438 668static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 669{
0edaecfa 670 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
671 set_compound_page_dtor(page, free_huge_page);
672 spin_lock(&hugetlb_lock);
9dd540e2 673 set_hugetlb_cgroup(page, NULL);
a5516438
AK
674 h->nr_huge_pages++;
675 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
676 spin_unlock(&hugetlb_lock);
677 put_page(page); /* free it into the hugepage allocator */
678}
679
20a0307c
WF
680static void prep_compound_gigantic_page(struct page *page, unsigned long order)
681{
682 int i;
683 int nr_pages = 1 << order;
684 struct page *p = page + 1;
685
686 /* we rely on prep_new_huge_page to set the destructor */
687 set_compound_order(page, order);
688 __SetPageHead(page);
689 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
690 __SetPageTail(p);
58a84aa9 691 set_page_count(p, 0);
20a0307c
WF
692 p->first_page = page;
693 }
694}
695
7795912c
AM
696/*
697 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
698 * transparent huge pages. See the PageTransHuge() documentation for more
699 * details.
700 */
20a0307c
WF
701int PageHuge(struct page *page)
702{
703 compound_page_dtor *dtor;
704
705 if (!PageCompound(page))
706 return 0;
707
708 page = compound_head(page);
709 dtor = get_compound_page_dtor(page);
710
711 return dtor == free_huge_page;
712}
43131e14
NH
713EXPORT_SYMBOL_GPL(PageHuge);
714
17b6ada0
AA
715/*
716 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
717 * normal or transparent huge pages.
718 */
719int PageHeadHuge(struct page *page_head)
720{
721 compound_page_dtor *dtor;
722
723 if (!PageHead(page_head))
724 return 0;
725
726 dtor = get_compound_page_dtor(page_head);
727
728 return dtor == free_huge_page;
729}
730EXPORT_SYMBOL_GPL(PageHeadHuge);
731
ab1842f1
ZY
732pgoff_t __basepage_index(struct page *page)
733{
734 struct page *page_head = compound_head(page);
735 pgoff_t index = page_index(page_head);
736 unsigned long compound_idx;
737
738 if (!PageHuge(page_head))
739 return page_index(page);
740
741 if (compound_order(page_head) >= MAX_ORDER)
742 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
743 else
744 compound_idx = page - page_head;
745
746 return (index << compound_order(page_head)) + compound_idx;
747}
748
a5516438 749static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 750{
1da177e4 751 struct page *page;
f96efd58 752
aa888a74
AK
753 if (h->order >= MAX_ORDER)
754 return NULL;
755
6484eb3e 756 page = alloc_pages_exact_node(nid,
551883ae
NA
757 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
758 __GFP_REPEAT|__GFP_NOWARN,
a5516438 759 huge_page_order(h));
1da177e4 760 if (page) {
7f2e9525 761 if (arch_prepare_hugepage(page)) {
caff3a2c 762 __free_pages(page, huge_page_order(h));
7b8ee84d 763 return NULL;
7f2e9525 764 }
a5516438 765 prep_new_huge_page(h, page, nid);
1da177e4 766 }
63b4613c
NA
767
768 return page;
769}
770
9a76db09 771/*
6ae11b27
LS
772 * common helper functions for hstate_next_node_to_{alloc|free}.
773 * We may have allocated or freed a huge page based on a different
774 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
775 * be outside of *nodes_allowed. Ensure that we use an allowed
776 * node for alloc or free.
9a76db09 777 */
6ae11b27 778static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 779{
6ae11b27 780 nid = next_node(nid, *nodes_allowed);
9a76db09 781 if (nid == MAX_NUMNODES)
6ae11b27 782 nid = first_node(*nodes_allowed);
9a76db09
LS
783 VM_BUG_ON(nid >= MAX_NUMNODES);
784
785 return nid;
786}
787
6ae11b27
LS
788static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
789{
790 if (!node_isset(nid, *nodes_allowed))
791 nid = next_node_allowed(nid, nodes_allowed);
792 return nid;
793}
794
5ced66c9 795/*
6ae11b27
LS
796 * returns the previously saved node ["this node"] from which to
797 * allocate a persistent huge page for the pool and advance the
798 * next node from which to allocate, handling wrap at end of node
799 * mask.
5ced66c9 800 */
6ae11b27
LS
801static int hstate_next_node_to_alloc(struct hstate *h,
802 nodemask_t *nodes_allowed)
5ced66c9 803{
6ae11b27
LS
804 int nid;
805
806 VM_BUG_ON(!nodes_allowed);
807
808 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
809 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 810
9a76db09 811 return nid;
5ced66c9
AK
812}
813
e8c5c824 814/*
6ae11b27
LS
815 * helper for free_pool_huge_page() - return the previously saved
816 * node ["this node"] from which to free a huge page. Advance the
817 * next node id whether or not we find a free huge page to free so
818 * that the next attempt to free addresses the next node.
e8c5c824 819 */
6ae11b27 820static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 821{
6ae11b27
LS
822 int nid;
823
824 VM_BUG_ON(!nodes_allowed);
825
826 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
827 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 828
9a76db09 829 return nid;
e8c5c824
LS
830}
831
3c2a0909
S
832#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
833 for (nr_nodes = nodes_weight(*mask); \
834 nr_nodes > 0 && \
835 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
836 nr_nodes--)
837
838#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
839 for (nr_nodes = nodes_weight(*mask); \
840 nr_nodes > 0 && \
841 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
842 nr_nodes--)
843
844static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
845{
846 struct page *page;
847 int nr_nodes, node;
848 int ret = 0;
849
850 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
851 page = alloc_fresh_huge_page_node(h, node);
852 if (page) {
853 ret = 1;
854 break;
855 }
856 }
857
858 if (ret)
859 count_vm_event(HTLB_BUDDY_PGALLOC);
860 else
861 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
862
863 return ret;
864}
865
e8c5c824
LS
866/*
867 * Free huge page from pool from next node to free.
868 * Attempt to keep persistent huge pages more or less
869 * balanced over allowed nodes.
870 * Called with hugetlb_lock locked.
871 */
6ae11b27
LS
872static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
873 bool acct_surplus)
e8c5c824 874{
3c2a0909 875 int nr_nodes, node;
e8c5c824
LS
876 int ret = 0;
877
3c2a0909 878 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
879 /*
880 * If we're returning unused surplus pages, only examine
881 * nodes with surplus pages.
882 */
3c2a0909
S
883 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
884 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 885 struct page *page =
3c2a0909 886 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
887 struct page, lru);
888 list_del(&page->lru);
889 h->free_huge_pages--;
3c2a0909 890 h->free_huge_pages_node[node]--;
685f3457
LS
891 if (acct_surplus) {
892 h->surplus_huge_pages--;
3c2a0909 893 h->surplus_huge_pages_node[node]--;
685f3457 894 }
e8c5c824
LS
895 update_and_free_page(h, page);
896 ret = 1;
9a76db09 897 break;
e8c5c824 898 }
3c2a0909 899 }
e8c5c824
LS
900
901 return ret;
902}
903
bf50bab2 904static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
905{
906 struct page *page;
bf50bab2 907 unsigned int r_nid;
7893d1d5 908
aa888a74
AK
909 if (h->order >= MAX_ORDER)
910 return NULL;
911
d1c3fb1f
NA
912 /*
913 * Assume we will successfully allocate the surplus page to
914 * prevent racing processes from causing the surplus to exceed
915 * overcommit
916 *
917 * This however introduces a different race, where a process B
918 * tries to grow the static hugepage pool while alloc_pages() is
919 * called by process A. B will only examine the per-node
920 * counters in determining if surplus huge pages can be
921 * converted to normal huge pages in adjust_pool_surplus(). A
922 * won't be able to increment the per-node counter, until the
923 * lock is dropped by B, but B doesn't drop hugetlb_lock until
924 * no more huge pages can be converted from surplus to normal
925 * state (and doesn't try to convert again). Thus, we have a
926 * case where a surplus huge page exists, the pool is grown, and
927 * the surplus huge page still exists after, even though it
928 * should just have been converted to a normal huge page. This
929 * does not leak memory, though, as the hugepage will be freed
930 * once it is out of use. It also does not allow the counters to
931 * go out of whack in adjust_pool_surplus() as we don't modify
932 * the node values until we've gotten the hugepage and only the
933 * per-node value is checked there.
934 */
935 spin_lock(&hugetlb_lock);
a5516438 936 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
937 spin_unlock(&hugetlb_lock);
938 return NULL;
939 } else {
a5516438
AK
940 h->nr_huge_pages++;
941 h->surplus_huge_pages++;
d1c3fb1f
NA
942 }
943 spin_unlock(&hugetlb_lock);
944
bf50bab2
NH
945 if (nid == NUMA_NO_NODE)
946 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
947 __GFP_REPEAT|__GFP_NOWARN,
948 huge_page_order(h));
949 else
950 page = alloc_pages_exact_node(nid,
951 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
952 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 953
caff3a2c
GS
954 if (page && arch_prepare_hugepage(page)) {
955 __free_pages(page, huge_page_order(h));
ea5768c7 956 page = NULL;
caff3a2c
GS
957 }
958
d1c3fb1f 959 spin_lock(&hugetlb_lock);
7893d1d5 960 if (page) {
0edaecfa 961 INIT_LIST_HEAD(&page->lru);
bf50bab2 962 r_nid = page_to_nid(page);
7893d1d5 963 set_compound_page_dtor(page, free_huge_page);
9dd540e2 964 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
965 /*
966 * We incremented the global counters already
967 */
bf50bab2
NH
968 h->nr_huge_pages_node[r_nid]++;
969 h->surplus_huge_pages_node[r_nid]++;
3b116300 970 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 971 } else {
a5516438
AK
972 h->nr_huge_pages--;
973 h->surplus_huge_pages--;
3b116300 974 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 975 }
d1c3fb1f 976 spin_unlock(&hugetlb_lock);
7893d1d5
AL
977
978 return page;
979}
980
bf50bab2
NH
981/*
982 * This allocation function is useful in the context where vma is irrelevant.
983 * E.g. soft-offlining uses this function because it only cares physical
984 * address of error page.
985 */
986struct page *alloc_huge_page_node(struct hstate *h, int nid)
987{
3c2a0909 988 struct page *page = NULL;
bf50bab2
NH
989
990 spin_lock(&hugetlb_lock);
3c2a0909
S
991 if (h->free_huge_pages - h->resv_huge_pages > 0)
992 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
993 spin_unlock(&hugetlb_lock);
994
94ae8ba7 995 if (!page)
bf50bab2
NH
996 page = alloc_buddy_huge_page(h, nid);
997
998 return page;
999}
1000
e4e574b7 1001/*
25985edc 1002 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1003 * of size 'delta'.
1004 */
a5516438 1005static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1006{
1007 struct list_head surplus_list;
1008 struct page *page, *tmp;
1009 int ret, i;
1010 int needed, allocated;
28073b02 1011 bool alloc_ok = true;
e4e574b7 1012
a5516438 1013 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1014 if (needed <= 0) {
a5516438 1015 h->resv_huge_pages += delta;
e4e574b7 1016 return 0;
ac09b3a1 1017 }
e4e574b7
AL
1018
1019 allocated = 0;
1020 INIT_LIST_HEAD(&surplus_list);
1021
1022 ret = -ENOMEM;
1023retry:
1024 spin_unlock(&hugetlb_lock);
1025 for (i = 0; i < needed; i++) {
bf50bab2 1026 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1027 if (!page) {
1028 alloc_ok = false;
1029 break;
1030 }
e4e574b7
AL
1031 list_add(&page->lru, &surplus_list);
1032 }
28073b02 1033 allocated += i;
e4e574b7
AL
1034
1035 /*
1036 * After retaking hugetlb_lock, we need to recalculate 'needed'
1037 * because either resv_huge_pages or free_huge_pages may have changed.
1038 */
1039 spin_lock(&hugetlb_lock);
a5516438
AK
1040 needed = (h->resv_huge_pages + delta) -
1041 (h->free_huge_pages + allocated);
28073b02
HD
1042 if (needed > 0) {
1043 if (alloc_ok)
1044 goto retry;
1045 /*
1046 * We were not able to allocate enough pages to
1047 * satisfy the entire reservation so we free what
1048 * we've allocated so far.
1049 */
1050 goto free;
1051 }
e4e574b7
AL
1052 /*
1053 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1054 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1055 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1056 * allocator. Commit the entire reservation here to prevent another
1057 * process from stealing the pages as they are added to the pool but
1058 * before they are reserved.
e4e574b7
AL
1059 */
1060 needed += allocated;
a5516438 1061 h->resv_huge_pages += delta;
e4e574b7 1062 ret = 0;
a9869b83 1063
19fc3f0a 1064 /* Free the needed pages to the hugetlb pool */
e4e574b7 1065 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1066 if ((--needed) < 0)
1067 break;
a9869b83
NH
1068 /*
1069 * This page is now managed by the hugetlb allocator and has
1070 * no users -- drop the buddy allocator's reference.
1071 */
1072 put_page_testzero(page);
1073 VM_BUG_ON(page_count(page));
a5516438 1074 enqueue_huge_page(h, page);
19fc3f0a 1075 }
28073b02 1076free:
b0365c8d 1077 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1078
1079 /* Free unnecessary surplus pages to the buddy allocator */
3c2a0909
S
1080 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1081 put_page(page);
a9869b83 1082 spin_lock(&hugetlb_lock);
e4e574b7
AL
1083
1084 return ret;
1085}
1086
1087/*
0955dc73
MK
1088 * This routine has two main purposes:
1089 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1090 * in unused_resv_pages. This corresponds to the prior adjustments made
1091 * to the associated reservation map.
1092 * 2) Free any unused surplus pages that may have been allocated to satisfy
1093 * the reservation. As many as unused_resv_pages may be freed.
1094 *
1095 * Called with hugetlb_lock held. However, the lock could be dropped (and
1096 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1097 * we must make sure nobody else can claim pages we are in the process of
1098 * freeing. Do this by ensuring resv_huge_page always is greater than the
1099 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1100 */
a5516438
AK
1101static void return_unused_surplus_pages(struct hstate *h,
1102 unsigned long unused_resv_pages)
e4e574b7 1103{
e4e574b7
AL
1104 unsigned long nr_pages;
1105
aa888a74
AK
1106 /* Cannot return gigantic pages currently */
1107 if (h->order >= MAX_ORDER)
0955dc73 1108 goto out;
aa888a74 1109
0955dc73
MK
1110 /*
1111 * Part (or even all) of the reservation could have been backed
1112 * by pre-allocated pages. Only free surplus pages.
1113 */
a5516438 1114 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1115
685f3457
LS
1116 /*
1117 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1118 * evenly across all nodes with memory. Iterate across these nodes
1119 * until we can no longer free unreserved surplus pages. This occurs
1120 * when the nodes with surplus pages have no free pages.
1121 * free_pool_huge_page() will balance the the freed pages across the
1122 * on-line nodes with memory and will handle the hstate accounting.
0955dc73
MK
1123 *
1124 * Note that we decrement resv_huge_pages as we free the pages. If
1125 * we drop the lock, resv_huge_pages will still be sufficiently large
1126 * to cover subsequent pages we may free.
685f3457
LS
1127 */
1128 while (nr_pages--) {
0955dc73
MK
1129 h->resv_huge_pages--;
1130 unused_resv_pages--;
8cebfcd0 1131 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
0955dc73 1132 goto out;
b934932a 1133 cond_resched_lock(&hugetlb_lock);
e4e574b7 1134 }
0955dc73
MK
1135
1136out:
1137 /* Fully uncommit the reservation */
1138 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1139}
1140
c37f9fb1
AW
1141/*
1142 * Determine if the huge page at addr within the vma has an associated
1143 * reservation. Where it does not we will need to logically increase
90481622
DG
1144 * reservation and actually increase subpool usage before an allocation
1145 * can occur. Where any new reservation would be required the
1146 * reservation change is prepared, but not committed. Once the page
1147 * has been allocated from the subpool and instantiated the change should
1148 * be committed via vma_commit_reservation. No action is required on
1149 * failure.
c37f9fb1 1150 */
e2f17d94 1151static long vma_needs_reservation(struct hstate *h,
a5516438 1152 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1153{
1154 struct address_space *mapping = vma->vm_file->f_mapping;
1155 struct inode *inode = mapping->host;
1156
f83a275d 1157 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1158 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1159 return region_chg(&inode->i_mapping->private_list,
1160 idx, idx + 1);
1161
84afd99b
AW
1162 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1163 return 1;
c37f9fb1 1164
84afd99b 1165 } else {
e2f17d94 1166 long err;
a5516438 1167 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
3c2a0909 1168 struct resv_map *resv = vma_resv_map(vma);
84afd99b 1169
3c2a0909 1170 err = region_chg(&resv->regions, idx, idx + 1);
84afd99b
AW
1171 if (err < 0)
1172 return err;
1173 return 0;
1174 }
c37f9fb1 1175}
a5516438
AK
1176static void vma_commit_reservation(struct hstate *h,
1177 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1178{
1179 struct address_space *mapping = vma->vm_file->f_mapping;
1180 struct inode *inode = mapping->host;
1181
f83a275d 1182 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1183 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1184 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1185
1186 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1187 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
3c2a0909 1188 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
1189
1190 /* Mark this page used in the map. */
3c2a0909 1191 region_add(&resv->regions, idx, idx + 1);
c37f9fb1
AW
1192 }
1193}
1194
a1e78772 1195static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1196 unsigned long addr, int avoid_reserve)
1da177e4 1197{
90481622 1198 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1199 struct hstate *h = hstate_vma(vma);
348ea204 1200 struct page *page;
e2f17d94 1201 long chg;
6d76dcf4
AK
1202 int ret, idx;
1203 struct hugetlb_cgroup *h_cg;
a1e78772 1204
6d76dcf4 1205 idx = hstate_index(h);
a1e78772 1206 /*
90481622
DG
1207 * Processes that did not create the mapping will have no
1208 * reserves and will not have accounted against subpool
1209 * limit. Check that the subpool limit can be made before
1210 * satisfying the allocation MAP_NORESERVE mappings may also
1211 * need pages and subpool limit allocated allocated if no reserve
1212 * mapping overlaps.
a1e78772 1213 */
a5516438 1214 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1215 if (chg < 0)
76dcee75 1216 return ERR_PTR(-ENOMEM);
3c2a0909
S
1217 if (chg || avoid_reserve)
1218 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1219 return ERR_PTR(-ENOSPC);
1da177e4 1220
6d76dcf4
AK
1221 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1222 if (ret) {
3c2a0909
S
1223 if (chg || avoid_reserve)
1224 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1225 return ERR_PTR(-ENOSPC);
1226 }
1da177e4 1227 spin_lock(&hugetlb_lock);
3c2a0909
S
1228 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1229 if (!page) {
94ae8ba7 1230 spin_unlock(&hugetlb_lock);
bf50bab2 1231 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1232 if (!page) {
6d76dcf4
AK
1233 hugetlb_cgroup_uncharge_cgroup(idx,
1234 pages_per_huge_page(h),
1235 h_cg);
3c2a0909
S
1236 if (chg || avoid_reserve)
1237 hugepage_subpool_put_pages(spool, 1);
76dcee75 1238 return ERR_PTR(-ENOSPC);
68842c9b 1239 }
79dbb236
AK
1240 spin_lock(&hugetlb_lock);
1241 list_move(&page->lru, &h->hugepage_activelist);
3c2a0909 1242 /* Fall through */
68842c9b 1243 }
3c2a0909
S
1244 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1245 spin_unlock(&hugetlb_lock);
348ea204 1246
90481622 1247 set_page_private(page, (unsigned long)spool);
90d8b7e6 1248
a5516438 1249 vma_commit_reservation(h, vma, addr);
90d8b7e6 1250 return page;
b45b5bd6
DG
1251}
1252
91f47662 1253int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1254{
1255 struct huge_bootmem_page *m;
3c2a0909 1256 int nr_nodes, node;
aa888a74 1257
3c2a0909 1258 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1259 void *addr;
1260
3c2a0909 1261 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
aa888a74
AK
1262 huge_page_size(h), huge_page_size(h), 0);
1263
1264 if (addr) {
1265 /*
1266 * Use the beginning of the huge page to store the
1267 * huge_bootmem_page struct (until gather_bootmem
1268 * puts them into the mem_map).
1269 */
1270 m = addr;
91f47662 1271 goto found;
aa888a74 1272 }
aa888a74
AK
1273 }
1274 return 0;
1275
1276found:
1277 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1278 /* Put them into a private list first because mem_map is not up yet */
1279 list_add(&m->list, &huge_boot_pages);
1280 m->hstate = h;
1281 return 1;
1282}
1283
18229df5
AW
1284static void prep_compound_huge_page(struct page *page, int order)
1285{
1286 if (unlikely(order > (MAX_ORDER - 1)))
1287 prep_compound_gigantic_page(page, order);
1288 else
1289 prep_compound_page(page, order);
1290}
1291
aa888a74
AK
1292/* Put bootmem huge pages into the standard lists after mem_map is up */
1293static void __init gather_bootmem_prealloc(void)
1294{
1295 struct huge_bootmem_page *m;
1296
1297 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1298 struct hstate *h = m->hstate;
ee8f248d
BB
1299 struct page *page;
1300
1301#ifdef CONFIG_HIGHMEM
1302 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1303 free_bootmem_late((unsigned long)m,
1304 sizeof(struct huge_bootmem_page));
1305#else
1306 page = virt_to_page(m);
1307#endif
aa888a74
AK
1308 __ClearPageReserved(page);
1309 WARN_ON(page_count(page) != 1);
18229df5 1310 prep_compound_huge_page(page, h->order);
aa888a74 1311 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1312 /*
1313 * If we had gigantic hugepages allocated at boot time, we need
1314 * to restore the 'stolen' pages to totalram_pages in order to
1315 * fix confusing memory reports from free(1) and another
1316 * side-effects, like CommitLimit going negative.
1317 */
1318 if (h->order > (MAX_ORDER - 1))
1319 totalram_pages += 1 << h->order;
aa888a74
AK
1320 }
1321}
1322
8faa8b07 1323static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1324{
1325 unsigned long i;
a5516438 1326
e5ff2159 1327 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1328 if (h->order >= MAX_ORDER) {
1329 if (!alloc_bootmem_huge_page(h))
1330 break;
9b5e5d0f 1331 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1332 &node_states[N_MEMORY]))
1da177e4 1333 break;
1da177e4 1334 }
8faa8b07 1335 h->max_huge_pages = i;
e5ff2159
AK
1336}
1337
1338static void __init hugetlb_init_hstates(void)
1339{
1340 struct hstate *h;
1341
1342 for_each_hstate(h) {
8faa8b07
AK
1343 /* oversize hugepages were init'ed in early boot */
1344 if (h->order < MAX_ORDER)
1345 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1346 }
1347}
1348
4abd32db
AK
1349static char * __init memfmt(char *buf, unsigned long n)
1350{
1351 if (n >= (1UL << 30))
1352 sprintf(buf, "%lu GB", n >> 30);
1353 else if (n >= (1UL << 20))
1354 sprintf(buf, "%lu MB", n >> 20);
1355 else
1356 sprintf(buf, "%lu KB", n >> 10);
1357 return buf;
1358}
1359
e5ff2159
AK
1360static void __init report_hugepages(void)
1361{
1362 struct hstate *h;
1363
1364 for_each_hstate(h) {
4abd32db 1365 char buf[32];
ffb22af5 1366 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1367 memfmt(buf, huge_page_size(h)),
1368 h->free_huge_pages);
e5ff2159
AK
1369 }
1370}
1371
1da177e4 1372#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1373static void try_to_free_low(struct hstate *h, unsigned long count,
1374 nodemask_t *nodes_allowed)
1da177e4 1375{
4415cc8d
CL
1376 int i;
1377
aa888a74
AK
1378 if (h->order >= MAX_ORDER)
1379 return;
1380
6ae11b27 1381 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1382 struct page *page, *next;
a5516438
AK
1383 struct list_head *freel = &h->hugepage_freelists[i];
1384 list_for_each_entry_safe(page, next, freel, lru) {
1385 if (count >= h->nr_huge_pages)
6b0c880d 1386 return;
1da177e4
LT
1387 if (PageHighMem(page))
1388 continue;
1389 list_del(&page->lru);
e5ff2159 1390 update_and_free_page(h, page);
a5516438
AK
1391 h->free_huge_pages--;
1392 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1393 }
1394 }
1395}
1396#else
6ae11b27
LS
1397static inline void try_to_free_low(struct hstate *h, unsigned long count,
1398 nodemask_t *nodes_allowed)
1da177e4
LT
1399{
1400}
1401#endif
1402
20a0307c
WF
1403/*
1404 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1405 * balanced by operating on them in a round-robin fashion.
1406 * Returns 1 if an adjustment was made.
1407 */
6ae11b27
LS
1408static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1409 int delta)
20a0307c 1410{
3c2a0909 1411 int nr_nodes, node;
20a0307c
WF
1412
1413 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1414
3c2a0909
S
1415 if (delta < 0) {
1416 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1417 if (h->surplus_huge_pages_node[node])
1418 goto found;
e8c5c824 1419 }
3c2a0909
S
1420 } else {
1421 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1422 if (h->surplus_huge_pages_node[node] <
1423 h->nr_huge_pages_node[node])
1424 goto found;
e8c5c824 1425 }
3c2a0909
S
1426 }
1427 return 0;
20a0307c 1428
3c2a0909
S
1429found:
1430 h->surplus_huge_pages += delta;
1431 h->surplus_huge_pages_node[node] += delta;
1432 return 1;
20a0307c
WF
1433}
1434
a5516438 1435#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1436static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1437 nodemask_t *nodes_allowed)
1da177e4 1438{
7893d1d5 1439 unsigned long min_count, ret;
1da177e4 1440
aa888a74
AK
1441 if (h->order >= MAX_ORDER)
1442 return h->max_huge_pages;
1443
7893d1d5
AL
1444 /*
1445 * Increase the pool size
1446 * First take pages out of surplus state. Then make up the
1447 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1448 *
1449 * We might race with alloc_buddy_huge_page() here and be unable
1450 * to convert a surplus huge page to a normal huge page. That is
1451 * not critical, though, it just means the overall size of the
1452 * pool might be one hugepage larger than it needs to be, but
1453 * within all the constraints specified by the sysctls.
7893d1d5 1454 */
1da177e4 1455 spin_lock(&hugetlb_lock);
a5516438 1456 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1457 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1458 break;
1459 }
1460
a5516438 1461 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1462 /*
1463 * If this allocation races such that we no longer need the
1464 * page, free_huge_page will handle it by freeing the page
1465 * and reducing the surplus.
1466 */
1467 spin_unlock(&hugetlb_lock);
6ae11b27 1468 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1469 spin_lock(&hugetlb_lock);
1470 if (!ret)
1471 goto out;
1472
536240f2
MG
1473 /* Bail for signals. Probably ctrl-c from user */
1474 if (signal_pending(current))
1475 goto out;
7893d1d5 1476 }
7893d1d5
AL
1477
1478 /*
1479 * Decrease the pool size
1480 * First return free pages to the buddy allocator (being careful
1481 * to keep enough around to satisfy reservations). Then place
1482 * pages into surplus state as needed so the pool will shrink
1483 * to the desired size as pages become free.
d1c3fb1f
NA
1484 *
1485 * By placing pages into the surplus state independent of the
1486 * overcommit value, we are allowing the surplus pool size to
1487 * exceed overcommit. There are few sane options here. Since
1488 * alloc_buddy_huge_page() is checking the global counter,
1489 * though, we'll note that we're not allowed to exceed surplus
1490 * and won't grow the pool anywhere else. Not until one of the
1491 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1492 */
a5516438 1493 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1494 min_count = max(count, min_count);
6ae11b27 1495 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1496 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1497 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1498 break;
733ad2dc 1499 cond_resched_lock(&hugetlb_lock);
1da177e4 1500 }
a5516438 1501 while (count < persistent_huge_pages(h)) {
6ae11b27 1502 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1503 break;
1504 }
1505out:
a5516438 1506 ret = persistent_huge_pages(h);
1da177e4 1507 spin_unlock(&hugetlb_lock);
7893d1d5 1508 return ret;
1da177e4
LT
1509}
1510
a3437870
NA
1511#define HSTATE_ATTR_RO(_name) \
1512 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1513
1514#define HSTATE_ATTR(_name) \
1515 static struct kobj_attribute _name##_attr = \
1516 __ATTR(_name, 0644, _name##_show, _name##_store)
1517
1518static struct kobject *hugepages_kobj;
1519static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1520
9a305230
LS
1521static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1522
1523static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1524{
1525 int i;
9a305230 1526
a3437870 1527 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1528 if (hstate_kobjs[i] == kobj) {
1529 if (nidp)
1530 *nidp = NUMA_NO_NODE;
a3437870 1531 return &hstates[i];
9a305230
LS
1532 }
1533
1534 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1535}
1536
06808b08 1537static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1538 struct kobj_attribute *attr, char *buf)
1539{
9a305230
LS
1540 struct hstate *h;
1541 unsigned long nr_huge_pages;
1542 int nid;
1543
1544 h = kobj_to_hstate(kobj, &nid);
1545 if (nid == NUMA_NO_NODE)
1546 nr_huge_pages = h->nr_huge_pages;
1547 else
1548 nr_huge_pages = h->nr_huge_pages_node[nid];
1549
1550 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1551}
adbe8726 1552
06808b08
LS
1553static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1554 struct kobject *kobj, struct kobj_attribute *attr,
1555 const char *buf, size_t len)
a3437870
NA
1556{
1557 int err;
9a305230 1558 int nid;
06808b08 1559 unsigned long count;
9a305230 1560 struct hstate *h;
bad44b5b 1561 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1562
06808b08 1563 err = strict_strtoul(buf, 10, &count);
73ae31e5 1564 if (err)
adbe8726 1565 goto out;
a3437870 1566
9a305230 1567 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1568 if (h->order >= MAX_ORDER) {
1569 err = -EINVAL;
1570 goto out;
1571 }
1572
9a305230
LS
1573 if (nid == NUMA_NO_NODE) {
1574 /*
1575 * global hstate attribute
1576 */
1577 if (!(obey_mempolicy &&
1578 init_nodemask_of_mempolicy(nodes_allowed))) {
1579 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1580 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1581 }
1582 } else if (nodes_allowed) {
1583 /*
1584 * per node hstate attribute: adjust count to global,
1585 * but restrict alloc/free to the specified node.
1586 */
1587 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1588 init_nodemask_of_node(nodes_allowed, nid);
1589 } else
8cebfcd0 1590 nodes_allowed = &node_states[N_MEMORY];
9a305230 1591
06808b08 1592 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1593
8cebfcd0 1594 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1595 NODEMASK_FREE(nodes_allowed);
1596
1597 return len;
adbe8726
EM
1598out:
1599 NODEMASK_FREE(nodes_allowed);
1600 return err;
06808b08
LS
1601}
1602
1603static ssize_t nr_hugepages_show(struct kobject *kobj,
1604 struct kobj_attribute *attr, char *buf)
1605{
1606 return nr_hugepages_show_common(kobj, attr, buf);
1607}
1608
1609static ssize_t nr_hugepages_store(struct kobject *kobj,
1610 struct kobj_attribute *attr, const char *buf, size_t len)
1611{
1612 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1613}
1614HSTATE_ATTR(nr_hugepages);
1615
06808b08
LS
1616#ifdef CONFIG_NUMA
1617
1618/*
1619 * hstate attribute for optionally mempolicy-based constraint on persistent
1620 * huge page alloc/free.
1621 */
1622static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1623 struct kobj_attribute *attr, char *buf)
1624{
1625 return nr_hugepages_show_common(kobj, attr, buf);
1626}
1627
1628static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1629 struct kobj_attribute *attr, const char *buf, size_t len)
1630{
1631 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1632}
1633HSTATE_ATTR(nr_hugepages_mempolicy);
1634#endif
1635
1636
a3437870
NA
1637static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1638 struct kobj_attribute *attr, char *buf)
1639{
9a305230 1640 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1641 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1642}
adbe8726 1643
a3437870
NA
1644static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1645 struct kobj_attribute *attr, const char *buf, size_t count)
1646{
1647 int err;
1648 unsigned long input;
9a305230 1649 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1650
adbe8726
EM
1651 if (h->order >= MAX_ORDER)
1652 return -EINVAL;
1653
a3437870
NA
1654 err = strict_strtoul(buf, 10, &input);
1655 if (err)
73ae31e5 1656 return err;
a3437870
NA
1657
1658 spin_lock(&hugetlb_lock);
1659 h->nr_overcommit_huge_pages = input;
1660 spin_unlock(&hugetlb_lock);
1661
1662 return count;
1663}
1664HSTATE_ATTR(nr_overcommit_hugepages);
1665
1666static ssize_t free_hugepages_show(struct kobject *kobj,
1667 struct kobj_attribute *attr, char *buf)
1668{
9a305230
LS
1669 struct hstate *h;
1670 unsigned long free_huge_pages;
1671 int nid;
1672
1673 h = kobj_to_hstate(kobj, &nid);
1674 if (nid == NUMA_NO_NODE)
1675 free_huge_pages = h->free_huge_pages;
1676 else
1677 free_huge_pages = h->free_huge_pages_node[nid];
1678
1679 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1680}
1681HSTATE_ATTR_RO(free_hugepages);
1682
1683static ssize_t resv_hugepages_show(struct kobject *kobj,
1684 struct kobj_attribute *attr, char *buf)
1685{
9a305230 1686 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1687 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1688}
1689HSTATE_ATTR_RO(resv_hugepages);
1690
1691static ssize_t surplus_hugepages_show(struct kobject *kobj,
1692 struct kobj_attribute *attr, char *buf)
1693{
9a305230
LS
1694 struct hstate *h;
1695 unsigned long surplus_huge_pages;
1696 int nid;
1697
1698 h = kobj_to_hstate(kobj, &nid);
1699 if (nid == NUMA_NO_NODE)
1700 surplus_huge_pages = h->surplus_huge_pages;
1701 else
1702 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1703
1704 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1705}
1706HSTATE_ATTR_RO(surplus_hugepages);
1707
1708static struct attribute *hstate_attrs[] = {
1709 &nr_hugepages_attr.attr,
1710 &nr_overcommit_hugepages_attr.attr,
1711 &free_hugepages_attr.attr,
1712 &resv_hugepages_attr.attr,
1713 &surplus_hugepages_attr.attr,
06808b08
LS
1714#ifdef CONFIG_NUMA
1715 &nr_hugepages_mempolicy_attr.attr,
1716#endif
a3437870
NA
1717 NULL,
1718};
1719
1720static struct attribute_group hstate_attr_group = {
1721 .attrs = hstate_attrs,
1722};
1723
094e9539
JM
1724static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1725 struct kobject **hstate_kobjs,
1726 struct attribute_group *hstate_attr_group)
a3437870
NA
1727{
1728 int retval;
972dc4de 1729 int hi = hstate_index(h);
a3437870 1730
9a305230
LS
1731 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1732 if (!hstate_kobjs[hi])
a3437870
NA
1733 return -ENOMEM;
1734
9a305230 1735 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1736 if (retval)
9a305230 1737 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1738
1739 return retval;
1740}
1741
1742static void __init hugetlb_sysfs_init(void)
1743{
1744 struct hstate *h;
1745 int err;
1746
1747 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1748 if (!hugepages_kobj)
1749 return;
1750
1751 for_each_hstate(h) {
9a305230
LS
1752 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1753 hstate_kobjs, &hstate_attr_group);
a3437870 1754 if (err)
ffb22af5 1755 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1756 }
1757}
1758
9a305230
LS
1759#ifdef CONFIG_NUMA
1760
1761/*
1762 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1763 * with node devices in node_devices[] using a parallel array. The array
1764 * index of a node device or _hstate == node id.
1765 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1766 * the base kernel, on the hugetlb module.
1767 */
1768struct node_hstate {
1769 struct kobject *hugepages_kobj;
1770 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1771};
1772struct node_hstate node_hstates[MAX_NUMNODES];
1773
1774/*
10fbcf4c 1775 * A subset of global hstate attributes for node devices
9a305230
LS
1776 */
1777static struct attribute *per_node_hstate_attrs[] = {
1778 &nr_hugepages_attr.attr,
1779 &free_hugepages_attr.attr,
1780 &surplus_hugepages_attr.attr,
1781 NULL,
1782};
1783
1784static struct attribute_group per_node_hstate_attr_group = {
1785 .attrs = per_node_hstate_attrs,
1786};
1787
1788/*
10fbcf4c 1789 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1790 * Returns node id via non-NULL nidp.
1791 */
1792static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1793{
1794 int nid;
1795
1796 for (nid = 0; nid < nr_node_ids; nid++) {
1797 struct node_hstate *nhs = &node_hstates[nid];
1798 int i;
1799 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1800 if (nhs->hstate_kobjs[i] == kobj) {
1801 if (nidp)
1802 *nidp = nid;
1803 return &hstates[i];
1804 }
1805 }
1806
1807 BUG();
1808 return NULL;
1809}
1810
1811/*
10fbcf4c 1812 * Unregister hstate attributes from a single node device.
9a305230
LS
1813 * No-op if no hstate attributes attached.
1814 */
3cd8b44f 1815static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1816{
1817 struct hstate *h;
10fbcf4c 1818 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1819
1820 if (!nhs->hugepages_kobj)
9b5e5d0f 1821 return; /* no hstate attributes */
9a305230 1822
972dc4de
AK
1823 for_each_hstate(h) {
1824 int idx = hstate_index(h);
1825 if (nhs->hstate_kobjs[idx]) {
1826 kobject_put(nhs->hstate_kobjs[idx]);
1827 nhs->hstate_kobjs[idx] = NULL;
9a305230 1828 }
972dc4de 1829 }
9a305230
LS
1830
1831 kobject_put(nhs->hugepages_kobj);
1832 nhs->hugepages_kobj = NULL;
1833}
1834
1835/*
10fbcf4c 1836 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1837 * that have them.
1838 */
1839static void hugetlb_unregister_all_nodes(void)
1840{
1841 int nid;
1842
1843 /*
10fbcf4c 1844 * disable node device registrations.
9a305230
LS
1845 */
1846 register_hugetlbfs_with_node(NULL, NULL);
1847
1848 /*
1849 * remove hstate attributes from any nodes that have them.
1850 */
1851 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1852 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1853}
1854
1855/*
10fbcf4c 1856 * Register hstate attributes for a single node device.
9a305230
LS
1857 * No-op if attributes already registered.
1858 */
3cd8b44f 1859static void hugetlb_register_node(struct node *node)
9a305230
LS
1860{
1861 struct hstate *h;
10fbcf4c 1862 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1863 int err;
1864
1865 if (nhs->hugepages_kobj)
1866 return; /* already allocated */
1867
1868 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1869 &node->dev.kobj);
9a305230
LS
1870 if (!nhs->hugepages_kobj)
1871 return;
1872
1873 for_each_hstate(h) {
1874 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1875 nhs->hstate_kobjs,
1876 &per_node_hstate_attr_group);
1877 if (err) {
ffb22af5
AM
1878 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1879 h->name, node->dev.id);
9a305230
LS
1880 hugetlb_unregister_node(node);
1881 break;
1882 }
1883 }
1884}
1885
1886/*
9b5e5d0f 1887 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1888 * devices of nodes that have memory. All on-line nodes should have
1889 * registered their associated device by this time.
9a305230
LS
1890 */
1891static void hugetlb_register_all_nodes(void)
1892{
1893 int nid;
1894
8cebfcd0 1895 for_each_node_state(nid, N_MEMORY) {
8732794b 1896 struct node *node = node_devices[nid];
10fbcf4c 1897 if (node->dev.id == nid)
9a305230
LS
1898 hugetlb_register_node(node);
1899 }
1900
1901 /*
10fbcf4c 1902 * Let the node device driver know we're here so it can
9a305230
LS
1903 * [un]register hstate attributes on node hotplug.
1904 */
1905 register_hugetlbfs_with_node(hugetlb_register_node,
1906 hugetlb_unregister_node);
1907}
1908#else /* !CONFIG_NUMA */
1909
1910static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1911{
1912 BUG();
1913 if (nidp)
1914 *nidp = -1;
1915 return NULL;
1916}
1917
1918static void hugetlb_unregister_all_nodes(void) { }
1919
1920static void hugetlb_register_all_nodes(void) { }
1921
1922#endif
1923
a3437870
NA
1924static void __exit hugetlb_exit(void)
1925{
1926 struct hstate *h;
1927
9a305230
LS
1928 hugetlb_unregister_all_nodes();
1929
a3437870 1930 for_each_hstate(h) {
972dc4de 1931 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1932 }
1933
1934 kobject_put(hugepages_kobj);
1935}
1936module_exit(hugetlb_exit);
1937
1938static int __init hugetlb_init(void)
1939{
0ef89d25
BH
1940 /* Some platform decide whether they support huge pages at boot
1941 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1942 * there is no such support
1943 */
1944 if (HPAGE_SHIFT == 0)
1945 return 0;
a3437870 1946
e11bfbfc
NP
1947 if (!size_to_hstate(default_hstate_size)) {
1948 default_hstate_size = HPAGE_SIZE;
1949 if (!size_to_hstate(default_hstate_size))
1950 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1951 }
972dc4de 1952 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1953 if (default_hstate_max_huge_pages)
1954 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1955
1956 hugetlb_init_hstates();
aa888a74 1957 gather_bootmem_prealloc();
a3437870
NA
1958 report_hugepages();
1959
1960 hugetlb_sysfs_init();
9a305230 1961 hugetlb_register_all_nodes();
7179e7bf 1962 hugetlb_cgroup_file_init();
9a305230 1963
a3437870
NA
1964 return 0;
1965}
1966module_init(hugetlb_init);
1967
1968/* Should be called on processing a hugepagesz=... option */
1969void __init hugetlb_add_hstate(unsigned order)
1970{
1971 struct hstate *h;
8faa8b07
AK
1972 unsigned long i;
1973
a3437870 1974 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1975 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1976 return;
1977 }
47d38344 1978 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1979 BUG_ON(order == 0);
47d38344 1980 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1981 h->order = order;
1982 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1983 h->nr_huge_pages = 0;
1984 h->free_huge_pages = 0;
1985 for (i = 0; i < MAX_NUMNODES; ++i)
1986 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1987 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1988 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1989 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1990 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1991 huge_page_size(h)/1024);
8faa8b07 1992
a3437870
NA
1993 parsed_hstate = h;
1994}
1995
e11bfbfc 1996static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1997{
1998 unsigned long *mhp;
8faa8b07 1999 static unsigned long *last_mhp;
a3437870
NA
2000
2001 /*
47d38344 2002 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2003 * so this hugepages= parameter goes to the "default hstate".
2004 */
47d38344 2005 if (!hugetlb_max_hstate)
a3437870
NA
2006 mhp = &default_hstate_max_huge_pages;
2007 else
2008 mhp = &parsed_hstate->max_huge_pages;
2009
8faa8b07 2010 if (mhp == last_mhp) {
ffb22af5
AM
2011 pr_warning("hugepages= specified twice without "
2012 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2013 return 1;
2014 }
2015
a3437870
NA
2016 if (sscanf(s, "%lu", mhp) <= 0)
2017 *mhp = 0;
2018
8faa8b07
AK
2019 /*
2020 * Global state is always initialized later in hugetlb_init.
2021 * But we need to allocate >= MAX_ORDER hstates here early to still
2022 * use the bootmem allocator.
2023 */
47d38344 2024 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2025 hugetlb_hstate_alloc_pages(parsed_hstate);
2026
2027 last_mhp = mhp;
2028
a3437870
NA
2029 return 1;
2030}
e11bfbfc
NP
2031__setup("hugepages=", hugetlb_nrpages_setup);
2032
2033static int __init hugetlb_default_setup(char *s)
2034{
2035 default_hstate_size = memparse(s, &s);
2036 return 1;
2037}
2038__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2039
8a213460
NA
2040static unsigned int cpuset_mems_nr(unsigned int *array)
2041{
2042 int node;
2043 unsigned int nr = 0;
2044
2045 for_each_node_mask(node, cpuset_current_mems_allowed)
2046 nr += array[node];
2047
2048 return nr;
2049}
2050
2051#ifdef CONFIG_SYSCTL
06808b08
LS
2052static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2053 struct ctl_table *table, int write,
2054 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2055{
e5ff2159
AK
2056 struct hstate *h = &default_hstate;
2057 unsigned long tmp;
08d4a246 2058 int ret;
e5ff2159 2059
c033a93c 2060 tmp = h->max_huge_pages;
e5ff2159 2061
adbe8726
EM
2062 if (write && h->order >= MAX_ORDER)
2063 return -EINVAL;
2064
e5ff2159
AK
2065 table->data = &tmp;
2066 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2067 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2068 if (ret)
2069 goto out;
e5ff2159 2070
06808b08 2071 if (write) {
bad44b5b
DR
2072 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2073 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2074 if (!(obey_mempolicy &&
2075 init_nodemask_of_mempolicy(nodes_allowed))) {
2076 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2077 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2078 }
2079 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2080
8cebfcd0 2081 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2082 NODEMASK_FREE(nodes_allowed);
2083 }
08d4a246
MH
2084out:
2085 return ret;
1da177e4 2086}
396faf03 2087
06808b08
LS
2088int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2089 void __user *buffer, size_t *length, loff_t *ppos)
2090{
2091
2092 return hugetlb_sysctl_handler_common(false, table, write,
2093 buffer, length, ppos);
2094}
2095
2096#ifdef CONFIG_NUMA
2097int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2098 void __user *buffer, size_t *length, loff_t *ppos)
2099{
2100 return hugetlb_sysctl_handler_common(true, table, write,
2101 buffer, length, ppos);
2102}
2103#endif /* CONFIG_NUMA */
2104
396faf03 2105int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2106 void __user *buffer,
396faf03
MG
2107 size_t *length, loff_t *ppos)
2108{
8d65af78 2109 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2110 if (hugepages_treat_as_movable)
2111 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2112 else
2113 htlb_alloc_mask = GFP_HIGHUSER;
2114 return 0;
2115}
2116
a3d0c6aa 2117int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2118 void __user *buffer,
a3d0c6aa
NA
2119 size_t *length, loff_t *ppos)
2120{
a5516438 2121 struct hstate *h = &default_hstate;
e5ff2159 2122 unsigned long tmp;
08d4a246 2123 int ret;
e5ff2159 2124
c033a93c 2125 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2126
adbe8726
EM
2127 if (write && h->order >= MAX_ORDER)
2128 return -EINVAL;
2129
e5ff2159
AK
2130 table->data = &tmp;
2131 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2132 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2133 if (ret)
2134 goto out;
e5ff2159
AK
2135
2136 if (write) {
2137 spin_lock(&hugetlb_lock);
2138 h->nr_overcommit_huge_pages = tmp;
2139 spin_unlock(&hugetlb_lock);
2140 }
08d4a246
MH
2141out:
2142 return ret;
a3d0c6aa
NA
2143}
2144
1da177e4
LT
2145#endif /* CONFIG_SYSCTL */
2146
e1759c21 2147void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2148{
a5516438 2149 struct hstate *h = &default_hstate;
e1759c21 2150 seq_printf(m,
4f98a2fe
RR
2151 "HugePages_Total: %5lu\n"
2152 "HugePages_Free: %5lu\n"
2153 "HugePages_Rsvd: %5lu\n"
2154 "HugePages_Surp: %5lu\n"
2155 "Hugepagesize: %8lu kB\n",
a5516438
AK
2156 h->nr_huge_pages,
2157 h->free_huge_pages,
2158 h->resv_huge_pages,
2159 h->surplus_huge_pages,
2160 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2161}
2162
2163int hugetlb_report_node_meminfo(int nid, char *buf)
2164{
a5516438 2165 struct hstate *h = &default_hstate;
1da177e4
LT
2166 return sprintf(buf,
2167 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2168 "Node %d HugePages_Free: %5u\n"
2169 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2170 nid, h->nr_huge_pages_node[nid],
2171 nid, h->free_huge_pages_node[nid],
2172 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2173}
2174
949f7ec5
DR
2175void hugetlb_show_meminfo(void)
2176{
2177 struct hstate *h;
2178 int nid;
2179
2180 for_each_node_state(nid, N_MEMORY)
2181 for_each_hstate(h)
2182 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2183 nid,
2184 h->nr_huge_pages_node[nid],
2185 h->free_huge_pages_node[nid],
2186 h->surplus_huge_pages_node[nid],
2187 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2188}
2189
1da177e4
LT
2190/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2191unsigned long hugetlb_total_pages(void)
2192{
d0028588
WL
2193 struct hstate *h;
2194 unsigned long nr_total_pages = 0;
2195
2196 for_each_hstate(h)
2197 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2198 return nr_total_pages;
1da177e4 2199}
1da177e4 2200
a5516438 2201static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2202{
2203 int ret = -ENOMEM;
2204
2205 spin_lock(&hugetlb_lock);
2206 /*
2207 * When cpuset is configured, it breaks the strict hugetlb page
2208 * reservation as the accounting is done on a global variable. Such
2209 * reservation is completely rubbish in the presence of cpuset because
2210 * the reservation is not checked against page availability for the
2211 * current cpuset. Application can still potentially OOM'ed by kernel
2212 * with lack of free htlb page in cpuset that the task is in.
2213 * Attempt to enforce strict accounting with cpuset is almost
2214 * impossible (or too ugly) because cpuset is too fluid that
2215 * task or memory node can be dynamically moved between cpusets.
2216 *
2217 * The change of semantics for shared hugetlb mapping with cpuset is
2218 * undesirable. However, in order to preserve some of the semantics,
2219 * we fall back to check against current free page availability as
2220 * a best attempt and hopefully to minimize the impact of changing
2221 * semantics that cpuset has.
2222 */
2223 if (delta > 0) {
a5516438 2224 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2225 goto out;
2226
a5516438
AK
2227 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2228 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2229 goto out;
2230 }
2231 }
2232
2233 ret = 0;
2234 if (delta < 0)
a5516438 2235 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2236
2237out:
2238 spin_unlock(&hugetlb_lock);
2239 return ret;
2240}
2241
84afd99b
AW
2242static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2243{
3c2a0909 2244 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2245
2246 /*
2247 * This new VMA should share its siblings reservation map if present.
2248 * The VMA will only ever have a valid reservation map pointer where
2249 * it is being copied for another still existing VMA. As that VMA
25985edc 2250 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2251 * after this open call completes. It is therefore safe to take a
2252 * new reference here without additional locking.
2253 */
3c2a0909
S
2254 if (resv)
2255 kref_get(&resv->refs);
84afd99b
AW
2256}
2257
c50ac050
DH
2258static void resv_map_put(struct vm_area_struct *vma)
2259{
3c2a0909 2260 struct resv_map *resv = vma_resv_map(vma);
c50ac050 2261
3c2a0909 2262 if (!resv)
c50ac050 2263 return;
3c2a0909 2264 kref_put(&resv->refs, resv_map_release);
c50ac050
DH
2265}
2266
a1e78772
MG
2267static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2268{
a5516438 2269 struct hstate *h = hstate_vma(vma);
3c2a0909 2270 struct resv_map *resv = vma_resv_map(vma);
90481622 2271 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2272 unsigned long reserve;
2273 unsigned long start;
2274 unsigned long end;
2275
3c2a0909 2276 if (resv) {
a5516438
AK
2277 start = vma_hugecache_offset(h, vma, vma->vm_start);
2278 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2279
2280 reserve = (end - start) -
3c2a0909 2281 region_count(&resv->regions, start, end);
84afd99b 2282
c50ac050 2283 resv_map_put(vma);
84afd99b 2284
7251ff78 2285 if (reserve) {
a5516438 2286 hugetlb_acct_memory(h, -reserve);
90481622 2287 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2288 }
84afd99b 2289 }
a1e78772
MG
2290}
2291
1da177e4
LT
2292/*
2293 * We cannot handle pagefaults against hugetlb pages at all. They cause
2294 * handle_mm_fault() to try to instantiate regular-sized pages in the
2295 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2296 * this far.
2297 */
d0217ac0 2298static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2299{
2300 BUG();
d0217ac0 2301 return 0;
1da177e4
LT
2302}
2303
f0f37e2f 2304const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2305 .fault = hugetlb_vm_op_fault,
84afd99b 2306 .open = hugetlb_vm_op_open,
a1e78772 2307 .close = hugetlb_vm_op_close,
1da177e4
LT
2308};
2309
1e8f889b
DG
2310static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2311 int writable)
63551ae0
DG
2312{
2313 pte_t entry;
2314
1e8f889b 2315 if (writable) {
106c992a
GS
2316 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2317 vma->vm_page_prot)));
63551ae0 2318 } else {
106c992a
GS
2319 entry = huge_pte_wrprotect(mk_huge_pte(page,
2320 vma->vm_page_prot));
63551ae0
DG
2321 }
2322 entry = pte_mkyoung(entry);
2323 entry = pte_mkhuge(entry);
d9ed9faa 2324 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2325
2326 return entry;
2327}
2328
1e8f889b
DG
2329static void set_huge_ptep_writable(struct vm_area_struct *vma,
2330 unsigned long address, pte_t *ptep)
2331{
2332 pte_t entry;
2333
106c992a 2334 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2335 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2336 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2337}
2338
9b576da0
NH
2339static int is_hugetlb_entry_migration(pte_t pte)
2340{
2341 swp_entry_t swp;
2342
2343 if (huge_pte_none(pte) || pte_present(pte))
2344 return 0;
2345 swp = pte_to_swp_entry(pte);
2346 if (non_swap_entry(swp) && is_migration_entry(swp))
2347 return 1;
2348 else
2349 return 0;
2350}
2351
2352static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2353{
2354 swp_entry_t swp;
2355
2356 if (huge_pte_none(pte) || pte_present(pte))
2357 return 0;
2358 swp = pte_to_swp_entry(pte);
2359 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2360 return 1;
2361 else
2362 return 0;
2363}
1e8f889b 2364
63551ae0
DG
2365int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2366 struct vm_area_struct *vma)
2367{
2368 pte_t *src_pte, *dst_pte, entry;
2369 struct page *ptepage;
1c59827d 2370 unsigned long addr;
1e8f889b 2371 int cow;
a5516438
AK
2372 struct hstate *h = hstate_vma(vma);
2373 unsigned long sz = huge_page_size(h);
3c2a0909
S
2374 unsigned long mmun_start; /* For mmu_notifiers */
2375 unsigned long mmun_end; /* For mmu_notifiers */
2376 int ret = 0;
1e8f889b
DG
2377
2378 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2379
3c2a0909
S
2380 mmun_start = vma->vm_start;
2381 mmun_end = vma->vm_end;
2382 if (cow)
2383 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2384
a5516438 2385 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2386 src_pte = huge_pte_offset(src, addr);
2387 if (!src_pte)
2388 continue;
a5516438 2389 dst_pte = huge_pte_alloc(dst, addr, sz);
3c2a0909
S
2390 if (!dst_pte) {
2391 ret = -ENOMEM;
2392 break;
2393 }
c5c99429
LW
2394
2395 /* If the pagetables are shared don't copy or take references */
2396 if (dst_pte == src_pte)
2397 continue;
2398
c74df32c 2399 spin_lock(&dst->page_table_lock);
46478758 2400 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
9b576da0
NH
2401 entry = huge_ptep_get(src_pte);
2402 if (huge_pte_none(entry)) { /* skip none entry */
2403 ;
2404 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2405 is_hugetlb_entry_hwpoisoned(entry))) {
2406 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2407
2408 if (is_write_migration_entry(swp_entry) && cow) {
2409 /*
2410 * COW mappings require pages in both
2411 * parent and child to be set to read.
2412 */
2413 make_migration_entry_read(&swp_entry);
2414 entry = swp_entry_to_pte(swp_entry);
2415 set_huge_pte_at(src, addr, src_pte, entry);
2416 }
2417 set_huge_pte_at(dst, addr, dst_pte, entry);
2418 } else {
1e8f889b 2419 if (cow)
7f2e9525 2420 huge_ptep_set_wrprotect(src, addr, src_pte);
32226c20 2421 entry = huge_ptep_get(src_pte);
1c59827d
HD
2422 ptepage = pte_page(entry);
2423 get_page(ptepage);
0fe6e20b 2424 page_dup_rmap(ptepage);
1c59827d
HD
2425 set_huge_pte_at(dst, addr, dst_pte, entry);
2426 }
2427 spin_unlock(&src->page_table_lock);
c74df32c 2428 spin_unlock(&dst->page_table_lock);
63551ae0 2429 }
63551ae0 2430
3c2a0909
S
2431 if (cow)
2432 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2433
2434 return ret;
63551ae0
DG
2435}
2436
24669e58
AK
2437void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2438 unsigned long start, unsigned long end,
2439 struct page *ref_page)
63551ae0 2440{
24669e58 2441 int force_flush = 0;
63551ae0
DG
2442 struct mm_struct *mm = vma->vm_mm;
2443 unsigned long address;
c7546f8f 2444 pte_t *ptep;
63551ae0
DG
2445 pte_t pte;
2446 struct page *page;
a5516438
AK
2447 struct hstate *h = hstate_vma(vma);
2448 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2449 const unsigned long mmun_start = start; /* For mmu_notifiers */
2450 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2451
63551ae0 2452 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2453 BUG_ON(start & ~huge_page_mask(h));
2454 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2455
24669e58 2456 tlb_start_vma(tlb, vma);
2ec74c3e 2457 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2458again:
508034a3 2459 spin_lock(&mm->page_table_lock);
a5516438 2460 for (address = start; address < end; address += sz) {
c7546f8f 2461 ptep = huge_pte_offset(mm, address);
4c887265 2462 if (!ptep)
c7546f8f
DG
2463 continue;
2464
39dde65c
KC
2465 if (huge_pmd_unshare(mm, &address, ptep))
2466 continue;
2467
6629326b
HD
2468 pte = huge_ptep_get(ptep);
2469 if (huge_pte_none(pte))
2470 continue;
2471
2472 /*
31b68113
NH
2473 * Migrating hugepage or HWPoisoned hugepage is already
2474 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 2475 */
31b68113 2476 if (unlikely(!pte_present(pte))) {
106c992a 2477 huge_pte_clear(mm, address, ptep);
6629326b 2478 continue;
8c4894c6 2479 }
6629326b
HD
2480
2481 page = pte_page(pte);
04f2cbe3
MG
2482 /*
2483 * If a reference page is supplied, it is because a specific
2484 * page is being unmapped, not a range. Ensure the page we
2485 * are about to unmap is the actual page of interest.
2486 */
2487 if (ref_page) {
04f2cbe3
MG
2488 if (page != ref_page)
2489 continue;
2490
2491 /*
2492 * Mark the VMA as having unmapped its page so that
2493 * future faults in this VMA will fail rather than
2494 * looking like data was lost
2495 */
2496 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2497 }
2498
c7546f8f 2499 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2500 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2501 if (huge_pte_dirty(pte))
6649a386 2502 set_page_dirty(page);
9e81130b 2503
24669e58
AK
2504 page_remove_rmap(page);
2505 force_flush = !__tlb_remove_page(tlb, page);
2506 if (force_flush)
2507 break;
9e81130b
HD
2508 /* Bail out after unmapping reference page if supplied */
2509 if (ref_page)
2510 break;
63551ae0 2511 }
cd2934a3 2512 spin_unlock(&mm->page_table_lock);
24669e58
AK
2513 /*
2514 * mmu_gather ran out of room to batch pages, we break out of
2515 * the PTE lock to avoid doing the potential expensive TLB invalidate
2516 * and page-free while holding it.
2517 */
2518 if (force_flush) {
2519 force_flush = 0;
2520 tlb_flush_mmu(tlb);
2521 if (address < end && !ref_page)
2522 goto again;
fe1668ae 2523 }
2ec74c3e 2524 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2525 tlb_end_vma(tlb, vma);
1da177e4 2526}
63551ae0 2527
d833352a
MG
2528void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2529 struct vm_area_struct *vma, unsigned long start,
2530 unsigned long end, struct page *ref_page)
2531{
2532 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2533
2534 /*
2535 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2536 * test will fail on a vma being torn down, and not grab a page table
2537 * on its way out. We're lucky that the flag has such an appropriate
2538 * name, and can in fact be safely cleared here. We could clear it
2539 * before the __unmap_hugepage_range above, but all that's necessary
2540 * is to clear it before releasing the i_mmap_mutex. This works
2541 * because in the context this is called, the VMA is about to be
2542 * destroyed and the i_mmap_mutex is held.
2543 */
2544 vma->vm_flags &= ~VM_MAYSHARE;
2545}
2546
502717f4 2547void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2548 unsigned long end, struct page *ref_page)
502717f4 2549{
24669e58
AK
2550 struct mm_struct *mm;
2551 struct mmu_gather tlb;
2552
2553 mm = vma->vm_mm;
2554
8e220cfd 2555 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2556 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2557 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2558}
2559
04f2cbe3
MG
2560/*
2561 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2562 * mappping it owns the reserve page for. The intention is to unmap the page
2563 * from other VMAs and let the children be SIGKILLed if they are faulting the
2564 * same region.
2565 */
2a4b3ded
HH
2566static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2567 struct page *page, unsigned long address)
04f2cbe3 2568{
7526674d 2569 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2570 struct vm_area_struct *iter_vma;
2571 struct address_space *mapping;
04f2cbe3
MG
2572 pgoff_t pgoff;
2573
2574 /*
2575 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2576 * from page cache lookup which is in HPAGE_SIZE units.
2577 */
7526674d 2578 address = address & huge_page_mask(h);
36e4f20a
MH
2579 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2580 vma->vm_pgoff;
496ad9aa 2581 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2582
4eb2b1dc
MG
2583 /*
2584 * Take the mapping lock for the duration of the table walk. As
2585 * this mapping should be shared between all the VMAs,
2586 * __unmap_hugepage_range() is called as the lock is already held
2587 */
3d48ae45 2588 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2589 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2590 /* Do not unmap the current VMA */
2591 if (iter_vma == vma)
2592 continue;
2593
a345cd19
MG
2594 /*
2595 * Shared VMAs have their own reserves and do not affect
2596 * MAP_PRIVATE accounting but it is possible that a shared
2597 * VMA is using the same page so check and skip such VMAs.
2598 */
2599 if (iter_vma->vm_flags & VM_MAYSHARE)
2600 continue;
2601
04f2cbe3
MG
2602 /*
2603 * Unmap the page from other VMAs without their own reserves.
2604 * They get marked to be SIGKILLed if they fault in these
2605 * areas. This is because a future no-page fault on this VMA
2606 * could insert a zeroed page instead of the data existing
2607 * from the time of fork. This would look like data corruption
2608 */
2609 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2610 unmap_hugepage_range(iter_vma, address,
2611 address + huge_page_size(h), page);
04f2cbe3 2612 }
3d48ae45 2613 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2614
2615 return 1;
2616}
2617
0fe6e20b
NH
2618/*
2619 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2620 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2621 * cannot race with other handlers or page migration.
2622 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2623 */
1e8f889b 2624static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2625 unsigned long address, pte_t *ptep, pte_t pte,
2626 struct page *pagecache_page)
1e8f889b 2627{
a5516438 2628 struct hstate *h = hstate_vma(vma);
1e8f889b 2629 struct page *old_page, *new_page;
04f2cbe3 2630 int outside_reserve = 0;
2ec74c3e
SG
2631 unsigned long mmun_start; /* For mmu_notifiers */
2632 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2633
2634 old_page = pte_page(pte);
2635
04f2cbe3 2636retry_avoidcopy:
1e8f889b
DG
2637 /* If no-one else is actually using this page, avoid the copy
2638 * and just make the page writable */
3c2a0909
S
2639 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2640 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2641 set_huge_ptep_writable(vma, address, ptep);
83c54070 2642 return 0;
1e8f889b
DG
2643 }
2644
04f2cbe3
MG
2645 /*
2646 * If the process that created a MAP_PRIVATE mapping is about to
2647 * perform a COW due to a shared page count, attempt to satisfy
2648 * the allocation without using the existing reserves. The pagecache
2649 * page is used to determine if the reserve at this address was
2650 * consumed or not. If reserves were used, a partial faulted mapping
2651 * at the time of fork() could consume its reserves on COW instead
2652 * of the full address range.
2653 */
3c2a0909 2654 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2655 old_page != pagecache_page)
2656 outside_reserve = 1;
2657
1e8f889b 2658 page_cache_get(old_page);
b76c8cfb
LW
2659
2660 /* Drop page_table_lock as buddy allocator may be called */
2661 spin_unlock(&mm->page_table_lock);
04f2cbe3 2662 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2663
2fc39cec 2664 if (IS_ERR(new_page)) {
76dcee75 2665 long err = PTR_ERR(new_page);
1e8f889b 2666 page_cache_release(old_page);
04f2cbe3
MG
2667
2668 /*
2669 * If a process owning a MAP_PRIVATE mapping fails to COW,
2670 * it is due to references held by a child and an insufficient
2671 * huge page pool. To guarantee the original mappers
2672 * reliability, unmap the page from child processes. The child
2673 * may get SIGKILLed if it later faults.
2674 */
2675 if (outside_reserve) {
2676 BUG_ON(huge_pte_none(pte));
2677 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2678 BUG_ON(huge_pte_none(pte));
b76c8cfb 2679 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2680 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2681 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2682 goto retry_avoidcopy;
2683 /*
2684 * race occurs while re-acquiring page_table_lock, and
2685 * our job is done.
2686 */
2687 return 0;
04f2cbe3
MG
2688 }
2689 WARN_ON_ONCE(1);
2690 }
2691
b76c8cfb
LW
2692 /* Caller expects lock to be held */
2693 spin_lock(&mm->page_table_lock);
76dcee75
AK
2694 if (err == -ENOMEM)
2695 return VM_FAULT_OOM;
2696 else
2697 return VM_FAULT_SIGBUS;
1e8f889b
DG
2698 }
2699
0fe6e20b
NH
2700 /*
2701 * When the original hugepage is shared one, it does not have
2702 * anon_vma prepared.
2703 */
44e2aa93 2704 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2705 page_cache_release(new_page);
2706 page_cache_release(old_page);
44e2aa93
DN
2707 /* Caller expects lock to be held */
2708 spin_lock(&mm->page_table_lock);
0fe6e20b 2709 return VM_FAULT_OOM;
44e2aa93 2710 }
0fe6e20b 2711
47ad8475
AA
2712 copy_user_huge_page(new_page, old_page, address, vma,
2713 pages_per_huge_page(h));
0ed361de 2714 __SetPageUptodate(new_page);
1e8f889b 2715
2ec74c3e
SG
2716 mmun_start = address & huge_page_mask(h);
2717 mmun_end = mmun_start + huge_page_size(h);
2718 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2719 /*
2720 * Retake the page_table_lock to check for racing updates
2721 * before the page tables are altered
2722 */
2723 spin_lock(&mm->page_table_lock);
a5516438 2724 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2725 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
3c2a0909
S
2726 ClearPagePrivate(new_page);
2727
1e8f889b 2728 /* Break COW */
8fe627ec 2729 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2730 set_huge_pte_at(mm, address, ptep,
2731 make_huge_pte(vma, new_page, 1));
0fe6e20b 2732 page_remove_rmap(old_page);
cd67f0d2 2733 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2734 /* Make the old page be freed below */
2735 new_page = old_page;
2736 }
2ec74c3e
SG
2737 spin_unlock(&mm->page_table_lock);
2738 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2739 page_cache_release(new_page);
2740 page_cache_release(old_page);
3c2a0909
S
2741
2742 /* Caller expects lock to be held */
2743 spin_lock(&mm->page_table_lock);
83c54070 2744 return 0;
1e8f889b
DG
2745}
2746
04f2cbe3 2747/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2748static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2749 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2750{
2751 struct address_space *mapping;
e7c4b0bf 2752 pgoff_t idx;
04f2cbe3
MG
2753
2754 mapping = vma->vm_file->f_mapping;
a5516438 2755 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2756
2757 return find_lock_page(mapping, idx);
2758}
2759
3ae77f43
HD
2760/*
2761 * Return whether there is a pagecache page to back given address within VMA.
2762 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2763 */
2764static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2765 struct vm_area_struct *vma, unsigned long address)
2766{
2767 struct address_space *mapping;
2768 pgoff_t idx;
2769 struct page *page;
2770
2771 mapping = vma->vm_file->f_mapping;
2772 idx = vma_hugecache_offset(h, vma, address);
2773
2774 page = find_get_page(mapping, idx);
2775 if (page)
2776 put_page(page);
2777 return page != NULL;
2778}
2779
a1ed3dda 2780static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2781 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2782{
a5516438 2783 struct hstate *h = hstate_vma(vma);
ac9b9c66 2784 int ret = VM_FAULT_SIGBUS;
409eb8c2 2785 int anon_rmap = 0;
e7c4b0bf 2786 pgoff_t idx;
4c887265 2787 unsigned long size;
4c887265
AL
2788 struct page *page;
2789 struct address_space *mapping;
1e8f889b 2790 pte_t new_pte;
4c887265 2791
04f2cbe3
MG
2792 /*
2793 * Currently, we are forced to kill the process in the event the
2794 * original mapper has unmapped pages from the child due to a failed
25985edc 2795 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2796 */
2797 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2798 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2799 current->pid);
04f2cbe3
MG
2800 return ret;
2801 }
2802
4c887265 2803 mapping = vma->vm_file->f_mapping;
a5516438 2804 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2805
2806 /*
2807 * Use page lock to guard against racing truncation
2808 * before we get page_table_lock.
2809 */
6bda666a
CL
2810retry:
2811 page = find_lock_page(mapping, idx);
2812 if (!page) {
a5516438 2813 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2814 if (idx >= size)
2815 goto out;
04f2cbe3 2816 page = alloc_huge_page(vma, address, 0);
2fc39cec 2817 if (IS_ERR(page)) {
76dcee75
AK
2818 ret = PTR_ERR(page);
2819 if (ret == -ENOMEM)
2820 ret = VM_FAULT_OOM;
2821 else
2822 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2823 goto out;
2824 }
47ad8475 2825 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2826 __SetPageUptodate(page);
ac9b9c66 2827
f83a275d 2828 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2829 int err;
45c682a6 2830 struct inode *inode = mapping->host;
6bda666a
CL
2831
2832 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2833 if (err) {
2834 put_page(page);
6bda666a
CL
2835 if (err == -EEXIST)
2836 goto retry;
2837 goto out;
2838 }
3c2a0909 2839 ClearPagePrivate(page);
45c682a6
KC
2840
2841 spin_lock(&inode->i_lock);
a5516438 2842 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2843 spin_unlock(&inode->i_lock);
23be7468 2844 } else {
6bda666a 2845 lock_page(page);
0fe6e20b
NH
2846 if (unlikely(anon_vma_prepare(vma))) {
2847 ret = VM_FAULT_OOM;
2848 goto backout_unlocked;
2849 }
409eb8c2 2850 anon_rmap = 1;
23be7468 2851 }
0fe6e20b 2852 } else {
998b4382
NH
2853 /*
2854 * If memory error occurs between mmap() and fault, some process
2855 * don't have hwpoisoned swap entry for errored virtual address.
2856 * So we need to block hugepage fault by PG_hwpoison bit check.
2857 */
2858 if (unlikely(PageHWPoison(page))) {
32f84528 2859 ret = VM_FAULT_HWPOISON |
972dc4de 2860 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2861 goto backout_unlocked;
2862 }
6bda666a 2863 }
1e8f889b 2864
57303d80
AW
2865 /*
2866 * If we are going to COW a private mapping later, we examine the
2867 * pending reservations for this page now. This will ensure that
2868 * any allocations necessary to record that reservation occur outside
2869 * the spinlock.
2870 */
788c7df4 2871 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2872 if (vma_needs_reservation(h, vma, address) < 0) {
2873 ret = VM_FAULT_OOM;
2874 goto backout_unlocked;
2875 }
57303d80 2876
ac9b9c66 2877 spin_lock(&mm->page_table_lock);
a5516438 2878 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2879 if (idx >= size)
2880 goto backout;
2881
83c54070 2882 ret = 0;
7f2e9525 2883 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2884 goto backout;
2885
3c2a0909
S
2886 if (anon_rmap) {
2887 ClearPagePrivate(page);
409eb8c2 2888 hugepage_add_new_anon_rmap(page, vma, address);
3c2a0909 2889 }
409eb8c2
HD
2890 else
2891 page_dup_rmap(page);
1e8f889b
DG
2892 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2893 && (vma->vm_flags & VM_SHARED)));
2894 set_huge_pte_at(mm, address, ptep, new_pte);
2895
788c7df4 2896 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2897 /* Optimization, do the COW without a second fault */
04f2cbe3 2898 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2899 }
2900
ac9b9c66 2901 spin_unlock(&mm->page_table_lock);
4c887265
AL
2902 unlock_page(page);
2903out:
ac9b9c66 2904 return ret;
4c887265
AL
2905
2906backout:
2907 spin_unlock(&mm->page_table_lock);
2b26736c 2908backout_unlocked:
4c887265
AL
2909 unlock_page(page);
2910 put_page(page);
2911 goto out;
ac9b9c66
HD
2912}
2913
86e5216f 2914int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2915 unsigned long address, unsigned int flags)
86e5216f
AL
2916{
2917 pte_t *ptep;
2918 pte_t entry;
1e8f889b 2919 int ret;
0fe6e20b 2920 struct page *page = NULL;
57303d80 2921 struct page *pagecache_page = NULL;
3935baa9 2922 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2923 struct hstate *h = hstate_vma(vma);
86e5216f 2924
1e16a539
KH
2925 address &= huge_page_mask(h);
2926
fd6a03ed
NH
2927 ptep = huge_pte_offset(mm, address);
2928 if (ptep) {
2929 entry = huge_ptep_get(ptep);
290408d4 2930 if (unlikely(is_hugetlb_entry_migration(entry))) {
30dad309 2931 migration_entry_wait_huge(mm, ptep);
290408d4
NH
2932 return 0;
2933 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2934 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2935 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2936 }
2937
a5516438 2938 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2939 if (!ptep)
2940 return VM_FAULT_OOM;
2941
3935baa9
DG
2942 /*
2943 * Serialize hugepage allocation and instantiation, so that we don't
2944 * get spurious allocation failures if two CPUs race to instantiate
2945 * the same page in the page cache.
2946 */
2947 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2948 entry = huge_ptep_get(ptep);
2949 if (huge_pte_none(entry)) {
788c7df4 2950 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2951 goto out_mutex;
3935baa9 2952 }
86e5216f 2953
83c54070 2954 ret = 0;
1e8f889b 2955
57303d80
AW
2956 /*
2957 * If we are going to COW the mapping later, we examine the pending
2958 * reservations for this page now. This will ensure that any
2959 * allocations necessary to record that reservation occur outside the
2960 * spinlock. For private mappings, we also lookup the pagecache
2961 * page now as it is used to determine if a reservation has been
2962 * consumed.
2963 */
106c992a 2964 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2965 if (vma_needs_reservation(h, vma, address) < 0) {
2966 ret = VM_FAULT_OOM;
b4d1d99f 2967 goto out_mutex;
2b26736c 2968 }
57303d80 2969
f83a275d 2970 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2971 pagecache_page = hugetlbfs_pagecache_page(h,
2972 vma, address);
2973 }
2974
56c9cfb1
NH
2975 /*
2976 * hugetlb_cow() requires page locks of pte_page(entry) and
2977 * pagecache_page, so here we need take the former one
2978 * when page != pagecache_page or !pagecache_page.
2979 * Note that locking order is always pagecache_page -> page,
2980 * so no worry about deadlock.
2981 */
2982 page = pte_page(entry);
66aebce7 2983 get_page(page);
56c9cfb1 2984 if (page != pagecache_page)
0fe6e20b 2985 lock_page(page);
0fe6e20b 2986
1e8f889b
DG
2987 spin_lock(&mm->page_table_lock);
2988 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2989 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2990 goto out_page_table_lock;
2991
2992
788c7df4 2993 if (flags & FAULT_FLAG_WRITE) {
106c992a 2994 if (!huge_pte_write(entry)) {
57303d80
AW
2995 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2996 pagecache_page);
b4d1d99f
DG
2997 goto out_page_table_lock;
2998 }
106c992a 2999 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3000 }
3001 entry = pte_mkyoung(entry);
788c7df4
HD
3002 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3003 flags & FAULT_FLAG_WRITE))
4b3073e1 3004 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
3005
3006out_page_table_lock:
1e8f889b 3007 spin_unlock(&mm->page_table_lock);
57303d80
AW
3008
3009 if (pagecache_page) {
3010 unlock_page(pagecache_page);
3011 put_page(pagecache_page);
3012 }
1f64d69c
DN
3013 if (page != pagecache_page)
3014 unlock_page(page);
66aebce7 3015 put_page(page);
57303d80 3016
b4d1d99f 3017out_mutex:
3935baa9 3018 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
3019
3020 return ret;
86e5216f
AL
3021}
3022
28a35716
ML
3023long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3024 struct page **pages, struct vm_area_struct **vmas,
3025 unsigned long *position, unsigned long *nr_pages,
3026 long i, unsigned int flags)
63551ae0 3027{
d5d4b0aa
KC
3028 unsigned long pfn_offset;
3029 unsigned long vaddr = *position;
28a35716 3030 unsigned long remainder = *nr_pages;
a5516438 3031 struct hstate *h = hstate_vma(vma);
63551ae0 3032
1c59827d 3033 spin_lock(&mm->page_table_lock);
63551ae0 3034 while (vaddr < vma->vm_end && remainder) {
4c887265 3035 pte_t *pte;
2a15efc9 3036 int absent;
4c887265 3037 struct page *page;
63551ae0 3038
4c887265
AL
3039 /*
3040 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3041 * each hugepage. We have to make sure we get the
4c887265
AL
3042 * first, for the page indexing below to work.
3043 */
a5516438 3044 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
3045 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3046
3047 /*
3048 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3049 * an error where there's an empty slot with no huge pagecache
3050 * to back it. This way, we avoid allocating a hugepage, and
3051 * the sparse dumpfile avoids allocating disk blocks, but its
3052 * huge holes still show up with zeroes where they need to be.
2a15efc9 3053 */
3ae77f43
HD
3054 if (absent && (flags & FOLL_DUMP) &&
3055 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
3056 remainder = 0;
3057 break;
3058 }
63551ae0 3059
9cc3a5bd
NH
3060 /*
3061 * We need call hugetlb_fault for both hugepages under migration
3062 * (in which case hugetlb_fault waits for the migration,) and
3063 * hwpoisoned hugepages (in which case we need to prevent the
3064 * caller from accessing to them.) In order to do this, we use
3065 * here is_swap_pte instead of is_hugetlb_entry_migration and
3066 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3067 * both cases, and because we can't follow correct pages
3068 * directly from any kind of swap entries.
3069 */
3070 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3071 ((flags & FOLL_WRITE) &&
3072 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3073 int ret;
63551ae0 3074
4c887265 3075 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
3076 ret = hugetlb_fault(mm, vma, vaddr,
3077 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 3078 spin_lock(&mm->page_table_lock);
a89182c7 3079 if (!(ret & VM_FAULT_ERROR))
4c887265 3080 continue;
63551ae0 3081
4c887265 3082 remainder = 0;
4c887265
AL
3083 break;
3084 }
3085
a5516438 3086 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3087 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3088same_page:
d6692183 3089 if (pages) {
2a15efc9 3090 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 3091 get_page(pages[i]);
d6692183 3092 }
63551ae0
DG
3093
3094 if (vmas)
3095 vmas[i] = vma;
3096
3097 vaddr += PAGE_SIZE;
d5d4b0aa 3098 ++pfn_offset;
63551ae0
DG
3099 --remainder;
3100 ++i;
d5d4b0aa 3101 if (vaddr < vma->vm_end && remainder &&
a5516438 3102 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3103 /*
3104 * We use pfn_offset to avoid touching the pageframes
3105 * of this compound page.
3106 */
3107 goto same_page;
3108 }
63551ae0 3109 }
1c59827d 3110 spin_unlock(&mm->page_table_lock);
28a35716 3111 *nr_pages = remainder;
63551ae0
DG
3112 *position = vaddr;
3113
2a15efc9 3114 return i ? i : -EFAULT;
63551ae0 3115}
8f860591 3116
7da4d641 3117unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3118 unsigned long address, unsigned long end, pgprot_t newprot)
3119{
3120 struct mm_struct *mm = vma->vm_mm;
3121 unsigned long start = address;
3122 pte_t *ptep;
3123 pte_t pte;
a5516438 3124 struct hstate *h = hstate_vma(vma);
7da4d641 3125 unsigned long pages = 0;
8f860591
ZY
3126
3127 BUG_ON(address >= end);
3128 flush_cache_range(vma, address, end);
3129
3d48ae45 3130 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3131 spin_lock(&mm->page_table_lock);
a5516438 3132 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3133 ptep = huge_pte_offset(mm, address);
3134 if (!ptep)
3135 continue;
7da4d641
PZ
3136 if (huge_pmd_unshare(mm, &address, ptep)) {
3137 pages++;
39dde65c 3138 continue;
7da4d641 3139 }
7f2e9525 3140 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3141 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3142 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3143 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3144 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3145 pages++;
8f860591
ZY
3146 }
3147 }
3148 spin_unlock(&mm->page_table_lock);
d833352a
MG
3149 /*
3150 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3151 * may have cleared our pud entry and done put_page on the page table:
3152 * once we release i_mmap_mutex, another task can do the final put_page
3153 * and that page table be reused and filled with junk.
3154 */
8f860591 3155 flush_tlb_range(vma, start, end);
d833352a 3156 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3157
3158 return pages << h->order;
8f860591
ZY
3159}
3160
a1e78772
MG
3161int hugetlb_reserve_pages(struct inode *inode,
3162 long from, long to,
5a6fe125 3163 struct vm_area_struct *vma,
ca16d140 3164 vm_flags_t vm_flags)
e4e574b7 3165{
17c9d12e 3166 long ret, chg;
a5516438 3167 struct hstate *h = hstate_inode(inode);
90481622 3168 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3169
17c9d12e
MG
3170 /*
3171 * Only apply hugepage reservation if asked. At fault time, an
3172 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3173 * without using reserves
17c9d12e 3174 */
ca16d140 3175 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3176 return 0;
3177
a1e78772
MG
3178 /*
3179 * Shared mappings base their reservation on the number of pages that
3180 * are already allocated on behalf of the file. Private mappings need
3181 * to reserve the full area even if read-only as mprotect() may be
3182 * called to make the mapping read-write. Assume !vma is a shm mapping
3183 */
f83a275d 3184 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3185 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3186 else {
3187 struct resv_map *resv_map = resv_map_alloc();
3188 if (!resv_map)
3189 return -ENOMEM;
3190
a1e78772 3191 chg = to - from;
84afd99b 3192
17c9d12e
MG
3193 set_vma_resv_map(vma, resv_map);
3194 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3195 }
3196
c50ac050
DH
3197 if (chg < 0) {
3198 ret = chg;
3199 goto out_err;
3200 }
8a630112 3201
90481622 3202 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3203 if (hugepage_subpool_get_pages(spool, chg)) {
3204 ret = -ENOSPC;
3205 goto out_err;
3206 }
5a6fe125
MG
3207
3208 /*
17c9d12e 3209 * Check enough hugepages are available for the reservation.
90481622 3210 * Hand the pages back to the subpool if there are not
5a6fe125 3211 */
a5516438 3212 ret = hugetlb_acct_memory(h, chg);
68842c9b 3213 if (ret < 0) {
90481622 3214 hugepage_subpool_put_pages(spool, chg);
c50ac050 3215 goto out_err;
68842c9b 3216 }
17c9d12e
MG
3217
3218 /*
3219 * Account for the reservations made. Shared mappings record regions
3220 * that have reservations as they are shared by multiple VMAs.
3221 * When the last VMA disappears, the region map says how much
3222 * the reservation was and the page cache tells how much of
3223 * the reservation was consumed. Private mappings are per-VMA and
3224 * only the consumed reservations are tracked. When the VMA
3225 * disappears, the original reservation is the VMA size and the
3226 * consumed reservations are stored in the map. Hence, nothing
3227 * else has to be done for private mappings here
3228 */
f83a275d 3229 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3230 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3231 return 0;
c50ac050 3232out_err:
4523e145
DH
3233 if (vma)
3234 resv_map_put(vma);
c50ac050 3235 return ret;
a43a8c39
KC
3236}
3237
3238void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3239{
a5516438 3240 struct hstate *h = hstate_inode(inode);
a43a8c39 3241 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3242 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3243
3244 spin_lock(&inode->i_lock);
e4c6f8be 3245 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3246 spin_unlock(&inode->i_lock);
3247
90481622 3248 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3249 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3250}
93f70f90 3251
3c2a0909
S
3252#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3253static unsigned long page_table_shareable(struct vm_area_struct *svma,
3254 struct vm_area_struct *vma,
3255 unsigned long addr, pgoff_t idx)
3256{
3257 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3258 svma->vm_start;
3259 unsigned long sbase = saddr & PUD_MASK;
3260 unsigned long s_end = sbase + PUD_SIZE;
3261
3262 /* Allow segments to share if only one is marked locked */
3263 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3264 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3265
3266 /*
3267 * match the virtual addresses, permission and the alignment of the
3268 * page table page.
3269 */
3270 if (pmd_index(addr) != pmd_index(saddr) ||
3271 vm_flags != svm_flags ||
3272 sbase < svma->vm_start || svma->vm_end < s_end)
3273 return 0;
3274
3275 return saddr;
3276}
3277
3278static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3279{
3280 unsigned long base = addr & PUD_MASK;
3281 unsigned long end = base + PUD_SIZE;
3282
3283 /*
3284 * check on proper vm_flags and page table alignment
3285 */
3286 if (vma->vm_flags & VM_MAYSHARE &&
3287 vma->vm_start <= base && end <= vma->vm_end)
3288 return 1;
3289 return 0;
3290}
3291
3292/*
3293 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3294 * and returns the corresponding pte. While this is not necessary for the
3295 * !shared pmd case because we can allocate the pmd later as well, it makes the
3296 * code much cleaner. pmd allocation is essential for the shared case because
3297 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3298 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3299 * bad pmd for sharing.
3300 */
3301pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3302{
3303 struct vm_area_struct *vma = find_vma(mm, addr);
3304 struct address_space *mapping = vma->vm_file->f_mapping;
3305 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3306 vma->vm_pgoff;
3307 struct vm_area_struct *svma;
3308 unsigned long saddr;
3309 pte_t *spte = NULL;
3310 pte_t *pte;
3311
3312 if (!vma_shareable(vma, addr))
3313 return (pte_t *)pmd_alloc(mm, pud, addr);
3314
3315 mutex_lock(&mapping->i_mmap_mutex);
3316 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3317 if (svma == vma)
3318 continue;
3319
3320 saddr = page_table_shareable(svma, vma, addr, idx);
3321 if (saddr) {
3322 spte = huge_pte_offset(svma->vm_mm, saddr);
3323 if (spte) {
3324 get_page(virt_to_page(spte));
3325 break;
3326 }
3327 }
3328 }
3329
3330 if (!spte)
3331 goto out;
3332
3333 spin_lock(&mm->page_table_lock);
3334 if (pud_none(*pud))
3335 pud_populate(mm, pud,
3336 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3337 else
3338 put_page(virt_to_page(spte));
3339 spin_unlock(&mm->page_table_lock);
3340out:
3341 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3342 mutex_unlock(&mapping->i_mmap_mutex);
3343 return pte;
3344}
3345
3346/*
3347 * unmap huge page backed by shared pte.
3348 *
3349 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3350 * indicated by page_count > 1, unmap is achieved by clearing pud and
3351 * decrementing the ref count. If count == 1, the pte page is not shared.
3352 *
3353 * called with vma->vm_mm->page_table_lock held.
3354 *
3355 * returns: 1 successfully unmapped a shared pte page
3356 * 0 the underlying pte page is not shared, or it is the last user
3357 */
3358int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3359{
3360 pgd_t *pgd = pgd_offset(mm, *addr);
3361 pud_t *pud = pud_offset(pgd, *addr);
3362
3363 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3364 if (page_count(virt_to_page(ptep)) == 1)
3365 return 0;
3366
3367 pud_clear(pud);
3368 put_page(virt_to_page(ptep));
3369 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3370 return 1;
3371}
3372#define want_pmd_share() (1)
3373#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3374pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3375{
3376 return NULL;
3377}
3378#define want_pmd_share() (0)
3379#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3380
3381#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3382pte_t *huge_pte_alloc(struct mm_struct *mm,
3383 unsigned long addr, unsigned long sz)
3384{
3385 pgd_t *pgd;
3386 pud_t *pud;
3387 pte_t *pte = NULL;
3388
3389 pgd = pgd_offset(mm, addr);
3390 pud = pud_alloc(mm, pgd, addr);
3391 if (pud) {
3392 if (sz == PUD_SIZE) {
3393 pte = (pte_t *)pud;
3394 } else {
3395 BUG_ON(sz != PMD_SIZE);
3396 if (want_pmd_share() && pud_none(*pud))
3397 pte = huge_pmd_share(mm, addr, pud);
3398 else
3399 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3400 }
3401 }
3402 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3403
3404 return pte;
3405}
3406
3407pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3408{
3409 pgd_t *pgd;
3410 pud_t *pud;
3411 pmd_t *pmd = NULL;
3412
3413 pgd = pgd_offset(mm, addr);
3414 if (pgd_present(*pgd)) {
3415 pud = pud_offset(pgd, addr);
3416 if (pud_present(*pud)) {
3417 if (pud_huge(*pud))
3418 return (pte_t *)pud;
3419 pmd = pmd_offset(pud, addr);
3420 }
3421 }
3422 return (pte_t *) pmd;
3423}
3424
3425struct page *
3426follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3427 pmd_t *pmd, int write)
3428{
3429 struct page *page;
3430
3431 page = pte_page(*(pte_t *)pmd);
3432 if (page)
3433 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3434 return page;
3435}
3436
3437struct page *
3438follow_huge_pud(struct mm_struct *mm, unsigned long address,
3439 pud_t *pud, int write)
3440{
3441 struct page *page;
3442
3443 page = pte_page(*(pte_t *)pud);
3444 if (page)
3445 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3446 return page;
3447}
3448
3449#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3450
3451/* Can be overriden by architectures */
3452__attribute__((weak)) struct page *
3453follow_huge_pud(struct mm_struct *mm, unsigned long address,
3454 pud_t *pud, int write)
3455{
3456 BUG();
3457 return NULL;
3458}
3459
3460#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3461
d5bd9106
AK
3462#ifdef CONFIG_MEMORY_FAILURE
3463
6de2b1aa
NH
3464/* Should be called in hugetlb_lock */
3465static int is_hugepage_on_freelist(struct page *hpage)
3466{
3467 struct page *page;
3468 struct page *tmp;
3469 struct hstate *h = page_hstate(hpage);
3470 int nid = page_to_nid(hpage);
3471
3472 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3473 if (page == hpage)
3474 return 1;
3475 return 0;
3476}
3477
93f70f90
NH
3478/*
3479 * This function is called from memory failure code.
3480 * Assume the caller holds page lock of the head page.
3481 */
6de2b1aa 3482int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3483{
3484 struct hstate *h = page_hstate(hpage);
3485 int nid = page_to_nid(hpage);
6de2b1aa 3486 int ret = -EBUSY;
93f70f90
NH
3487
3488 spin_lock(&hugetlb_lock);
6de2b1aa 3489 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3490 /*
3491 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3492 * but dangling hpage->lru can trigger list-debug warnings
3493 * (this happens when we call unpoison_memory() on it),
3494 * so let it point to itself with list_del_init().
3495 */
3496 list_del_init(&hpage->lru);
8c6c2ecb 3497 set_page_refcounted(hpage);
6de2b1aa
NH
3498 h->free_huge_pages--;
3499 h->free_huge_pages_node[nid]--;
3500 ret = 0;
3501 }
93f70f90 3502 spin_unlock(&hugetlb_lock);
6de2b1aa 3503 return ret;
93f70f90 3504}
6de2b1aa 3505#endif