Merge 4.4.88 into android-4.4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
c59ede7b 16#include <linux/capability.h>
1da177e4 17#include <linux/kernel_stat.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/file.h>
24#include <linux/uio.h>
25#include <linux/hash.h>
26#include <linux/writeback.h>
53253383 27#include <linux/backing-dev.h>
1da177e4
LT
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
44110fe3 31#include <linux/cpuset.h>
2f718ffc 32#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 33#include <linux/hugetlb.h>
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
f1820361 36#include <linux/rmap.h>
0f8053a5
NP
37#include "internal.h"
38
fe0bfaaf
RJ
39#define CREATE_TRACE_POINTS
40#include <trace/events/filemap.h>
41
1da177e4 42/*
1da177e4
LT
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
148f948b 45#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 46
1da177e4
LT
47#include <asm/mman.h>
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
c8c06efa 64 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
1da177e4 68 *
1b1dcc1b 69 * ->i_mutex
c8c06efa 70 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
71 *
72 * ->mmap_sem
c8c06efa 73 * ->i_mmap_rwsem
b8072f09 74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
ccad2365 80 * ->i_mutex (generic_perform_write)
82591e6e 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 82 *
f758eeab 83 * bdi->wb.list_lock
a66979ab 84 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
c8c06efa 87 * ->i_mmap_rwsem
1da177e4
LT
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
c4843a75 103 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
f758eeab 104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
c8c06efa 108 * ->i_mmap_rwsem
9a3c531d 109 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
110 */
111
f84311d7
JW
112static int page_cache_tree_insert(struct address_space *mapping,
113 struct page *page, void **shadowp)
114{
115 struct radix_tree_node *node;
116 void **slot;
117 int error;
118
119 error = __radix_tree_create(&mapping->page_tree, page->index,
120 &node, &slot);
121 if (error)
122 return error;
123 if (*slot) {
124 void *p;
125
126 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
127 if (!radix_tree_exceptional_entry(p))
128 return -EEXIST;
129 if (shadowp)
130 *shadowp = p;
131 mapping->nrshadows--;
132 if (node)
133 workingset_node_shadows_dec(node);
134 }
135 radix_tree_replace_slot(slot, page);
136 mapping->nrpages++;
137 if (node) {
138 workingset_node_pages_inc(node);
139 /*
140 * Don't track node that contains actual pages.
141 *
142 * Avoid acquiring the list_lru lock if already
143 * untracked. The list_empty() test is safe as
144 * node->private_list is protected by
145 * mapping->tree_lock.
146 */
147 if (!list_empty(&node->private_list))
148 list_lru_del(&workingset_shadow_nodes,
149 &node->private_list);
150 }
151 return 0;
152}
153
91b0abe3
JW
154static void page_cache_tree_delete(struct address_space *mapping,
155 struct page *page, void *shadow)
156{
449dd698
JW
157 struct radix_tree_node *node;
158 unsigned long index;
159 unsigned int offset;
160 unsigned int tag;
161 void **slot;
91b0abe3 162
449dd698
JW
163 VM_BUG_ON(!PageLocked(page));
164
165 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
166
b52b7b5a
JW
167 if (!node) {
168 /*
169 * We need a node to properly account shadow
170 * entries. Don't plant any without. XXX
171 */
172 shadow = NULL;
173 }
174
449dd698 175 if (shadow) {
91b0abe3
JW
176 mapping->nrshadows++;
177 /*
178 * Make sure the nrshadows update is committed before
179 * the nrpages update so that final truncate racing
180 * with reclaim does not see both counters 0 at the
181 * same time and miss a shadow entry.
182 */
183 smp_wmb();
449dd698 184 }
91b0abe3 185 mapping->nrpages--;
449dd698
JW
186
187 if (!node) {
188 /* Clear direct pointer tags in root node */
189 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
190 radix_tree_replace_slot(slot, shadow);
191 return;
192 }
193
194 /* Clear tree tags for the removed page */
195 index = page->index;
196 offset = index & RADIX_TREE_MAP_MASK;
197 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
198 if (test_bit(offset, node->tags[tag]))
199 radix_tree_tag_clear(&mapping->page_tree, index, tag);
200 }
201
202 /* Delete page, swap shadow entry */
203 radix_tree_replace_slot(slot, shadow);
204 workingset_node_pages_dec(node);
205 if (shadow)
206 workingset_node_shadows_inc(node);
207 else
208 if (__radix_tree_delete_node(&mapping->page_tree, node))
209 return;
210
211 /*
212 * Track node that only contains shadow entries.
213 *
214 * Avoid acquiring the list_lru lock if already tracked. The
215 * list_empty() test is safe as node->private_list is
216 * protected by mapping->tree_lock.
217 */
218 if (!workingset_node_pages(node) &&
219 list_empty(&node->private_list)) {
220 node->private_data = mapping;
221 list_lru_add(&workingset_shadow_nodes, &node->private_list);
222 }
91b0abe3
JW
223}
224
1da177e4 225/*
e64a782f 226 * Delete a page from the page cache and free it. Caller has to make
1da177e4 227 * sure the page is locked and that nobody else uses it - or that usage
c4843a75
GT
228 * is safe. The caller must hold the mapping's tree_lock and
229 * mem_cgroup_begin_page_stat().
1da177e4 230 */
c4843a75
GT
231void __delete_from_page_cache(struct page *page, void *shadow,
232 struct mem_cgroup *memcg)
1da177e4
LT
233{
234 struct address_space *mapping = page->mapping;
235
fe0bfaaf 236 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
237 /*
238 * if we're uptodate, flush out into the cleancache, otherwise
239 * invalidate any existing cleancache entries. We can't leave
240 * stale data around in the cleancache once our page is gone
241 */
242 if (PageUptodate(page) && PageMappedToDisk(page))
243 cleancache_put_page(page);
244 else
3167760f 245 cleancache_invalidate_page(mapping, page);
c515e1fd 246
91b0abe3
JW
247 page_cache_tree_delete(mapping, page, shadow);
248
1da177e4 249 page->mapping = NULL;
b85e0eff 250 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 251
4165b9b4
MH
252 /* hugetlb pages do not participate in page cache accounting. */
253 if (!PageHuge(page))
254 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
255 if (PageSwapBacked(page))
256 __dec_zone_page_state(page, NR_SHMEM);
45426812 257 BUG_ON(page_mapped(page));
3a692790
LT
258
259 /*
b9ea2515
KK
260 * At this point page must be either written or cleaned by truncate.
261 * Dirty page here signals a bug and loss of unwritten data.
3a692790 262 *
b9ea2515
KK
263 * This fixes dirty accounting after removing the page entirely but
264 * leaves PageDirty set: it has no effect for truncated page and
265 * anyway will be cleared before returning page into buddy allocator.
3a692790 266 */
b9ea2515 267 if (WARN_ON_ONCE(PageDirty(page)))
682aa8e1
TH
268 account_page_cleaned(page, mapping, memcg,
269 inode_to_wb(mapping->host));
1da177e4
LT
270}
271
702cfbf9
MK
272/**
273 * delete_from_page_cache - delete page from page cache
274 * @page: the page which the kernel is trying to remove from page cache
275 *
276 * This must be called only on pages that have been verified to be in the page
277 * cache and locked. It will never put the page into the free list, the caller
278 * has a reference on the page.
279 */
280void delete_from_page_cache(struct page *page)
1da177e4
LT
281{
282 struct address_space *mapping = page->mapping;
c4843a75
GT
283 struct mem_cgroup *memcg;
284 unsigned long flags;
285
6072d13c 286 void (*freepage)(struct page *);
1da177e4 287
cd7619d6 288 BUG_ON(!PageLocked(page));
1da177e4 289
6072d13c 290 freepage = mapping->a_ops->freepage;
c4843a75
GT
291
292 memcg = mem_cgroup_begin_page_stat(page);
293 spin_lock_irqsave(&mapping->tree_lock, flags);
294 __delete_from_page_cache(page, NULL, memcg);
295 spin_unlock_irqrestore(&mapping->tree_lock, flags);
296 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
297
298 if (freepage)
299 freepage(page);
97cecb5a
MK
300 page_cache_release(page);
301}
302EXPORT_SYMBOL(delete_from_page_cache);
303
865ffef3
DM
304static int filemap_check_errors(struct address_space *mapping)
305{
306 int ret = 0;
307 /* Check for outstanding write errors */
7fcbbaf1
JA
308 if (test_bit(AS_ENOSPC, &mapping->flags) &&
309 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 310 ret = -ENOSPC;
7fcbbaf1
JA
311 if (test_bit(AS_EIO, &mapping->flags) &&
312 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
313 ret = -EIO;
314 return ret;
315}
316
1da177e4 317/**
485bb99b 318 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
319 * @mapping: address space structure to write
320 * @start: offset in bytes where the range starts
469eb4d0 321 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 322 * @sync_mode: enable synchronous operation
1da177e4 323 *
485bb99b
RD
324 * Start writeback against all of a mapping's dirty pages that lie
325 * within the byte offsets <start, end> inclusive.
326 *
1da177e4 327 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 328 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
329 * these two operations is that if a dirty page/buffer is encountered, it must
330 * be waited upon, and not just skipped over.
331 */
ebcf28e1
AM
332int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333 loff_t end, int sync_mode)
1da177e4
LT
334{
335 int ret;
336 struct writeback_control wbc = {
337 .sync_mode = sync_mode,
05fe478d 338 .nr_to_write = LONG_MAX,
111ebb6e
OH
339 .range_start = start,
340 .range_end = end,
1da177e4
LT
341 };
342
343 if (!mapping_cap_writeback_dirty(mapping))
344 return 0;
345
b16b1deb 346 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 347 ret = do_writepages(mapping, &wbc);
b16b1deb 348 wbc_detach_inode(&wbc);
1da177e4
LT
349 return ret;
350}
351
352static inline int __filemap_fdatawrite(struct address_space *mapping,
353 int sync_mode)
354{
111ebb6e 355 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
356}
357
358int filemap_fdatawrite(struct address_space *mapping)
359{
360 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
361}
362EXPORT_SYMBOL(filemap_fdatawrite);
363
f4c0a0fd 364int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 365 loff_t end)
1da177e4
LT
366{
367 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
368}
f4c0a0fd 369EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 370
485bb99b
RD
371/**
372 * filemap_flush - mostly a non-blocking flush
373 * @mapping: target address_space
374 *
1da177e4
LT
375 * This is a mostly non-blocking flush. Not suitable for data-integrity
376 * purposes - I/O may not be started against all dirty pages.
377 */
378int filemap_flush(struct address_space *mapping)
379{
380 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
381}
382EXPORT_SYMBOL(filemap_flush);
383
aa750fd7
JN
384static int __filemap_fdatawait_range(struct address_space *mapping,
385 loff_t start_byte, loff_t end_byte)
1da177e4 386{
94004ed7
CH
387 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
388 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
389 struct pagevec pvec;
390 int nr_pages;
aa750fd7 391 int ret = 0;
1da177e4 392
94004ed7 393 if (end_byte < start_byte)
865ffef3 394 goto out;
1da177e4
LT
395
396 pagevec_init(&pvec, 0);
1da177e4
LT
397 while ((index <= end) &&
398 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
399 PAGECACHE_TAG_WRITEBACK,
400 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
401 unsigned i;
402
403 for (i = 0; i < nr_pages; i++) {
404 struct page *page = pvec.pages[i];
405
406 /* until radix tree lookup accepts end_index */
407 if (page->index > end)
408 continue;
409
410 wait_on_page_writeback(page);
212260aa 411 if (TestClearPageError(page))
1da177e4
LT
412 ret = -EIO;
413 }
414 pagevec_release(&pvec);
415 cond_resched();
416 }
865ffef3 417out:
aa750fd7
JN
418 return ret;
419}
420
421/**
422 * filemap_fdatawait_range - wait for writeback to complete
423 * @mapping: address space structure to wait for
424 * @start_byte: offset in bytes where the range starts
425 * @end_byte: offset in bytes where the range ends (inclusive)
426 *
427 * Walk the list of under-writeback pages of the given address space
428 * in the given range and wait for all of them. Check error status of
429 * the address space and return it.
430 *
431 * Since the error status of the address space is cleared by this function,
432 * callers are responsible for checking the return value and handling and/or
433 * reporting the error.
434 */
435int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
436 loff_t end_byte)
437{
438 int ret, ret2;
439
440 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
441 ret2 = filemap_check_errors(mapping);
442 if (!ret)
443 ret = ret2;
1da177e4
LT
444
445 return ret;
446}
d3bccb6f
JK
447EXPORT_SYMBOL(filemap_fdatawait_range);
448
aa750fd7
JN
449/**
450 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
451 * @mapping: address space structure to wait for
452 *
453 * Walk the list of under-writeback pages of the given address space
454 * and wait for all of them. Unlike filemap_fdatawait(), this function
455 * does not clear error status of the address space.
456 *
457 * Use this function if callers don't handle errors themselves. Expected
458 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
459 * fsfreeze(8)
460 */
461void filemap_fdatawait_keep_errors(struct address_space *mapping)
462{
463 loff_t i_size = i_size_read(mapping->host);
464
465 if (i_size == 0)
466 return;
467
468 __filemap_fdatawait_range(mapping, 0, i_size - 1);
469}
470
1da177e4 471/**
485bb99b 472 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 473 * @mapping: address space structure to wait for
485bb99b
RD
474 *
475 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
476 * and wait for all of them. Check error status of the address space
477 * and return it.
478 *
479 * Since the error status of the address space is cleared by this function,
480 * callers are responsible for checking the return value and handling and/or
481 * reporting the error.
1da177e4
LT
482 */
483int filemap_fdatawait(struct address_space *mapping)
484{
485 loff_t i_size = i_size_read(mapping->host);
486
487 if (i_size == 0)
488 return 0;
489
94004ed7 490 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
491}
492EXPORT_SYMBOL(filemap_fdatawait);
493
494int filemap_write_and_wait(struct address_space *mapping)
495{
28fd1298 496 int err = 0;
1da177e4
LT
497
498 if (mapping->nrpages) {
28fd1298
OH
499 err = filemap_fdatawrite(mapping);
500 /*
501 * Even if the above returned error, the pages may be
502 * written partially (e.g. -ENOSPC), so we wait for it.
503 * But the -EIO is special case, it may indicate the worst
504 * thing (e.g. bug) happened, so we avoid waiting for it.
505 */
506 if (err != -EIO) {
507 int err2 = filemap_fdatawait(mapping);
508 if (!err)
509 err = err2;
510 }
865ffef3
DM
511 } else {
512 err = filemap_check_errors(mapping);
1da177e4 513 }
28fd1298 514 return err;
1da177e4 515}
28fd1298 516EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 517
485bb99b
RD
518/**
519 * filemap_write_and_wait_range - write out & wait on a file range
520 * @mapping: the address_space for the pages
521 * @lstart: offset in bytes where the range starts
522 * @lend: offset in bytes where the range ends (inclusive)
523 *
469eb4d0
AM
524 * Write out and wait upon file offsets lstart->lend, inclusive.
525 *
526 * Note that `lend' is inclusive (describes the last byte to be written) so
527 * that this function can be used to write to the very end-of-file (end = -1).
528 */
1da177e4
LT
529int filemap_write_and_wait_range(struct address_space *mapping,
530 loff_t lstart, loff_t lend)
531{
28fd1298 532 int err = 0;
1da177e4
LT
533
534 if (mapping->nrpages) {
28fd1298
OH
535 err = __filemap_fdatawrite_range(mapping, lstart, lend,
536 WB_SYNC_ALL);
537 /* See comment of filemap_write_and_wait() */
538 if (err != -EIO) {
94004ed7
CH
539 int err2 = filemap_fdatawait_range(mapping,
540 lstart, lend);
28fd1298
OH
541 if (!err)
542 err = err2;
543 }
865ffef3
DM
544 } else {
545 err = filemap_check_errors(mapping);
1da177e4 546 }
28fd1298 547 return err;
1da177e4 548}
f6995585 549EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 550
ef6a3c63
MS
551/**
552 * replace_page_cache_page - replace a pagecache page with a new one
553 * @old: page to be replaced
554 * @new: page to replace with
555 * @gfp_mask: allocation mode
556 *
557 * This function replaces a page in the pagecache with a new one. On
558 * success it acquires the pagecache reference for the new page and
559 * drops it for the old page. Both the old and new pages must be
560 * locked. This function does not add the new page to the LRU, the
561 * caller must do that.
562 *
563 * The remove + add is atomic. The only way this function can fail is
564 * memory allocation failure.
565 */
566int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
567{
568 int error;
ef6a3c63 569
309381fe
SL
570 VM_BUG_ON_PAGE(!PageLocked(old), old);
571 VM_BUG_ON_PAGE(!PageLocked(new), new);
572 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 573
ef6a3c63
MS
574 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
575 if (!error) {
576 struct address_space *mapping = old->mapping;
577 void (*freepage)(struct page *);
c4843a75
GT
578 struct mem_cgroup *memcg;
579 unsigned long flags;
ef6a3c63
MS
580
581 pgoff_t offset = old->index;
582 freepage = mapping->a_ops->freepage;
583
584 page_cache_get(new);
585 new->mapping = mapping;
586 new->index = offset;
587
c4843a75
GT
588 memcg = mem_cgroup_begin_page_stat(old);
589 spin_lock_irqsave(&mapping->tree_lock, flags);
590 __delete_from_page_cache(old, NULL, memcg);
f84311d7 591 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 592 BUG_ON(error);
4165b9b4
MH
593
594 /*
595 * hugetlb pages do not participate in page cache accounting.
596 */
597 if (!PageHuge(new))
598 __inc_zone_page_state(new, NR_FILE_PAGES);
ef6a3c63
MS
599 if (PageSwapBacked(new))
600 __inc_zone_page_state(new, NR_SHMEM);
c4843a75
GT
601 spin_unlock_irqrestore(&mapping->tree_lock, flags);
602 mem_cgroup_end_page_stat(memcg);
45637bab 603 mem_cgroup_replace_page(old, new);
ef6a3c63
MS
604 radix_tree_preload_end();
605 if (freepage)
606 freepage(old);
607 page_cache_release(old);
ef6a3c63
MS
608 }
609
610 return error;
611}
612EXPORT_SYMBOL_GPL(replace_page_cache_page);
613
a528910e
JW
614static int __add_to_page_cache_locked(struct page *page,
615 struct address_space *mapping,
616 pgoff_t offset, gfp_t gfp_mask,
617 void **shadowp)
1da177e4 618{
00501b53
JW
619 int huge = PageHuge(page);
620 struct mem_cgroup *memcg;
e286781d
NP
621 int error;
622
309381fe
SL
623 VM_BUG_ON_PAGE(!PageLocked(page), page);
624 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 625
00501b53
JW
626 if (!huge) {
627 error = mem_cgroup_try_charge(page, current->mm,
628 gfp_mask, &memcg);
629 if (error)
630 return error;
631 }
1da177e4 632
5e4c0d97 633 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 634 if (error) {
00501b53
JW
635 if (!huge)
636 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee
KS
637 return error;
638 }
639
640 page_cache_get(page);
641 page->mapping = mapping;
642 page->index = offset;
643
644 spin_lock_irq(&mapping->tree_lock);
a528910e 645 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
646 radix_tree_preload_end();
647 if (unlikely(error))
648 goto err_insert;
4165b9b4
MH
649
650 /* hugetlb pages do not participate in page cache accounting. */
651 if (!huge)
652 __inc_zone_page_state(page, NR_FILE_PAGES);
66a0c8ee 653 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
654 if (!huge)
655 mem_cgroup_commit_charge(page, memcg, false);
66a0c8ee
KS
656 trace_mm_filemap_add_to_page_cache(page);
657 return 0;
658err_insert:
659 page->mapping = NULL;
660 /* Leave page->index set: truncation relies upon it */
661 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
662 if (!huge)
663 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee 664 page_cache_release(page);
1da177e4
LT
665 return error;
666}
a528910e
JW
667
668/**
669 * add_to_page_cache_locked - add a locked page to the pagecache
670 * @page: page to add
671 * @mapping: the page's address_space
672 * @offset: page index
673 * @gfp_mask: page allocation mode
674 *
675 * This function is used to add a page to the pagecache. It must be locked.
676 * This function does not add the page to the LRU. The caller must do that.
677 */
678int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
679 pgoff_t offset, gfp_t gfp_mask)
680{
681 return __add_to_page_cache_locked(page, mapping, offset,
682 gfp_mask, NULL);
683}
e286781d 684EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
685
686int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 687 pgoff_t offset, gfp_t gfp_mask)
1da177e4 688{
a528910e 689 void *shadow = NULL;
4f98a2fe
RR
690 int ret;
691
a528910e
JW
692 __set_page_locked(page);
693 ret = __add_to_page_cache_locked(page, mapping, offset,
694 gfp_mask, &shadow);
695 if (unlikely(ret))
696 __clear_page_locked(page);
697 else {
698 /*
699 * The page might have been evicted from cache only
700 * recently, in which case it should be activated like
701 * any other repeatedly accessed page.
702 */
703 if (shadow && workingset_refault(shadow)) {
704 SetPageActive(page);
705 workingset_activation(page);
706 } else
707 ClearPageActive(page);
708 lru_cache_add(page);
709 }
1da177e4
LT
710 return ret;
711}
18bc0bbd 712EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 713
44110fe3 714#ifdef CONFIG_NUMA
2ae88149 715struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 716{
c0ff7453
MX
717 int n;
718 struct page *page;
719
44110fe3 720 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
721 unsigned int cpuset_mems_cookie;
722 do {
d26914d1 723 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 724 n = cpuset_mem_spread_node();
96db800f 725 page = __alloc_pages_node(n, gfp, 0);
d26914d1 726 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 727
c0ff7453 728 return page;
44110fe3 729 }
2ae88149 730 return alloc_pages(gfp, 0);
44110fe3 731}
2ae88149 732EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
733#endif
734
1da177e4
LT
735/*
736 * In order to wait for pages to become available there must be
737 * waitqueues associated with pages. By using a hash table of
738 * waitqueues where the bucket discipline is to maintain all
739 * waiters on the same queue and wake all when any of the pages
740 * become available, and for the woken contexts to check to be
741 * sure the appropriate page became available, this saves space
742 * at a cost of "thundering herd" phenomena during rare hash
743 * collisions.
744 */
a4796e37 745wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
746{
747 const struct zone *zone = page_zone(page);
748
749 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
750}
a4796e37 751EXPORT_SYMBOL(page_waitqueue);
1da177e4 752
920c7a5d 753void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
754{
755 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
756
757 if (test_bit(bit_nr, &page->flags))
74316201 758 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
759 TASK_UNINTERRUPTIBLE);
760}
761EXPORT_SYMBOL(wait_on_page_bit);
762
f62e00cc
KM
763int wait_on_page_bit_killable(struct page *page, int bit_nr)
764{
765 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
766
767 if (!test_bit(bit_nr, &page->flags))
768 return 0;
769
770 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 771 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
772}
773
cbbce822
N
774int wait_on_page_bit_killable_timeout(struct page *page,
775 int bit_nr, unsigned long timeout)
776{
777 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
778
779 wait.key.timeout = jiffies + timeout;
780 if (!test_bit(bit_nr, &page->flags))
781 return 0;
782 return __wait_on_bit(page_waitqueue(page), &wait,
783 bit_wait_io_timeout, TASK_KILLABLE);
784}
785EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
786
385e1ca5
DH
787/**
788 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
789 * @page: Page defining the wait queue of interest
790 * @waiter: Waiter to add to the queue
385e1ca5
DH
791 *
792 * Add an arbitrary @waiter to the wait queue for the nominated @page.
793 */
794void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
795{
796 wait_queue_head_t *q = page_waitqueue(page);
797 unsigned long flags;
798
799 spin_lock_irqsave(&q->lock, flags);
800 __add_wait_queue(q, waiter);
801 spin_unlock_irqrestore(&q->lock, flags);
802}
803EXPORT_SYMBOL_GPL(add_page_wait_queue);
804
1da177e4 805/**
485bb99b 806 * unlock_page - unlock a locked page
1da177e4
LT
807 * @page: the page
808 *
809 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
810 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 811 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
812 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
813 *
8413ac9d
NP
814 * The mb is necessary to enforce ordering between the clear_bit and the read
815 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 816 */
920c7a5d 817void unlock_page(struct page *page)
1da177e4 818{
309381fe 819 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 820 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 821 smp_mb__after_atomic();
1da177e4
LT
822 wake_up_page(page, PG_locked);
823}
824EXPORT_SYMBOL(unlock_page);
825
485bb99b
RD
826/**
827 * end_page_writeback - end writeback against a page
828 * @page: the page
1da177e4
LT
829 */
830void end_page_writeback(struct page *page)
831{
888cf2db
MG
832 /*
833 * TestClearPageReclaim could be used here but it is an atomic
834 * operation and overkill in this particular case. Failing to
835 * shuffle a page marked for immediate reclaim is too mild to
836 * justify taking an atomic operation penalty at the end of
837 * ever page writeback.
838 */
839 if (PageReclaim(page)) {
840 ClearPageReclaim(page);
ac6aadb2 841 rotate_reclaimable_page(page);
888cf2db 842 }
ac6aadb2
MS
843
844 if (!test_clear_page_writeback(page))
845 BUG();
846
4e857c58 847 smp_mb__after_atomic();
1da177e4
LT
848 wake_up_page(page, PG_writeback);
849}
850EXPORT_SYMBOL(end_page_writeback);
851
57d99845
MW
852/*
853 * After completing I/O on a page, call this routine to update the page
854 * flags appropriately
855 */
856void page_endio(struct page *page, int rw, int err)
857{
858 if (rw == READ) {
859 if (!err) {
860 SetPageUptodate(page);
861 } else {
862 ClearPageUptodate(page);
863 SetPageError(page);
864 }
865 unlock_page(page);
866 } else { /* rw == WRITE */
867 if (err) {
c5c893e7
MK
868 struct address_space *mapping;
869
57d99845 870 SetPageError(page);
c5c893e7
MK
871 mapping = page_mapping(page);
872 if (mapping)
873 mapping_set_error(mapping, err);
57d99845
MW
874 }
875 end_page_writeback(page);
876 }
877}
878EXPORT_SYMBOL_GPL(page_endio);
879
485bb99b
RD
880/**
881 * __lock_page - get a lock on the page, assuming we need to sleep to get it
882 * @page: the page to lock
1da177e4 883 */
920c7a5d 884void __lock_page(struct page *page)
1da177e4
LT
885{
886 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
887
74316201 888 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
889 TASK_UNINTERRUPTIBLE);
890}
891EXPORT_SYMBOL(__lock_page);
892
b5606c2d 893int __lock_page_killable(struct page *page)
2687a356
MW
894{
895 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
896
897 return __wait_on_bit_lock(page_waitqueue(page), &wait,
74316201 898 bit_wait_io, TASK_KILLABLE);
2687a356 899}
18bc0bbd 900EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 901
9a95f3cf
PC
902/*
903 * Return values:
904 * 1 - page is locked; mmap_sem is still held.
905 * 0 - page is not locked.
906 * mmap_sem has been released (up_read()), unless flags had both
907 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
908 * which case mmap_sem is still held.
909 *
910 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
911 * with the page locked and the mmap_sem unperturbed.
912 */
d065bd81
ML
913int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
914 unsigned int flags)
915{
37b23e05
KM
916 if (flags & FAULT_FLAG_ALLOW_RETRY) {
917 /*
918 * CAUTION! In this case, mmap_sem is not released
919 * even though return 0.
920 */
921 if (flags & FAULT_FLAG_RETRY_NOWAIT)
922 return 0;
923
924 up_read(&mm->mmap_sem);
925 if (flags & FAULT_FLAG_KILLABLE)
926 wait_on_page_locked_killable(page);
927 else
318b275f 928 wait_on_page_locked(page);
d065bd81 929 return 0;
37b23e05
KM
930 } else {
931 if (flags & FAULT_FLAG_KILLABLE) {
932 int ret;
933
934 ret = __lock_page_killable(page);
935 if (ret) {
936 up_read(&mm->mmap_sem);
937 return 0;
938 }
939 } else
940 __lock_page(page);
941 return 1;
d065bd81
ML
942 }
943}
944
e7b563bb
JW
945/**
946 * page_cache_next_hole - find the next hole (not-present entry)
947 * @mapping: mapping
948 * @index: index
949 * @max_scan: maximum range to search
950 *
951 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
952 * lowest indexed hole.
953 *
954 * Returns: the index of the hole if found, otherwise returns an index
955 * outside of the set specified (in which case 'return - index >=
956 * max_scan' will be true). In rare cases of index wrap-around, 0 will
957 * be returned.
958 *
959 * page_cache_next_hole may be called under rcu_read_lock. However,
960 * like radix_tree_gang_lookup, this will not atomically search a
961 * snapshot of the tree at a single point in time. For example, if a
962 * hole is created at index 5, then subsequently a hole is created at
963 * index 10, page_cache_next_hole covering both indexes may return 10
964 * if called under rcu_read_lock.
965 */
966pgoff_t page_cache_next_hole(struct address_space *mapping,
967 pgoff_t index, unsigned long max_scan)
968{
969 unsigned long i;
970
971 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
972 struct page *page;
973
974 page = radix_tree_lookup(&mapping->page_tree, index);
975 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
976 break;
977 index++;
978 if (index == 0)
979 break;
980 }
981
982 return index;
983}
984EXPORT_SYMBOL(page_cache_next_hole);
985
986/**
987 * page_cache_prev_hole - find the prev hole (not-present entry)
988 * @mapping: mapping
989 * @index: index
990 * @max_scan: maximum range to search
991 *
992 * Search backwards in the range [max(index-max_scan+1, 0), index] for
993 * the first hole.
994 *
995 * Returns: the index of the hole if found, otherwise returns an index
996 * outside of the set specified (in which case 'index - return >=
997 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
998 * will be returned.
999 *
1000 * page_cache_prev_hole may be called under rcu_read_lock. However,
1001 * like radix_tree_gang_lookup, this will not atomically search a
1002 * snapshot of the tree at a single point in time. For example, if a
1003 * hole is created at index 10, then subsequently a hole is created at
1004 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1005 * called under rcu_read_lock.
1006 */
1007pgoff_t page_cache_prev_hole(struct address_space *mapping,
1008 pgoff_t index, unsigned long max_scan)
1009{
1010 unsigned long i;
1011
1012 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1013 struct page *page;
1014
1015 page = radix_tree_lookup(&mapping->page_tree, index);
1016 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1017 break;
1018 index--;
1019 if (index == ULONG_MAX)
1020 break;
1021 }
1022
1023 return index;
1024}
1025EXPORT_SYMBOL(page_cache_prev_hole);
1026
485bb99b 1027/**
0cd6144a 1028 * find_get_entry - find and get a page cache entry
485bb99b 1029 * @mapping: the address_space to search
0cd6144a
JW
1030 * @offset: the page cache index
1031 *
1032 * Looks up the page cache slot at @mapping & @offset. If there is a
1033 * page cache page, it is returned with an increased refcount.
485bb99b 1034 *
139b6a6f
JW
1035 * If the slot holds a shadow entry of a previously evicted page, or a
1036 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1037 *
1038 * Otherwise, %NULL is returned.
1da177e4 1039 */
0cd6144a 1040struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1041{
a60637c8 1042 void **pagep;
1da177e4
LT
1043 struct page *page;
1044
a60637c8
NP
1045 rcu_read_lock();
1046repeat:
1047 page = NULL;
1048 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1049 if (pagep) {
1050 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1051 if (unlikely(!page))
1052 goto out;
a2c16d6c 1053 if (radix_tree_exception(page)) {
8079b1c8
HD
1054 if (radix_tree_deref_retry(page))
1055 goto repeat;
1056 /*
139b6a6f
JW
1057 * A shadow entry of a recently evicted page,
1058 * or a swap entry from shmem/tmpfs. Return
1059 * it without attempting to raise page count.
8079b1c8
HD
1060 */
1061 goto out;
a2c16d6c 1062 }
a60637c8
NP
1063 if (!page_cache_get_speculative(page))
1064 goto repeat;
1065
1066 /*
1067 * Has the page moved?
1068 * This is part of the lockless pagecache protocol. See
1069 * include/linux/pagemap.h for details.
1070 */
1071 if (unlikely(page != *pagep)) {
1072 page_cache_release(page);
1073 goto repeat;
1074 }
1075 }
27d20fdd 1076out:
a60637c8
NP
1077 rcu_read_unlock();
1078
1da177e4
LT
1079 return page;
1080}
0cd6144a 1081EXPORT_SYMBOL(find_get_entry);
1da177e4 1082
0cd6144a
JW
1083/**
1084 * find_lock_entry - locate, pin and lock a page cache entry
1085 * @mapping: the address_space to search
1086 * @offset: the page cache index
1087 *
1088 * Looks up the page cache slot at @mapping & @offset. If there is a
1089 * page cache page, it is returned locked and with an increased
1090 * refcount.
1091 *
139b6a6f
JW
1092 * If the slot holds a shadow entry of a previously evicted page, or a
1093 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1094 *
1095 * Otherwise, %NULL is returned.
1096 *
1097 * find_lock_entry() may sleep.
1098 */
1099struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1100{
1101 struct page *page;
1102
1da177e4 1103repeat:
0cd6144a 1104 page = find_get_entry(mapping, offset);
a2c16d6c 1105 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1106 lock_page(page);
1107 /* Has the page been truncated? */
1108 if (unlikely(page->mapping != mapping)) {
1109 unlock_page(page);
1110 page_cache_release(page);
1111 goto repeat;
1da177e4 1112 }
309381fe 1113 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1114 }
1da177e4
LT
1115 return page;
1116}
0cd6144a
JW
1117EXPORT_SYMBOL(find_lock_entry);
1118
1119/**
2457aec6 1120 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1121 * @mapping: the address_space to search
1122 * @offset: the page index
2457aec6 1123 * @fgp_flags: PCG flags
45f87de5 1124 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1125 *
2457aec6 1126 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1127 *
75325189 1128 * PCG flags modify how the page is returned.
0cd6144a 1129 *
2457aec6
MG
1130 * FGP_ACCESSED: the page will be marked accessed
1131 * FGP_LOCK: Page is return locked
1132 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1133 * @gfp_mask and added to the page cache and the VM's LRU
1134 * list. The page is returned locked and with an increased
1135 * refcount. Otherwise, %NULL is returned.
1da177e4 1136 *
2457aec6
MG
1137 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1138 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1139 *
2457aec6 1140 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1141 */
2457aec6 1142struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1143 int fgp_flags, gfp_t gfp_mask)
1da177e4 1144{
eb2be189 1145 struct page *page;
2457aec6 1146
1da177e4 1147repeat:
2457aec6
MG
1148 page = find_get_entry(mapping, offset);
1149 if (radix_tree_exceptional_entry(page))
1150 page = NULL;
1151 if (!page)
1152 goto no_page;
1153
1154 if (fgp_flags & FGP_LOCK) {
1155 if (fgp_flags & FGP_NOWAIT) {
1156 if (!trylock_page(page)) {
1157 page_cache_release(page);
1158 return NULL;
1159 }
1160 } else {
1161 lock_page(page);
1162 }
1163
1164 /* Has the page been truncated? */
1165 if (unlikely(page->mapping != mapping)) {
1166 unlock_page(page);
1167 page_cache_release(page);
1168 goto repeat;
1169 }
1170 VM_BUG_ON_PAGE(page->index != offset, page);
1171 }
1172
1173 if (page && (fgp_flags & FGP_ACCESSED))
1174 mark_page_accessed(page);
1175
1176no_page:
1177 if (!page && (fgp_flags & FGP_CREAT)) {
1178 int err;
1179 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1180 gfp_mask |= __GFP_WRITE;
1181 if (fgp_flags & FGP_NOFS)
1182 gfp_mask &= ~__GFP_FS;
2457aec6 1183
45f87de5 1184 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1185 if (!page)
1186 return NULL;
2457aec6
MG
1187
1188 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1189 fgp_flags |= FGP_LOCK;
1190
eb39d618 1191 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1192 if (fgp_flags & FGP_ACCESSED)
eb39d618 1193 __SetPageReferenced(page);
2457aec6 1194
45f87de5
MH
1195 err = add_to_page_cache_lru(page, mapping, offset,
1196 gfp_mask & GFP_RECLAIM_MASK);
eb2be189
NP
1197 if (unlikely(err)) {
1198 page_cache_release(page);
1199 page = NULL;
1200 if (err == -EEXIST)
1201 goto repeat;
1da177e4 1202 }
1da177e4 1203 }
2457aec6 1204
1da177e4
LT
1205 return page;
1206}
2457aec6 1207EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1208
0cd6144a
JW
1209/**
1210 * find_get_entries - gang pagecache lookup
1211 * @mapping: The address_space to search
1212 * @start: The starting page cache index
1213 * @nr_entries: The maximum number of entries
1214 * @entries: Where the resulting entries are placed
1215 * @indices: The cache indices corresponding to the entries in @entries
1216 *
1217 * find_get_entries() will search for and return a group of up to
1218 * @nr_entries entries in the mapping. The entries are placed at
1219 * @entries. find_get_entries() takes a reference against any actual
1220 * pages it returns.
1221 *
1222 * The search returns a group of mapping-contiguous page cache entries
1223 * with ascending indexes. There may be holes in the indices due to
1224 * not-present pages.
1225 *
139b6a6f
JW
1226 * Any shadow entries of evicted pages, or swap entries from
1227 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1228 *
1229 * find_get_entries() returns the number of pages and shadow entries
1230 * which were found.
1231 */
1232unsigned find_get_entries(struct address_space *mapping,
1233 pgoff_t start, unsigned int nr_entries,
1234 struct page **entries, pgoff_t *indices)
1235{
1236 void **slot;
1237 unsigned int ret = 0;
1238 struct radix_tree_iter iter;
1239
1240 if (!nr_entries)
1241 return 0;
1242
1243 rcu_read_lock();
1244restart:
1245 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1246 struct page *page;
1247repeat:
1248 page = radix_tree_deref_slot(slot);
1249 if (unlikely(!page))
1250 continue;
1251 if (radix_tree_exception(page)) {
1252 if (radix_tree_deref_retry(page))
1253 goto restart;
1254 /*
139b6a6f
JW
1255 * A shadow entry of a recently evicted page,
1256 * or a swap entry from shmem/tmpfs. Return
1257 * it without attempting to raise page count.
0cd6144a
JW
1258 */
1259 goto export;
1260 }
1261 if (!page_cache_get_speculative(page))
1262 goto repeat;
1263
1264 /* Has the page moved? */
1265 if (unlikely(page != *slot)) {
1266 page_cache_release(page);
1267 goto repeat;
1268 }
1269export:
1270 indices[ret] = iter.index;
1271 entries[ret] = page;
1272 if (++ret == nr_entries)
1273 break;
1274 }
1275 rcu_read_unlock();
1276 return ret;
1277}
1278
1da177e4
LT
1279/**
1280 * find_get_pages - gang pagecache lookup
1281 * @mapping: The address_space to search
1282 * @start: The starting page index
1283 * @nr_pages: The maximum number of pages
1284 * @pages: Where the resulting pages are placed
1285 *
1286 * find_get_pages() will search for and return a group of up to
1287 * @nr_pages pages in the mapping. The pages are placed at @pages.
1288 * find_get_pages() takes a reference against the returned pages.
1289 *
1290 * The search returns a group of mapping-contiguous pages with ascending
1291 * indexes. There may be holes in the indices due to not-present pages.
1292 *
1293 * find_get_pages() returns the number of pages which were found.
1294 */
1295unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1296 unsigned int nr_pages, struct page **pages)
1297{
0fc9d104
KK
1298 struct radix_tree_iter iter;
1299 void **slot;
1300 unsigned ret = 0;
1301
1302 if (unlikely(!nr_pages))
1303 return 0;
a60637c8
NP
1304
1305 rcu_read_lock();
1306restart:
0fc9d104 1307 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1308 struct page *page;
1309repeat:
0fc9d104 1310 page = radix_tree_deref_slot(slot);
a60637c8
NP
1311 if (unlikely(!page))
1312 continue;
9d8aa4ea 1313
a2c16d6c 1314 if (radix_tree_exception(page)) {
8079b1c8
HD
1315 if (radix_tree_deref_retry(page)) {
1316 /*
1317 * Transient condition which can only trigger
1318 * when entry at index 0 moves out of or back
1319 * to root: none yet gotten, safe to restart.
1320 */
0fc9d104 1321 WARN_ON(iter.index);
8079b1c8
HD
1322 goto restart;
1323 }
a2c16d6c 1324 /*
139b6a6f
JW
1325 * A shadow entry of a recently evicted page,
1326 * or a swap entry from shmem/tmpfs. Skip
1327 * over it.
a2c16d6c 1328 */
8079b1c8 1329 continue;
27d20fdd 1330 }
a60637c8
NP
1331
1332 if (!page_cache_get_speculative(page))
1333 goto repeat;
1334
1335 /* Has the page moved? */
0fc9d104 1336 if (unlikely(page != *slot)) {
a60637c8
NP
1337 page_cache_release(page);
1338 goto repeat;
1339 }
1da177e4 1340
a60637c8 1341 pages[ret] = page;
0fc9d104
KK
1342 if (++ret == nr_pages)
1343 break;
a60637c8 1344 }
5b280c0c 1345
a60637c8 1346 rcu_read_unlock();
1da177e4
LT
1347 return ret;
1348}
1349
ebf43500
JA
1350/**
1351 * find_get_pages_contig - gang contiguous pagecache lookup
1352 * @mapping: The address_space to search
1353 * @index: The starting page index
1354 * @nr_pages: The maximum number of pages
1355 * @pages: Where the resulting pages are placed
1356 *
1357 * find_get_pages_contig() works exactly like find_get_pages(), except
1358 * that the returned number of pages are guaranteed to be contiguous.
1359 *
1360 * find_get_pages_contig() returns the number of pages which were found.
1361 */
1362unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1363 unsigned int nr_pages, struct page **pages)
1364{
0fc9d104
KK
1365 struct radix_tree_iter iter;
1366 void **slot;
1367 unsigned int ret = 0;
1368
1369 if (unlikely(!nr_pages))
1370 return 0;
a60637c8
NP
1371
1372 rcu_read_lock();
1373restart:
0fc9d104 1374 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1375 struct page *page;
1376repeat:
0fc9d104
KK
1377 page = radix_tree_deref_slot(slot);
1378 /* The hole, there no reason to continue */
a60637c8 1379 if (unlikely(!page))
0fc9d104 1380 break;
9d8aa4ea 1381
a2c16d6c 1382 if (radix_tree_exception(page)) {
8079b1c8
HD
1383 if (radix_tree_deref_retry(page)) {
1384 /*
1385 * Transient condition which can only trigger
1386 * when entry at index 0 moves out of or back
1387 * to root: none yet gotten, safe to restart.
1388 */
1389 goto restart;
1390 }
a2c16d6c 1391 /*
139b6a6f
JW
1392 * A shadow entry of a recently evicted page,
1393 * or a swap entry from shmem/tmpfs. Stop
1394 * looking for contiguous pages.
a2c16d6c 1395 */
8079b1c8 1396 break;
a2c16d6c 1397 }
ebf43500 1398
a60637c8
NP
1399 if (!page_cache_get_speculative(page))
1400 goto repeat;
1401
1402 /* Has the page moved? */
0fc9d104 1403 if (unlikely(page != *slot)) {
a60637c8
NP
1404 page_cache_release(page);
1405 goto repeat;
1406 }
1407
9cbb4cb2
NP
1408 /*
1409 * must check mapping and index after taking the ref.
1410 * otherwise we can get both false positives and false
1411 * negatives, which is just confusing to the caller.
1412 */
0fc9d104 1413 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1414 page_cache_release(page);
1415 break;
1416 }
1417
a60637c8 1418 pages[ret] = page;
0fc9d104
KK
1419 if (++ret == nr_pages)
1420 break;
ebf43500 1421 }
a60637c8
NP
1422 rcu_read_unlock();
1423 return ret;
ebf43500 1424}
ef71c15c 1425EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1426
485bb99b
RD
1427/**
1428 * find_get_pages_tag - find and return pages that match @tag
1429 * @mapping: the address_space to search
1430 * @index: the starting page index
1431 * @tag: the tag index
1432 * @nr_pages: the maximum number of pages
1433 * @pages: where the resulting pages are placed
1434 *
1da177e4 1435 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1436 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1437 */
1438unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1439 int tag, unsigned int nr_pages, struct page **pages)
1440{
0fc9d104
KK
1441 struct radix_tree_iter iter;
1442 void **slot;
1443 unsigned ret = 0;
1444
1445 if (unlikely(!nr_pages))
1446 return 0;
a60637c8
NP
1447
1448 rcu_read_lock();
1449restart:
0fc9d104
KK
1450 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1451 &iter, *index, tag) {
a60637c8
NP
1452 struct page *page;
1453repeat:
0fc9d104 1454 page = radix_tree_deref_slot(slot);
a60637c8
NP
1455 if (unlikely(!page))
1456 continue;
9d8aa4ea 1457
a2c16d6c 1458 if (radix_tree_exception(page)) {
8079b1c8
HD
1459 if (radix_tree_deref_retry(page)) {
1460 /*
1461 * Transient condition which can only trigger
1462 * when entry at index 0 moves out of or back
1463 * to root: none yet gotten, safe to restart.
1464 */
1465 goto restart;
1466 }
a2c16d6c 1467 /*
139b6a6f
JW
1468 * A shadow entry of a recently evicted page.
1469 *
1470 * Those entries should never be tagged, but
1471 * this tree walk is lockless and the tags are
1472 * looked up in bulk, one radix tree node at a
1473 * time, so there is a sizable window for page
1474 * reclaim to evict a page we saw tagged.
1475 *
1476 * Skip over it.
a2c16d6c 1477 */
139b6a6f 1478 continue;
a2c16d6c 1479 }
a60637c8
NP
1480
1481 if (!page_cache_get_speculative(page))
1482 goto repeat;
1483
1484 /* Has the page moved? */
0fc9d104 1485 if (unlikely(page != *slot)) {
a60637c8
NP
1486 page_cache_release(page);
1487 goto repeat;
1488 }
1489
1490 pages[ret] = page;
0fc9d104
KK
1491 if (++ret == nr_pages)
1492 break;
a60637c8 1493 }
5b280c0c 1494
a60637c8 1495 rcu_read_unlock();
1da177e4 1496
1da177e4
LT
1497 if (ret)
1498 *index = pages[ret - 1]->index + 1;
a60637c8 1499
1da177e4
LT
1500 return ret;
1501}
ef71c15c 1502EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1503
76d42bd9
WF
1504/*
1505 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1506 * a _large_ part of the i/o request. Imagine the worst scenario:
1507 *
1508 * ---R__________________________________________B__________
1509 * ^ reading here ^ bad block(assume 4k)
1510 *
1511 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1512 * => failing the whole request => read(R) => read(R+1) =>
1513 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1514 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1515 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1516 *
1517 * It is going insane. Fix it by quickly scaling down the readahead size.
1518 */
1519static void shrink_readahead_size_eio(struct file *filp,
1520 struct file_ra_state *ra)
1521{
76d42bd9 1522 ra->ra_pages /= 4;
76d42bd9
WF
1523}
1524
485bb99b 1525/**
36e78914 1526 * do_generic_file_read - generic file read routine
485bb99b
RD
1527 * @filp: the file to read
1528 * @ppos: current file position
6e58e79d
AV
1529 * @iter: data destination
1530 * @written: already copied
485bb99b 1531 *
1da177e4 1532 * This is a generic file read routine, and uses the
485bb99b 1533 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1534 *
1535 * This is really ugly. But the goto's actually try to clarify some
1536 * of the logic when it comes to error handling etc.
1da177e4 1537 */
6e58e79d
AV
1538static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1539 struct iov_iter *iter, ssize_t written)
1da177e4 1540{
36e78914 1541 struct address_space *mapping = filp->f_mapping;
1da177e4 1542 struct inode *inode = mapping->host;
36e78914 1543 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1544 pgoff_t index;
1545 pgoff_t last_index;
1546 pgoff_t prev_index;
1547 unsigned long offset; /* offset into pagecache page */
ec0f1637 1548 unsigned int prev_offset;
6e58e79d 1549 int error = 0;
1da177e4 1550
1da177e4 1551 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1552 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1553 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1554 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1555 offset = *ppos & ~PAGE_CACHE_MASK;
1556
1da177e4
LT
1557 for (;;) {
1558 struct page *page;
57f6b96c 1559 pgoff_t end_index;
a32ea1e1 1560 loff_t isize;
1da177e4
LT
1561 unsigned long nr, ret;
1562
1da177e4 1563 cond_resched();
1da177e4 1564find_page:
4025ab36
MH
1565 if (fatal_signal_pending(current)) {
1566 error = -EINTR;
1567 goto out;
1568 }
1569
1da177e4 1570 page = find_get_page(mapping, index);
3ea89ee8 1571 if (!page) {
cf914a7d 1572 page_cache_sync_readahead(mapping,
7ff81078 1573 ra, filp,
3ea89ee8
FW
1574 index, last_index - index);
1575 page = find_get_page(mapping, index);
1576 if (unlikely(page == NULL))
1577 goto no_cached_page;
1578 }
1579 if (PageReadahead(page)) {
cf914a7d 1580 page_cache_async_readahead(mapping,
7ff81078 1581 ra, filp, page,
3ea89ee8 1582 index, last_index - index);
1da177e4 1583 }
8ab22b9a
HH
1584 if (!PageUptodate(page)) {
1585 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1586 !mapping->a_ops->is_partially_uptodate)
1587 goto page_not_up_to_date;
529ae9aa 1588 if (!trylock_page(page))
8ab22b9a 1589 goto page_not_up_to_date;
8d056cb9
DH
1590 /* Did it get truncated before we got the lock? */
1591 if (!page->mapping)
1592 goto page_not_up_to_date_locked;
8ab22b9a 1593 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1594 offset, iter->count))
8ab22b9a
HH
1595 goto page_not_up_to_date_locked;
1596 unlock_page(page);
1597 }
1da177e4 1598page_ok:
a32ea1e1
N
1599 /*
1600 * i_size must be checked after we know the page is Uptodate.
1601 *
1602 * Checking i_size after the check allows us to calculate
1603 * the correct value for "nr", which means the zero-filled
1604 * part of the page is not copied back to userspace (unless
1605 * another truncate extends the file - this is desired though).
1606 */
1607
1608 isize = i_size_read(inode);
1609 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1610 if (unlikely(!isize || index > end_index)) {
1611 page_cache_release(page);
1612 goto out;
1613 }
1614
1615 /* nr is the maximum number of bytes to copy from this page */
1616 nr = PAGE_CACHE_SIZE;
1617 if (index == end_index) {
1618 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1619 if (nr <= offset) {
1620 page_cache_release(page);
1621 goto out;
1622 }
1623 }
1624 nr = nr - offset;
1da177e4
LT
1625
1626 /* If users can be writing to this page using arbitrary
1627 * virtual addresses, take care about potential aliasing
1628 * before reading the page on the kernel side.
1629 */
1630 if (mapping_writably_mapped(mapping))
1631 flush_dcache_page(page);
1632
1633 /*
ec0f1637
JK
1634 * When a sequential read accesses a page several times,
1635 * only mark it as accessed the first time.
1da177e4 1636 */
ec0f1637 1637 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1638 mark_page_accessed(page);
1639 prev_index = index;
1640
1641 /*
1642 * Ok, we have the page, and it's up-to-date, so
1643 * now we can copy it to user space...
1da177e4 1644 */
6e58e79d
AV
1645
1646 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1647 offset += ret;
1648 index += offset >> PAGE_CACHE_SHIFT;
1649 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1650 prev_offset = offset;
1da177e4
LT
1651
1652 page_cache_release(page);
6e58e79d
AV
1653 written += ret;
1654 if (!iov_iter_count(iter))
1655 goto out;
1656 if (ret < nr) {
1657 error = -EFAULT;
1658 goto out;
1659 }
1660 continue;
1da177e4
LT
1661
1662page_not_up_to_date:
1663 /* Get exclusive access to the page ... */
85462323
ON
1664 error = lock_page_killable(page);
1665 if (unlikely(error))
1666 goto readpage_error;
1da177e4 1667
8ab22b9a 1668page_not_up_to_date_locked:
da6052f7 1669 /* Did it get truncated before we got the lock? */
1da177e4
LT
1670 if (!page->mapping) {
1671 unlock_page(page);
1672 page_cache_release(page);
1673 continue;
1674 }
1675
1676 /* Did somebody else fill it already? */
1677 if (PageUptodate(page)) {
1678 unlock_page(page);
1679 goto page_ok;
1680 }
1681
1682readpage:
91803b49
JM
1683 /*
1684 * A previous I/O error may have been due to temporary
1685 * failures, eg. multipath errors.
1686 * PG_error will be set again if readpage fails.
1687 */
1688 ClearPageError(page);
1da177e4
LT
1689 /* Start the actual read. The read will unlock the page. */
1690 error = mapping->a_ops->readpage(filp, page);
1691
994fc28c
ZB
1692 if (unlikely(error)) {
1693 if (error == AOP_TRUNCATED_PAGE) {
1694 page_cache_release(page);
6e58e79d 1695 error = 0;
994fc28c
ZB
1696 goto find_page;
1697 }
1da177e4 1698 goto readpage_error;
994fc28c 1699 }
1da177e4
LT
1700
1701 if (!PageUptodate(page)) {
85462323
ON
1702 error = lock_page_killable(page);
1703 if (unlikely(error))
1704 goto readpage_error;
1da177e4
LT
1705 if (!PageUptodate(page)) {
1706 if (page->mapping == NULL) {
1707 /*
2ecdc82e 1708 * invalidate_mapping_pages got it
1da177e4
LT
1709 */
1710 unlock_page(page);
1711 page_cache_release(page);
1712 goto find_page;
1713 }
1714 unlock_page(page);
7ff81078 1715 shrink_readahead_size_eio(filp, ra);
85462323
ON
1716 error = -EIO;
1717 goto readpage_error;
1da177e4
LT
1718 }
1719 unlock_page(page);
1720 }
1721
1da177e4
LT
1722 goto page_ok;
1723
1724readpage_error:
1725 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1726 page_cache_release(page);
1727 goto out;
1728
1729no_cached_page:
1730 /*
1731 * Ok, it wasn't cached, so we need to create a new
1732 * page..
1733 */
eb2be189
NP
1734 page = page_cache_alloc_cold(mapping);
1735 if (!page) {
6e58e79d 1736 error = -ENOMEM;
eb2be189 1737 goto out;
1da177e4 1738 }
6afdb859 1739 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1740 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1741 if (error) {
eb2be189 1742 page_cache_release(page);
6e58e79d
AV
1743 if (error == -EEXIST) {
1744 error = 0;
1da177e4 1745 goto find_page;
6e58e79d 1746 }
1da177e4
LT
1747 goto out;
1748 }
1da177e4
LT
1749 goto readpage;
1750 }
1751
1752out:
7ff81078
FW
1753 ra->prev_pos = prev_index;
1754 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1755 ra->prev_pos |= prev_offset;
1da177e4 1756
f4e6b498 1757 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1758 file_accessed(filp);
6e58e79d 1759 return written ? written : error;
1da177e4
LT
1760}
1761
485bb99b 1762/**
6abd2322 1763 * generic_file_read_iter - generic filesystem read routine
485bb99b 1764 * @iocb: kernel I/O control block
6abd2322 1765 * @iter: destination for the data read
485bb99b 1766 *
6abd2322 1767 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1768 * that can use the page cache directly.
1769 */
1770ssize_t
ed978a81 1771generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1772{
ed978a81 1773 struct file *file = iocb->ki_filp;
cb66a7a1 1774 ssize_t retval = 0;
543ade1f 1775 loff_t *ppos = &iocb->ki_pos;
ed978a81 1776 loff_t pos = *ppos;
1da177e4 1777
2ba48ce5 1778 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1779 struct address_space *mapping = file->f_mapping;
1780 struct inode *inode = mapping->host;
1781 size_t count = iov_iter_count(iter);
543ade1f 1782 loff_t size;
1da177e4 1783
1da177e4
LT
1784 if (!count)
1785 goto out; /* skip atime */
1786 size = i_size_read(inode);
9fe55eea 1787 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1788 pos + count - 1);
9fe55eea 1789 if (!retval) {
ed978a81 1790 struct iov_iter data = *iter;
22c6186e 1791 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
9fe55eea 1792 }
d8d3d94b 1793
9fe55eea
SW
1794 if (retval > 0) {
1795 *ppos = pos + retval;
ed978a81 1796 iov_iter_advance(iter, retval);
9fe55eea 1797 }
66f998f6 1798
9fe55eea
SW
1799 /*
1800 * Btrfs can have a short DIO read if we encounter
1801 * compressed extents, so if there was an error, or if
1802 * we've already read everything we wanted to, or if
1803 * there was a short read because we hit EOF, go ahead
1804 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1805 * the rest of the read. Buffered reads will not work for
1806 * DAX files, so don't bother trying.
9fe55eea 1807 */
fbbbad4b
MW
1808 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1809 IS_DAX(inode)) {
ed978a81 1810 file_accessed(file);
9fe55eea 1811 goto out;
0e0bcae3 1812 }
1da177e4
LT
1813 }
1814
ed978a81 1815 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1816out:
1817 return retval;
1818}
ed978a81 1819EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1820
1da177e4 1821#ifdef CONFIG_MMU
485bb99b
RD
1822/**
1823 * page_cache_read - adds requested page to the page cache if not already there
1824 * @file: file to read
1825 * @offset: page index
1826 *
1da177e4
LT
1827 * This adds the requested page to the page cache if it isn't already there,
1828 * and schedules an I/O to read in its contents from disk.
1829 */
920c7a5d 1830static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1831{
1832 struct address_space *mapping = file->f_mapping;
99dadfdd 1833 struct page *page;
994fc28c 1834 int ret;
1da177e4 1835
994fc28c
ZB
1836 do {
1837 page = page_cache_alloc_cold(mapping);
1838 if (!page)
1839 return -ENOMEM;
1840
6afdb859 1841 ret = add_to_page_cache_lru(page, mapping, offset,
c62d2555 1842 mapping_gfp_constraint(mapping, GFP_KERNEL));
994fc28c
ZB
1843 if (ret == 0)
1844 ret = mapping->a_ops->readpage(file, page);
1845 else if (ret == -EEXIST)
1846 ret = 0; /* losing race to add is OK */
1da177e4 1847
1da177e4 1848 page_cache_release(page);
1da177e4 1849
994fc28c 1850 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1851
994fc28c 1852 return ret;
1da177e4
LT
1853}
1854
1855#define MMAP_LOTSAMISS (100)
1856
ef00e08e
LT
1857/*
1858 * Synchronous readahead happens when we don't even find
1859 * a page in the page cache at all.
1860 */
1861static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1862 struct file_ra_state *ra,
1863 struct file *file,
1864 pgoff_t offset)
1865{
ef00e08e
LT
1866 struct address_space *mapping = file->f_mapping;
1867
1868 /* If we don't want any read-ahead, don't bother */
64363aad 1869 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1870 return;
275b12bf
WF
1871 if (!ra->ra_pages)
1872 return;
ef00e08e 1873
64363aad 1874 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1875 page_cache_sync_readahead(mapping, ra, file, offset,
1876 ra->ra_pages);
ef00e08e
LT
1877 return;
1878 }
1879
207d04ba
AK
1880 /* Avoid banging the cache line if not needed */
1881 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1882 ra->mmap_miss++;
1883
1884 /*
1885 * Do we miss much more than hit in this file? If so,
1886 * stop bothering with read-ahead. It will only hurt.
1887 */
1888 if (ra->mmap_miss > MMAP_LOTSAMISS)
1889 return;
1890
d30a1100
WF
1891 /*
1892 * mmap read-around
1893 */
600e19af
RG
1894 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1895 ra->size = ra->ra_pages;
1896 ra->async_size = ra->ra_pages / 4;
275b12bf 1897 ra_submit(ra, mapping, file);
ef00e08e
LT
1898}
1899
1900/*
1901 * Asynchronous readahead happens when we find the page and PG_readahead,
1902 * so we want to possibly extend the readahead further..
1903 */
1904static void do_async_mmap_readahead(struct vm_area_struct *vma,
1905 struct file_ra_state *ra,
1906 struct file *file,
1907 struct page *page,
1908 pgoff_t offset)
1909{
1910 struct address_space *mapping = file->f_mapping;
1911
1912 /* If we don't want any read-ahead, don't bother */
64363aad 1913 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1914 return;
1915 if (ra->mmap_miss > 0)
1916 ra->mmap_miss--;
1917 if (PageReadahead(page))
2fad6f5d
WF
1918 page_cache_async_readahead(mapping, ra, file,
1919 page, offset, ra->ra_pages);
ef00e08e
LT
1920}
1921
485bb99b 1922/**
54cb8821 1923 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1924 * @vma: vma in which the fault was taken
1925 * @vmf: struct vm_fault containing details of the fault
485bb99b 1926 *
54cb8821 1927 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1928 * mapped memory region to read in file data during a page fault.
1929 *
1930 * The goto's are kind of ugly, but this streamlines the normal case of having
1931 * it in the page cache, and handles the special cases reasonably without
1932 * having a lot of duplicated code.
9a95f3cf
PC
1933 *
1934 * vma->vm_mm->mmap_sem must be held on entry.
1935 *
1936 * If our return value has VM_FAULT_RETRY set, it's because
1937 * lock_page_or_retry() returned 0.
1938 * The mmap_sem has usually been released in this case.
1939 * See __lock_page_or_retry() for the exception.
1940 *
1941 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1942 * has not been released.
1943 *
1944 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 1945 */
d0217ac0 1946int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1947{
1948 int error;
54cb8821 1949 struct file *file = vma->vm_file;
1da177e4
LT
1950 struct address_space *mapping = file->f_mapping;
1951 struct file_ra_state *ra = &file->f_ra;
1952 struct inode *inode = mapping->host;
ef00e08e 1953 pgoff_t offset = vmf->pgoff;
1da177e4 1954 struct page *page;
99e3e53f 1955 loff_t size;
83c54070 1956 int ret = 0;
1da177e4 1957
99e3e53f
KS
1958 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1959 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 1960 return VM_FAULT_SIGBUS;
1da177e4 1961
1da177e4 1962 /*
49426420 1963 * Do we have something in the page cache already?
1da177e4 1964 */
ef00e08e 1965 page = find_get_page(mapping, offset);
45cac65b 1966 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1967 /*
ef00e08e
LT
1968 * We found the page, so try async readahead before
1969 * waiting for the lock.
1da177e4 1970 */
ef00e08e 1971 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1972 } else if (!page) {
ef00e08e
LT
1973 /* No page in the page cache at all */
1974 do_sync_mmap_readahead(vma, ra, file, offset);
1975 count_vm_event(PGMAJFAULT);
456f998e 1976 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1977 ret = VM_FAULT_MAJOR;
1978retry_find:
b522c94d 1979 page = find_get_page(mapping, offset);
1da177e4
LT
1980 if (!page)
1981 goto no_cached_page;
1982 }
1983
d88c0922
ML
1984 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1985 page_cache_release(page);
d065bd81 1986 return ret | VM_FAULT_RETRY;
d88c0922 1987 }
b522c94d
ML
1988
1989 /* Did it get truncated? */
1990 if (unlikely(page->mapping != mapping)) {
1991 unlock_page(page);
1992 put_page(page);
1993 goto retry_find;
1994 }
309381fe 1995 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1996
1da177e4 1997 /*
d00806b1
NP
1998 * We have a locked page in the page cache, now we need to check
1999 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2000 */
d00806b1 2001 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2002 goto page_not_uptodate;
2003
ef00e08e
LT
2004 /*
2005 * Found the page and have a reference on it.
2006 * We must recheck i_size under page lock.
2007 */
99e3e53f
KS
2008 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2009 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 2010 unlock_page(page);
745ad48e 2011 page_cache_release(page);
5307cc1a 2012 return VM_FAULT_SIGBUS;
d00806b1
NP
2013 }
2014
d0217ac0 2015 vmf->page = page;
83c54070 2016 return ret | VM_FAULT_LOCKED;
1da177e4 2017
1da177e4
LT
2018no_cached_page:
2019 /*
2020 * We're only likely to ever get here if MADV_RANDOM is in
2021 * effect.
2022 */
ef00e08e 2023 error = page_cache_read(file, offset);
1da177e4
LT
2024
2025 /*
2026 * The page we want has now been added to the page cache.
2027 * In the unlikely event that someone removed it in the
2028 * meantime, we'll just come back here and read it again.
2029 */
2030 if (error >= 0)
2031 goto retry_find;
2032
2033 /*
2034 * An error return from page_cache_read can result if the
2035 * system is low on memory, or a problem occurs while trying
2036 * to schedule I/O.
2037 */
2038 if (error == -ENOMEM)
d0217ac0
NP
2039 return VM_FAULT_OOM;
2040 return VM_FAULT_SIGBUS;
1da177e4
LT
2041
2042page_not_uptodate:
1da177e4
LT
2043 /*
2044 * Umm, take care of errors if the page isn't up-to-date.
2045 * Try to re-read it _once_. We do this synchronously,
2046 * because there really aren't any performance issues here
2047 * and we need to check for errors.
2048 */
1da177e4 2049 ClearPageError(page);
994fc28c 2050 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2051 if (!error) {
2052 wait_on_page_locked(page);
2053 if (!PageUptodate(page))
2054 error = -EIO;
2055 }
d00806b1
NP
2056 page_cache_release(page);
2057
2058 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2059 goto retry_find;
1da177e4 2060
d00806b1 2061 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2062 shrink_readahead_size_eio(file, ra);
d0217ac0 2063 return VM_FAULT_SIGBUS;
54cb8821
NP
2064}
2065EXPORT_SYMBOL(filemap_fault);
2066
f1820361
KS
2067void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2068{
2069 struct radix_tree_iter iter;
2070 void **slot;
2071 struct file *file = vma->vm_file;
2072 struct address_space *mapping = file->f_mapping;
2073 loff_t size;
2074 struct page *page;
2075 unsigned long address = (unsigned long) vmf->virtual_address;
2076 unsigned long addr;
2077 pte_t *pte;
2078
2079 rcu_read_lock();
2080 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2081 if (iter.index > vmf->max_pgoff)
2082 break;
2083repeat:
2084 page = radix_tree_deref_slot(slot);
2085 if (unlikely(!page))
2086 goto next;
2087 if (radix_tree_exception(page)) {
2088 if (radix_tree_deref_retry(page))
2089 break;
2090 else
2091 goto next;
2092 }
2093
2094 if (!page_cache_get_speculative(page))
2095 goto repeat;
2096
2097 /* Has the page moved? */
2098 if (unlikely(page != *slot)) {
2099 page_cache_release(page);
2100 goto repeat;
2101 }
2102
2103 if (!PageUptodate(page) ||
2104 PageReadahead(page) ||
2105 PageHWPoison(page))
2106 goto skip;
2107 if (!trylock_page(page))
2108 goto skip;
2109
2110 if (page->mapping != mapping || !PageUptodate(page))
2111 goto unlock;
2112
99e3e53f
KS
2113 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2114 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2115 goto unlock;
2116
2117 pte = vmf->pte + page->index - vmf->pgoff;
2118 if (!pte_none(*pte))
2119 goto unlock;
2120
2121 if (file->f_ra.mmap_miss > 0)
2122 file->f_ra.mmap_miss--;
2123 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2124 do_set_pte(vma, addr, page, pte, false, false);
2125 unlock_page(page);
2126 goto next;
2127unlock:
2128 unlock_page(page);
2129skip:
2130 page_cache_release(page);
2131next:
2132 if (iter.index == vmf->max_pgoff)
2133 break;
2134 }
2135 rcu_read_unlock();
2136}
2137EXPORT_SYMBOL(filemap_map_pages);
2138
4fcf1c62
JK
2139int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2140{
2141 struct page *page = vmf->page;
496ad9aa 2142 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2143 int ret = VM_FAULT_LOCKED;
2144
14da9200 2145 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2146 file_update_time(vma->vm_file);
2147 lock_page(page);
2148 if (page->mapping != inode->i_mapping) {
2149 unlock_page(page);
2150 ret = VM_FAULT_NOPAGE;
2151 goto out;
2152 }
14da9200
JK
2153 /*
2154 * We mark the page dirty already here so that when freeze is in
2155 * progress, we are guaranteed that writeback during freezing will
2156 * see the dirty page and writeprotect it again.
2157 */
2158 set_page_dirty(page);
1d1d1a76 2159 wait_for_stable_page(page);
4fcf1c62 2160out:
14da9200 2161 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2162 return ret;
2163}
2164EXPORT_SYMBOL(filemap_page_mkwrite);
2165
f0f37e2f 2166const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2167 .fault = filemap_fault,
f1820361 2168 .map_pages = filemap_map_pages,
4fcf1c62 2169 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2170};
2171
2172/* This is used for a general mmap of a disk file */
2173
2174int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2175{
2176 struct address_space *mapping = file->f_mapping;
2177
2178 if (!mapping->a_ops->readpage)
2179 return -ENOEXEC;
2180 file_accessed(file);
2181 vma->vm_ops = &generic_file_vm_ops;
2182 return 0;
2183}
1da177e4
LT
2184
2185/*
2186 * This is for filesystems which do not implement ->writepage.
2187 */
2188int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2189{
2190 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2191 return -EINVAL;
2192 return generic_file_mmap(file, vma);
2193}
2194#else
2195int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2196{
2197 return -ENOSYS;
2198}
2199int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2200{
2201 return -ENOSYS;
2202}
2203#endif /* CONFIG_MMU */
2204
2205EXPORT_SYMBOL(generic_file_mmap);
2206EXPORT_SYMBOL(generic_file_readonly_mmap);
2207
67f9fd91
SL
2208static struct page *wait_on_page_read(struct page *page)
2209{
2210 if (!IS_ERR(page)) {
2211 wait_on_page_locked(page);
2212 if (!PageUptodate(page)) {
2213 page_cache_release(page);
2214 page = ERR_PTR(-EIO);
2215 }
2216 }
2217 return page;
2218}
2219
6fe6900e 2220static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2221 pgoff_t index,
5e5358e7 2222 int (*filler)(void *, struct page *),
0531b2aa
LT
2223 void *data,
2224 gfp_t gfp)
1da177e4 2225{
eb2be189 2226 struct page *page;
1da177e4
LT
2227 int err;
2228repeat:
2229 page = find_get_page(mapping, index);
2230 if (!page) {
0531b2aa 2231 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2232 if (!page)
2233 return ERR_PTR(-ENOMEM);
e6f67b8c 2234 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2235 if (unlikely(err)) {
2236 page_cache_release(page);
2237 if (err == -EEXIST)
2238 goto repeat;
1da177e4 2239 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2240 return ERR_PTR(err);
2241 }
1da177e4
LT
2242 err = filler(data, page);
2243 if (err < 0) {
2244 page_cache_release(page);
2245 page = ERR_PTR(err);
67f9fd91
SL
2246 } else {
2247 page = wait_on_page_read(page);
1da177e4
LT
2248 }
2249 }
1da177e4
LT
2250 return page;
2251}
2252
0531b2aa 2253static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2254 pgoff_t index,
5e5358e7 2255 int (*filler)(void *, struct page *),
0531b2aa
LT
2256 void *data,
2257 gfp_t gfp)
2258
1da177e4
LT
2259{
2260 struct page *page;
2261 int err;
2262
2263retry:
0531b2aa 2264 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2265 if (IS_ERR(page))
c855ff37 2266 return page;
1da177e4
LT
2267 if (PageUptodate(page))
2268 goto out;
2269
2270 lock_page(page);
2271 if (!page->mapping) {
2272 unlock_page(page);
2273 page_cache_release(page);
2274 goto retry;
2275 }
2276 if (PageUptodate(page)) {
2277 unlock_page(page);
2278 goto out;
2279 }
2280 err = filler(data, page);
2281 if (err < 0) {
2282 page_cache_release(page);
c855ff37 2283 return ERR_PTR(err);
67f9fd91
SL
2284 } else {
2285 page = wait_on_page_read(page);
2286 if (IS_ERR(page))
2287 return page;
1da177e4 2288 }
c855ff37 2289out:
6fe6900e
NP
2290 mark_page_accessed(page);
2291 return page;
2292}
0531b2aa
LT
2293
2294/**
67f9fd91 2295 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2296 * @mapping: the page's address_space
2297 * @index: the page index
2298 * @filler: function to perform the read
5e5358e7 2299 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2300 *
0531b2aa 2301 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2302 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2303 *
2304 * If the page does not get brought uptodate, return -EIO.
2305 */
67f9fd91 2306struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2307 pgoff_t index,
5e5358e7 2308 int (*filler)(void *, struct page *),
0531b2aa
LT
2309 void *data)
2310{
2311 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2312}
67f9fd91 2313EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2314
2315/**
2316 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2317 * @mapping: the page's address_space
2318 * @index: the page index
2319 * @gfp: the page allocator flags to use if allocating
2320 *
2321 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2322 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2323 *
2324 * If the page does not get brought uptodate, return -EIO.
2325 */
2326struct page *read_cache_page_gfp(struct address_space *mapping,
2327 pgoff_t index,
2328 gfp_t gfp)
2329{
2330 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2331
67f9fd91 2332 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2333}
2334EXPORT_SYMBOL(read_cache_page_gfp);
2335
1da177e4
LT
2336/*
2337 * Performs necessary checks before doing a write
2338 *
485bb99b 2339 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2340 * Returns appropriate error code that caller should return or
2341 * zero in case that write should be allowed.
2342 */
3309dd04 2343inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2344{
3309dd04 2345 struct file *file = iocb->ki_filp;
1da177e4 2346 struct inode *inode = file->f_mapping->host;
59e99e5b 2347 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2348 loff_t pos;
1da177e4 2349
3309dd04
AV
2350 if (!iov_iter_count(from))
2351 return 0;
1da177e4 2352
0fa6b005 2353 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2354 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2355 iocb->ki_pos = i_size_read(inode);
1da177e4 2356
3309dd04 2357 pos = iocb->ki_pos;
1da177e4 2358
0fa6b005 2359 if (limit != RLIM_INFINITY) {
3309dd04 2360 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2361 send_sig(SIGXFSZ, current, 0);
2362 return -EFBIG;
1da177e4 2363 }
3309dd04 2364 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2365 }
2366
2367 /*
2368 * LFS rule
2369 */
3309dd04 2370 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2371 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2372 if (pos >= MAX_NON_LFS)
1da177e4 2373 return -EFBIG;
3309dd04 2374 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2375 }
2376
2377 /*
2378 * Are we about to exceed the fs block limit ?
2379 *
2380 * If we have written data it becomes a short write. If we have
2381 * exceeded without writing data we send a signal and return EFBIG.
2382 * Linus frestrict idea will clean these up nicely..
2383 */
3309dd04
AV
2384 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2385 return -EFBIG;
1da177e4 2386
3309dd04
AV
2387 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2388 return iov_iter_count(from);
1da177e4
LT
2389}
2390EXPORT_SYMBOL(generic_write_checks);
2391
afddba49
NP
2392int pagecache_write_begin(struct file *file, struct address_space *mapping,
2393 loff_t pos, unsigned len, unsigned flags,
2394 struct page **pagep, void **fsdata)
2395{
2396 const struct address_space_operations *aops = mapping->a_ops;
2397
4e02ed4b 2398 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2399 pagep, fsdata);
afddba49
NP
2400}
2401EXPORT_SYMBOL(pagecache_write_begin);
2402
2403int pagecache_write_end(struct file *file, struct address_space *mapping,
2404 loff_t pos, unsigned len, unsigned copied,
2405 struct page *page, void *fsdata)
2406{
2407 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2408
4e02ed4b 2409 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2410}
2411EXPORT_SYMBOL(pagecache_write_end);
2412
1da177e4 2413ssize_t
0c949334 2414generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2415{
2416 struct file *file = iocb->ki_filp;
2417 struct address_space *mapping = file->f_mapping;
2418 struct inode *inode = mapping->host;
2419 ssize_t written;
a969e903
CH
2420 size_t write_len;
2421 pgoff_t end;
26978b8b 2422 struct iov_iter data;
1da177e4 2423
0c949334 2424 write_len = iov_iter_count(from);
a969e903 2425 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2426
48b47c56 2427 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2428 if (written)
2429 goto out;
2430
2431 /*
2432 * After a write we want buffered reads to be sure to go to disk to get
2433 * the new data. We invalidate clean cached page from the region we're
2434 * about to write. We do this *before* the write so that we can return
6ccfa806 2435 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2436 */
2437 if (mapping->nrpages) {
2438 written = invalidate_inode_pages2_range(mapping,
2439 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2440 /*
2441 * If a page can not be invalidated, return 0 to fall back
2442 * to buffered write.
2443 */
2444 if (written) {
2445 if (written == -EBUSY)
2446 return 0;
a969e903 2447 goto out;
6ccfa806 2448 }
a969e903
CH
2449 }
2450
26978b8b 2451 data = *from;
22c6186e 2452 written = mapping->a_ops->direct_IO(iocb, &data, pos);
a969e903
CH
2453
2454 /*
2455 * Finally, try again to invalidate clean pages which might have been
2456 * cached by non-direct readahead, or faulted in by get_user_pages()
2457 * if the source of the write was an mmap'ed region of the file
2458 * we're writing. Either one is a pretty crazy thing to do,
2459 * so we don't support it 100%. If this invalidation
2460 * fails, tough, the write still worked...
2461 */
2462 if (mapping->nrpages) {
2463 invalidate_inode_pages2_range(mapping,
2464 pos >> PAGE_CACHE_SHIFT, end);
2465 }
2466
1da177e4 2467 if (written > 0) {
0116651c 2468 pos += written;
f8579f86 2469 iov_iter_advance(from, written);
0116651c
NK
2470 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2471 i_size_write(inode, pos);
1da177e4
LT
2472 mark_inode_dirty(inode);
2473 }
5cb6c6c7 2474 iocb->ki_pos = pos;
1da177e4 2475 }
a969e903 2476out:
1da177e4
LT
2477 return written;
2478}
2479EXPORT_SYMBOL(generic_file_direct_write);
2480
eb2be189
NP
2481/*
2482 * Find or create a page at the given pagecache position. Return the locked
2483 * page. This function is specifically for buffered writes.
2484 */
54566b2c
NP
2485struct page *grab_cache_page_write_begin(struct address_space *mapping,
2486 pgoff_t index, unsigned flags)
eb2be189 2487{
eb2be189 2488 struct page *page;
2457aec6 2489 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2490
54566b2c 2491 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2492 fgp_flags |= FGP_NOFS;
2493
2494 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2495 mapping_gfp_mask(mapping));
c585a267 2496 if (page)
2457aec6 2497 wait_for_stable_page(page);
eb2be189 2498
eb2be189
NP
2499 return page;
2500}
54566b2c 2501EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2502
3b93f911 2503ssize_t generic_perform_write(struct file *file,
afddba49
NP
2504 struct iov_iter *i, loff_t pos)
2505{
2506 struct address_space *mapping = file->f_mapping;
2507 const struct address_space_operations *a_ops = mapping->a_ops;
2508 long status = 0;
2509 ssize_t written = 0;
674b892e
NP
2510 unsigned int flags = 0;
2511
2512 /*
2513 * Copies from kernel address space cannot fail (NFSD is a big user).
2514 */
777eda2c 2515 if (!iter_is_iovec(i))
674b892e 2516 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2517
2518 do {
2519 struct page *page;
afddba49
NP
2520 unsigned long offset; /* Offset into pagecache page */
2521 unsigned long bytes; /* Bytes to write to page */
2522 size_t copied; /* Bytes copied from user */
2523 void *fsdata;
2524
2525 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2526 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2527 iov_iter_count(i));
2528
2529again:
00a3d660
LT
2530 /*
2531 * Bring in the user page that we will copy from _first_.
2532 * Otherwise there's a nasty deadlock on copying from the
2533 * same page as we're writing to, without it being marked
2534 * up-to-date.
2535 *
2536 * Not only is this an optimisation, but it is also required
2537 * to check that the address is actually valid, when atomic
2538 * usercopies are used, below.
2539 */
2540 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2541 status = -EFAULT;
2542 break;
2543 }
2544
296291cd
JK
2545 if (fatal_signal_pending(current)) {
2546 status = -EINTR;
2547 break;
2548 }
2549
674b892e 2550 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2551 &page, &fsdata);
2457aec6 2552 if (unlikely(status < 0))
afddba49
NP
2553 break;
2554
931e80e4 2555 if (mapping_writably_mapped(mapping))
2556 flush_dcache_page(page);
00a3d660 2557
afddba49 2558 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2559 flush_dcache_page(page);
2560
2561 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2562 page, fsdata);
2563 if (unlikely(status < 0))
2564 break;
2565 copied = status;
2566
2567 cond_resched();
2568
124d3b70 2569 iov_iter_advance(i, copied);
afddba49
NP
2570 if (unlikely(copied == 0)) {
2571 /*
2572 * If we were unable to copy any data at all, we must
2573 * fall back to a single segment length write.
2574 *
2575 * If we didn't fallback here, we could livelock
2576 * because not all segments in the iov can be copied at
2577 * once without a pagefault.
2578 */
2579 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2580 iov_iter_single_seg_count(i));
2581 goto again;
2582 }
afddba49
NP
2583 pos += copied;
2584 written += copied;
2585
2586 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2587 } while (iov_iter_count(i));
2588
2589 return written ? written : status;
2590}
3b93f911 2591EXPORT_SYMBOL(generic_perform_write);
1da177e4 2592
e4dd9de3 2593/**
8174202b 2594 * __generic_file_write_iter - write data to a file
e4dd9de3 2595 * @iocb: IO state structure (file, offset, etc.)
8174202b 2596 * @from: iov_iter with data to write
e4dd9de3
JK
2597 *
2598 * This function does all the work needed for actually writing data to a
2599 * file. It does all basic checks, removes SUID from the file, updates
2600 * modification times and calls proper subroutines depending on whether we
2601 * do direct IO or a standard buffered write.
2602 *
2603 * It expects i_mutex to be grabbed unless we work on a block device or similar
2604 * object which does not need locking at all.
2605 *
2606 * This function does *not* take care of syncing data in case of O_SYNC write.
2607 * A caller has to handle it. This is mainly due to the fact that we want to
2608 * avoid syncing under i_mutex.
2609 */
8174202b 2610ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2611{
2612 struct file *file = iocb->ki_filp;
fb5527e6 2613 struct address_space * mapping = file->f_mapping;
1da177e4 2614 struct inode *inode = mapping->host;
3b93f911 2615 ssize_t written = 0;
1da177e4 2616 ssize_t err;
3b93f911 2617 ssize_t status;
1da177e4 2618
1da177e4 2619 /* We can write back this queue in page reclaim */
de1414a6 2620 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2621 err = file_remove_privs(file);
1da177e4
LT
2622 if (err)
2623 goto out;
2624
c3b2da31
JB
2625 err = file_update_time(file);
2626 if (err)
2627 goto out;
1da177e4 2628
2ba48ce5 2629 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2630 loff_t pos, endbyte;
fb5527e6 2631
0b8def9d 2632 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
1da177e4 2633 /*
fbbbad4b
MW
2634 * If the write stopped short of completing, fall back to
2635 * buffered writes. Some filesystems do this for writes to
2636 * holes, for example. For DAX files, a buffered write will
2637 * not succeed (even if it did, DAX does not handle dirty
2638 * page-cache pages correctly).
1da177e4 2639 */
0b8def9d 2640 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2641 goto out;
2642
0b8def9d 2643 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2644 /*
3b93f911 2645 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2646 * then we want to return the number of bytes which were
2647 * direct-written, or the error code if that was zero. Note
2648 * that this differs from normal direct-io semantics, which
2649 * will return -EFOO even if some bytes were written.
2650 */
60bb4529 2651 if (unlikely(status < 0)) {
3b93f911 2652 err = status;
fb5527e6
JM
2653 goto out;
2654 }
fb5527e6
JM
2655 /*
2656 * We need to ensure that the page cache pages are written to
2657 * disk and invalidated to preserve the expected O_DIRECT
2658 * semantics.
2659 */
3b93f911 2660 endbyte = pos + status - 1;
0b8def9d 2661 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2662 if (err == 0) {
0b8def9d 2663 iocb->ki_pos = endbyte + 1;
3b93f911 2664 written += status;
fb5527e6
JM
2665 invalidate_mapping_pages(mapping,
2666 pos >> PAGE_CACHE_SHIFT,
2667 endbyte >> PAGE_CACHE_SHIFT);
2668 } else {
2669 /*
2670 * We don't know how much we wrote, so just return
2671 * the number of bytes which were direct-written
2672 */
2673 }
2674 } else {
0b8def9d
AV
2675 written = generic_perform_write(file, from, iocb->ki_pos);
2676 if (likely(written > 0))
2677 iocb->ki_pos += written;
fb5527e6 2678 }
1da177e4
LT
2679out:
2680 current->backing_dev_info = NULL;
2681 return written ? written : err;
2682}
8174202b 2683EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2684
e4dd9de3 2685/**
8174202b 2686 * generic_file_write_iter - write data to a file
e4dd9de3 2687 * @iocb: IO state structure
8174202b 2688 * @from: iov_iter with data to write
e4dd9de3 2689 *
8174202b 2690 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2691 * filesystems. It takes care of syncing the file in case of O_SYNC file
2692 * and acquires i_mutex as needed.
2693 */
8174202b 2694ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2695{
2696 struct file *file = iocb->ki_filp;
148f948b 2697 struct inode *inode = file->f_mapping->host;
1da177e4 2698 ssize_t ret;
1da177e4 2699
1b1dcc1b 2700 mutex_lock(&inode->i_mutex);
3309dd04
AV
2701 ret = generic_write_checks(iocb, from);
2702 if (ret > 0)
5f380c7f 2703 ret = __generic_file_write_iter(iocb, from);
1b1dcc1b 2704 mutex_unlock(&inode->i_mutex);
1da177e4 2705
02afc27f 2706 if (ret > 0) {
1da177e4
LT
2707 ssize_t err;
2708
d311d79d
AV
2709 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2710 if (err < 0)
1da177e4
LT
2711 ret = err;
2712 }
2713 return ret;
2714}
8174202b 2715EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2716
cf9a2ae8
DH
2717/**
2718 * try_to_release_page() - release old fs-specific metadata on a page
2719 *
2720 * @page: the page which the kernel is trying to free
2721 * @gfp_mask: memory allocation flags (and I/O mode)
2722 *
2723 * The address_space is to try to release any data against the page
2724 * (presumably at page->private). If the release was successful, return `1'.
2725 * Otherwise return zero.
2726 *
266cf658
DH
2727 * This may also be called if PG_fscache is set on a page, indicating that the
2728 * page is known to the local caching routines.
2729 *
cf9a2ae8 2730 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 2731 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 2732 *
cf9a2ae8
DH
2733 */
2734int try_to_release_page(struct page *page, gfp_t gfp_mask)
2735{
2736 struct address_space * const mapping = page->mapping;
2737
2738 BUG_ON(!PageLocked(page));
2739 if (PageWriteback(page))
2740 return 0;
2741
2742 if (mapping && mapping->a_ops->releasepage)
2743 return mapping->a_ops->releasepage(page, gfp_mask);
2744 return try_to_free_buffers(page);
2745}
2746
2747EXPORT_SYMBOL(try_to_release_page);