thp: zap_huge_pmd(): zap huge zero pmd
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
325adeb5 20#include <linux/pagemap.h>
71e3aac0
AA
21#include <asm/tlb.h>
22#include <asm/pgalloc.h>
23#include "internal.h"
24
ba76149f
AA
25/*
26 * By default transparent hugepage support is enabled for all mappings
27 * and khugepaged scans all mappings. Defrag is only invoked by
28 * khugepaged hugepage allocations and by page faults inside
29 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
30 * allocations.
31 */
71e3aac0 32unsigned long transparent_hugepage_flags __read_mostly =
13ece886 33#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 34 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
35#endif
36#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
37 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
38#endif
d39d33c3 39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
40 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41
42/* default scan 8*512 pte (or vmas) every 30 second */
43static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
44static unsigned int khugepaged_pages_collapsed;
45static unsigned int khugepaged_full_scans;
46static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
47/* during fragmentation poll the hugepage allocator once every minute */
48static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
49static struct task_struct *khugepaged_thread __read_mostly;
4a6c1297 50static unsigned long huge_zero_pfn __read_mostly;
ba76149f
AA
51static DEFINE_MUTEX(khugepaged_mutex);
52static DEFINE_SPINLOCK(khugepaged_mm_lock);
53static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
54/*
55 * default collapse hugepages if there is at least one pte mapped like
56 * it would have happened if the vma was large enough during page
57 * fault.
58 */
59static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
60
61static int khugepaged(void *none);
62static int mm_slots_hash_init(void);
63static int khugepaged_slab_init(void);
64static void khugepaged_slab_free(void);
65
66#define MM_SLOTS_HASH_HEADS 1024
67static struct hlist_head *mm_slots_hash __read_mostly;
68static struct kmem_cache *mm_slot_cache __read_mostly;
69
70/**
71 * struct mm_slot - hash lookup from mm to mm_slot
72 * @hash: hash collision list
73 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
74 * @mm: the mm that this information is valid for
75 */
76struct mm_slot {
77 struct hlist_node hash;
78 struct list_head mm_node;
79 struct mm_struct *mm;
80};
81
82/**
83 * struct khugepaged_scan - cursor for scanning
84 * @mm_head: the head of the mm list to scan
85 * @mm_slot: the current mm_slot we are scanning
86 * @address: the next address inside that to be scanned
87 *
88 * There is only the one khugepaged_scan instance of this cursor structure.
89 */
90struct khugepaged_scan {
91 struct list_head mm_head;
92 struct mm_slot *mm_slot;
93 unsigned long address;
2f1da642
HS
94};
95static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
96 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
97};
98
f000565a
AA
99
100static int set_recommended_min_free_kbytes(void)
101{
102 struct zone *zone;
103 int nr_zones = 0;
104 unsigned long recommended_min;
105 extern int min_free_kbytes;
106
17c230af 107 if (!khugepaged_enabled())
f000565a
AA
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
ba76149f
AA
137static int start_khugepaged(void)
138{
139 int err = 0;
140 if (khugepaged_enabled()) {
ba76149f
AA
141 if (!khugepaged_thread)
142 khugepaged_thread = kthread_run(khugepaged, NULL,
143 "khugepaged");
144 if (unlikely(IS_ERR(khugepaged_thread))) {
145 printk(KERN_ERR
146 "khugepaged: kthread_run(khugepaged) failed\n");
147 err = PTR_ERR(khugepaged_thread);
148 khugepaged_thread = NULL;
149 }
911891af
XG
150
151 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 152 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
153
154 set_recommended_min_free_kbytes();
911891af 155 } else if (khugepaged_thread) {
911891af
XG
156 kthread_stop(khugepaged_thread);
157 khugepaged_thread = NULL;
158 }
637e3a27 159
ba76149f
AA
160 return err;
161}
71e3aac0 162
4a6c1297
KS
163static int __init init_huge_zero_page(void)
164{
165 struct page *hpage;
166
167 hpage = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
168 HPAGE_PMD_ORDER);
169 if (!hpage)
170 return -ENOMEM;
171
172 huge_zero_pfn = page_to_pfn(hpage);
173 return 0;
174}
175
176static inline bool is_huge_zero_pfn(unsigned long pfn)
177{
178 return pfn == huge_zero_pfn;
179}
180
181static inline bool is_huge_zero_pmd(pmd_t pmd)
182{
183 return is_huge_zero_pfn(pmd_pfn(pmd));
184}
185
71e3aac0 186#ifdef CONFIG_SYSFS
ba76149f 187
71e3aac0
AA
188static ssize_t double_flag_show(struct kobject *kobj,
189 struct kobj_attribute *attr, char *buf,
190 enum transparent_hugepage_flag enabled,
191 enum transparent_hugepage_flag req_madv)
192{
193 if (test_bit(enabled, &transparent_hugepage_flags)) {
194 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
195 return sprintf(buf, "[always] madvise never\n");
196 } else if (test_bit(req_madv, &transparent_hugepage_flags))
197 return sprintf(buf, "always [madvise] never\n");
198 else
199 return sprintf(buf, "always madvise [never]\n");
200}
201static ssize_t double_flag_store(struct kobject *kobj,
202 struct kobj_attribute *attr,
203 const char *buf, size_t count,
204 enum transparent_hugepage_flag enabled,
205 enum transparent_hugepage_flag req_madv)
206{
207 if (!memcmp("always", buf,
208 min(sizeof("always")-1, count))) {
209 set_bit(enabled, &transparent_hugepage_flags);
210 clear_bit(req_madv, &transparent_hugepage_flags);
211 } else if (!memcmp("madvise", buf,
212 min(sizeof("madvise")-1, count))) {
213 clear_bit(enabled, &transparent_hugepage_flags);
214 set_bit(req_madv, &transparent_hugepage_flags);
215 } else if (!memcmp("never", buf,
216 min(sizeof("never")-1, count))) {
217 clear_bit(enabled, &transparent_hugepage_flags);
218 clear_bit(req_madv, &transparent_hugepage_flags);
219 } else
220 return -EINVAL;
221
222 return count;
223}
224
225static ssize_t enabled_show(struct kobject *kobj,
226 struct kobj_attribute *attr, char *buf)
227{
228 return double_flag_show(kobj, attr, buf,
229 TRANSPARENT_HUGEPAGE_FLAG,
230 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
231}
232static ssize_t enabled_store(struct kobject *kobj,
233 struct kobj_attribute *attr,
234 const char *buf, size_t count)
235{
ba76149f
AA
236 ssize_t ret;
237
238 ret = double_flag_store(kobj, attr, buf, count,
239 TRANSPARENT_HUGEPAGE_FLAG,
240 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
241
242 if (ret > 0) {
911891af
XG
243 int err;
244
245 mutex_lock(&khugepaged_mutex);
246 err = start_khugepaged();
247 mutex_unlock(&khugepaged_mutex);
248
ba76149f
AA
249 if (err)
250 ret = err;
251 }
252
253 return ret;
71e3aac0
AA
254}
255static struct kobj_attribute enabled_attr =
256 __ATTR(enabled, 0644, enabled_show, enabled_store);
257
258static ssize_t single_flag_show(struct kobject *kobj,
259 struct kobj_attribute *attr, char *buf,
260 enum transparent_hugepage_flag flag)
261{
e27e6151
BH
262 return sprintf(buf, "%d\n",
263 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 264}
e27e6151 265
71e3aac0
AA
266static ssize_t single_flag_store(struct kobject *kobj,
267 struct kobj_attribute *attr,
268 const char *buf, size_t count,
269 enum transparent_hugepage_flag flag)
270{
e27e6151
BH
271 unsigned long value;
272 int ret;
273
274 ret = kstrtoul(buf, 10, &value);
275 if (ret < 0)
276 return ret;
277 if (value > 1)
278 return -EINVAL;
279
280 if (value)
71e3aac0 281 set_bit(flag, &transparent_hugepage_flags);
e27e6151 282 else
71e3aac0 283 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
284
285 return count;
286}
287
288/*
289 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
290 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
291 * memory just to allocate one more hugepage.
292 */
293static ssize_t defrag_show(struct kobject *kobj,
294 struct kobj_attribute *attr, char *buf)
295{
296 return double_flag_show(kobj, attr, buf,
297 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
298 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
299}
300static ssize_t defrag_store(struct kobject *kobj,
301 struct kobj_attribute *attr,
302 const char *buf, size_t count)
303{
304 return double_flag_store(kobj, attr, buf, count,
305 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
306 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
307}
308static struct kobj_attribute defrag_attr =
309 __ATTR(defrag, 0644, defrag_show, defrag_store);
310
311#ifdef CONFIG_DEBUG_VM
312static ssize_t debug_cow_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf)
314{
315 return single_flag_show(kobj, attr, buf,
316 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
317}
318static ssize_t debug_cow_store(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 const char *buf, size_t count)
321{
322 return single_flag_store(kobj, attr, buf, count,
323 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
324}
325static struct kobj_attribute debug_cow_attr =
326 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
327#endif /* CONFIG_DEBUG_VM */
328
329static struct attribute *hugepage_attr[] = {
330 &enabled_attr.attr,
331 &defrag_attr.attr,
332#ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334#endif
335 NULL,
336};
337
338static struct attribute_group hugepage_attr_group = {
339 .attrs = hugepage_attr,
ba76149f
AA
340};
341
342static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
343 struct kobj_attribute *attr,
344 char *buf)
345{
346 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
347}
348
349static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
350 struct kobj_attribute *attr,
351 const char *buf, size_t count)
352{
353 unsigned long msecs;
354 int err;
355
356 err = strict_strtoul(buf, 10, &msecs);
357 if (err || msecs > UINT_MAX)
358 return -EINVAL;
359
360 khugepaged_scan_sleep_millisecs = msecs;
361 wake_up_interruptible(&khugepaged_wait);
362
363 return count;
364}
365static struct kobj_attribute scan_sleep_millisecs_attr =
366 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
367 scan_sleep_millisecs_store);
368
369static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
370 struct kobj_attribute *attr,
371 char *buf)
372{
373 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
374}
375
376static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
377 struct kobj_attribute *attr,
378 const char *buf, size_t count)
379{
380 unsigned long msecs;
381 int err;
382
383 err = strict_strtoul(buf, 10, &msecs);
384 if (err || msecs > UINT_MAX)
385 return -EINVAL;
386
387 khugepaged_alloc_sleep_millisecs = msecs;
388 wake_up_interruptible(&khugepaged_wait);
389
390 return count;
391}
392static struct kobj_attribute alloc_sleep_millisecs_attr =
393 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
394 alloc_sleep_millisecs_store);
395
396static ssize_t pages_to_scan_show(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 char *buf)
399{
400 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
401}
402static ssize_t pages_to_scan_store(struct kobject *kobj,
403 struct kobj_attribute *attr,
404 const char *buf, size_t count)
405{
406 int err;
407 unsigned long pages;
408
409 err = strict_strtoul(buf, 10, &pages);
410 if (err || !pages || pages > UINT_MAX)
411 return -EINVAL;
412
413 khugepaged_pages_to_scan = pages;
414
415 return count;
416}
417static struct kobj_attribute pages_to_scan_attr =
418 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
419 pages_to_scan_store);
420
421static ssize_t pages_collapsed_show(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 char *buf)
424{
425 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
426}
427static struct kobj_attribute pages_collapsed_attr =
428 __ATTR_RO(pages_collapsed);
429
430static ssize_t full_scans_show(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 char *buf)
433{
434 return sprintf(buf, "%u\n", khugepaged_full_scans);
435}
436static struct kobj_attribute full_scans_attr =
437 __ATTR_RO(full_scans);
438
439static ssize_t khugepaged_defrag_show(struct kobject *kobj,
440 struct kobj_attribute *attr, char *buf)
441{
442 return single_flag_show(kobj, attr, buf,
443 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
444}
445static ssize_t khugepaged_defrag_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448{
449 return single_flag_store(kobj, attr, buf, count,
450 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
451}
452static struct kobj_attribute khugepaged_defrag_attr =
453 __ATTR(defrag, 0644, khugepaged_defrag_show,
454 khugepaged_defrag_store);
455
456/*
457 * max_ptes_none controls if khugepaged should collapse hugepages over
458 * any unmapped ptes in turn potentially increasing the memory
459 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
460 * reduce the available free memory in the system as it
461 * runs. Increasing max_ptes_none will instead potentially reduce the
462 * free memory in the system during the khugepaged scan.
463 */
464static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
465 struct kobj_attribute *attr,
466 char *buf)
467{
468 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
469}
470static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
471 struct kobj_attribute *attr,
472 const char *buf, size_t count)
473{
474 int err;
475 unsigned long max_ptes_none;
476
477 err = strict_strtoul(buf, 10, &max_ptes_none);
478 if (err || max_ptes_none > HPAGE_PMD_NR-1)
479 return -EINVAL;
480
481 khugepaged_max_ptes_none = max_ptes_none;
482
483 return count;
484}
485static struct kobj_attribute khugepaged_max_ptes_none_attr =
486 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
487 khugepaged_max_ptes_none_store);
488
489static struct attribute *khugepaged_attr[] = {
490 &khugepaged_defrag_attr.attr,
491 &khugepaged_max_ptes_none_attr.attr,
492 &pages_to_scan_attr.attr,
493 &pages_collapsed_attr.attr,
494 &full_scans_attr.attr,
495 &scan_sleep_millisecs_attr.attr,
496 &alloc_sleep_millisecs_attr.attr,
497 NULL,
498};
499
500static struct attribute_group khugepaged_attr_group = {
501 .attrs = khugepaged_attr,
502 .name = "khugepaged",
71e3aac0 503};
71e3aac0 504
569e5590 505static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 506{
71e3aac0
AA
507 int err;
508
569e5590
SL
509 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
510 if (unlikely(!*hugepage_kobj)) {
ba76149f 511 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 512 return -ENOMEM;
ba76149f
AA
513 }
514
569e5590 515 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
516 if (err) {
517 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 518 goto delete_obj;
ba76149f
AA
519 }
520
569e5590 521 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
522 if (err) {
523 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 524 goto remove_hp_group;
ba76149f 525 }
569e5590
SL
526
527 return 0;
528
529remove_hp_group:
530 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
531delete_obj:
532 kobject_put(*hugepage_kobj);
533 return err;
534}
535
536static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
537{
538 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
539 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
540 kobject_put(hugepage_kobj);
541}
542#else
543static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
544{
545 return 0;
546}
547
548static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
549{
550}
551#endif /* CONFIG_SYSFS */
552
553static int __init hugepage_init(void)
554{
555 int err;
556 struct kobject *hugepage_kobj;
557
558 if (!has_transparent_hugepage()) {
559 transparent_hugepage_flags = 0;
560 return -EINVAL;
561 }
562
563 err = hugepage_init_sysfs(&hugepage_kobj);
564 if (err)
565 return err;
ba76149f 566
4a6c1297
KS
567 err = init_huge_zero_page();
568 if (err)
569 goto out;
570
ba76149f
AA
571 err = khugepaged_slab_init();
572 if (err)
573 goto out;
574
575 err = mm_slots_hash_init();
576 if (err) {
577 khugepaged_slab_free();
578 goto out;
579 }
580
97562cd2
RR
581 /*
582 * By default disable transparent hugepages on smaller systems,
583 * where the extra memory used could hurt more than TLB overhead
584 * is likely to save. The admin can still enable it through /sys.
585 */
586 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
587 transparent_hugepage_flags = 0;
588
ba76149f
AA
589 start_khugepaged();
590
569e5590 591 return 0;
ba76149f 592out:
4a6c1297
KS
593 if (huge_zero_pfn)
594 __free_page(pfn_to_page(huge_zero_pfn));
569e5590 595 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 596 return err;
71e3aac0
AA
597}
598module_init(hugepage_init)
599
600static int __init setup_transparent_hugepage(char *str)
601{
602 int ret = 0;
603 if (!str)
604 goto out;
605 if (!strcmp(str, "always")) {
606 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
607 &transparent_hugepage_flags);
608 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
609 &transparent_hugepage_flags);
610 ret = 1;
611 } else if (!strcmp(str, "madvise")) {
612 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
613 &transparent_hugepage_flags);
614 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
615 &transparent_hugepage_flags);
616 ret = 1;
617 } else if (!strcmp(str, "never")) {
618 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
619 &transparent_hugepage_flags);
620 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
621 &transparent_hugepage_flags);
622 ret = 1;
623 }
624out:
625 if (!ret)
626 printk(KERN_WARNING
627 "transparent_hugepage= cannot parse, ignored\n");
628 return ret;
629}
630__setup("transparent_hugepage=", setup_transparent_hugepage);
631
71e3aac0
AA
632static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
633{
634 if (likely(vma->vm_flags & VM_WRITE))
635 pmd = pmd_mkwrite(pmd);
636 return pmd;
637}
638
b3092b3b
BL
639static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
640{
641 pmd_t entry;
642 entry = mk_pmd(page, vma->vm_page_prot);
643 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
644 entry = pmd_mkhuge(entry);
645 return entry;
646}
647
71e3aac0
AA
648static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
649 struct vm_area_struct *vma,
650 unsigned long haddr, pmd_t *pmd,
651 struct page *page)
652{
71e3aac0
AA
653 pgtable_t pgtable;
654
655 VM_BUG_ON(!PageCompound(page));
656 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 657 if (unlikely(!pgtable))
71e3aac0 658 return VM_FAULT_OOM;
71e3aac0
AA
659
660 clear_huge_page(page, haddr, HPAGE_PMD_NR);
661 __SetPageUptodate(page);
662
663 spin_lock(&mm->page_table_lock);
664 if (unlikely(!pmd_none(*pmd))) {
665 spin_unlock(&mm->page_table_lock);
b9bbfbe3 666 mem_cgroup_uncharge_page(page);
71e3aac0
AA
667 put_page(page);
668 pte_free(mm, pgtable);
669 } else {
670 pmd_t entry;
b3092b3b 671 entry = mk_huge_pmd(page, vma);
71e3aac0
AA
672 /*
673 * The spinlocking to take the lru_lock inside
674 * page_add_new_anon_rmap() acts as a full memory
675 * barrier to be sure clear_huge_page writes become
676 * visible after the set_pmd_at() write.
677 */
678 page_add_new_anon_rmap(page, vma, haddr);
679 set_pmd_at(mm, haddr, pmd, entry);
e3ebcf64 680 pgtable_trans_huge_deposit(mm, pgtable);
71e3aac0 681 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 682 mm->nr_ptes++;
71e3aac0
AA
683 spin_unlock(&mm->page_table_lock);
684 }
685
aa2e878e 686 return 0;
71e3aac0
AA
687}
688
cc5d462f 689static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 690{
cc5d462f 691 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
692}
693
694static inline struct page *alloc_hugepage_vma(int defrag,
695 struct vm_area_struct *vma,
cc5d462f
AK
696 unsigned long haddr, int nd,
697 gfp_t extra_gfp)
0bbbc0b3 698{
cc5d462f 699 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 700 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
701}
702
703#ifndef CONFIG_NUMA
71e3aac0
AA
704static inline struct page *alloc_hugepage(int defrag)
705{
cc5d462f 706 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
707 HPAGE_PMD_ORDER);
708}
0bbbc0b3 709#endif
71e3aac0
AA
710
711int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
712 unsigned long address, pmd_t *pmd,
713 unsigned int flags)
714{
715 struct page *page;
716 unsigned long haddr = address & HPAGE_PMD_MASK;
717 pte_t *pte;
718
719 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
720 if (unlikely(anon_vma_prepare(vma)))
721 return VM_FAULT_OOM;
ba76149f
AA
722 if (unlikely(khugepaged_enter(vma)))
723 return VM_FAULT_OOM;
0bbbc0b3 724 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 725 vma, haddr, numa_node_id(), 0);
81ab4201
AK
726 if (unlikely(!page)) {
727 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 728 goto out;
81ab4201
AK
729 }
730 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
731 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
732 put_page(page);
733 goto out;
734 }
edad9d2c
DR
735 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
736 page))) {
737 mem_cgroup_uncharge_page(page);
738 put_page(page);
739 goto out;
740 }
71e3aac0 741
edad9d2c 742 return 0;
71e3aac0
AA
743 }
744out:
745 /*
746 * Use __pte_alloc instead of pte_alloc_map, because we can't
747 * run pte_offset_map on the pmd, if an huge pmd could
748 * materialize from under us from a different thread.
749 */
750 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
751 return VM_FAULT_OOM;
752 /* if an huge pmd materialized from under us just retry later */
753 if (unlikely(pmd_trans_huge(*pmd)))
754 return 0;
755 /*
756 * A regular pmd is established and it can't morph into a huge pmd
757 * from under us anymore at this point because we hold the mmap_sem
758 * read mode and khugepaged takes it in write mode. So now it's
759 * safe to run pte_offset_map().
760 */
761 pte = pte_offset_map(pmd, address);
762 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
763}
764
765int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
766 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
767 struct vm_area_struct *vma)
768{
769 struct page *src_page;
770 pmd_t pmd;
771 pgtable_t pgtable;
772 int ret;
773
774 ret = -ENOMEM;
775 pgtable = pte_alloc_one(dst_mm, addr);
776 if (unlikely(!pgtable))
777 goto out;
778
779 spin_lock(&dst_mm->page_table_lock);
780 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
781
782 ret = -EAGAIN;
783 pmd = *src_pmd;
784 if (unlikely(!pmd_trans_huge(pmd))) {
785 pte_free(dst_mm, pgtable);
786 goto out_unlock;
787 }
788 if (unlikely(pmd_trans_splitting(pmd))) {
789 /* split huge page running from under us */
790 spin_unlock(&src_mm->page_table_lock);
791 spin_unlock(&dst_mm->page_table_lock);
792 pte_free(dst_mm, pgtable);
793
794 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
795 goto out;
796 }
797 src_page = pmd_page(pmd);
798 VM_BUG_ON(!PageHead(src_page));
799 get_page(src_page);
800 page_dup_rmap(src_page);
801 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
802
803 pmdp_set_wrprotect(src_mm, addr, src_pmd);
804 pmd = pmd_mkold(pmd_wrprotect(pmd));
805 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e3ebcf64 806 pgtable_trans_huge_deposit(dst_mm, pgtable);
1c641e84 807 dst_mm->nr_ptes++;
71e3aac0
AA
808
809 ret = 0;
810out_unlock:
811 spin_unlock(&src_mm->page_table_lock);
812 spin_unlock(&dst_mm->page_table_lock);
813out:
814 return ret;
815}
816
a1dd450b
WD
817void huge_pmd_set_accessed(struct mm_struct *mm,
818 struct vm_area_struct *vma,
819 unsigned long address,
820 pmd_t *pmd, pmd_t orig_pmd,
821 int dirty)
822{
823 pmd_t entry;
824 unsigned long haddr;
825
826 spin_lock(&mm->page_table_lock);
827 if (unlikely(!pmd_same(*pmd, orig_pmd)))
828 goto unlock;
829
830 entry = pmd_mkyoung(orig_pmd);
831 haddr = address & HPAGE_PMD_MASK;
832 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
833 update_mmu_cache_pmd(vma, address, pmd);
834
835unlock:
836 spin_unlock(&mm->page_table_lock);
837}
838
71e3aac0
AA
839static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
840 struct vm_area_struct *vma,
841 unsigned long address,
842 pmd_t *pmd, pmd_t orig_pmd,
843 struct page *page,
844 unsigned long haddr)
845{
846 pgtable_t pgtable;
847 pmd_t _pmd;
848 int ret = 0, i;
849 struct page **pages;
2ec74c3e
SG
850 unsigned long mmun_start; /* For mmu_notifiers */
851 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
852
853 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
854 GFP_KERNEL);
855 if (unlikely(!pages)) {
856 ret |= VM_FAULT_OOM;
857 goto out;
858 }
859
860 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
861 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
862 __GFP_OTHER_NODE,
19ee151e 863 vma, address, page_to_nid(page));
b9bbfbe3
AA
864 if (unlikely(!pages[i] ||
865 mem_cgroup_newpage_charge(pages[i], mm,
866 GFP_KERNEL))) {
867 if (pages[i])
71e3aac0 868 put_page(pages[i]);
b9bbfbe3
AA
869 mem_cgroup_uncharge_start();
870 while (--i >= 0) {
871 mem_cgroup_uncharge_page(pages[i]);
872 put_page(pages[i]);
873 }
874 mem_cgroup_uncharge_end();
71e3aac0
AA
875 kfree(pages);
876 ret |= VM_FAULT_OOM;
877 goto out;
878 }
879 }
880
881 for (i = 0; i < HPAGE_PMD_NR; i++) {
882 copy_user_highpage(pages[i], page + i,
0089e485 883 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
884 __SetPageUptodate(pages[i]);
885 cond_resched();
886 }
887
2ec74c3e
SG
888 mmun_start = haddr;
889 mmun_end = haddr + HPAGE_PMD_SIZE;
890 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
891
71e3aac0
AA
892 spin_lock(&mm->page_table_lock);
893 if (unlikely(!pmd_same(*pmd, orig_pmd)))
894 goto out_free_pages;
895 VM_BUG_ON(!PageHead(page));
896
2ec74c3e 897 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
898 /* leave pmd empty until pte is filled */
899
e3ebcf64 900 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
901 pmd_populate(mm, &_pmd, pgtable);
902
903 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
904 pte_t *pte, entry;
905 entry = mk_pte(pages[i], vma->vm_page_prot);
906 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
907 page_add_new_anon_rmap(pages[i], vma, haddr);
908 pte = pte_offset_map(&_pmd, haddr);
909 VM_BUG_ON(!pte_none(*pte));
910 set_pte_at(mm, haddr, pte, entry);
911 pte_unmap(pte);
912 }
913 kfree(pages);
914
71e3aac0
AA
915 smp_wmb(); /* make pte visible before pmd */
916 pmd_populate(mm, pmd, pgtable);
917 page_remove_rmap(page);
918 spin_unlock(&mm->page_table_lock);
919
2ec74c3e
SG
920 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
921
71e3aac0
AA
922 ret |= VM_FAULT_WRITE;
923 put_page(page);
924
925out:
926 return ret;
927
928out_free_pages:
929 spin_unlock(&mm->page_table_lock);
2ec74c3e 930 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
931 mem_cgroup_uncharge_start();
932 for (i = 0; i < HPAGE_PMD_NR; i++) {
933 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 934 put_page(pages[i]);
b9bbfbe3
AA
935 }
936 mem_cgroup_uncharge_end();
71e3aac0
AA
937 kfree(pages);
938 goto out;
939}
940
941int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
942 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
943{
944 int ret = 0;
945 struct page *page, *new_page;
946 unsigned long haddr;
2ec74c3e
SG
947 unsigned long mmun_start; /* For mmu_notifiers */
948 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
949
950 VM_BUG_ON(!vma->anon_vma);
951 spin_lock(&mm->page_table_lock);
952 if (unlikely(!pmd_same(*pmd, orig_pmd)))
953 goto out_unlock;
954
955 page = pmd_page(orig_pmd);
956 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
957 haddr = address & HPAGE_PMD_MASK;
958 if (page_mapcount(page) == 1) {
959 pmd_t entry;
960 entry = pmd_mkyoung(orig_pmd);
961 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
962 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 963 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
964 ret |= VM_FAULT_WRITE;
965 goto out_unlock;
966 }
967 get_page(page);
968 spin_unlock(&mm->page_table_lock);
969
970 if (transparent_hugepage_enabled(vma) &&
971 !transparent_hugepage_debug_cow())
0bbbc0b3 972 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 973 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
974 else
975 new_page = NULL;
976
977 if (unlikely(!new_page)) {
81ab4201 978 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
979 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
980 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
981 if (ret & VM_FAULT_OOM)
982 split_huge_page(page);
71e3aac0
AA
983 put_page(page);
984 goto out;
985 }
81ab4201 986 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 987
b9bbfbe3
AA
988 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
989 put_page(new_page);
1f1d06c3 990 split_huge_page(page);
b9bbfbe3
AA
991 put_page(page);
992 ret |= VM_FAULT_OOM;
993 goto out;
994 }
995
71e3aac0
AA
996 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
997 __SetPageUptodate(new_page);
998
2ec74c3e
SG
999 mmun_start = haddr;
1000 mmun_end = haddr + HPAGE_PMD_SIZE;
1001 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1002
71e3aac0
AA
1003 spin_lock(&mm->page_table_lock);
1004 put_page(page);
b9bbfbe3 1005 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 1006 spin_unlock(&mm->page_table_lock);
b9bbfbe3 1007 mem_cgroup_uncharge_page(new_page);
71e3aac0 1008 put_page(new_page);
2ec74c3e 1009 goto out_mn;
b9bbfbe3 1010 } else {
71e3aac0
AA
1011 pmd_t entry;
1012 VM_BUG_ON(!PageHead(page));
b3092b3b 1013 entry = mk_huge_pmd(new_page, vma);
2ec74c3e 1014 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1015 page_add_new_anon_rmap(new_page, vma, haddr);
1016 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1017 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1018 page_remove_rmap(page);
1019 put_page(page);
1020 ret |= VM_FAULT_WRITE;
1021 }
71e3aac0 1022 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
1023out_mn:
1024 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1025out:
1026 return ret;
2ec74c3e
SG
1027out_unlock:
1028 spin_unlock(&mm->page_table_lock);
1029 return ret;
71e3aac0
AA
1030}
1031
b676b293 1032struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1033 unsigned long addr,
1034 pmd_t *pmd,
1035 unsigned int flags)
1036{
b676b293 1037 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1038 struct page *page = NULL;
1039
1040 assert_spin_locked(&mm->page_table_lock);
1041
1042 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1043 goto out;
1044
1045 page = pmd_page(*pmd);
1046 VM_BUG_ON(!PageHead(page));
1047 if (flags & FOLL_TOUCH) {
1048 pmd_t _pmd;
1049 /*
1050 * We should set the dirty bit only for FOLL_WRITE but
1051 * for now the dirty bit in the pmd is meaningless.
1052 * And if the dirty bit will become meaningful and
1053 * we'll only set it with FOLL_WRITE, an atomic
1054 * set_bit will be required on the pmd to set the
1055 * young bit, instead of the current set_pmd_at.
1056 */
1057 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1058 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1059 }
b676b293
DR
1060 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1061 if (page->mapping && trylock_page(page)) {
1062 lru_add_drain();
1063 if (page->mapping)
1064 mlock_vma_page(page);
1065 unlock_page(page);
1066 }
1067 }
71e3aac0
AA
1068 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1069 VM_BUG_ON(!PageCompound(page));
1070 if (flags & FOLL_GET)
70b50f94 1071 get_page_foll(page);
71e3aac0
AA
1072
1073out:
1074 return page;
1075}
1076
1077int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1078 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1079{
1080 int ret = 0;
1081
025c5b24
NH
1082 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1083 struct page *page;
1084 pgtable_t pgtable;
f5c8ad47 1085 pmd_t orig_pmd;
e3ebcf64 1086 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
f5c8ad47 1087 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
025c5b24 1088 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
479f0abb
KS
1089 if (is_huge_zero_pmd(orig_pmd)) {
1090 tlb->mm->nr_ptes--;
1091 spin_unlock(&tlb->mm->page_table_lock);
1092 } else {
1093 page = pmd_page(orig_pmd);
1094 page_remove_rmap(page);
1095 VM_BUG_ON(page_mapcount(page) < 0);
1096 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1097 VM_BUG_ON(!PageHead(page));
1098 tlb->mm->nr_ptes--;
1099 spin_unlock(&tlb->mm->page_table_lock);
1100 tlb_remove_page(tlb, page);
1101 }
025c5b24
NH
1102 pte_free(tlb->mm, pgtable);
1103 ret = 1;
1104 }
71e3aac0
AA
1105 return ret;
1106}
1107
0ca1634d
JW
1108int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1109 unsigned long addr, unsigned long end,
1110 unsigned char *vec)
1111{
1112 int ret = 0;
1113
025c5b24
NH
1114 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1115 /*
1116 * All logical pages in the range are present
1117 * if backed by a huge page.
1118 */
0ca1634d 1119 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1120 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1121 ret = 1;
1122 }
0ca1634d
JW
1123
1124 return ret;
1125}
1126
37a1c49a
AA
1127int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1128 unsigned long old_addr,
1129 unsigned long new_addr, unsigned long old_end,
1130 pmd_t *old_pmd, pmd_t *new_pmd)
1131{
1132 int ret = 0;
1133 pmd_t pmd;
1134
1135 struct mm_struct *mm = vma->vm_mm;
1136
1137 if ((old_addr & ~HPAGE_PMD_MASK) ||
1138 (new_addr & ~HPAGE_PMD_MASK) ||
1139 old_end - old_addr < HPAGE_PMD_SIZE ||
1140 (new_vma->vm_flags & VM_NOHUGEPAGE))
1141 goto out;
1142
1143 /*
1144 * The destination pmd shouldn't be established, free_pgtables()
1145 * should have release it.
1146 */
1147 if (WARN_ON(!pmd_none(*new_pmd))) {
1148 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1149 goto out;
1150 }
1151
025c5b24
NH
1152 ret = __pmd_trans_huge_lock(old_pmd, vma);
1153 if (ret == 1) {
1154 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1155 VM_BUG_ON(!pmd_none(*new_pmd));
1156 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1157 spin_unlock(&mm->page_table_lock);
1158 }
1159out:
1160 return ret;
1161}
1162
cd7548ab
JW
1163int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1164 unsigned long addr, pgprot_t newprot)
1165{
1166 struct mm_struct *mm = vma->vm_mm;
1167 int ret = 0;
1168
025c5b24
NH
1169 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1170 pmd_t entry;
1171 entry = pmdp_get_and_clear(mm, addr, pmd);
1172 entry = pmd_modify(entry, newprot);
1173 set_pmd_at(mm, addr, pmd, entry);
1174 spin_unlock(&vma->vm_mm->page_table_lock);
1175 ret = 1;
1176 }
1177
1178 return ret;
1179}
1180
1181/*
1182 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1183 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1184 *
1185 * Note that if it returns 1, this routine returns without unlocking page
1186 * table locks. So callers must unlock them.
1187 */
1188int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1189{
1190 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1191 if (likely(pmd_trans_huge(*pmd))) {
1192 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1193 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1194 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1195 return -1;
cd7548ab 1196 } else {
025c5b24
NH
1197 /* Thp mapped by 'pmd' is stable, so we can
1198 * handle it as it is. */
1199 return 1;
cd7548ab 1200 }
025c5b24
NH
1201 }
1202 spin_unlock(&vma->vm_mm->page_table_lock);
1203 return 0;
cd7548ab
JW
1204}
1205
71e3aac0
AA
1206pmd_t *page_check_address_pmd(struct page *page,
1207 struct mm_struct *mm,
1208 unsigned long address,
1209 enum page_check_address_pmd_flag flag)
1210{
71e3aac0
AA
1211 pmd_t *pmd, *ret = NULL;
1212
1213 if (address & ~HPAGE_PMD_MASK)
1214 goto out;
1215
6219049a
BL
1216 pmd = mm_find_pmd(mm, address);
1217 if (!pmd)
71e3aac0 1218 goto out;
71e3aac0
AA
1219 if (pmd_none(*pmd))
1220 goto out;
1221 if (pmd_page(*pmd) != page)
1222 goto out;
94fcc585
AA
1223 /*
1224 * split_vma() may create temporary aliased mappings. There is
1225 * no risk as long as all huge pmd are found and have their
1226 * splitting bit set before __split_huge_page_refcount
1227 * runs. Finding the same huge pmd more than once during the
1228 * same rmap walk is not a problem.
1229 */
1230 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1231 pmd_trans_splitting(*pmd))
1232 goto out;
71e3aac0
AA
1233 if (pmd_trans_huge(*pmd)) {
1234 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1235 !pmd_trans_splitting(*pmd));
1236 ret = pmd;
1237 }
1238out:
1239 return ret;
1240}
1241
1242static int __split_huge_page_splitting(struct page *page,
1243 struct vm_area_struct *vma,
1244 unsigned long address)
1245{
1246 struct mm_struct *mm = vma->vm_mm;
1247 pmd_t *pmd;
1248 int ret = 0;
2ec74c3e
SG
1249 /* For mmu_notifiers */
1250 const unsigned long mmun_start = address;
1251 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1252
2ec74c3e 1253 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1254 spin_lock(&mm->page_table_lock);
1255 pmd = page_check_address_pmd(page, mm, address,
1256 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1257 if (pmd) {
1258 /*
1259 * We can't temporarily set the pmd to null in order
1260 * to split it, the pmd must remain marked huge at all
1261 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1262 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1263 * serialize against split_huge_page*.
1264 */
2ec74c3e 1265 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1266 ret = 1;
1267 }
1268 spin_unlock(&mm->page_table_lock);
2ec74c3e 1269 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1270
1271 return ret;
1272}
1273
1274static void __split_huge_page_refcount(struct page *page)
1275{
1276 int i;
71e3aac0 1277 struct zone *zone = page_zone(page);
fa9add64 1278 struct lruvec *lruvec;
70b50f94 1279 int tail_count = 0;
71e3aac0
AA
1280
1281 /* prevent PageLRU to go away from under us, and freeze lru stats */
1282 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1283 lruvec = mem_cgroup_page_lruvec(page, zone);
1284
71e3aac0 1285 compound_lock(page);
e94c8a9c
KH
1286 /* complete memcg works before add pages to LRU */
1287 mem_cgroup_split_huge_fixup(page);
71e3aac0 1288
45676885 1289 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1290 struct page *page_tail = page + i;
1291
70b50f94
AA
1292 /* tail_page->_mapcount cannot change */
1293 BUG_ON(page_mapcount(page_tail) < 0);
1294 tail_count += page_mapcount(page_tail);
1295 /* check for overflow */
1296 BUG_ON(tail_count < 0);
1297 BUG_ON(atomic_read(&page_tail->_count) != 0);
1298 /*
1299 * tail_page->_count is zero and not changing from
1300 * under us. But get_page_unless_zero() may be running
1301 * from under us on the tail_page. If we used
1302 * atomic_set() below instead of atomic_add(), we
1303 * would then run atomic_set() concurrently with
1304 * get_page_unless_zero(), and atomic_set() is
1305 * implemented in C not using locked ops. spin_unlock
1306 * on x86 sometime uses locked ops because of PPro
1307 * errata 66, 92, so unless somebody can guarantee
1308 * atomic_set() here would be safe on all archs (and
1309 * not only on x86), it's safer to use atomic_add().
1310 */
1311 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1312 &page_tail->_count);
71e3aac0
AA
1313
1314 /* after clearing PageTail the gup refcount can be released */
1315 smp_mb();
1316
a6d30ddd
JD
1317 /*
1318 * retain hwpoison flag of the poisoned tail page:
1319 * fix for the unsuitable process killed on Guest Machine(KVM)
1320 * by the memory-failure.
1321 */
1322 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1323 page_tail->flags |= (page->flags &
1324 ((1L << PG_referenced) |
1325 (1L << PG_swapbacked) |
1326 (1L << PG_mlocked) |
1327 (1L << PG_uptodate)));
1328 page_tail->flags |= (1L << PG_dirty);
1329
70b50f94 1330 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1331 smp_wmb();
1332
1333 /*
1334 * __split_huge_page_splitting() already set the
1335 * splitting bit in all pmd that could map this
1336 * hugepage, that will ensure no CPU can alter the
1337 * mapcount on the head page. The mapcount is only
1338 * accounted in the head page and it has to be
1339 * transferred to all tail pages in the below code. So
1340 * for this code to be safe, the split the mapcount
1341 * can't change. But that doesn't mean userland can't
1342 * keep changing and reading the page contents while
1343 * we transfer the mapcount, so the pmd splitting
1344 * status is achieved setting a reserved bit in the
1345 * pmd, not by clearing the present bit.
1346 */
71e3aac0
AA
1347 page_tail->_mapcount = page->_mapcount;
1348
1349 BUG_ON(page_tail->mapping);
1350 page_tail->mapping = page->mapping;
1351
45676885 1352 page_tail->index = page->index + i;
71e3aac0
AA
1353
1354 BUG_ON(!PageAnon(page_tail));
1355 BUG_ON(!PageUptodate(page_tail));
1356 BUG_ON(!PageDirty(page_tail));
1357 BUG_ON(!PageSwapBacked(page_tail));
1358
fa9add64 1359 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1360 }
70b50f94
AA
1361 atomic_sub(tail_count, &page->_count);
1362 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1363
fa9add64 1364 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1365 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1366
71e3aac0
AA
1367 ClearPageCompound(page);
1368 compound_unlock(page);
1369 spin_unlock_irq(&zone->lru_lock);
1370
1371 for (i = 1; i < HPAGE_PMD_NR; i++) {
1372 struct page *page_tail = page + i;
1373 BUG_ON(page_count(page_tail) <= 0);
1374 /*
1375 * Tail pages may be freed if there wasn't any mapping
1376 * like if add_to_swap() is running on a lru page that
1377 * had its mapping zapped. And freeing these pages
1378 * requires taking the lru_lock so we do the put_page
1379 * of the tail pages after the split is complete.
1380 */
1381 put_page(page_tail);
1382 }
1383
1384 /*
1385 * Only the head page (now become a regular page) is required
1386 * to be pinned by the caller.
1387 */
1388 BUG_ON(page_count(page) <= 0);
1389}
1390
1391static int __split_huge_page_map(struct page *page,
1392 struct vm_area_struct *vma,
1393 unsigned long address)
1394{
1395 struct mm_struct *mm = vma->vm_mm;
1396 pmd_t *pmd, _pmd;
1397 int ret = 0, i;
1398 pgtable_t pgtable;
1399 unsigned long haddr;
1400
1401 spin_lock(&mm->page_table_lock);
1402 pmd = page_check_address_pmd(page, mm, address,
1403 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1404 if (pmd) {
e3ebcf64 1405 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1406 pmd_populate(mm, &_pmd, pgtable);
1407
e3ebcf64
GS
1408 haddr = address;
1409 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1410 pte_t *pte, entry;
1411 BUG_ON(PageCompound(page+i));
1412 entry = mk_pte(page + i, vma->vm_page_prot);
1413 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1414 if (!pmd_write(*pmd))
1415 entry = pte_wrprotect(entry);
1416 else
1417 BUG_ON(page_mapcount(page) != 1);
1418 if (!pmd_young(*pmd))
1419 entry = pte_mkold(entry);
1420 pte = pte_offset_map(&_pmd, haddr);
1421 BUG_ON(!pte_none(*pte));
1422 set_pte_at(mm, haddr, pte, entry);
1423 pte_unmap(pte);
1424 }
1425
71e3aac0
AA
1426 smp_wmb(); /* make pte visible before pmd */
1427 /*
1428 * Up to this point the pmd is present and huge and
1429 * userland has the whole access to the hugepage
1430 * during the split (which happens in place). If we
1431 * overwrite the pmd with the not-huge version
1432 * pointing to the pte here (which of course we could
1433 * if all CPUs were bug free), userland could trigger
1434 * a small page size TLB miss on the small sized TLB
1435 * while the hugepage TLB entry is still established
1436 * in the huge TLB. Some CPU doesn't like that. See
1437 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1438 * Erratum 383 on page 93. Intel should be safe but is
1439 * also warns that it's only safe if the permission
1440 * and cache attributes of the two entries loaded in
1441 * the two TLB is identical (which should be the case
1442 * here). But it is generally safer to never allow
1443 * small and huge TLB entries for the same virtual
1444 * address to be loaded simultaneously. So instead of
1445 * doing "pmd_populate(); flush_tlb_range();" we first
1446 * mark the current pmd notpresent (atomically because
1447 * here the pmd_trans_huge and pmd_trans_splitting
1448 * must remain set at all times on the pmd until the
1449 * split is complete for this pmd), then we flush the
1450 * SMP TLB and finally we write the non-huge version
1451 * of the pmd entry with pmd_populate.
1452 */
46dcde73 1453 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1454 pmd_populate(mm, pmd, pgtable);
1455 ret = 1;
1456 }
1457 spin_unlock(&mm->page_table_lock);
1458
1459 return ret;
1460}
1461
2b575eb6 1462/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1463static void __split_huge_page(struct page *page,
1464 struct anon_vma *anon_vma)
1465{
1466 int mapcount, mapcount2;
bf181b9f 1467 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1468 struct anon_vma_chain *avc;
1469
1470 BUG_ON(!PageHead(page));
1471 BUG_ON(PageTail(page));
1472
1473 mapcount = 0;
bf181b9f 1474 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1475 struct vm_area_struct *vma = avc->vma;
1476 unsigned long addr = vma_address(page, vma);
1477 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1478 mapcount += __split_huge_page_splitting(page, vma, addr);
1479 }
05759d38
AA
1480 /*
1481 * It is critical that new vmas are added to the tail of the
1482 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1483 * and establishes a child pmd before
1484 * __split_huge_page_splitting() freezes the parent pmd (so if
1485 * we fail to prevent copy_huge_pmd() from running until the
1486 * whole __split_huge_page() is complete), we will still see
1487 * the newly established pmd of the child later during the
1488 * walk, to be able to set it as pmd_trans_splitting too.
1489 */
1490 if (mapcount != page_mapcount(page))
1491 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1492 mapcount, page_mapcount(page));
71e3aac0
AA
1493 BUG_ON(mapcount != page_mapcount(page));
1494
1495 __split_huge_page_refcount(page);
1496
1497 mapcount2 = 0;
bf181b9f 1498 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1499 struct vm_area_struct *vma = avc->vma;
1500 unsigned long addr = vma_address(page, vma);
1501 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1502 mapcount2 += __split_huge_page_map(page, vma, addr);
1503 }
05759d38
AA
1504 if (mapcount != mapcount2)
1505 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1506 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1507 BUG_ON(mapcount != mapcount2);
1508}
1509
1510int split_huge_page(struct page *page)
1511{
1512 struct anon_vma *anon_vma;
1513 int ret = 1;
1514
1515 BUG_ON(!PageAnon(page));
1516 anon_vma = page_lock_anon_vma(page);
1517 if (!anon_vma)
1518 goto out;
1519 ret = 0;
1520 if (!PageCompound(page))
1521 goto out_unlock;
1522
1523 BUG_ON(!PageSwapBacked(page));
1524 __split_huge_page(page, anon_vma);
81ab4201 1525 count_vm_event(THP_SPLIT);
71e3aac0
AA
1526
1527 BUG_ON(PageCompound(page));
1528out_unlock:
1529 page_unlock_anon_vma(anon_vma);
1530out:
1531 return ret;
1532}
1533
4b6e1e37 1534#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1535
60ab3244
AA
1536int hugepage_madvise(struct vm_area_struct *vma,
1537 unsigned long *vm_flags, int advice)
0af4e98b 1538{
8e72033f
GS
1539 struct mm_struct *mm = vma->vm_mm;
1540
a664b2d8
AA
1541 switch (advice) {
1542 case MADV_HUGEPAGE:
1543 /*
1544 * Be somewhat over-protective like KSM for now!
1545 */
78f11a25 1546 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1547 return -EINVAL;
8e72033f
GS
1548 if (mm->def_flags & VM_NOHUGEPAGE)
1549 return -EINVAL;
a664b2d8
AA
1550 *vm_flags &= ~VM_NOHUGEPAGE;
1551 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1552 /*
1553 * If the vma become good for khugepaged to scan,
1554 * register it here without waiting a page fault that
1555 * may not happen any time soon.
1556 */
1557 if (unlikely(khugepaged_enter_vma_merge(vma)))
1558 return -ENOMEM;
a664b2d8
AA
1559 break;
1560 case MADV_NOHUGEPAGE:
1561 /*
1562 * Be somewhat over-protective like KSM for now!
1563 */
78f11a25 1564 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1565 return -EINVAL;
1566 *vm_flags &= ~VM_HUGEPAGE;
1567 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1568 /*
1569 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1570 * this vma even if we leave the mm registered in khugepaged if
1571 * it got registered before VM_NOHUGEPAGE was set.
1572 */
a664b2d8
AA
1573 break;
1574 }
0af4e98b
AA
1575
1576 return 0;
1577}
1578
ba76149f
AA
1579static int __init khugepaged_slab_init(void)
1580{
1581 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1582 sizeof(struct mm_slot),
1583 __alignof__(struct mm_slot), 0, NULL);
1584 if (!mm_slot_cache)
1585 return -ENOMEM;
1586
1587 return 0;
1588}
1589
1590static void __init khugepaged_slab_free(void)
1591{
1592 kmem_cache_destroy(mm_slot_cache);
1593 mm_slot_cache = NULL;
1594}
1595
1596static inline struct mm_slot *alloc_mm_slot(void)
1597{
1598 if (!mm_slot_cache) /* initialization failed */
1599 return NULL;
1600 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1601}
1602
1603static inline void free_mm_slot(struct mm_slot *mm_slot)
1604{
1605 kmem_cache_free(mm_slot_cache, mm_slot);
1606}
1607
1608static int __init mm_slots_hash_init(void)
1609{
1610 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1611 GFP_KERNEL);
1612 if (!mm_slots_hash)
1613 return -ENOMEM;
1614 return 0;
1615}
1616
1617#if 0
1618static void __init mm_slots_hash_free(void)
1619{
1620 kfree(mm_slots_hash);
1621 mm_slots_hash = NULL;
1622}
1623#endif
1624
1625static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1626{
1627 struct mm_slot *mm_slot;
1628 struct hlist_head *bucket;
1629 struct hlist_node *node;
1630
1631 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1632 % MM_SLOTS_HASH_HEADS];
1633 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1634 if (mm == mm_slot->mm)
1635 return mm_slot;
1636 }
1637 return NULL;
1638}
1639
1640static void insert_to_mm_slots_hash(struct mm_struct *mm,
1641 struct mm_slot *mm_slot)
1642{
1643 struct hlist_head *bucket;
1644
1645 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1646 % MM_SLOTS_HASH_HEADS];
1647 mm_slot->mm = mm;
1648 hlist_add_head(&mm_slot->hash, bucket);
1649}
1650
1651static inline int khugepaged_test_exit(struct mm_struct *mm)
1652{
1653 return atomic_read(&mm->mm_users) == 0;
1654}
1655
1656int __khugepaged_enter(struct mm_struct *mm)
1657{
1658 struct mm_slot *mm_slot;
1659 int wakeup;
1660
1661 mm_slot = alloc_mm_slot();
1662 if (!mm_slot)
1663 return -ENOMEM;
1664
1665 /* __khugepaged_exit() must not run from under us */
1666 VM_BUG_ON(khugepaged_test_exit(mm));
1667 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1668 free_mm_slot(mm_slot);
1669 return 0;
1670 }
1671
1672 spin_lock(&khugepaged_mm_lock);
1673 insert_to_mm_slots_hash(mm, mm_slot);
1674 /*
1675 * Insert just behind the scanning cursor, to let the area settle
1676 * down a little.
1677 */
1678 wakeup = list_empty(&khugepaged_scan.mm_head);
1679 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1680 spin_unlock(&khugepaged_mm_lock);
1681
1682 atomic_inc(&mm->mm_count);
1683 if (wakeup)
1684 wake_up_interruptible(&khugepaged_wait);
1685
1686 return 0;
1687}
1688
1689int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1690{
1691 unsigned long hstart, hend;
1692 if (!vma->anon_vma)
1693 /*
1694 * Not yet faulted in so we will register later in the
1695 * page fault if needed.
1696 */
1697 return 0;
78f11a25 1698 if (vma->vm_ops)
ba76149f
AA
1699 /* khugepaged not yet working on file or special mappings */
1700 return 0;
b3b9c293 1701 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1702 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1703 hend = vma->vm_end & HPAGE_PMD_MASK;
1704 if (hstart < hend)
1705 return khugepaged_enter(vma);
1706 return 0;
1707}
1708
1709void __khugepaged_exit(struct mm_struct *mm)
1710{
1711 struct mm_slot *mm_slot;
1712 int free = 0;
1713
1714 spin_lock(&khugepaged_mm_lock);
1715 mm_slot = get_mm_slot(mm);
1716 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1717 hlist_del(&mm_slot->hash);
1718 list_del(&mm_slot->mm_node);
1719 free = 1;
1720 }
d788e80a 1721 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1722
1723 if (free) {
ba76149f
AA
1724 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1725 free_mm_slot(mm_slot);
1726 mmdrop(mm);
1727 } else if (mm_slot) {
ba76149f
AA
1728 /*
1729 * This is required to serialize against
1730 * khugepaged_test_exit() (which is guaranteed to run
1731 * under mmap sem read mode). Stop here (after we
1732 * return all pagetables will be destroyed) until
1733 * khugepaged has finished working on the pagetables
1734 * under the mmap_sem.
1735 */
1736 down_write(&mm->mmap_sem);
1737 up_write(&mm->mmap_sem);
d788e80a 1738 }
ba76149f
AA
1739}
1740
1741static void release_pte_page(struct page *page)
1742{
1743 /* 0 stands for page_is_file_cache(page) == false */
1744 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1745 unlock_page(page);
1746 putback_lru_page(page);
1747}
1748
1749static void release_pte_pages(pte_t *pte, pte_t *_pte)
1750{
1751 while (--_pte >= pte) {
1752 pte_t pteval = *_pte;
1753 if (!pte_none(pteval))
1754 release_pte_page(pte_page(pteval));
1755 }
1756}
1757
ba76149f
AA
1758static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1759 unsigned long address,
1760 pte_t *pte)
1761{
1762 struct page *page;
1763 pte_t *_pte;
344aa35c 1764 int referenced = 0, none = 0;
ba76149f
AA
1765 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1766 _pte++, address += PAGE_SIZE) {
1767 pte_t pteval = *_pte;
1768 if (pte_none(pteval)) {
1769 if (++none <= khugepaged_max_ptes_none)
1770 continue;
344aa35c 1771 else
ba76149f 1772 goto out;
ba76149f 1773 }
344aa35c 1774 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 1775 goto out;
ba76149f 1776 page = vm_normal_page(vma, address, pteval);
344aa35c 1777 if (unlikely(!page))
ba76149f 1778 goto out;
344aa35c 1779
ba76149f
AA
1780 VM_BUG_ON(PageCompound(page));
1781 BUG_ON(!PageAnon(page));
1782 VM_BUG_ON(!PageSwapBacked(page));
1783
1784 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 1785 if (page_count(page) != 1)
ba76149f 1786 goto out;
ba76149f
AA
1787 /*
1788 * We can do it before isolate_lru_page because the
1789 * page can't be freed from under us. NOTE: PG_lock
1790 * is needed to serialize against split_huge_page
1791 * when invoked from the VM.
1792 */
344aa35c 1793 if (!trylock_page(page))
ba76149f 1794 goto out;
ba76149f
AA
1795 /*
1796 * Isolate the page to avoid collapsing an hugepage
1797 * currently in use by the VM.
1798 */
1799 if (isolate_lru_page(page)) {
1800 unlock_page(page);
ba76149f
AA
1801 goto out;
1802 }
1803 /* 0 stands for page_is_file_cache(page) == false */
1804 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1805 VM_BUG_ON(!PageLocked(page));
1806 VM_BUG_ON(PageLRU(page));
1807
1808 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1809 if (pte_young(pteval) || PageReferenced(page) ||
1810 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1811 referenced = 1;
1812 }
344aa35c
BL
1813 if (likely(referenced))
1814 return 1;
ba76149f 1815out:
344aa35c
BL
1816 release_pte_pages(pte, _pte);
1817 return 0;
ba76149f
AA
1818}
1819
1820static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1821 struct vm_area_struct *vma,
1822 unsigned long address,
1823 spinlock_t *ptl)
1824{
1825 pte_t *_pte;
1826 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1827 pte_t pteval = *_pte;
1828 struct page *src_page;
1829
1830 if (pte_none(pteval)) {
1831 clear_user_highpage(page, address);
1832 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1833 } else {
1834 src_page = pte_page(pteval);
1835 copy_user_highpage(page, src_page, address, vma);
1836 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1837 release_pte_page(src_page);
1838 /*
1839 * ptl mostly unnecessary, but preempt has to
1840 * be disabled to update the per-cpu stats
1841 * inside page_remove_rmap().
1842 */
1843 spin_lock(ptl);
1844 /*
1845 * paravirt calls inside pte_clear here are
1846 * superfluous.
1847 */
1848 pte_clear(vma->vm_mm, address, _pte);
1849 page_remove_rmap(src_page);
1850 spin_unlock(ptl);
1851 free_page_and_swap_cache(src_page);
1852 }
1853
1854 address += PAGE_SIZE;
1855 page++;
1856 }
1857}
1858
26234f36 1859static void khugepaged_alloc_sleep(void)
ba76149f 1860{
26234f36
XG
1861 wait_event_freezable_timeout(khugepaged_wait, false,
1862 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1863}
ba76149f 1864
26234f36
XG
1865#ifdef CONFIG_NUMA
1866static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1867{
1868 if (IS_ERR(*hpage)) {
1869 if (!*wait)
1870 return false;
1871
1872 *wait = false;
e3b4126c 1873 *hpage = NULL;
26234f36
XG
1874 khugepaged_alloc_sleep();
1875 } else if (*hpage) {
1876 put_page(*hpage);
1877 *hpage = NULL;
1878 }
1879
1880 return true;
1881}
1882
1883static struct page
1884*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1885 struct vm_area_struct *vma, unsigned long address,
1886 int node)
1887{
0bbbc0b3 1888 VM_BUG_ON(*hpage);
ce83d217
AA
1889 /*
1890 * Allocate the page while the vma is still valid and under
1891 * the mmap_sem read mode so there is no memory allocation
1892 * later when we take the mmap_sem in write mode. This is more
1893 * friendly behavior (OTOH it may actually hide bugs) to
1894 * filesystems in userland with daemons allocating memory in
1895 * the userland I/O paths. Allocating memory with the
1896 * mmap_sem in read mode is good idea also to allow greater
1897 * scalability.
1898 */
26234f36 1899 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1900 node, __GFP_OTHER_NODE);
692e0b35
AA
1901
1902 /*
1903 * After allocating the hugepage, release the mmap_sem read lock in
1904 * preparation for taking it in write mode.
1905 */
1906 up_read(&mm->mmap_sem);
26234f36 1907 if (unlikely(!*hpage)) {
81ab4201 1908 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 1909 *hpage = ERR_PTR(-ENOMEM);
26234f36 1910 return NULL;
ce83d217 1911 }
26234f36 1912
65b3c07b 1913 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
1914 return *hpage;
1915}
1916#else
1917static struct page *khugepaged_alloc_hugepage(bool *wait)
1918{
1919 struct page *hpage;
1920
1921 do {
1922 hpage = alloc_hugepage(khugepaged_defrag());
1923 if (!hpage) {
1924 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1925 if (!*wait)
1926 return NULL;
1927
1928 *wait = false;
1929 khugepaged_alloc_sleep();
1930 } else
1931 count_vm_event(THP_COLLAPSE_ALLOC);
1932 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1933
1934 return hpage;
1935}
1936
1937static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1938{
1939 if (!*hpage)
1940 *hpage = khugepaged_alloc_hugepage(wait);
1941
1942 if (unlikely(!*hpage))
1943 return false;
1944
1945 return true;
1946}
1947
1948static struct page
1949*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1950 struct vm_area_struct *vma, unsigned long address,
1951 int node)
1952{
1953 up_read(&mm->mmap_sem);
1954 VM_BUG_ON(!*hpage);
1955 return *hpage;
1956}
692e0b35
AA
1957#endif
1958
fa475e51
BL
1959static bool hugepage_vma_check(struct vm_area_struct *vma)
1960{
1961 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1962 (vma->vm_flags & VM_NOHUGEPAGE))
1963 return false;
1964
1965 if (!vma->anon_vma || vma->vm_ops)
1966 return false;
1967 if (is_vma_temporary_stack(vma))
1968 return false;
1969 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1970 return true;
1971}
1972
26234f36
XG
1973static void collapse_huge_page(struct mm_struct *mm,
1974 unsigned long address,
1975 struct page **hpage,
1976 struct vm_area_struct *vma,
1977 int node)
1978{
26234f36
XG
1979 pmd_t *pmd, _pmd;
1980 pte_t *pte;
1981 pgtable_t pgtable;
1982 struct page *new_page;
1983 spinlock_t *ptl;
1984 int isolated;
1985 unsigned long hstart, hend;
2ec74c3e
SG
1986 unsigned long mmun_start; /* For mmu_notifiers */
1987 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
1988
1989 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1990
1991 /* release the mmap_sem read lock. */
1992 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1993 if (!new_page)
1994 return;
1995
420256ef 1996 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 1997 return;
ba76149f
AA
1998
1999 /*
2000 * Prevent all access to pagetables with the exception of
2001 * gup_fast later hanlded by the ptep_clear_flush and the VM
2002 * handled by the anon_vma lock + PG_lock.
2003 */
2004 down_write(&mm->mmap_sem);
2005 if (unlikely(khugepaged_test_exit(mm)))
2006 goto out;
2007
2008 vma = find_vma(mm, address);
2009 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2010 hend = vma->vm_end & HPAGE_PMD_MASK;
2011 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2012 goto out;
fa475e51 2013 if (!hugepage_vma_check(vma))
a7d6e4ec 2014 goto out;
6219049a
BL
2015 pmd = mm_find_pmd(mm, address);
2016 if (!pmd)
ba76149f 2017 goto out;
6219049a 2018 if (pmd_trans_huge(*pmd))
ba76149f
AA
2019 goto out;
2020
ba76149f
AA
2021 anon_vma_lock(vma->anon_vma);
2022
2023 pte = pte_offset_map(pmd, address);
2024 ptl = pte_lockptr(mm, pmd);
2025
2ec74c3e
SG
2026 mmun_start = address;
2027 mmun_end = address + HPAGE_PMD_SIZE;
2028 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
2029 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2030 /*
2031 * After this gup_fast can't run anymore. This also removes
2032 * any huge TLB entry from the CPU so we won't allow
2033 * huge and small TLB entries for the same virtual address
2034 * to avoid the risk of CPU bugs in that area.
2035 */
2ec74c3e 2036 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2037 spin_unlock(&mm->page_table_lock);
2ec74c3e 2038 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2039
2040 spin_lock(ptl);
2041 isolated = __collapse_huge_page_isolate(vma, address, pte);
2042 spin_unlock(ptl);
ba76149f
AA
2043
2044 if (unlikely(!isolated)) {
453c7192 2045 pte_unmap(pte);
ba76149f
AA
2046 spin_lock(&mm->page_table_lock);
2047 BUG_ON(!pmd_none(*pmd));
2048 set_pmd_at(mm, address, pmd, _pmd);
2049 spin_unlock(&mm->page_table_lock);
2050 anon_vma_unlock(vma->anon_vma);
ce83d217 2051 goto out;
ba76149f
AA
2052 }
2053
2054 /*
2055 * All pages are isolated and locked so anon_vma rmap
2056 * can't run anymore.
2057 */
2058 anon_vma_unlock(vma->anon_vma);
2059
2060 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2061 pte_unmap(pte);
ba76149f
AA
2062 __SetPageUptodate(new_page);
2063 pgtable = pmd_pgtable(_pmd);
ba76149f 2064
b3092b3b 2065 _pmd = mk_huge_pmd(new_page, vma);
ba76149f
AA
2066
2067 /*
2068 * spin_lock() below is not the equivalent of smp_wmb(), so
2069 * this is needed to avoid the copy_huge_page writes to become
2070 * visible after the set_pmd_at() write.
2071 */
2072 smp_wmb();
2073
2074 spin_lock(&mm->page_table_lock);
2075 BUG_ON(!pmd_none(*pmd));
2076 page_add_new_anon_rmap(new_page, vma, address);
2077 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2078 update_mmu_cache_pmd(vma, address, pmd);
e3ebcf64 2079 pgtable_trans_huge_deposit(mm, pgtable);
ba76149f
AA
2080 spin_unlock(&mm->page_table_lock);
2081
2082 *hpage = NULL;
420256ef 2083
ba76149f 2084 khugepaged_pages_collapsed++;
ce83d217 2085out_up_write:
ba76149f 2086 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2087 return;
2088
ce83d217 2089out:
678ff896 2090 mem_cgroup_uncharge_page(new_page);
ce83d217 2091 goto out_up_write;
ba76149f
AA
2092}
2093
2094static int khugepaged_scan_pmd(struct mm_struct *mm,
2095 struct vm_area_struct *vma,
2096 unsigned long address,
2097 struct page **hpage)
2098{
ba76149f
AA
2099 pmd_t *pmd;
2100 pte_t *pte, *_pte;
2101 int ret = 0, referenced = 0, none = 0;
2102 struct page *page;
2103 unsigned long _address;
2104 spinlock_t *ptl;
5c4b4be3 2105 int node = -1;
ba76149f
AA
2106
2107 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2108
6219049a
BL
2109 pmd = mm_find_pmd(mm, address);
2110 if (!pmd)
ba76149f 2111 goto out;
6219049a 2112 if (pmd_trans_huge(*pmd))
ba76149f
AA
2113 goto out;
2114
2115 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2116 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2117 _pte++, _address += PAGE_SIZE) {
2118 pte_t pteval = *_pte;
2119 if (pte_none(pteval)) {
2120 if (++none <= khugepaged_max_ptes_none)
2121 continue;
2122 else
2123 goto out_unmap;
2124 }
2125 if (!pte_present(pteval) || !pte_write(pteval))
2126 goto out_unmap;
2127 page = vm_normal_page(vma, _address, pteval);
2128 if (unlikely(!page))
2129 goto out_unmap;
5c4b4be3
AK
2130 /*
2131 * Chose the node of the first page. This could
2132 * be more sophisticated and look at more pages,
2133 * but isn't for now.
2134 */
2135 if (node == -1)
2136 node = page_to_nid(page);
ba76149f
AA
2137 VM_BUG_ON(PageCompound(page));
2138 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2139 goto out_unmap;
2140 /* cannot use mapcount: can't collapse if there's a gup pin */
2141 if (page_count(page) != 1)
2142 goto out_unmap;
8ee53820
AA
2143 if (pte_young(pteval) || PageReferenced(page) ||
2144 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2145 referenced = 1;
2146 }
2147 if (referenced)
2148 ret = 1;
2149out_unmap:
2150 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2151 if (ret)
2152 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2153 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2154out:
2155 return ret;
2156}
2157
2158static void collect_mm_slot(struct mm_slot *mm_slot)
2159{
2160 struct mm_struct *mm = mm_slot->mm;
2161
b9980cdc 2162 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2163
2164 if (khugepaged_test_exit(mm)) {
2165 /* free mm_slot */
2166 hlist_del(&mm_slot->hash);
2167 list_del(&mm_slot->mm_node);
2168
2169 /*
2170 * Not strictly needed because the mm exited already.
2171 *
2172 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2173 */
2174
2175 /* khugepaged_mm_lock actually not necessary for the below */
2176 free_mm_slot(mm_slot);
2177 mmdrop(mm);
2178 }
2179}
2180
2181static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2182 struct page **hpage)
2f1da642
HS
2183 __releases(&khugepaged_mm_lock)
2184 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2185{
2186 struct mm_slot *mm_slot;
2187 struct mm_struct *mm;
2188 struct vm_area_struct *vma;
2189 int progress = 0;
2190
2191 VM_BUG_ON(!pages);
b9980cdc 2192 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2193
2194 if (khugepaged_scan.mm_slot)
2195 mm_slot = khugepaged_scan.mm_slot;
2196 else {
2197 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2198 struct mm_slot, mm_node);
2199 khugepaged_scan.address = 0;
2200 khugepaged_scan.mm_slot = mm_slot;
2201 }
2202 spin_unlock(&khugepaged_mm_lock);
2203
2204 mm = mm_slot->mm;
2205 down_read(&mm->mmap_sem);
2206 if (unlikely(khugepaged_test_exit(mm)))
2207 vma = NULL;
2208 else
2209 vma = find_vma(mm, khugepaged_scan.address);
2210
2211 progress++;
2212 for (; vma; vma = vma->vm_next) {
2213 unsigned long hstart, hend;
2214
2215 cond_resched();
2216 if (unlikely(khugepaged_test_exit(mm))) {
2217 progress++;
2218 break;
2219 }
fa475e51
BL
2220 if (!hugepage_vma_check(vma)) {
2221skip:
ba76149f
AA
2222 progress++;
2223 continue;
2224 }
ba76149f
AA
2225 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2226 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2227 if (hstart >= hend)
2228 goto skip;
2229 if (khugepaged_scan.address > hend)
2230 goto skip;
ba76149f
AA
2231 if (khugepaged_scan.address < hstart)
2232 khugepaged_scan.address = hstart;
a7d6e4ec 2233 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2234
2235 while (khugepaged_scan.address < hend) {
2236 int ret;
2237 cond_resched();
2238 if (unlikely(khugepaged_test_exit(mm)))
2239 goto breakouterloop;
2240
2241 VM_BUG_ON(khugepaged_scan.address < hstart ||
2242 khugepaged_scan.address + HPAGE_PMD_SIZE >
2243 hend);
2244 ret = khugepaged_scan_pmd(mm, vma,
2245 khugepaged_scan.address,
2246 hpage);
2247 /* move to next address */
2248 khugepaged_scan.address += HPAGE_PMD_SIZE;
2249 progress += HPAGE_PMD_NR;
2250 if (ret)
2251 /* we released mmap_sem so break loop */
2252 goto breakouterloop_mmap_sem;
2253 if (progress >= pages)
2254 goto breakouterloop;
2255 }
2256 }
2257breakouterloop:
2258 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2259breakouterloop_mmap_sem:
2260
2261 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2262 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2263 /*
2264 * Release the current mm_slot if this mm is about to die, or
2265 * if we scanned all vmas of this mm.
2266 */
2267 if (khugepaged_test_exit(mm) || !vma) {
2268 /*
2269 * Make sure that if mm_users is reaching zero while
2270 * khugepaged runs here, khugepaged_exit will find
2271 * mm_slot not pointing to the exiting mm.
2272 */
2273 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2274 khugepaged_scan.mm_slot = list_entry(
2275 mm_slot->mm_node.next,
2276 struct mm_slot, mm_node);
2277 khugepaged_scan.address = 0;
2278 } else {
2279 khugepaged_scan.mm_slot = NULL;
2280 khugepaged_full_scans++;
2281 }
2282
2283 collect_mm_slot(mm_slot);
2284 }
2285
2286 return progress;
2287}
2288
2289static int khugepaged_has_work(void)
2290{
2291 return !list_empty(&khugepaged_scan.mm_head) &&
2292 khugepaged_enabled();
2293}
2294
2295static int khugepaged_wait_event(void)
2296{
2297 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2298 kthread_should_stop();
ba76149f
AA
2299}
2300
d516904b 2301static void khugepaged_do_scan(void)
ba76149f 2302{
d516904b 2303 struct page *hpage = NULL;
ba76149f
AA
2304 unsigned int progress = 0, pass_through_head = 0;
2305 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2306 bool wait = true;
ba76149f
AA
2307
2308 barrier(); /* write khugepaged_pages_to_scan to local stack */
2309
2310 while (progress < pages) {
26234f36 2311 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2312 break;
26234f36 2313
420256ef 2314 cond_resched();
ba76149f 2315
878aee7d
AA
2316 if (unlikely(kthread_should_stop() || freezing(current)))
2317 break;
2318
ba76149f
AA
2319 spin_lock(&khugepaged_mm_lock);
2320 if (!khugepaged_scan.mm_slot)
2321 pass_through_head++;
2322 if (khugepaged_has_work() &&
2323 pass_through_head < 2)
2324 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2325 &hpage);
ba76149f
AA
2326 else
2327 progress = pages;
2328 spin_unlock(&khugepaged_mm_lock);
2329 }
ba76149f 2330
d516904b
XG
2331 if (!IS_ERR_OR_NULL(hpage))
2332 put_page(hpage);
0bbbc0b3
AA
2333}
2334
2017c0bf
XG
2335static void khugepaged_wait_work(void)
2336{
2337 try_to_freeze();
2338
2339 if (khugepaged_has_work()) {
2340 if (!khugepaged_scan_sleep_millisecs)
2341 return;
2342
2343 wait_event_freezable_timeout(khugepaged_wait,
2344 kthread_should_stop(),
2345 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2346 return;
2347 }
2348
2349 if (khugepaged_enabled())
2350 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2351}
2352
ba76149f
AA
2353static int khugepaged(void *none)
2354{
2355 struct mm_slot *mm_slot;
2356
878aee7d 2357 set_freezable();
ba76149f
AA
2358 set_user_nice(current, 19);
2359
b7231789
XG
2360 while (!kthread_should_stop()) {
2361 khugepaged_do_scan();
2362 khugepaged_wait_work();
2363 }
ba76149f
AA
2364
2365 spin_lock(&khugepaged_mm_lock);
2366 mm_slot = khugepaged_scan.mm_slot;
2367 khugepaged_scan.mm_slot = NULL;
2368 if (mm_slot)
2369 collect_mm_slot(mm_slot);
2370 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2371 return 0;
2372}
2373
71e3aac0
AA
2374void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2375{
2376 struct page *page;
2377
2378 spin_lock(&mm->page_table_lock);
2379 if (unlikely(!pmd_trans_huge(*pmd))) {
2380 spin_unlock(&mm->page_table_lock);
2381 return;
2382 }
2383 page = pmd_page(*pmd);
2384 VM_BUG_ON(!page_count(page));
2385 get_page(page);
2386 spin_unlock(&mm->page_table_lock);
2387
2388 split_huge_page(page);
2389
2390 put_page(page);
2391 BUG_ON(pmd_trans_huge(*pmd));
2392}
94fcc585
AA
2393
2394static void split_huge_page_address(struct mm_struct *mm,
2395 unsigned long address)
2396{
94fcc585
AA
2397 pmd_t *pmd;
2398
2399 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2400
6219049a
BL
2401 pmd = mm_find_pmd(mm, address);
2402 if (!pmd)
94fcc585
AA
2403 return;
2404 /*
2405 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2406 * materialize from under us.
2407 */
2408 split_huge_page_pmd(mm, pmd);
2409}
2410
2411void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2412 unsigned long start,
2413 unsigned long end,
2414 long adjust_next)
2415{
2416 /*
2417 * If the new start address isn't hpage aligned and it could
2418 * previously contain an hugepage: check if we need to split
2419 * an huge pmd.
2420 */
2421 if (start & ~HPAGE_PMD_MASK &&
2422 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2423 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2424 split_huge_page_address(vma->vm_mm, start);
2425
2426 /*
2427 * If the new end address isn't hpage aligned and it could
2428 * previously contain an hugepage: check if we need to split
2429 * an huge pmd.
2430 */
2431 if (end & ~HPAGE_PMD_MASK &&
2432 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2433 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2434 split_huge_page_address(vma->vm_mm, end);
2435
2436 /*
2437 * If we're also updating the vma->vm_next->vm_start, if the new
2438 * vm_next->vm_start isn't page aligned and it could previously
2439 * contain an hugepage: check if we need to split an huge pmd.
2440 */
2441 if (adjust_next > 0) {
2442 struct vm_area_struct *next = vma->vm_next;
2443 unsigned long nstart = next->vm_start;
2444 nstart += adjust_next << PAGE_SHIFT;
2445 if (nstart & ~HPAGE_PMD_MASK &&
2446 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2447 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2448 split_huge_page_address(next->vm_mm, nstart);
2449 }
2450}