remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
f2a4f762
KC
20#define pr_fmt(fmt) "software IO TLB: " fmt
21
1da177e4 22#include <linux/cache.h>
17e5ad6c 23#include <linux/dma-mapping.h>
1da177e4 24#include <linux/mm.h>
8bc3bcc9 25#include <linux/export.h>
1da177e4
LT
26#include <linux/spinlock.h>
27#include <linux/string.h>
0016fdee 28#include <linux/swiotlb.h>
fb05a379 29#include <linux/pfn.h>
1da177e4
LT
30#include <linux/types.h>
31#include <linux/ctype.h>
ef9b1893 32#include <linux/highmem.h>
5a0e3ad6 33#include <linux/gfp.h>
84be456f 34#include <linux/scatterlist.h>
c7753208 35#include <linux/mem_encrypt.h>
1da177e4
LT
36
37#include <asm/io.h>
1da177e4
LT
38#include <asm/dma.h>
39
40#include <linux/init.h>
41#include <linux/bootmem.h>
a8522509 42#include <linux/iommu-helper.h>
1da177e4 43
ce5be5a1 44#define CREATE_TRACE_POINTS
2b2b614d
ZK
45#include <trace/events/swiotlb.h>
46
1da177e4
LT
47#define OFFSET(val,align) ((unsigned long) \
48 ( (val) & ( (align) - 1)))
49
0b9afede
AW
50#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
51
52/*
53 * Minimum IO TLB size to bother booting with. Systems with mainly
54 * 64bit capable cards will only lightly use the swiotlb. If we can't
55 * allocate a contiguous 1MB, we're probably in trouble anyway.
56 */
57#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
58
ae7871be 59enum swiotlb_force swiotlb_force;
1da177e4
LT
60
61/*
bfc5501f
KRW
62 * Used to do a quick range check in swiotlb_tbl_unmap_single and
63 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
64 * API.
65 */
ff7204a7 66static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
67
68/*
b595076a 69 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
70 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
71 */
72static unsigned long io_tlb_nslabs;
73
74/*
75 * When the IOMMU overflows we return a fallback buffer. This sets the size.
76 */
77static unsigned long io_tlb_overflow = 32*1024;
78
ee3f6ba8 79static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
80
81/*
82 * This is a free list describing the number of free entries available from
83 * each index
84 */
85static unsigned int *io_tlb_list;
86static unsigned int io_tlb_index;
87
7453c549
KRW
88/*
89 * Max segment that we can provide which (if pages are contingous) will
90 * not be bounced (unless SWIOTLB_FORCE is set).
91 */
92unsigned int max_segment;
93
1da177e4
LT
94/*
95 * We need to save away the original address corresponding to a mapped entry
96 * for the sync operations.
97 */
8e0629c1 98#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
bc40ac66 99static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
100
101/*
102 * Protect the above data structures in the map and unmap calls
103 */
104static DEFINE_SPINLOCK(io_tlb_lock);
105
5740afdb
FT
106static int late_alloc;
107
1da177e4
LT
108static int __init
109setup_io_tlb_npages(char *str)
110{
111 if (isdigit(*str)) {
e8579e72 112 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
113 /* avoid tail segment of size < IO_TLB_SEGSIZE */
114 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
115 }
116 if (*str == ',')
117 ++str;
fff5d992 118 if (!strcmp(str, "force")) {
ae7871be 119 swiotlb_force = SWIOTLB_FORCE;
fff5d992
GU
120 } else if (!strcmp(str, "noforce")) {
121 swiotlb_force = SWIOTLB_NO_FORCE;
122 io_tlb_nslabs = 1;
123 }
b18485e7 124
c729de8f 125 return 0;
1da177e4 126}
c729de8f 127early_param("swiotlb", setup_io_tlb_npages);
1da177e4
LT
128/* make io_tlb_overflow tunable too? */
129
f21ffe9f 130unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
131{
132 return io_tlb_nslabs;
133}
f21ffe9f 134EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
c729de8f 135
7453c549
KRW
136unsigned int swiotlb_max_segment(void)
137{
138 return max_segment;
139}
140EXPORT_SYMBOL_GPL(swiotlb_max_segment);
141
142void swiotlb_set_max_segment(unsigned int val)
143{
144 if (swiotlb_force == SWIOTLB_FORCE)
145 max_segment = 1;
146 else
147 max_segment = rounddown(val, PAGE_SIZE);
148}
149
c729de8f
YL
150/* default to 64MB */
151#define IO_TLB_DEFAULT_SIZE (64UL<<20)
152unsigned long swiotlb_size_or_default(void)
153{
154 unsigned long size;
155
156 size = io_tlb_nslabs << IO_TLB_SHIFT;
157
158 return size ? size : (IO_TLB_DEFAULT_SIZE);
159}
160
c7753208
TL
161void __weak swiotlb_set_mem_attributes(void *vaddr, unsigned long size) { }
162
163/* For swiotlb, clear memory encryption mask from dma addresses */
164static dma_addr_t swiotlb_phys_to_dma(struct device *hwdev,
165 phys_addr_t address)
166{
167 return __sme_clr(phys_to_dma(hwdev, address));
168}
169
02ca646e 170/* Note that this doesn't work with highmem page */
70a7d3cc
JF
171static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
172 volatile void *address)
e08e1f7a 173{
862d196b 174 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
175}
176
ac2cbab2
YL
177static bool no_iotlb_memory;
178
ad32e8cb 179void swiotlb_print_info(void)
2e5b2b86 180{
ad32e8cb 181 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
2e5b2b86 182
ac2cbab2 183 if (no_iotlb_memory) {
f2a4f762 184 pr_warn("No low mem\n");
ac2cbab2
YL
185 return;
186 }
187
f2a4f762 188 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
ff7204a7 189 (unsigned long long)io_tlb_start,
c40dba06 190 (unsigned long long)io_tlb_end,
f2a4f762 191 bytes >> 20);
2e5b2b86
IC
192}
193
c7753208
TL
194/*
195 * Early SWIOTLB allocation may be too early to allow an architecture to
196 * perform the desired operations. This function allows the architecture to
197 * call SWIOTLB when the operations are possible. It needs to be called
198 * before the SWIOTLB memory is used.
199 */
200void __init swiotlb_update_mem_attributes(void)
201{
202 void *vaddr;
203 unsigned long bytes;
204
205 if (no_iotlb_memory || late_alloc)
206 return;
207
208 vaddr = phys_to_virt(io_tlb_start);
209 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
210 swiotlb_set_mem_attributes(vaddr, bytes);
211 memset(vaddr, 0, bytes);
212
213 vaddr = phys_to_virt(io_tlb_overflow_buffer);
214 bytes = PAGE_ALIGN(io_tlb_overflow);
215 swiotlb_set_mem_attributes(vaddr, bytes);
216 memset(vaddr, 0, bytes);
217}
218
ac2cbab2 219int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 220{
ee3f6ba8 221 void *v_overflow_buffer;
563aaf06 222 unsigned long i, bytes;
1da177e4 223
abbceff7 224 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 225
abbceff7 226 io_tlb_nslabs = nslabs;
ff7204a7
AD
227 io_tlb_start = __pa(tlb);
228 io_tlb_end = io_tlb_start + bytes;
1da177e4 229
ee3f6ba8
AD
230 /*
231 * Get the overflow emergency buffer
232 */
ad6492b8 233 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
457ff1de
SS
234 PAGE_ALIGN(io_tlb_overflow),
235 PAGE_SIZE);
ee3f6ba8 236 if (!v_overflow_buffer)
ac2cbab2 237 return -ENOMEM;
ee3f6ba8
AD
238
239 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
240
1da177e4
LT
241 /*
242 * Allocate and initialize the free list array. This array is used
243 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
244 * between io_tlb_start and io_tlb_end.
245 */
457ff1de
SS
246 io_tlb_list = memblock_virt_alloc(
247 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
248 PAGE_SIZE);
457ff1de
SS
249 io_tlb_orig_addr = memblock_virt_alloc(
250 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
251 PAGE_SIZE);
8e0629c1
JB
252 for (i = 0; i < io_tlb_nslabs; i++) {
253 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
254 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
255 }
256 io_tlb_index = 0;
1da177e4 257
ad32e8cb
FT
258 if (verbose)
259 swiotlb_print_info();
ac2cbab2 260
7453c549 261 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
ac2cbab2 262 return 0;
1da177e4
LT
263}
264
abbceff7
FT
265/*
266 * Statically reserve bounce buffer space and initialize bounce buffer data
267 * structures for the software IO TLB used to implement the DMA API.
268 */
ac2cbab2
YL
269void __init
270swiotlb_init(int verbose)
abbceff7 271{
c729de8f 272 size_t default_size = IO_TLB_DEFAULT_SIZE;
ff7204a7 273 unsigned char *vstart;
abbceff7
FT
274 unsigned long bytes;
275
276 if (!io_tlb_nslabs) {
277 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
278 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
279 }
280
281 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
282
ac2cbab2 283 /* Get IO TLB memory from the low pages */
ad6492b8 284 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
ac2cbab2
YL
285 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
286 return;
abbceff7 287
ac2cbab2 288 if (io_tlb_start)
457ff1de
SS
289 memblock_free_early(io_tlb_start,
290 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
f2a4f762 291 pr_warn("Cannot allocate buffer");
ac2cbab2 292 no_iotlb_memory = true;
1da177e4
LT
293}
294
0b9afede
AW
295/*
296 * Systems with larger DMA zones (those that don't support ISA) can
297 * initialize the swiotlb later using the slab allocator if needed.
298 * This should be just like above, but with some error catching.
299 */
300int
563aaf06 301swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 302{
74838b75 303 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 304 unsigned char *vstart = NULL;
0b9afede 305 unsigned int order;
74838b75 306 int rc = 0;
0b9afede
AW
307
308 if (!io_tlb_nslabs) {
309 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
310 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
311 }
312
313 /*
314 * Get IO TLB memory from the low pages
315 */
563aaf06 316 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 317 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 318 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
319
320 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
321 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
322 order);
323 if (vstart)
0b9afede
AW
324 break;
325 order--;
326 }
327
ff7204a7 328 if (!vstart) {
74838b75
KRW
329 io_tlb_nslabs = req_nslabs;
330 return -ENOMEM;
331 }
563aaf06 332 if (order != get_order(bytes)) {
f2a4f762
KC
333 pr_warn("only able to allocate %ld MB\n",
334 (PAGE_SIZE << order) >> 20);
0b9afede
AW
335 io_tlb_nslabs = SLABS_PER_PAGE << order;
336 }
ff7204a7 337 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 338 if (rc)
ff7204a7 339 free_pages((unsigned long)vstart, order);
7453c549 340
74838b75
KRW
341 return rc;
342}
343
344int
345swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
346{
347 unsigned long i, bytes;
ee3f6ba8 348 unsigned char *v_overflow_buffer;
74838b75
KRW
349
350 bytes = nslabs << IO_TLB_SHIFT;
351
352 io_tlb_nslabs = nslabs;
ff7204a7
AD
353 io_tlb_start = virt_to_phys(tlb);
354 io_tlb_end = io_tlb_start + bytes;
74838b75 355
c7753208 356 swiotlb_set_mem_attributes(tlb, bytes);
ff7204a7 357 memset(tlb, 0, bytes);
0b9afede 358
ee3f6ba8
AD
359 /*
360 * Get the overflow emergency buffer
361 */
362 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
363 get_order(io_tlb_overflow));
364 if (!v_overflow_buffer)
365 goto cleanup2;
366
c7753208
TL
367 swiotlb_set_mem_attributes(v_overflow_buffer, io_tlb_overflow);
368 memset(v_overflow_buffer, 0, io_tlb_overflow);
ee3f6ba8
AD
369 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
370
0b9afede
AW
371 /*
372 * Allocate and initialize the free list array. This array is used
373 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
374 * between io_tlb_start and io_tlb_end.
375 */
376 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
377 get_order(io_tlb_nslabs * sizeof(int)));
378 if (!io_tlb_list)
ee3f6ba8 379 goto cleanup3;
0b9afede 380
bc40ac66
BB
381 io_tlb_orig_addr = (phys_addr_t *)
382 __get_free_pages(GFP_KERNEL,
383 get_order(io_tlb_nslabs *
384 sizeof(phys_addr_t)));
0b9afede 385 if (!io_tlb_orig_addr)
ee3f6ba8 386 goto cleanup4;
0b9afede 387
8e0629c1
JB
388 for (i = 0; i < io_tlb_nslabs; i++) {
389 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
390 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
391 }
392 io_tlb_index = 0;
0b9afede 393
ad32e8cb 394 swiotlb_print_info();
0b9afede 395
5740afdb
FT
396 late_alloc = 1;
397
7453c549
KRW
398 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
399
0b9afede
AW
400 return 0;
401
402cleanup4:
25667d67
TL
403 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
404 sizeof(int)));
0b9afede 405 io_tlb_list = NULL;
ee3f6ba8
AD
406cleanup3:
407 free_pages((unsigned long)v_overflow_buffer,
408 get_order(io_tlb_overflow));
409 io_tlb_overflow_buffer = 0;
0b9afede 410cleanup2:
c40dba06 411 io_tlb_end = 0;
ff7204a7 412 io_tlb_start = 0;
74838b75 413 io_tlb_nslabs = 0;
7453c549 414 max_segment = 0;
0b9afede
AW
415 return -ENOMEM;
416}
417
5740afdb
FT
418void __init swiotlb_free(void)
419{
ee3f6ba8 420 if (!io_tlb_orig_addr)
5740afdb
FT
421 return;
422
423 if (late_alloc) {
ee3f6ba8 424 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
425 get_order(io_tlb_overflow));
426 free_pages((unsigned long)io_tlb_orig_addr,
427 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
428 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
429 sizeof(int)));
ff7204a7 430 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
431 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
432 } else {
457ff1de
SS
433 memblock_free_late(io_tlb_overflow_buffer,
434 PAGE_ALIGN(io_tlb_overflow));
435 memblock_free_late(__pa(io_tlb_orig_addr),
436 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
437 memblock_free_late(__pa(io_tlb_list),
438 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
439 memblock_free_late(io_tlb_start,
440 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 441 }
f21ffe9f 442 io_tlb_nslabs = 0;
7453c549 443 max_segment = 0;
5740afdb
FT
444}
445
9c5a3621 446int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 447{
ff7204a7 448 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
449}
450
fb05a379
BB
451/*
452 * Bounce: copy the swiotlb buffer back to the original dma location
453 */
af51a9f1
AD
454static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
455 size_t size, enum dma_data_direction dir)
fb05a379 456{
af51a9f1
AD
457 unsigned long pfn = PFN_DOWN(orig_addr);
458 unsigned char *vaddr = phys_to_virt(tlb_addr);
fb05a379
BB
459
460 if (PageHighMem(pfn_to_page(pfn))) {
461 /* The buffer does not have a mapping. Map it in and copy */
af51a9f1 462 unsigned int offset = orig_addr & ~PAGE_MASK;
fb05a379
BB
463 char *buffer;
464 unsigned int sz = 0;
465 unsigned long flags;
466
467 while (size) {
67131ad0 468 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
469
470 local_irq_save(flags);
c3eede8e 471 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379 472 if (dir == DMA_TO_DEVICE)
af51a9f1 473 memcpy(vaddr, buffer + offset, sz);
ef9b1893 474 else
af51a9f1 475 memcpy(buffer + offset, vaddr, sz);
c3eede8e 476 kunmap_atomic(buffer);
ef9b1893 477 local_irq_restore(flags);
fb05a379
BB
478
479 size -= sz;
480 pfn++;
af51a9f1 481 vaddr += sz;
fb05a379 482 offset = 0;
ef9b1893 483 }
af51a9f1
AD
484 } else if (dir == DMA_TO_DEVICE) {
485 memcpy(vaddr, phys_to_virt(orig_addr), size);
ef9b1893 486 } else {
af51a9f1 487 memcpy(phys_to_virt(orig_addr), vaddr, size);
ef9b1893 488 }
1b548f66
JF
489}
490
e05ed4d1
AD
491phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
492 dma_addr_t tbl_dma_addr,
493 phys_addr_t orig_addr, size_t size,
0443fa00
AD
494 enum dma_data_direction dir,
495 unsigned long attrs)
1da177e4
LT
496{
497 unsigned long flags;
e05ed4d1 498 phys_addr_t tlb_addr;
1da177e4
LT
499 unsigned int nslots, stride, index, wrap;
500 int i;
681cc5cd
FT
501 unsigned long mask;
502 unsigned long offset_slots;
503 unsigned long max_slots;
504
ac2cbab2
YL
505 if (no_iotlb_memory)
506 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
507
648babb7
TL
508 if (sme_active())
509 pr_warn_once("SME is active and system is using DMA bounce buffers\n");
510
681cc5cd 511 mask = dma_get_seg_boundary(hwdev);
681cc5cd 512
eb605a57
FT
513 tbl_dma_addr &= mask;
514
515 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
516
517 /*
518 * Carefully handle integer overflow which can occur when mask == ~0UL.
519 */
b15a3891
JB
520 max_slots = mask + 1
521 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
522 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
523
524 /*
602d9858
NY
525 * For mappings greater than or equal to a page, we limit the stride
526 * (and hence alignment) to a page size.
1da177e4
LT
527 */
528 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
602d9858 529 if (size >= PAGE_SIZE)
1da177e4
LT
530 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
531 else
532 stride = 1;
533
34814545 534 BUG_ON(!nslots);
1da177e4
LT
535
536 /*
537 * Find suitable number of IO TLB entries size that will fit this
538 * request and allocate a buffer from that IO TLB pool.
539 */
540 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
541 index = ALIGN(io_tlb_index, stride);
542 if (index >= io_tlb_nslabs)
543 index = 0;
544 wrap = index;
545
546 do {
a8522509
FT
547 while (iommu_is_span_boundary(index, nslots, offset_slots,
548 max_slots)) {
b15a3891
JB
549 index += stride;
550 if (index >= io_tlb_nslabs)
551 index = 0;
a7133a15
AM
552 if (index == wrap)
553 goto not_found;
554 }
555
556 /*
557 * If we find a slot that indicates we have 'nslots' number of
558 * contiguous buffers, we allocate the buffers from that slot
559 * and mark the entries as '0' indicating unavailable.
560 */
561 if (io_tlb_list[index] >= nslots) {
562 int count = 0;
563
564 for (i = index; i < (int) (index + nslots); i++)
565 io_tlb_list[i] = 0;
566 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
567 io_tlb_list[i] = ++count;
e05ed4d1 568 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 569
a7133a15
AM
570 /*
571 * Update the indices to avoid searching in the next
572 * round.
573 */
574 io_tlb_index = ((index + nslots) < io_tlb_nslabs
575 ? (index + nslots) : 0);
576
577 goto found;
578 }
579 index += stride;
580 if (index >= io_tlb_nslabs)
581 index = 0;
582 } while (index != wrap);
583
584not_found:
585 spin_unlock_irqrestore(&io_tlb_lock, flags);
37efa60e 586 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
0cb637bf 587 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
e05ed4d1 588 return SWIOTLB_MAP_ERROR;
a7133a15 589found:
1da177e4
LT
590 spin_unlock_irqrestore(&io_tlb_lock, flags);
591
592 /*
593 * Save away the mapping from the original address to the DMA address.
594 * This is needed when we sync the memory. Then we sync the buffer if
595 * needed.
596 */
bc40ac66 597 for (i = 0; i < nslots; i++)
e05ed4d1 598 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
0443fa00
AD
599 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
600 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 601 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
1da177e4 602
e05ed4d1 603 return tlb_addr;
1da177e4 604}
d7ef1533 605EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 606
eb605a57
FT
607/*
608 * Allocates bounce buffer and returns its kernel virtual address.
609 */
610
023600f1
AC
611static phys_addr_t
612map_single(struct device *hwdev, phys_addr_t phys, size_t size,
0443fa00 613 enum dma_data_direction dir, unsigned long attrs)
eb605a57 614{
fff5d992
GU
615 dma_addr_t start_dma_addr;
616
617 if (swiotlb_force == SWIOTLB_NO_FORCE) {
618 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
619 &phys);
620 return SWIOTLB_MAP_ERROR;
621 }
eb605a57 622
c7753208 623 start_dma_addr = swiotlb_phys_to_dma(hwdev, io_tlb_start);
0443fa00
AD
624 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
625 dir, attrs);
eb605a57
FT
626}
627
1da177e4
LT
628/*
629 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
630 */
61ca08c3 631void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
0443fa00
AD
632 size_t size, enum dma_data_direction dir,
633 unsigned long attrs)
1da177e4
LT
634{
635 unsigned long flags;
636 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
61ca08c3
AD
637 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
638 phys_addr_t orig_addr = io_tlb_orig_addr[index];
1da177e4
LT
639
640 /*
641 * First, sync the memory before unmapping the entry
642 */
8e0629c1 643 if (orig_addr != INVALID_PHYS_ADDR &&
0443fa00 644 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
8e0629c1 645 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
af51a9f1 646 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
647
648 /*
649 * Return the buffer to the free list by setting the corresponding
af901ca1 650 * entries to indicate the number of contiguous entries available.
1da177e4
LT
651 * While returning the entries to the free list, we merge the entries
652 * with slots below and above the pool being returned.
653 */
654 spin_lock_irqsave(&io_tlb_lock, flags);
655 {
656 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
657 io_tlb_list[index + nslots] : 0);
658 /*
659 * Step 1: return the slots to the free list, merging the
660 * slots with superceeding slots
661 */
8e0629c1 662 for (i = index + nslots - 1; i >= index; i--) {
1da177e4 663 io_tlb_list[i] = ++count;
8e0629c1
JB
664 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
665 }
1da177e4
LT
666 /*
667 * Step 2: merge the returned slots with the preceding slots,
668 * if available (non zero)
669 */
670 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
671 io_tlb_list[i] = ++count;
672 }
673 spin_unlock_irqrestore(&io_tlb_lock, flags);
674}
d7ef1533 675EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 676
fbfda893
AD
677void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
678 size_t size, enum dma_data_direction dir,
679 enum dma_sync_target target)
1da177e4 680{
fbfda893
AD
681 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
682 phys_addr_t orig_addr = io_tlb_orig_addr[index];
bc40ac66 683
8e0629c1
JB
684 if (orig_addr == INVALID_PHYS_ADDR)
685 return;
fbfda893 686 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
df336d1c 687
de69e0f0
JL
688 switch (target) {
689 case SYNC_FOR_CPU:
690 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 691 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 692 size, DMA_FROM_DEVICE);
34814545
ES
693 else
694 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
695 break;
696 case SYNC_FOR_DEVICE:
697 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 698 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 699 size, DMA_TO_DEVICE);
34814545
ES
700 else
701 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
702 break;
703 default:
1da177e4 704 BUG();
de69e0f0 705 }
1da177e4 706}
d7ef1533 707EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
708
709void *
710swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 711 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 712{
37efa60e 713 bool warn = !(flags & __GFP_NOWARN);
563aaf06 714 dma_addr_t dev_addr;
1da177e4
LT
715 void *ret;
716 int order = get_order(size);
284901a9 717 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
718
719 if (hwdev && hwdev->coherent_dma_mask)
720 dma_mask = hwdev->coherent_dma_mask;
1da177e4 721
25667d67 722 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
723 if (ret) {
724 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
725 if (dev_addr + size - 1 > dma_mask) {
726 /*
727 * The allocated memory isn't reachable by the device.
728 */
729 free_pages((unsigned long) ret, order);
730 ret = NULL;
731 }
1da177e4
LT
732 }
733 if (!ret) {
734 /*
bfc5501f
KRW
735 * We are either out of memory or the device can't DMA to
736 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 737 * will grab memory from the lowest available address range.
1da177e4 738 */
37efa60e
CK
739 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE,
740 warn ? 0 : DMA_ATTR_NO_WARN);
e05ed4d1 741 if (paddr == SWIOTLB_MAP_ERROR)
94cc81f9 742 goto err_warn;
1da177e4 743
e05ed4d1 744 ret = phys_to_virt(paddr);
c7753208 745 dev_addr = swiotlb_phys_to_dma(hwdev, paddr);
1da177e4 746
61ca08c3
AD
747 /* Confirm address can be DMA'd by device */
748 if (dev_addr + size - 1 > dma_mask) {
749 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
750 (unsigned long long)dma_mask,
751 (unsigned long long)dev_addr);
a2b89b59 752
0443fa00
AD
753 /*
754 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
755 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
756 */
61ca08c3 757 swiotlb_tbl_unmap_single(hwdev, paddr,
0443fa00
AD
758 size, DMA_TO_DEVICE,
759 DMA_ATTR_SKIP_CPU_SYNC);
94cc81f9 760 goto err_warn;
61ca08c3 761 }
1da177e4 762 }
e05ed4d1 763
1da177e4 764 *dma_handle = dev_addr;
e05ed4d1
AD
765 memset(ret, 0, size);
766
1da177e4 767 return ret;
94cc81f9
JR
768
769err_warn:
37efa60e 770 if (warn && printk_ratelimit()) {
f2a4f762 771 pr_warn("coherent allocation failed for device %s size=%zu\n",
37efa60e
CK
772 dev_name(hwdev), size);
773 dump_stack();
774 }
94cc81f9
JR
775
776 return NULL;
1da177e4 777}
874d6a95 778EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
779
780void
781swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 782 dma_addr_t dev_addr)
1da177e4 783{
862d196b 784 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 785
aa24886e 786 WARN_ON(irqs_disabled());
02ca646e
FT
787 if (!is_swiotlb_buffer(paddr))
788 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 789 else
0443fa00
AD
790 /*
791 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
792 * DMA_ATTR_SKIP_CPU_SYNC is optional.
793 */
794 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
795 DMA_ATTR_SKIP_CPU_SYNC);
1da177e4 796}
874d6a95 797EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
798
799static void
22d48269
KRW
800swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
801 int do_panic)
1da177e4 802{
fff5d992
GU
803 if (swiotlb_force == SWIOTLB_NO_FORCE)
804 return;
805
1da177e4
LT
806 /*
807 * Ran out of IOMMU space for this operation. This is very bad.
808 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 809 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
810 * When the mapping is small enough return a static buffer to limit
811 * the damage, or panic when the transfer is too big.
812 */
0d2e1898
GU
813 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
814 size);
1da177e4 815
c7084b35
CD
816 if (size <= io_tlb_overflow || !do_panic)
817 return;
818
819 if (dir == DMA_BIDIRECTIONAL)
820 panic("DMA: Random memory could be DMA accessed\n");
821 if (dir == DMA_FROM_DEVICE)
822 panic("DMA: Random memory could be DMA written\n");
823 if (dir == DMA_TO_DEVICE)
824 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
825}
826
827/*
828 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 829 * physical address to use is returned.
1da177e4
LT
830 *
831 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 832 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 833 */
f98eee8e
FT
834dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
835 unsigned long offset, size_t size,
836 enum dma_data_direction dir,
00085f1e 837 unsigned long attrs)
1da177e4 838{
e05ed4d1 839 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 840 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 841
34814545 842 BUG_ON(dir == DMA_NONE);
1da177e4 843 /*
ceb5ac32 844 * If the address happens to be in the device's DMA window,
1da177e4
LT
845 * we can safely return the device addr and not worry about bounce
846 * buffering it.
847 */
ae7871be 848 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
1da177e4
LT
849 return dev_addr;
850
2b2b614d
ZK
851 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
852
e05ed4d1 853 /* Oh well, have to allocate and map a bounce buffer. */
0443fa00 854 map = map_single(dev, phys, size, dir, attrs);
e05ed4d1 855 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 856 swiotlb_full(dev, size, dir, 1);
c7753208 857 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
858 }
859
c7753208 860 dev_addr = swiotlb_phys_to_dma(dev, map);
1da177e4 861
e05ed4d1 862 /* Ensure that the address returned is DMA'ble */
0443fa00
AD
863 if (dma_capable(dev, dev_addr, size))
864 return dev_addr;
865
d29fa0cb
AD
866 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
867 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
1da177e4 868
c7753208 869 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4 870}
f98eee8e 871EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 872
1da177e4
LT
873/*
874 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 875 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
876 * other usages are undefined.
877 *
878 * After this call, reads by the cpu to the buffer are guaranteed to see
879 * whatever the device wrote there.
880 */
7fcebbd2 881static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
0443fa00
AD
882 size_t size, enum dma_data_direction dir,
883 unsigned long attrs)
1da177e4 884{
862d196b 885 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 886
34814545 887 BUG_ON(dir == DMA_NONE);
7fcebbd2 888
02ca646e 889 if (is_swiotlb_buffer(paddr)) {
0443fa00 890 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
7fcebbd2
BB
891 return;
892 }
893
894 if (dir != DMA_FROM_DEVICE)
895 return;
896
02ca646e
FT
897 /*
898 * phys_to_virt doesn't work with hihgmem page but we could
899 * call dma_mark_clean() with hihgmem page here. However, we
900 * are fine since dma_mark_clean() is null on POWERPC. We can
901 * make dma_mark_clean() take a physical address if necessary.
902 */
903 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
904}
905
906void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
907 size_t size, enum dma_data_direction dir,
00085f1e 908 unsigned long attrs)
7fcebbd2 909{
0443fa00 910 unmap_single(hwdev, dev_addr, size, dir, attrs);
1da177e4 911}
f98eee8e 912EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 913
1da177e4
LT
914/*
915 * Make physical memory consistent for a single streaming mode DMA translation
916 * after a transfer.
917 *
ceb5ac32 918 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
919 * using the cpu, yet do not wish to teardown the dma mapping, you must
920 * call this function before doing so. At the next point you give the dma
1da177e4
LT
921 * address back to the card, you must first perform a
922 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
923 */
be6b0267 924static void
8270f3f1 925swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
926 size_t size, enum dma_data_direction dir,
927 enum dma_sync_target target)
1da177e4 928{
862d196b 929 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 930
34814545 931 BUG_ON(dir == DMA_NONE);
380d6878 932
02ca646e 933 if (is_swiotlb_buffer(paddr)) {
fbfda893 934 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
380d6878
BB
935 return;
936 }
937
938 if (dir != DMA_FROM_DEVICE)
939 return;
940
02ca646e 941 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
942}
943
8270f3f1
JL
944void
945swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 946 size_t size, enum dma_data_direction dir)
8270f3f1 947{
de69e0f0 948 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 949}
874d6a95 950EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 951
1da177e4
LT
952void
953swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 954 size_t size, enum dma_data_direction dir)
1da177e4 955{
de69e0f0 956 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 957}
874d6a95 958EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
959
960/*
961 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 962 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
963 * interface. Here the scatter gather list elements are each tagged with the
964 * appropriate dma address and length. They are obtained via
965 * sg_dma_{address,length}(SG).
966 *
967 * NOTE: An implementation may be able to use a smaller number of
968 * DMA address/length pairs than there are SG table elements.
969 * (for example via virtual mapping capabilities)
970 * The routine returns the number of addr/length pairs actually
971 * used, at most nents.
972 *
ceb5ac32 973 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
974 * same here.
975 */
976int
309df0c5 977swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
00085f1e 978 enum dma_data_direction dir, unsigned long attrs)
1da177e4 979{
dbfd49fe 980 struct scatterlist *sg;
1da177e4
LT
981 int i;
982
34814545 983 BUG_ON(dir == DMA_NONE);
1da177e4 984
dbfd49fe 985 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 986 phys_addr_t paddr = sg_phys(sg);
862d196b 987 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 988
ae7871be 989 if (swiotlb_force == SWIOTLB_FORCE ||
b9394647 990 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1 991 phys_addr_t map = map_single(hwdev, sg_phys(sg),
0443fa00 992 sg->length, dir, attrs);
e05ed4d1 993 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
994 /* Don't panic here, we expect map_sg users
995 to do proper error handling. */
996 swiotlb_full(hwdev, sg->length, dir, 0);
d29fa0cb 997 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
309df0c5
AK
998 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
999 attrs);
4d86ec7a 1000 sg_dma_len(sgl) = 0;
1da177e4
LT
1001 return 0;
1002 }
c7753208 1003 sg->dma_address = swiotlb_phys_to_dma(hwdev, map);
1da177e4
LT
1004 } else
1005 sg->dma_address = dev_addr;
4d86ec7a 1006 sg_dma_len(sg) = sg->length;
1da177e4
LT
1007 }
1008 return nelems;
1009}
309df0c5
AK
1010EXPORT_SYMBOL(swiotlb_map_sg_attrs);
1011
1da177e4
LT
1012/*
1013 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 1014 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
1015 */
1016void
309df0c5 1017swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
00085f1e
KK
1018 int nelems, enum dma_data_direction dir,
1019 unsigned long attrs)
1da177e4 1020{
dbfd49fe 1021 struct scatterlist *sg;
1da177e4
LT
1022 int i;
1023
34814545 1024 BUG_ON(dir == DMA_NONE);
1da177e4 1025
7fcebbd2 1026 for_each_sg(sgl, sg, nelems, i)
0443fa00
AD
1027 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
1028 attrs);
1da177e4 1029}
309df0c5
AK
1030EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
1031
1da177e4
LT
1032/*
1033 * Make physical memory consistent for a set of streaming mode DMA translations
1034 * after a transfer.
1035 *
1036 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1037 * and usage.
1038 */
be6b0267 1039static void
dbfd49fe 1040swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
1041 int nelems, enum dma_data_direction dir,
1042 enum dma_sync_target target)
1da177e4 1043{
dbfd49fe 1044 struct scatterlist *sg;
1da177e4
LT
1045 int i;
1046
380d6878
BB
1047 for_each_sg(sgl, sg, nelems, i)
1048 swiotlb_sync_single(hwdev, sg->dma_address,
4d86ec7a 1049 sg_dma_len(sg), dir, target);
1da177e4
LT
1050}
1051
8270f3f1
JL
1052void
1053swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 1054 int nelems, enum dma_data_direction dir)
8270f3f1 1055{
de69e0f0 1056 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 1057}
874d6a95 1058EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 1059
1da177e4
LT
1060void
1061swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 1062 int nelems, enum dma_data_direction dir)
1da177e4 1063{
de69e0f0 1064 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 1065}
874d6a95 1066EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
1067
1068int
8d8bb39b 1069swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 1070{
c7753208 1071 return (dma_addr == swiotlb_phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 1072}
874d6a95 1073EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
1074
1075/*
17e5ad6c 1076 * Return whether the given device DMA address mask can be supported
1da177e4 1077 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 1078 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
1079 * this function.
1080 */
1081int
563aaf06 1082swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 1083{
c7753208 1084 return swiotlb_phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 1085}
1da177e4 1086EXPORT_SYMBOL(swiotlb_dma_supported);