battery: sec_battery: export {CURRENT/VOLTAGE}_MAX to sysfs
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
3c2a0909 50#include <linux/exynos-ss.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc
TH
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
24647570 69 * create_worker() is in progress.
bc2ae0f5 70 */
11ebea50 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 73 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 74
c8e55f36
TH
75 /* worker flags */
76 WORKER_STARTED = 1 << 0, /* started */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give -20.
104 */
105 RESCUER_NICE_LEVEL = -20,
3270476a 106 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
822d8405
TH
127 * MG: pool->manager_mutex and pool->lock protected. Writes require both
128 * locks. Reads can happen under either lock.
129 *
68e13a67 130 * PL: wq_pool_mutex protected.
5bcab335 131 *
68e13a67 132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 133 *
3c25a55d
LJ
134 * WQ: wq->mutex protected.
135 *
b5927605 136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
137 *
138 * MD: wq_mayday_lock protected.
1da177e4 139 */
1da177e4 140
2eaebdb3 141/* struct worker is defined in workqueue_internal.h */
c34056a3 142
bd7bdd43 143struct worker_pool {
d565ed63 144 spinlock_t lock; /* the pool lock */
d84ff051 145 int cpu; /* I: the associated cpu */
f3f90ad4 146 int node; /* I: the associated node ID */
9daf9e67 147 int id; /* I: pool ID */
11ebea50 148 unsigned int flags; /* X: flags */
bd7bdd43
TH
149
150 struct list_head worklist; /* L: list of pending works */
151 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
152
153 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
154 int nr_idle; /* L: currently idle ones */
155
156 struct list_head idle_list; /* X: list of idle workers */
157 struct timer_list idle_timer; /* L: worker idle timeout */
158 struct timer_list mayday_timer; /* L: SOS timer for workers */
159
c5aa87bb 160 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 /* L: hash of busy workers */
163
bc3a1afc 164 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 165 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 166 struct mutex manager_mutex; /* manager exclusion */
822d8405 167 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 168
7a4e344c 169 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
171 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 172
e19e397a
TH
173 /*
174 * The current concurrency level. As it's likely to be accessed
175 * from other CPUs during try_to_wake_up(), put it in a separate
176 * cacheline.
177 */
178 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
179
180 /*
181 * Destruction of pool is sched-RCU protected to allow dereferences
182 * from get_work_pool().
183 */
184 struct rcu_head rcu;
8b03ae3c
TH
185} ____cacheline_aligned_in_smp;
186
1da177e4 187/*
112202d9
TH
188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
189 * of work_struct->data are used for flags and the remaining high bits
190 * point to the pwq; thus, pwqs need to be aligned at two's power of the
191 * number of flag bits.
1da177e4 192 */
112202d9 193struct pool_workqueue {
bd7bdd43 194 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 195 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
196 int work_color; /* L: current color */
197 int flush_color; /* L: flushing color */
8864b4e5 198 int refcnt; /* L: reference count */
73f53c4a
TH
199 int nr_in_flight[WORK_NR_COLORS];
200 /* L: nr of in_flight works */
1e19ffc6 201 int nr_active; /* L: nr of active works */
a0a1a5fd 202 int max_active; /* L: max active works */
1e19ffc6 203 struct list_head delayed_works; /* L: delayed works */
3c25a55d 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 205 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
206
207 /*
208 * Release of unbound pwq is punted to system_wq. See put_pwq()
209 * and pwq_unbound_release_workfn() for details. pool_workqueue
210 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 211 * determined without grabbing wq->mutex.
8864b4e5
TH
212 */
213 struct work_struct unbound_release_work;
214 struct rcu_head rcu;
e904e6c2 215} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 216
73f53c4a
TH
217/*
218 * Structure used to wait for workqueue flush.
219 */
220struct wq_flusher {
3c25a55d
LJ
221 struct list_head list; /* WQ: list of flushers */
222 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
223 struct completion done; /* flush completion */
224};
225
226223ab
TH
226struct wq_device;
227
1da177e4 228/*
c5aa87bb
TH
229 * The externally visible workqueue. It relays the issued work items to
230 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
231 */
232struct workqueue_struct {
3c25a55d 233 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 234 struct list_head list; /* PL: list of all workqueues */
73f53c4a 235
3c25a55d
LJ
236 struct mutex mutex; /* protects this wq */
237 int work_color; /* WQ: current work color */
238 int flush_color; /* WQ: current flush color */
112202d9 239 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
240 struct wq_flusher *first_flusher; /* WQ: first flusher */
241 struct list_head flusher_queue; /* WQ: flush waiters */
242 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 243
2e109a28 244 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
245 struct worker *rescuer; /* I: rescue worker */
246
87fc741e 247 int nr_drainers; /* WQ: drain in progress */
a357fc03 248 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 249
6029a918 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 252
226223ab
TH
253#ifdef CONFIG_SYSFS
254 struct wq_device *wq_dev; /* I: for sysfs interface */
255#endif
4e6045f1 256#ifdef CONFIG_LOCKDEP
4690c4ab 257 struct lockdep_map lockdep_map;
4e6045f1 258#endif
ecf6881f 259 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
260
261 /* hot fields used during command issue, aligned to cacheline */
262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
265};
266
e904e6c2
TH
267static struct kmem_cache *pwq_cache;
268
bce90380
TH
269static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
270static cpumask_var_t *wq_numa_possible_cpumask;
271 /* possible CPUs of each node */
272
d55262c4
TH
273static bool wq_disable_numa;
274module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275
3c2a0909
S
276/* see the comment above the definition of WQ_POWER_EFFICIENT */
277#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278static bool wq_power_efficient = true;
279#else
280static bool wq_power_efficient;
281#endif
282
283module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284
bce90380
TH
285static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
286
4c16bd32
TH
287/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289
68e13a67 290static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 291static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 292
68e13a67
LJ
293static LIST_HEAD(workqueues); /* PL: list of all workqueues */
294static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
295
296/* the per-cpu worker pools */
297static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 cpu_worker_pools);
299
68e13a67 300static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 301
68e13a67 302/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
303static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304
c5aa87bb 305/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
306static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307
ced4ac92
TH
308/* I: attributes used when instantiating ordered pools on demand */
309static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310
d320c038 311struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 312EXPORT_SYMBOL(system_wq);
044c782c 313struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 314EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 315struct workqueue_struct *system_long_wq __read_mostly;
d320c038 316EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 317struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 318EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 319struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 320EXPORT_SYMBOL_GPL(system_freezable_wq);
3c2a0909
S
321struct workqueue_struct *system_power_efficient_wq __read_mostly;
322EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 325
7d19c5ce
TH
326static int worker_thread(void *__worker);
327static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 const struct workqueue_attrs *from);
329
97bd2347
TH
330#define CREATE_TRACE_POINTS
331#include <trace/events/workqueue.h>
332
68e13a67 333#define assert_rcu_or_pool_mutex() \
5bcab335 334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
335 lockdep_is_held(&wq_pool_mutex), \
336 "sched RCU or wq_pool_mutex should be held")
5bcab335 337
b09f4fd3 338#define assert_rcu_or_wq_mutex(wq) \
76af4d93 339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 340 lockdep_is_held(&wq->mutex), \
b09f4fd3 341 "sched RCU or wq->mutex should be held")
76af4d93 342
822d8405
TH
343#ifdef CONFIG_LOCKDEP
344#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
345 WARN_ONCE(debug_locks && \
346 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
347 !lockdep_is_held(&(pool)->lock), \
348 "pool->manager_mutex or ->lock should be held")
349#else
350#define assert_manager_or_pool_lock(pool) do { } while (0)
351#endif
352
f02ae73a
TH
353#define for_each_cpu_worker_pool(pool, cpu) \
354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 356 (pool)++)
4ce62e9e 357
17116969
TH
358/**
359 * for_each_pool - iterate through all worker_pools in the system
360 * @pool: iteration cursor
611c92a0 361 * @pi: integer used for iteration
fa1b54e6 362 *
68e13a67
LJ
363 * This must be called either with wq_pool_mutex held or sched RCU read
364 * locked. If the pool needs to be used beyond the locking in effect, the
365 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
366 *
367 * The if/else clause exists only for the lockdep assertion and can be
368 * ignored.
17116969 369 */
611c92a0
TH
370#define for_each_pool(pool, pi) \
371 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 373 else
17116969 374
822d8405
TH
375/**
376 * for_each_pool_worker - iterate through all workers of a worker_pool
377 * @worker: iteration cursor
378 * @wi: integer used for iteration
379 * @pool: worker_pool to iterate workers of
380 *
381 * This must be called with either @pool->manager_mutex or ->lock held.
382 *
383 * The if/else clause exists only for the lockdep assertion and can be
384 * ignored.
385 */
386#define for_each_pool_worker(worker, wi, pool) \
387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 else
390
49e3cf44
TH
391/**
392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393 * @pwq: iteration cursor
394 * @wq: the target workqueue
76af4d93 395 *
b09f4fd3 396 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
397 * If the pwq needs to be used beyond the locking in effect, the caller is
398 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
399 *
400 * The if/else clause exists only for the lockdep assertion and can be
401 * ignored.
49e3cf44
TH
402 */
403#define for_each_pwq(pwq, wq) \
76af4d93 404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 406 else
f3421797 407
dc186ad7
TG
408#ifdef CONFIG_DEBUG_OBJECTS_WORK
409
410static struct debug_obj_descr work_debug_descr;
411
99777288
SG
412static void *work_debug_hint(void *addr)
413{
414 return ((struct work_struct *) addr)->func;
415}
416
dc186ad7
TG
417/*
418 * fixup_init is called when:
419 * - an active object is initialized
420 */
421static int work_fixup_init(void *addr, enum debug_obj_state state)
422{
423 struct work_struct *work = addr;
424
425 switch (state) {
426 case ODEBUG_STATE_ACTIVE:
427 cancel_work_sync(work);
428 debug_object_init(work, &work_debug_descr);
429 return 1;
430 default:
431 return 0;
432 }
433}
434
435/*
436 * fixup_activate is called when:
437 * - an active object is activated
438 * - an unknown object is activated (might be a statically initialized object)
439 */
440static int work_fixup_activate(void *addr, enum debug_obj_state state)
441{
442 struct work_struct *work = addr;
443
444 switch (state) {
445
446 case ODEBUG_STATE_NOTAVAILABLE:
447 /*
448 * This is not really a fixup. The work struct was
449 * statically initialized. We just make sure that it
450 * is tracked in the object tracker.
451 */
22df02bb 452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
453 debug_object_init(work, &work_debug_descr);
454 debug_object_activate(work, &work_debug_descr);
455 return 0;
456 }
457 WARN_ON_ONCE(1);
458 return 0;
459
460 case ODEBUG_STATE_ACTIVE:
461 WARN_ON(1);
462
463 default:
464 return 0;
465 }
466}
467
468/*
469 * fixup_free is called when:
470 * - an active object is freed
471 */
472static int work_fixup_free(void *addr, enum debug_obj_state state)
473{
474 struct work_struct *work = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 cancel_work_sync(work);
479 debug_object_free(work, &work_debug_descr);
480 return 1;
481 default:
482 return 0;
483 }
484}
485
486static struct debug_obj_descr work_debug_descr = {
487 .name = "work_struct",
99777288 488 .debug_hint = work_debug_hint,
dc186ad7
TG
489 .fixup_init = work_fixup_init,
490 .fixup_activate = work_fixup_activate,
491 .fixup_free = work_fixup_free,
492};
493
494static inline void debug_work_activate(struct work_struct *work)
495{
496 debug_object_activate(work, &work_debug_descr);
497}
498
499static inline void debug_work_deactivate(struct work_struct *work)
500{
501 debug_object_deactivate(work, &work_debug_descr);
502}
503
504void __init_work(struct work_struct *work, int onstack)
505{
506 if (onstack)
507 debug_object_init_on_stack(work, &work_debug_descr);
508 else
509 debug_object_init(work, &work_debug_descr);
510}
511EXPORT_SYMBOL_GPL(__init_work);
512
513void destroy_work_on_stack(struct work_struct *work)
514{
515 debug_object_free(work, &work_debug_descr);
516}
517EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518
519#else
520static inline void debug_work_activate(struct work_struct *work) { }
521static inline void debug_work_deactivate(struct work_struct *work) { }
522#endif
523
9daf9e67
TH
524/* allocate ID and assign it to @pool */
525static int worker_pool_assign_id(struct worker_pool *pool)
526{
527 int ret;
528
68e13a67 529 lockdep_assert_held(&wq_pool_mutex);
5bcab335 530
e68035fb 531 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
229641a6 532 if (ret >= 0) {
e68035fb 533 pool->id = ret;
229641a6
TH
534 return 0;
535 }
fa1b54e6 536 return ret;
7c3eed5c
TH
537}
538
df2d5ae4
TH
539/**
540 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
541 * @wq: the target workqueue
542 * @node: the node ID
543 *
544 * This must be called either with pwq_lock held or sched RCU read locked.
545 * If the pwq needs to be used beyond the locking in effect, the caller is
546 * responsible for guaranteeing that the pwq stays online.
547 */
548static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
549 int node)
550{
551 assert_rcu_or_wq_mutex(wq);
552 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
553}
554
73f53c4a
TH
555static unsigned int work_color_to_flags(int color)
556{
557 return color << WORK_STRUCT_COLOR_SHIFT;
558}
559
560static int get_work_color(struct work_struct *work)
561{
562 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
563 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
564}
565
566static int work_next_color(int color)
567{
568 return (color + 1) % WORK_NR_COLORS;
569}
1da177e4 570
14441960 571/*
112202d9
TH
572 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
573 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 574 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 575 *
112202d9
TH
576 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
577 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
578 * work->data. These functions should only be called while the work is
579 * owned - ie. while the PENDING bit is set.
7a22ad75 580 *
112202d9 581 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 582 * corresponding to a work. Pool is available once the work has been
112202d9 583 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 584 * available only while the work item is queued.
7a22ad75 585 *
bbb68dfa
TH
586 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
587 * canceled. While being canceled, a work item may have its PENDING set
588 * but stay off timer and worklist for arbitrarily long and nobody should
589 * try to steal the PENDING bit.
14441960 590 */
7a22ad75
TH
591static inline void set_work_data(struct work_struct *work, unsigned long data,
592 unsigned long flags)
365970a1 593{
6183c009 594 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
595 atomic_long_set(&work->data, data | flags | work_static(work));
596}
365970a1 597
112202d9 598static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
599 unsigned long extra_flags)
600{
112202d9
TH
601 set_work_data(work, (unsigned long)pwq,
602 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
603}
604
4468a00f
LJ
605static void set_work_pool_and_keep_pending(struct work_struct *work,
606 int pool_id)
607{
608 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
609 WORK_STRUCT_PENDING);
610}
611
7c3eed5c
TH
612static void set_work_pool_and_clear_pending(struct work_struct *work,
613 int pool_id)
7a22ad75 614{
23657bb1
TH
615 /*
616 * The following wmb is paired with the implied mb in
617 * test_and_set_bit(PENDING) and ensures all updates to @work made
618 * here are visible to and precede any updates by the next PENDING
619 * owner.
620 */
621 smp_wmb();
7c3eed5c 622 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
9a9850c7
RP
623 /*
624 * The following mb guarantees that previous clear of a PENDING bit
625 * will not be reordered with any speculative LOADS or STORES from
626 * work->current_func, which is executed afterwards. This possible
627 * reordering can lead to a missed execution on attempt to qeueue
628 * the same @work. E.g. consider this case:
629 *
630 * CPU#0 CPU#1
631 * ---------------------------- --------------------------------
632 *
633 * 1 STORE event_indicated
634 * 2 queue_work_on() {
635 * 3 test_and_set_bit(PENDING)
636 * 4 } set_..._and_clear_pending() {
637 * 5 set_work_data() # clear bit
638 * 6 smp_mb()
639 * 7 work->current_func() {
640 * 8 LOAD event_indicated
641 * }
642 *
643 * Without an explicit full barrier speculative LOAD on line 8 can
644 * be executed before CPU#0 does STORE on line 1. If that happens,
645 * CPU#0 observes the PENDING bit is still set and new execution of
646 * a @work is not queued in a hope, that CPU#1 will eventually
647 * finish the queued @work. Meanwhile CPU#1 does not see
648 * event_indicated is set, because speculative LOAD was executed
649 * before actual STORE.
650 */
651 smp_mb();
7a22ad75 652}
f756d5e2 653
7a22ad75 654static void clear_work_data(struct work_struct *work)
1da177e4 655{
7c3eed5c
TH
656 smp_wmb(); /* see set_work_pool_and_clear_pending() */
657 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
658}
659
112202d9 660static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 661{
e120153d 662 unsigned long data = atomic_long_read(&work->data);
7a22ad75 663
112202d9 664 if (data & WORK_STRUCT_PWQ)
e120153d
TH
665 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
666 else
667 return NULL;
4d707b9f
ON
668}
669
7c3eed5c
TH
670/**
671 * get_work_pool - return the worker_pool a given work was associated with
672 * @work: the work item of interest
673 *
674 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 675 *
68e13a67
LJ
676 * Pools are created and destroyed under wq_pool_mutex, and allows read
677 * access under sched-RCU read lock. As such, this function should be
678 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
679 *
680 * All fields of the returned pool are accessible as long as the above
681 * mentioned locking is in effect. If the returned pool needs to be used
682 * beyond the critical section, the caller is responsible for ensuring the
683 * returned pool is and stays online.
7c3eed5c
TH
684 */
685static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 686{
e120153d 687 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 688 int pool_id;
7a22ad75 689
68e13a67 690 assert_rcu_or_pool_mutex();
fa1b54e6 691
112202d9
TH
692 if (data & WORK_STRUCT_PWQ)
693 return ((struct pool_workqueue *)
7c3eed5c 694 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 695
7c3eed5c
TH
696 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
697 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
698 return NULL;
699
fa1b54e6 700 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
701}
702
703/**
704 * get_work_pool_id - return the worker pool ID a given work is associated with
705 * @work: the work item of interest
706 *
707 * Return the worker_pool ID @work was last associated with.
708 * %WORK_OFFQ_POOL_NONE if none.
709 */
710static int get_work_pool_id(struct work_struct *work)
711{
54d5b7d0
LJ
712 unsigned long data = atomic_long_read(&work->data);
713
112202d9
TH
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
54d5b7d0 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 717
54d5b7d0 718 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
719}
720
bbb68dfa
TH
721static void mark_work_canceling(struct work_struct *work)
722{
7c3eed5c 723 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 724
7c3eed5c
TH
725 pool_id <<= WORK_OFFQ_POOL_SHIFT;
726 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
727}
728
729static bool work_is_canceling(struct work_struct *work)
730{
731 unsigned long data = atomic_long_read(&work->data);
732
112202d9 733 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
734}
735
e22bee78 736/*
3270476a
TH
737 * Policy functions. These define the policies on how the global worker
738 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 739 * they're being called with pool->lock held.
e22bee78
TH
740 */
741
63d95a91 742static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 743{
e19e397a 744 return !atomic_read(&pool->nr_running);
a848e3b6
ON
745}
746
4594bf15 747/*
e22bee78
TH
748 * Need to wake up a worker? Called from anything but currently
749 * running workers.
974271c4
TH
750 *
751 * Note that, because unbound workers never contribute to nr_running, this
706026c2 752 * function will always return %true for unbound pools as long as the
974271c4 753 * worklist isn't empty.
4594bf15 754 */
63d95a91 755static bool need_more_worker(struct worker_pool *pool)
365970a1 756{
63d95a91 757 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 758}
4594bf15 759
e22bee78 760/* Can I start working? Called from busy but !running workers. */
63d95a91 761static bool may_start_working(struct worker_pool *pool)
e22bee78 762{
63d95a91 763 return pool->nr_idle;
e22bee78
TH
764}
765
766/* Do I need to keep working? Called from currently running workers. */
63d95a91 767static bool keep_working(struct worker_pool *pool)
e22bee78 768{
e19e397a
TH
769 return !list_empty(&pool->worklist) &&
770 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
771}
772
773/* Do we need a new worker? Called from manager. */
63d95a91 774static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 775{
63d95a91 776 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 777}
365970a1 778
e22bee78 779/* Do I need to be the manager? */
63d95a91 780static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 781{
63d95a91 782 return need_to_create_worker(pool) ||
11ebea50 783 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
784}
785
786/* Do we have too many workers and should some go away? */
63d95a91 787static bool too_many_workers(struct worker_pool *pool)
e22bee78 788{
34a06bd6 789 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
790 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
791 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 792
ea1abd61
LJ
793 /*
794 * nr_idle and idle_list may disagree if idle rebinding is in
795 * progress. Never return %true if idle_list is empty.
796 */
797 if (list_empty(&pool->idle_list))
798 return false;
799
e22bee78 800 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
801}
802
4d707b9f 803/*
e22bee78
TH
804 * Wake up functions.
805 */
806
7e11629d 807/* Return the first worker. Safe with preemption disabled */
63d95a91 808static struct worker *first_worker(struct worker_pool *pool)
7e11629d 809{
63d95a91 810 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
811 return NULL;
812
63d95a91 813 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
814}
815
816/**
817 * wake_up_worker - wake up an idle worker
63d95a91 818 * @pool: worker pool to wake worker from
7e11629d 819 *
63d95a91 820 * Wake up the first idle worker of @pool.
7e11629d
TH
821 *
822 * CONTEXT:
d565ed63 823 * spin_lock_irq(pool->lock).
7e11629d 824 */
63d95a91 825static void wake_up_worker(struct worker_pool *pool)
7e11629d 826{
63d95a91 827 struct worker *worker = first_worker(pool);
7e11629d
TH
828
829 if (likely(worker))
830 wake_up_process(worker->task);
831}
832
d302f017 833/**
e22bee78
TH
834 * wq_worker_waking_up - a worker is waking up
835 * @task: task waking up
836 * @cpu: CPU @task is waking up to
837 *
838 * This function is called during try_to_wake_up() when a worker is
839 * being awoken.
840 *
841 * CONTEXT:
842 * spin_lock_irq(rq->lock)
843 */
d84ff051 844void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
845{
846 struct worker *worker = kthread_data(task);
847
36576000 848 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 849 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 850 atomic_inc(&worker->pool->nr_running);
36576000 851 }
e22bee78
TH
852}
853
854/**
855 * wq_worker_sleeping - a worker is going to sleep
856 * @task: task going to sleep
857 * @cpu: CPU in question, must be the current CPU number
858 *
859 * This function is called during schedule() when a busy worker is
860 * going to sleep. Worker on the same cpu can be woken up by
861 * returning pointer to its task.
862 *
863 * CONTEXT:
864 * spin_lock_irq(rq->lock)
865 *
866 * RETURNS:
867 * Worker task on @cpu to wake up, %NULL if none.
868 */
d84ff051 869struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
870{
871 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 872 struct worker_pool *pool;
e22bee78 873
111c225a
TH
874 /*
875 * Rescuers, which may not have all the fields set up like normal
876 * workers, also reach here, let's not access anything before
877 * checking NOT_RUNNING.
878 */
2d64672e 879 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
880 return NULL;
881
111c225a 882 pool = worker->pool;
111c225a 883
e22bee78 884 /* this can only happen on the local cpu */
6183c009
TH
885 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
886 return NULL;
e22bee78
TH
887
888 /*
889 * The counterpart of the following dec_and_test, implied mb,
890 * worklist not empty test sequence is in insert_work().
891 * Please read comment there.
892 *
628c78e7
TH
893 * NOT_RUNNING is clear. This means that we're bound to and
894 * running on the local cpu w/ rq lock held and preemption
895 * disabled, which in turn means that none else could be
d565ed63 896 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 897 * lock is safe.
e22bee78 898 */
e19e397a
TH
899 if (atomic_dec_and_test(&pool->nr_running) &&
900 !list_empty(&pool->worklist))
63d95a91 901 to_wakeup = first_worker(pool);
e22bee78
TH
902 return to_wakeup ? to_wakeup->task : NULL;
903}
904
905/**
906 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 907 * @worker: self
d302f017
TH
908 * @flags: flags to set
909 * @wakeup: wakeup an idle worker if necessary
910 *
e22bee78
TH
911 * Set @flags in @worker->flags and adjust nr_running accordingly. If
912 * nr_running becomes zero and @wakeup is %true, an idle worker is
913 * woken up.
d302f017 914 *
cb444766 915 * CONTEXT:
d565ed63 916 * spin_lock_irq(pool->lock)
d302f017
TH
917 */
918static inline void worker_set_flags(struct worker *worker, unsigned int flags,
919 bool wakeup)
920{
bd7bdd43 921 struct worker_pool *pool = worker->pool;
e22bee78 922
cb444766
TH
923 WARN_ON_ONCE(worker->task != current);
924
e22bee78
TH
925 /*
926 * If transitioning into NOT_RUNNING, adjust nr_running and
927 * wake up an idle worker as necessary if requested by
928 * @wakeup.
929 */
930 if ((flags & WORKER_NOT_RUNNING) &&
931 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 932 if (wakeup) {
e19e397a 933 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 934 !list_empty(&pool->worklist))
63d95a91 935 wake_up_worker(pool);
e22bee78 936 } else
e19e397a 937 atomic_dec(&pool->nr_running);
e22bee78
TH
938 }
939
d302f017
TH
940 worker->flags |= flags;
941}
942
943/**
e22bee78 944 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 945 * @worker: self
d302f017
TH
946 * @flags: flags to clear
947 *
e22bee78 948 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 949 *
cb444766 950 * CONTEXT:
d565ed63 951 * spin_lock_irq(pool->lock)
d302f017
TH
952 */
953static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
954{
63d95a91 955 struct worker_pool *pool = worker->pool;
e22bee78
TH
956 unsigned int oflags = worker->flags;
957
cb444766
TH
958 WARN_ON_ONCE(worker->task != current);
959
d302f017 960 worker->flags &= ~flags;
e22bee78 961
42c025f3
TH
962 /*
963 * If transitioning out of NOT_RUNNING, increment nr_running. Note
964 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
965 * of multiple flags, not a single flag.
966 */
e22bee78
TH
967 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
968 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 969 atomic_inc(&pool->nr_running);
d302f017
TH
970}
971
8cca0eea
TH
972/**
973 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 974 * @pool: pool of interest
8cca0eea
TH
975 * @work: work to find worker for
976 *
c9e7cf27
TH
977 * Find a worker which is executing @work on @pool by searching
978 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
979 * to match, its current execution should match the address of @work and
980 * its work function. This is to avoid unwanted dependency between
981 * unrelated work executions through a work item being recycled while still
982 * being executed.
983 *
984 * This is a bit tricky. A work item may be freed once its execution
985 * starts and nothing prevents the freed area from being recycled for
986 * another work item. If the same work item address ends up being reused
987 * before the original execution finishes, workqueue will identify the
988 * recycled work item as currently executing and make it wait until the
989 * current execution finishes, introducing an unwanted dependency.
990 *
c5aa87bb
TH
991 * This function checks the work item address and work function to avoid
992 * false positives. Note that this isn't complete as one may construct a
993 * work function which can introduce dependency onto itself through a
994 * recycled work item. Well, if somebody wants to shoot oneself in the
995 * foot that badly, there's only so much we can do, and if such deadlock
996 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
997 *
998 * CONTEXT:
d565ed63 999 * spin_lock_irq(pool->lock).
8cca0eea
TH
1000 *
1001 * RETURNS:
1002 * Pointer to worker which is executing @work if found, NULL
1003 * otherwise.
4d707b9f 1004 */
c9e7cf27 1005static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1006 struct work_struct *work)
4d707b9f 1007{
42f8570f 1008 struct worker *worker;
42f8570f 1009
b67bfe0d 1010 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1011 (unsigned long)work)
1012 if (worker->current_work == work &&
1013 worker->current_func == work->func)
42f8570f
SL
1014 return worker;
1015
1016 return NULL;
4d707b9f
ON
1017}
1018
bf4ede01
TH
1019/**
1020 * move_linked_works - move linked works to a list
1021 * @work: start of series of works to be scheduled
1022 * @head: target list to append @work to
1023 * @nextp: out paramter for nested worklist walking
1024 *
1025 * Schedule linked works starting from @work to @head. Work series to
1026 * be scheduled starts at @work and includes any consecutive work with
1027 * WORK_STRUCT_LINKED set in its predecessor.
1028 *
1029 * If @nextp is not NULL, it's updated to point to the next work of
1030 * the last scheduled work. This allows move_linked_works() to be
1031 * nested inside outer list_for_each_entry_safe().
1032 *
1033 * CONTEXT:
d565ed63 1034 * spin_lock_irq(pool->lock).
bf4ede01
TH
1035 */
1036static void move_linked_works(struct work_struct *work, struct list_head *head,
1037 struct work_struct **nextp)
1038{
1039 struct work_struct *n;
1040
1041 /*
1042 * Linked worklist will always end before the end of the list,
1043 * use NULL for list head.
1044 */
1045 list_for_each_entry_safe_from(work, n, NULL, entry) {
1046 list_move_tail(&work->entry, head);
1047 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1048 break;
1049 }
1050
1051 /*
1052 * If we're already inside safe list traversal and have moved
1053 * multiple works to the scheduled queue, the next position
1054 * needs to be updated.
1055 */
1056 if (nextp)
1057 *nextp = n;
1058}
1059
8864b4e5
TH
1060/**
1061 * get_pwq - get an extra reference on the specified pool_workqueue
1062 * @pwq: pool_workqueue to get
1063 *
1064 * Obtain an extra reference on @pwq. The caller should guarantee that
1065 * @pwq has positive refcnt and be holding the matching pool->lock.
1066 */
1067static void get_pwq(struct pool_workqueue *pwq)
1068{
1069 lockdep_assert_held(&pwq->pool->lock);
1070 WARN_ON_ONCE(pwq->refcnt <= 0);
1071 pwq->refcnt++;
1072}
1073
1074/**
1075 * put_pwq - put a pool_workqueue reference
1076 * @pwq: pool_workqueue to put
1077 *
1078 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1079 * destruction. The caller should be holding the matching pool->lock.
1080 */
1081static void put_pwq(struct pool_workqueue *pwq)
1082{
1083 lockdep_assert_held(&pwq->pool->lock);
1084 if (likely(--pwq->refcnt))
1085 return;
1086 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1087 return;
1088 /*
1089 * @pwq can't be released under pool->lock, bounce to
1090 * pwq_unbound_release_workfn(). This never recurses on the same
1091 * pool->lock as this path is taken only for unbound workqueues and
1092 * the release work item is scheduled on a per-cpu workqueue. To
1093 * avoid lockdep warning, unbound pool->locks are given lockdep
1094 * subclass of 1 in get_unbound_pool().
1095 */
1096 schedule_work(&pwq->unbound_release_work);
1097}
1098
dce90d47
TH
1099/**
1100 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1101 * @pwq: pool_workqueue to put (can be %NULL)
1102 *
1103 * put_pwq() with locking. This function also allows %NULL @pwq.
1104 */
1105static void put_pwq_unlocked(struct pool_workqueue *pwq)
1106{
1107 if (pwq) {
1108 /*
1109 * As both pwqs and pools are sched-RCU protected, the
1110 * following lock operations are safe.
1111 */
1112 spin_lock_irq(&pwq->pool->lock);
1113 put_pwq(pwq);
1114 spin_unlock_irq(&pwq->pool->lock);
1115 }
1116}
1117
112202d9 1118static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1119{
112202d9 1120 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1121
1122 trace_workqueue_activate_work(work);
112202d9 1123 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1124 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1125 pwq->nr_active++;
bf4ede01
TH
1126}
1127
112202d9 1128static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1129{
112202d9 1130 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1131 struct work_struct, entry);
1132
112202d9 1133 pwq_activate_delayed_work(work);
3aa62497
LJ
1134}
1135
bf4ede01 1136/**
112202d9
TH
1137 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1138 * @pwq: pwq of interest
bf4ede01 1139 * @color: color of work which left the queue
bf4ede01
TH
1140 *
1141 * A work either has completed or is removed from pending queue,
112202d9 1142 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1143 *
1144 * CONTEXT:
d565ed63 1145 * spin_lock_irq(pool->lock).
bf4ede01 1146 */
112202d9 1147static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1148{
8864b4e5 1149 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1150 if (color == WORK_NO_COLOR)
8864b4e5 1151 goto out_put;
bf4ede01 1152
112202d9 1153 pwq->nr_in_flight[color]--;
bf4ede01 1154
112202d9
TH
1155 pwq->nr_active--;
1156 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1157 /* one down, submit a delayed one */
112202d9
TH
1158 if (pwq->nr_active < pwq->max_active)
1159 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1160 }
1161
1162 /* is flush in progress and are we at the flushing tip? */
112202d9 1163 if (likely(pwq->flush_color != color))
8864b4e5 1164 goto out_put;
bf4ede01
TH
1165
1166 /* are there still in-flight works? */
112202d9 1167 if (pwq->nr_in_flight[color])
8864b4e5 1168 goto out_put;
bf4ede01 1169
112202d9
TH
1170 /* this pwq is done, clear flush_color */
1171 pwq->flush_color = -1;
bf4ede01
TH
1172
1173 /*
112202d9 1174 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1175 * will handle the rest.
1176 */
112202d9
TH
1177 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1178 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1179out_put:
1180 put_pwq(pwq);
bf4ede01
TH
1181}
1182
36e227d2 1183/**
bbb68dfa 1184 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1185 * @work: work item to steal
1186 * @is_dwork: @work is a delayed_work
bbb68dfa 1187 * @flags: place to store irq state
36e227d2
TH
1188 *
1189 * Try to grab PENDING bit of @work. This function can handle @work in any
1190 * stable state - idle, on timer or on worklist. Return values are
1191 *
1192 * 1 if @work was pending and we successfully stole PENDING
1193 * 0 if @work was idle and we claimed PENDING
1194 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1195 * -ENOENT if someone else is canceling @work, this state may persist
1196 * for arbitrarily long
36e227d2 1197 *
bbb68dfa 1198 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1199 * interrupted while holding PENDING and @work off queue, irq must be
1200 * disabled on entry. This, combined with delayed_work->timer being
1201 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1202 *
1203 * On successful return, >= 0, irq is disabled and the caller is
1204 * responsible for releasing it using local_irq_restore(*@flags).
1205 *
e0aecdd8 1206 * This function is safe to call from any context including IRQ handler.
bf4ede01 1207 */
bbb68dfa
TH
1208static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1209 unsigned long *flags)
bf4ede01 1210{
d565ed63 1211 struct worker_pool *pool;
112202d9 1212 struct pool_workqueue *pwq;
bf4ede01 1213
bbb68dfa
TH
1214 local_irq_save(*flags);
1215
36e227d2
TH
1216 /* try to steal the timer if it exists */
1217 if (is_dwork) {
1218 struct delayed_work *dwork = to_delayed_work(work);
1219
e0aecdd8
TH
1220 /*
1221 * dwork->timer is irqsafe. If del_timer() fails, it's
1222 * guaranteed that the timer is not queued anywhere and not
1223 * running on the local CPU.
1224 */
36e227d2
TH
1225 if (likely(del_timer(&dwork->timer)))
1226 return 1;
1227 }
1228
1229 /* try to claim PENDING the normal way */
bf4ede01
TH
1230 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1231 return 0;
1232
1233 /*
1234 * The queueing is in progress, or it is already queued. Try to
1235 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1236 */
d565ed63
TH
1237 pool = get_work_pool(work);
1238 if (!pool)
bbb68dfa 1239 goto fail;
bf4ede01 1240
d565ed63 1241 spin_lock(&pool->lock);
0b3dae68 1242 /*
112202d9
TH
1243 * work->data is guaranteed to point to pwq only while the work
1244 * item is queued on pwq->wq, and both updating work->data to point
1245 * to pwq on queueing and to pool on dequeueing are done under
1246 * pwq->pool->lock. This in turn guarantees that, if work->data
1247 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1248 * item is currently queued on that pool.
1249 */
112202d9
TH
1250 pwq = get_work_pwq(work);
1251 if (pwq && pwq->pool == pool) {
16062836
TH
1252 debug_work_deactivate(work);
1253
1254 /*
1255 * A delayed work item cannot be grabbed directly because
1256 * it might have linked NO_COLOR work items which, if left
112202d9 1257 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1258 * management later on and cause stall. Make sure the work
1259 * item is activated before grabbing.
1260 */
1261 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1262 pwq_activate_delayed_work(work);
16062836
TH
1263
1264 list_del_init(&work->entry);
112202d9 1265 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1266
112202d9 1267 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1268 set_work_pool_and_keep_pending(work, pool->id);
1269
1270 spin_unlock(&pool->lock);
1271 return 1;
bf4ede01 1272 }
d565ed63 1273 spin_unlock(&pool->lock);
bbb68dfa
TH
1274fail:
1275 local_irq_restore(*flags);
1276 if (work_is_canceling(work))
1277 return -ENOENT;
1278 cpu_relax();
36e227d2 1279 return -EAGAIN;
bf4ede01
TH
1280}
1281
4690c4ab 1282/**
706026c2 1283 * insert_work - insert a work into a pool
112202d9 1284 * @pwq: pwq @work belongs to
4690c4ab
TH
1285 * @work: work to insert
1286 * @head: insertion point
1287 * @extra_flags: extra WORK_STRUCT_* flags to set
1288 *
112202d9 1289 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1290 * work_struct flags.
4690c4ab
TH
1291 *
1292 * CONTEXT:
d565ed63 1293 * spin_lock_irq(pool->lock).
4690c4ab 1294 */
112202d9
TH
1295static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1296 struct list_head *head, unsigned int extra_flags)
b89deed3 1297{
112202d9 1298 struct worker_pool *pool = pwq->pool;
e22bee78 1299
4690c4ab 1300 /* we own @work, set data and link */
112202d9 1301 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1302 list_add_tail(&work->entry, head);
8864b4e5 1303 get_pwq(pwq);
e22bee78
TH
1304
1305 /*
c5aa87bb
TH
1306 * Ensure either wq_worker_sleeping() sees the above
1307 * list_add_tail() or we see zero nr_running to avoid workers lying
1308 * around lazily while there are works to be processed.
e22bee78
TH
1309 */
1310 smp_mb();
1311
63d95a91
TH
1312 if (__need_more_worker(pool))
1313 wake_up_worker(pool);
b89deed3
ON
1314}
1315
c8efcc25
TH
1316/*
1317 * Test whether @work is being queued from another work executing on the
8d03ecfe 1318 * same workqueue.
c8efcc25
TH
1319 */
1320static bool is_chained_work(struct workqueue_struct *wq)
1321{
8d03ecfe
TH
1322 struct worker *worker;
1323
1324 worker = current_wq_worker();
1325 /*
1326 * Return %true iff I'm a worker execuing a work item on @wq. If
1327 * I'm @worker, it's safe to dereference it without locking.
1328 */
112202d9 1329 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1330}
1331
d84ff051 1332static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1333 struct work_struct *work)
1334{
112202d9 1335 struct pool_workqueue *pwq;
c9178087 1336 struct worker_pool *last_pool;
1e19ffc6 1337 struct list_head *worklist;
8a2e8e5d 1338 unsigned int work_flags;
b75cac93 1339 unsigned int req_cpu = cpu;
8930caba
TH
1340
1341 /*
1342 * While a work item is PENDING && off queue, a task trying to
1343 * steal the PENDING will busy-loop waiting for it to either get
1344 * queued or lose PENDING. Grabbing PENDING and queueing should
1345 * happen with IRQ disabled.
1346 */
1347 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1348
dc186ad7 1349 debug_work_activate(work);
1e19ffc6 1350
c8efcc25 1351 /* if dying, only works from the same workqueue are allowed */
618b01eb 1352 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1353 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1354 return;
9e8cd2f5 1355retry:
df2d5ae4
TH
1356 if (req_cpu == WORK_CPU_UNBOUND)
1357 cpu = raw_smp_processor_id();
1358
c9178087 1359 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1360 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1361 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1362 else
1363 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1364
c9178087
TH
1365 /*
1366 * If @work was previously on a different pool, it might still be
1367 * running there, in which case the work needs to be queued on that
1368 * pool to guarantee non-reentrancy.
1369 */
1370 last_pool = get_work_pool(work);
1371 if (last_pool && last_pool != pwq->pool) {
1372 struct worker *worker;
18aa9eff 1373
c9178087 1374 spin_lock(&last_pool->lock);
18aa9eff 1375
c9178087 1376 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1377
c9178087
TH
1378 if (worker && worker->current_pwq->wq == wq) {
1379 pwq = worker->current_pwq;
8930caba 1380 } else {
c9178087
TH
1381 /* meh... not running there, queue here */
1382 spin_unlock(&last_pool->lock);
112202d9 1383 spin_lock(&pwq->pool->lock);
8930caba 1384 }
f3421797 1385 } else {
112202d9 1386 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1387 }
1388
9e8cd2f5
TH
1389 /*
1390 * pwq is determined and locked. For unbound pools, we could have
1391 * raced with pwq release and it could already be dead. If its
1392 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1393 * without another pwq replacing it in the numa_pwq_tbl or while
1394 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1395 * make forward-progress.
1396 */
1397 if (unlikely(!pwq->refcnt)) {
1398 if (wq->flags & WQ_UNBOUND) {
1399 spin_unlock(&pwq->pool->lock);
1400 cpu_relax();
1401 goto retry;
1402 }
1403 /* oops */
1404 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1405 wq->name, cpu);
1406 }
1407
112202d9
TH
1408 /* pwq determined, queue */
1409 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1410
f5b2552b 1411 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1412 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1413 return;
1414 }
1e19ffc6 1415
112202d9
TH
1416 pwq->nr_in_flight[pwq->work_color]++;
1417 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1418
112202d9 1419 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1420 trace_workqueue_activate_work(work);
112202d9
TH
1421 pwq->nr_active++;
1422 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1423 } else {
1424 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1425 worklist = &pwq->delayed_works;
8a2e8e5d 1426 }
1e19ffc6 1427
112202d9 1428 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1429
112202d9 1430 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1431}
1432
0fcb78c2 1433/**
c1a220e7
ZR
1434 * queue_work_on - queue work on specific cpu
1435 * @cpu: CPU number to execute work on
0fcb78c2
REB
1436 * @wq: workqueue to use
1437 * @work: work to queue
1438 *
d4283e93 1439 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1440 *
c1a220e7
ZR
1441 * We queue the work to a specific CPU, the caller must ensure it
1442 * can't go away.
1da177e4 1443 */
d4283e93
TH
1444bool queue_work_on(int cpu, struct workqueue_struct *wq,
1445 struct work_struct *work)
1da177e4 1446{
d4283e93 1447 bool ret = false;
8930caba 1448 unsigned long flags;
ef1ca236 1449
8930caba 1450 local_irq_save(flags);
c1a220e7 1451
22df02bb 1452 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1453 __queue_work(cpu, wq, work);
d4283e93 1454 ret = true;
c1a220e7 1455 }
ef1ca236 1456
8930caba 1457 local_irq_restore(flags);
1da177e4
LT
1458 return ret;
1459}
ad7b1f84 1460EXPORT_SYMBOL(queue_work_on);
1da177e4 1461
d8e794df 1462void delayed_work_timer_fn(unsigned long __data)
1da177e4 1463{
52bad64d 1464 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1465
e0aecdd8 1466 /* should have been called from irqsafe timer with irq already off */
60c057bc 1467 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1468}
1438ade5 1469EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1470
7beb2edf
TH
1471static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1472 struct delayed_work *dwork, unsigned long delay)
1da177e4 1473{
7beb2edf
TH
1474 struct timer_list *timer = &dwork->timer;
1475 struct work_struct *work = &dwork->work;
7beb2edf
TH
1476
1477 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1478 timer->data != (unsigned long)dwork);
fc4b514f
TH
1479 WARN_ON_ONCE(timer_pending(timer));
1480 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1481
8852aac2
TH
1482 /*
1483 * If @delay is 0, queue @dwork->work immediately. This is for
1484 * both optimization and correctness. The earliest @timer can
1485 * expire is on the closest next tick and delayed_work users depend
1486 * on that there's no such delay when @delay is 0.
1487 */
1488 if (!delay) {
1489 __queue_work(cpu, wq, &dwork->work);
1490 return;
1491 }
1492
7beb2edf 1493 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1494
60c057bc 1495 dwork->wq = wq;
1265057f 1496 dwork->cpu = cpu;
7beb2edf
TH
1497 timer->expires = jiffies + delay;
1498
a7b053c7
TH
1499 if (unlikely(cpu != WORK_CPU_UNBOUND))
1500 add_timer_on(timer, cpu);
1501 else
1502 add_timer(timer);
1da177e4
LT
1503}
1504
0fcb78c2
REB
1505/**
1506 * queue_delayed_work_on - queue work on specific CPU after delay
1507 * @cpu: CPU number to execute work on
1508 * @wq: workqueue to use
af9997e4 1509 * @dwork: work to queue
0fcb78c2
REB
1510 * @delay: number of jiffies to wait before queueing
1511 *
715f1300
TH
1512 * Returns %false if @work was already on a queue, %true otherwise. If
1513 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1514 * execution.
0fcb78c2 1515 */
d4283e93
TH
1516bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1517 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1518{
52bad64d 1519 struct work_struct *work = &dwork->work;
d4283e93 1520 bool ret = false;
8930caba 1521 unsigned long flags;
7a6bc1cd 1522
8930caba
TH
1523 /* read the comment in __queue_work() */
1524 local_irq_save(flags);
7a6bc1cd 1525
22df02bb 1526 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1527 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1528 ret = true;
7a6bc1cd 1529 }
8a3e77cc 1530
8930caba 1531 local_irq_restore(flags);
7a6bc1cd
VP
1532 return ret;
1533}
ad7b1f84 1534EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1535
8376fe22
TH
1536/**
1537 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
1540 * @dwork: work to queue
1541 * @delay: number of jiffies to wait before queueing
1542 *
1543 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1544 * modify @dwork's timer so that it expires after @delay. If @delay is
1545 * zero, @work is guaranteed to be scheduled immediately regardless of its
1546 * current state.
1547 *
1548 * Returns %false if @dwork was idle and queued, %true if @dwork was
1549 * pending and its timer was modified.
1550 *
e0aecdd8 1551 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1552 * See try_to_grab_pending() for details.
1553 */
1554bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1555 struct delayed_work *dwork, unsigned long delay)
1556{
1557 unsigned long flags;
1558 int ret;
c7fc77f7 1559
8376fe22
TH
1560 do {
1561 ret = try_to_grab_pending(&dwork->work, true, &flags);
1562 } while (unlikely(ret == -EAGAIN));
63bc0362 1563
8376fe22
TH
1564 if (likely(ret >= 0)) {
1565 __queue_delayed_work(cpu, wq, dwork, delay);
1566 local_irq_restore(flags);
7a6bc1cd 1567 }
8376fe22
TH
1568
1569 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1570 return ret;
1571}
8376fe22
TH
1572EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1573
c8e55f36
TH
1574/**
1575 * worker_enter_idle - enter idle state
1576 * @worker: worker which is entering idle state
1577 *
1578 * @worker is entering idle state. Update stats and idle timer if
1579 * necessary.
1580 *
1581 * LOCKING:
d565ed63 1582 * spin_lock_irq(pool->lock).
c8e55f36
TH
1583 */
1584static void worker_enter_idle(struct worker *worker)
1da177e4 1585{
bd7bdd43 1586 struct worker_pool *pool = worker->pool;
c8e55f36 1587
6183c009
TH
1588 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1589 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1590 (worker->hentry.next || worker->hentry.pprev)))
1591 return;
c8e55f36 1592
cb444766
TH
1593 /* can't use worker_set_flags(), also called from start_worker() */
1594 worker->flags |= WORKER_IDLE;
bd7bdd43 1595 pool->nr_idle++;
e22bee78 1596 worker->last_active = jiffies;
c8e55f36
TH
1597
1598 /* idle_list is LIFO */
bd7bdd43 1599 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1600
628c78e7
TH
1601 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1602 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1603
544ecf31 1604 /*
706026c2 1605 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1606 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1607 * nr_running, the warning may trigger spuriously. Check iff
1608 * unbind is not in progress.
544ecf31 1609 */
24647570 1610 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1611 pool->nr_workers == pool->nr_idle &&
e19e397a 1612 atomic_read(&pool->nr_running));
c8e55f36
TH
1613}
1614
1615/**
1616 * worker_leave_idle - leave idle state
1617 * @worker: worker which is leaving idle state
1618 *
1619 * @worker is leaving idle state. Update stats.
1620 *
1621 * LOCKING:
d565ed63 1622 * spin_lock_irq(pool->lock).
c8e55f36
TH
1623 */
1624static void worker_leave_idle(struct worker *worker)
1625{
bd7bdd43 1626 struct worker_pool *pool = worker->pool;
c8e55f36 1627
6183c009
TH
1628 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1629 return;
d302f017 1630 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1631 pool->nr_idle--;
c8e55f36
TH
1632 list_del_init(&worker->entry);
1633}
1634
e22bee78 1635/**
f36dc67b
LJ
1636 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1637 * @pool: target worker_pool
1638 *
1639 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1640 *
1641 * Works which are scheduled while the cpu is online must at least be
1642 * scheduled to a worker which is bound to the cpu so that if they are
1643 * flushed from cpu callbacks while cpu is going down, they are
1644 * guaranteed to execute on the cpu.
1645 *
f5faa077 1646 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1647 * themselves to the target cpu and may race with cpu going down or
1648 * coming online. kthread_bind() can't be used because it may put the
1649 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1650 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1651 * [dis]associated in the meantime.
1652 *
706026c2 1653 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1654 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1655 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1656 * enters idle state or fetches works without dropping lock, it can
1657 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1658 *
1659 * CONTEXT:
d565ed63 1660 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1661 * held.
1662 *
1663 * RETURNS:
706026c2 1664 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1665 * bound), %false if offline.
1666 */
f36dc67b 1667static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1668__acquires(&pool->lock)
e22bee78 1669{
e22bee78 1670 while (true) {
4e6045f1 1671 /*
e22bee78
TH
1672 * The following call may fail, succeed or succeed
1673 * without actually migrating the task to the cpu if
1674 * it races with cpu hotunplug operation. Verify
24647570 1675 * against POOL_DISASSOCIATED.
4e6045f1 1676 */
24647570 1677 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1678 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1679
d565ed63 1680 spin_lock_irq(&pool->lock);
24647570 1681 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1682 return false;
f5faa077 1683 if (task_cpu(current) == pool->cpu &&
7a4e344c 1684 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1685 return true;
d565ed63 1686 spin_unlock_irq(&pool->lock);
e22bee78 1687
5035b20f
TH
1688 /*
1689 * We've raced with CPU hot[un]plug. Give it a breather
1690 * and retry migration. cond_resched() is required here;
1691 * otherwise, we might deadlock against cpu_stop trying to
1692 * bring down the CPU on non-preemptive kernel.
1693 */
e22bee78 1694 cpu_relax();
5035b20f 1695 cond_resched();
e22bee78
TH
1696 }
1697}
1698
c34056a3
TH
1699static struct worker *alloc_worker(void)
1700{
1701 struct worker *worker;
1702
1703 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1704 if (worker) {
1705 INIT_LIST_HEAD(&worker->entry);
affee4b2 1706 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1707 /* on creation a worker is in !idle && prep state */
1708 worker->flags = WORKER_PREP;
c8e55f36 1709 }
c34056a3
TH
1710 return worker;
1711}
1712
1713/**
1714 * create_worker - create a new workqueue worker
63d95a91 1715 * @pool: pool the new worker will belong to
c34056a3 1716 *
63d95a91 1717 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1718 * can be started by calling start_worker() or destroyed using
1719 * destroy_worker().
1720 *
1721 * CONTEXT:
1722 * Might sleep. Does GFP_KERNEL allocations.
1723 *
1724 * RETURNS:
1725 * Pointer to the newly created worker.
1726 */
bc2ae0f5 1727static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1728{
c34056a3 1729 struct worker *worker = NULL;
f3421797 1730 int id = -1;
e3c916a4 1731 char id_buf[16];
c34056a3 1732
cd549687
TH
1733 lockdep_assert_held(&pool->manager_mutex);
1734
822d8405
TH
1735 /*
1736 * ID is needed to determine kthread name. Allocate ID first
1737 * without installing the pointer.
1738 */
1739 idr_preload(GFP_KERNEL);
d565ed63 1740 spin_lock_irq(&pool->lock);
822d8405
TH
1741
1742 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1743
d565ed63 1744 spin_unlock_irq(&pool->lock);
822d8405
TH
1745 idr_preload_end();
1746 if (id < 0)
1747 goto fail;
c34056a3
TH
1748
1749 worker = alloc_worker();
1750 if (!worker)
1751 goto fail;
1752
bd7bdd43 1753 worker->pool = pool;
c34056a3
TH
1754 worker->id = id;
1755
29c91e99 1756 if (pool->cpu >= 0)
e3c916a4
TH
1757 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1758 pool->attrs->nice < 0 ? "H" : "");
f3421797 1759 else
e3c916a4
TH
1760 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1761
f3f90ad4 1762 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1763 "kworker/%s", id_buf);
c34056a3
TH
1764 if (IS_ERR(worker->task))
1765 goto fail;
1766
c5aa87bb
TH
1767 /*
1768 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1769 * online CPUs. It'll be re-applied when any of the CPUs come up.
1770 */
7a4e344c
TH
1771 set_user_nice(worker->task, pool->attrs->nice);
1772 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1773
14a40ffc
TH
1774 /* prevent userland from meddling with cpumask of workqueue workers */
1775 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1776
1777 /*
1778 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1779 * remains stable across this function. See the comments above the
1780 * flag definition for details.
1781 */
1782 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1783 worker->flags |= WORKER_UNBOUND;
c34056a3 1784
822d8405
TH
1785 /* successful, commit the pointer to idr */
1786 spin_lock_irq(&pool->lock);
1787 idr_replace(&pool->worker_idr, worker, worker->id);
1788 spin_unlock_irq(&pool->lock);
1789
c34056a3 1790 return worker;
822d8405 1791
c34056a3
TH
1792fail:
1793 if (id >= 0) {
d565ed63 1794 spin_lock_irq(&pool->lock);
822d8405 1795 idr_remove(&pool->worker_idr, id);
d565ed63 1796 spin_unlock_irq(&pool->lock);
c34056a3
TH
1797 }
1798 kfree(worker);
1799 return NULL;
1800}
1801
1802/**
1803 * start_worker - start a newly created worker
1804 * @worker: worker to start
1805 *
706026c2 1806 * Make the pool aware of @worker and start it.
c34056a3
TH
1807 *
1808 * CONTEXT:
d565ed63 1809 * spin_lock_irq(pool->lock).
c34056a3
TH
1810 */
1811static void start_worker(struct worker *worker)
1812{
cb444766 1813 worker->flags |= WORKER_STARTED;
bd7bdd43 1814 worker->pool->nr_workers++;
c8e55f36 1815 worker_enter_idle(worker);
c34056a3
TH
1816 wake_up_process(worker->task);
1817}
1818
ebf44d16
TH
1819/**
1820 * create_and_start_worker - create and start a worker for a pool
1821 * @pool: the target pool
1822 *
cd549687 1823 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1824 */
1825static int create_and_start_worker(struct worker_pool *pool)
1826{
1827 struct worker *worker;
1828
cd549687
TH
1829 mutex_lock(&pool->manager_mutex);
1830
ebf44d16
TH
1831 worker = create_worker(pool);
1832 if (worker) {
1833 spin_lock_irq(&pool->lock);
1834 start_worker(worker);
1835 spin_unlock_irq(&pool->lock);
1836 }
1837
cd549687
TH
1838 mutex_unlock(&pool->manager_mutex);
1839
ebf44d16
TH
1840 return worker ? 0 : -ENOMEM;
1841}
1842
c34056a3
TH
1843/**
1844 * destroy_worker - destroy a workqueue worker
1845 * @worker: worker to be destroyed
1846 *
706026c2 1847 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1848 *
1849 * CONTEXT:
d565ed63 1850 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1851 */
1852static void destroy_worker(struct worker *worker)
1853{
bd7bdd43 1854 struct worker_pool *pool = worker->pool;
c34056a3 1855
cd549687
TH
1856 lockdep_assert_held(&pool->manager_mutex);
1857 lockdep_assert_held(&pool->lock);
1858
c34056a3 1859 /* sanity check frenzy */
6183c009
TH
1860 if (WARN_ON(worker->current_work) ||
1861 WARN_ON(!list_empty(&worker->scheduled)))
1862 return;
c34056a3 1863
c8e55f36 1864 if (worker->flags & WORKER_STARTED)
bd7bdd43 1865 pool->nr_workers--;
c8e55f36 1866 if (worker->flags & WORKER_IDLE)
bd7bdd43 1867 pool->nr_idle--;
c8e55f36 1868
4403be9e
LJ
1869 /*
1870 * Once WORKER_DIE is set, the kworker may destroy itself at any
1871 * point. Pin to ensure the task stays until we're done with it.
1872 */
1873 get_task_struct(worker->task);
1874
c8e55f36 1875 list_del_init(&worker->entry);
cb444766 1876 worker->flags |= WORKER_DIE;
c8e55f36 1877
822d8405
TH
1878 idr_remove(&pool->worker_idr, worker->id);
1879
d565ed63 1880 spin_unlock_irq(&pool->lock);
c8e55f36 1881
c34056a3 1882 kthread_stop(worker->task);
4403be9e 1883 put_task_struct(worker->task);
c34056a3
TH
1884 kfree(worker);
1885
d565ed63 1886 spin_lock_irq(&pool->lock);
c34056a3
TH
1887}
1888
63d95a91 1889static void idle_worker_timeout(unsigned long __pool)
e22bee78 1890{
63d95a91 1891 struct worker_pool *pool = (void *)__pool;
e22bee78 1892
d565ed63 1893 spin_lock_irq(&pool->lock);
e22bee78 1894
63d95a91 1895 if (too_many_workers(pool)) {
e22bee78
TH
1896 struct worker *worker;
1897 unsigned long expires;
1898
1899 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1900 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1901 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1902
1903 if (time_before(jiffies, expires))
63d95a91 1904 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1905 else {
1906 /* it's been idle for too long, wake up manager */
11ebea50 1907 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1908 wake_up_worker(pool);
d5abe669 1909 }
e22bee78
TH
1910 }
1911
d565ed63 1912 spin_unlock_irq(&pool->lock);
e22bee78 1913}
d5abe669 1914
493a1724 1915static void send_mayday(struct work_struct *work)
e22bee78 1916{
112202d9
TH
1917 struct pool_workqueue *pwq = get_work_pwq(work);
1918 struct workqueue_struct *wq = pwq->wq;
493a1724 1919
2e109a28 1920 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1921
493008a8 1922 if (!wq->rescuer)
493a1724 1923 return;
e22bee78
TH
1924
1925 /* mayday mayday mayday */
493a1724 1926 if (list_empty(&pwq->mayday_node)) {
aac8b37f
LJ
1927 /*
1928 * If @pwq is for an unbound wq, its base ref may be put at
1929 * any time due to an attribute change. Pin @pwq until the
1930 * rescuer is done with it.
1931 */
1932 get_pwq(pwq);
493a1724 1933 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1934 wake_up_process(wq->rescuer->task);
493a1724 1935 }
e22bee78
TH
1936}
1937
706026c2 1938static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1939{
63d95a91 1940 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1941 struct work_struct *work;
1942
2e109a28 1943 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1944 spin_lock(&pool->lock);
e22bee78 1945
63d95a91 1946 if (need_to_create_worker(pool)) {
e22bee78
TH
1947 /*
1948 * We've been trying to create a new worker but
1949 * haven't been successful. We might be hitting an
1950 * allocation deadlock. Send distress signals to
1951 * rescuers.
1952 */
63d95a91 1953 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1954 send_mayday(work);
1da177e4 1955 }
e22bee78 1956
493a1724 1957 spin_unlock(&pool->lock);
2e109a28 1958 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1959
63d95a91 1960 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1961}
1962
e22bee78
TH
1963/**
1964 * maybe_create_worker - create a new worker if necessary
63d95a91 1965 * @pool: pool to create a new worker for
e22bee78 1966 *
63d95a91 1967 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1968 * have at least one idle worker on return from this function. If
1969 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1970 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1971 * possible allocation deadlock.
1972 *
c5aa87bb
TH
1973 * On return, need_to_create_worker() is guaranteed to be %false and
1974 * may_start_working() %true.
e22bee78
TH
1975 *
1976 * LOCKING:
d565ed63 1977 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1978 * multiple times. Does GFP_KERNEL allocations. Called only from
1979 * manager.
e22bee78 1980 */
12f45445 1981static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1982__releases(&pool->lock)
1983__acquires(&pool->lock)
1da177e4 1984{
63d95a91 1985 if (!need_to_create_worker(pool))
12f45445 1986 return;
e22bee78 1987restart:
d565ed63 1988 spin_unlock_irq(&pool->lock);
9f9c2364 1989
e22bee78 1990 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1991 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1992
1993 while (true) {
1994 struct worker *worker;
1995
bc2ae0f5 1996 worker = create_worker(pool);
e22bee78 1997 if (worker) {
63d95a91 1998 del_timer_sync(&pool->mayday_timer);
d565ed63 1999 spin_lock_irq(&pool->lock);
e22bee78 2000 start_worker(worker);
6183c009
TH
2001 if (WARN_ON_ONCE(need_to_create_worker(pool)))
2002 goto restart;
12f45445 2003 return;
e22bee78
TH
2004 }
2005
63d95a91 2006 if (!need_to_create_worker(pool))
e22bee78 2007 break;
1da177e4 2008
e22bee78
TH
2009 __set_current_state(TASK_INTERRUPTIBLE);
2010 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2011
63d95a91 2012 if (!need_to_create_worker(pool))
e22bee78
TH
2013 break;
2014 }
2015
63d95a91 2016 del_timer_sync(&pool->mayday_timer);
d565ed63 2017 spin_lock_irq(&pool->lock);
63d95a91 2018 if (need_to_create_worker(pool))
e22bee78 2019 goto restart;
12f45445 2020 return;
e22bee78
TH
2021}
2022
2023/**
2024 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2025 * @pool: pool to destroy workers for
e22bee78 2026 *
63d95a91 2027 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2028 * IDLE_WORKER_TIMEOUT.
2029 *
2030 * LOCKING:
d565ed63 2031 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78 2032 * multiple times. Called only from manager.
e22bee78 2033 */
12f45445 2034static void maybe_destroy_workers(struct worker_pool *pool)
e22bee78 2035{
63d95a91 2036 while (too_many_workers(pool)) {
e22bee78
TH
2037 struct worker *worker;
2038 unsigned long expires;
3af24433 2039
63d95a91 2040 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2041 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2042
e22bee78 2043 if (time_before(jiffies, expires)) {
63d95a91 2044 mod_timer(&pool->idle_timer, expires);
3af24433 2045 break;
e22bee78 2046 }
1da177e4 2047
e22bee78 2048 destroy_worker(worker);
1da177e4 2049 }
1e19ffc6
TH
2050}
2051
73f53c4a 2052/**
e22bee78
TH
2053 * manage_workers - manage worker pool
2054 * @worker: self
73f53c4a 2055 *
706026c2 2056 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2057 * to. At any given time, there can be only zero or one manager per
706026c2 2058 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2059 *
2060 * The caller can safely start processing works on false return. On
2061 * true return, it's guaranteed that need_to_create_worker() is false
2062 * and may_start_working() is true.
73f53c4a
TH
2063 *
2064 * CONTEXT:
d565ed63 2065 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2066 * multiple times. Does GFP_KERNEL allocations.
2067 *
2068 * RETURNS:
12f45445
TH
2069 * %false if the pool doesn't need management and the caller can safely
2070 * start processing works, %true if management function was performed and
2071 * the conditions that the caller verified before calling the function may
2072 * no longer be true.
73f53c4a 2073 */
e22bee78 2074static bool manage_workers(struct worker *worker)
73f53c4a 2075{
63d95a91 2076 struct worker_pool *pool = worker->pool;
73f53c4a 2077
bc3a1afc
TH
2078 /*
2079 * Managership is governed by two mutexes - manager_arb and
2080 * manager_mutex. manager_arb handles arbitration of manager role.
2081 * Anyone who successfully grabs manager_arb wins the arbitration
2082 * and becomes the manager. mutex_trylock() on pool->manager_arb
2083 * failure while holding pool->lock reliably indicates that someone
2084 * else is managing the pool and the worker which failed trylock
2085 * can proceed to executing work items. This means that anyone
2086 * grabbing manager_arb is responsible for actually performing
2087 * manager duties. If manager_arb is grabbed and released without
2088 * actual management, the pool may stall indefinitely.
2089 *
2090 * manager_mutex is used for exclusion of actual management
2091 * operations. The holder of manager_mutex can be sure that none
2092 * of management operations, including creation and destruction of
2093 * workers, won't take place until the mutex is released. Because
2094 * manager_mutex doesn't interfere with manager role arbitration,
2095 * it is guaranteed that the pool's management, while may be
2096 * delayed, won't be disturbed by someone else grabbing
2097 * manager_mutex.
2098 */
34a06bd6 2099 if (!mutex_trylock(&pool->manager_arb))
12f45445 2100 return false;
1e19ffc6 2101
ee378aa4 2102 /*
bc3a1afc
TH
2103 * With manager arbitration won, manager_mutex would be free in
2104 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2105 */
bc3a1afc 2106 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2107 spin_unlock_irq(&pool->lock);
bc3a1afc 2108 mutex_lock(&pool->manager_mutex);
8f174b11 2109 spin_lock_irq(&pool->lock);
ee378aa4 2110 }
73f53c4a 2111
11ebea50 2112 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2113
2114 /*
e22bee78
TH
2115 * Destroy and then create so that may_start_working() is true
2116 * on return.
73f53c4a 2117 */
12f45445
TH
2118 maybe_destroy_workers(pool);
2119 maybe_create_worker(pool);
e22bee78 2120
bc3a1afc 2121 mutex_unlock(&pool->manager_mutex);
34a06bd6 2122 mutex_unlock(&pool->manager_arb);
12f45445 2123 return true;
73f53c4a
TH
2124}
2125
a62428c0
TH
2126/**
2127 * process_one_work - process single work
c34056a3 2128 * @worker: self
a62428c0
TH
2129 * @work: work to process
2130 *
2131 * Process @work. This function contains all the logics necessary to
2132 * process a single work including synchronization against and
2133 * interaction with other workers on the same cpu, queueing and
2134 * flushing. As long as context requirement is met, any worker can
2135 * call this function to process a work.
2136 *
2137 * CONTEXT:
d565ed63 2138 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2139 */
c34056a3 2140static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2141__releases(&pool->lock)
2142__acquires(&pool->lock)
a62428c0 2143{
112202d9 2144 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2145 struct worker_pool *pool = worker->pool;
112202d9 2146 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2147 int work_color;
7e11629d 2148 struct worker *collision;
a62428c0
TH
2149#ifdef CONFIG_LOCKDEP
2150 /*
2151 * It is permissible to free the struct work_struct from
2152 * inside the function that is called from it, this we need to
2153 * take into account for lockdep too. To avoid bogus "held
2154 * lock freed" warnings as well as problems when looking into
2155 * work->lockdep_map, make a copy and use that here.
2156 */
4d82a1de
PZ
2157 struct lockdep_map lockdep_map;
2158
2159 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2160#endif
6fec10a1
TH
2161 /*
2162 * Ensure we're on the correct CPU. DISASSOCIATED test is
2163 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2164 * unbound or a disassociated pool.
6fec10a1 2165 */
5f7dabfd 2166 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2167 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2168 raw_smp_processor_id() != pool->cpu);
25511a47 2169
7e11629d
TH
2170 /*
2171 * A single work shouldn't be executed concurrently by
2172 * multiple workers on a single cpu. Check whether anyone is
2173 * already processing the work. If so, defer the work to the
2174 * currently executing one.
2175 */
c9e7cf27 2176 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2177 if (unlikely(collision)) {
2178 move_linked_works(work, &collision->scheduled, NULL);
2179 return;
2180 }
2181
8930caba 2182 /* claim and dequeue */
a62428c0 2183 debug_work_deactivate(work);
c9e7cf27 2184 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2185 worker->current_work = work;
a2c1c57b 2186 worker->current_func = work->func;
112202d9 2187 worker->current_pwq = pwq;
73f53c4a 2188 work_color = get_work_color(work);
7a22ad75 2189
a62428c0
TH
2190 list_del_init(&work->entry);
2191
fb0e7beb
TH
2192 /*
2193 * CPU intensive works don't participate in concurrency
2194 * management. They're the scheduler's responsibility.
2195 */
2196 if (unlikely(cpu_intensive))
2197 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2198
974271c4 2199 /*
d565ed63 2200 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2201 * executed ASAP. Wake up another worker if necessary.
2202 */
63d95a91
TH
2203 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2204 wake_up_worker(pool);
974271c4 2205
8930caba 2206 /*
7c3eed5c 2207 * Record the last pool and clear PENDING which should be the last
d565ed63 2208 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2209 * PENDING and queued state changes happen together while IRQ is
2210 * disabled.
8930caba 2211 */
7c3eed5c 2212 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2213
d565ed63 2214 spin_unlock_irq(&pool->lock);
a62428c0 2215
112202d9 2216 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2217 lock_map_acquire(&lockdep_map);
e36c886a 2218 trace_workqueue_execute_start(work);
3c2a0909 2219 exynos_ss_work(worker, work, worker->current_func, ESS_FLAG_IN);
a2c1c57b 2220 worker->current_func(work);
3c2a0909 2221 exynos_ss_work(worker, work, worker->current_func, ESS_FLAG_OUT);
e36c886a
AV
2222 /*
2223 * While we must be careful to not use "work" after this, the trace
2224 * point will only record its address.
2225 */
2226 trace_workqueue_execute_end(work);
a62428c0 2227 lock_map_release(&lockdep_map);
112202d9 2228 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2229
2230 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2231 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2232 " last function: %pf\n",
a2c1c57b
TH
2233 current->comm, preempt_count(), task_pid_nr(current),
2234 worker->current_func);
a62428c0
TH
2235 debug_show_held_locks(current);
2236 dump_stack();
2237 }
2238
6ff96f73
TH
2239 /*
2240 * The following prevents a kworker from hogging CPU on !PREEMPT
2241 * kernels, where a requeueing work item waiting for something to
2242 * happen could deadlock with stop_machine as such work item could
2243 * indefinitely requeue itself while all other CPUs are trapped in
2244 * stop_machine.
2245 */
2246 cond_resched();
2247
d565ed63 2248 spin_lock_irq(&pool->lock);
a62428c0 2249
fb0e7beb
TH
2250 /* clear cpu intensive status */
2251 if (unlikely(cpu_intensive))
2252 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2253
a62428c0 2254 /* we're done with it, release */
42f8570f 2255 hash_del(&worker->hentry);
c34056a3 2256 worker->current_work = NULL;
a2c1c57b 2257 worker->current_func = NULL;
112202d9 2258 worker->current_pwq = NULL;
3d1cb205 2259 worker->desc_valid = false;
112202d9 2260 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2261}
2262
affee4b2
TH
2263/**
2264 * process_scheduled_works - process scheduled works
2265 * @worker: self
2266 *
2267 * Process all scheduled works. Please note that the scheduled list
2268 * may change while processing a work, so this function repeatedly
2269 * fetches a work from the top and executes it.
2270 *
2271 * CONTEXT:
d565ed63 2272 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2273 * multiple times.
2274 */
2275static void process_scheduled_works(struct worker *worker)
1da177e4 2276{
affee4b2
TH
2277 while (!list_empty(&worker->scheduled)) {
2278 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2279 struct work_struct, entry);
c34056a3 2280 process_one_work(worker, work);
1da177e4 2281 }
1da177e4
LT
2282}
2283
4690c4ab
TH
2284/**
2285 * worker_thread - the worker thread function
c34056a3 2286 * @__worker: self
4690c4ab 2287 *
c5aa87bb
TH
2288 * The worker thread function. All workers belong to a worker_pool -
2289 * either a per-cpu one or dynamic unbound one. These workers process all
2290 * work items regardless of their specific target workqueue. The only
2291 * exception is work items which belong to workqueues with a rescuer which
2292 * will be explained in rescuer_thread().
4690c4ab 2293 */
c34056a3 2294static int worker_thread(void *__worker)
1da177e4 2295{
c34056a3 2296 struct worker *worker = __worker;
bd7bdd43 2297 struct worker_pool *pool = worker->pool;
1da177e4 2298
e22bee78
TH
2299 /* tell the scheduler that this is a workqueue worker */
2300 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2301woke_up:
d565ed63 2302 spin_lock_irq(&pool->lock);
1da177e4 2303
a9ab775b
TH
2304 /* am I supposed to die? */
2305 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2306 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2307 WARN_ON_ONCE(!list_empty(&worker->entry));
2308 worker->task->flags &= ~PF_WQ_WORKER;
2309 return 0;
c8e55f36 2310 }
affee4b2 2311
c8e55f36 2312 worker_leave_idle(worker);
db7bccf4 2313recheck:
e22bee78 2314 /* no more worker necessary? */
63d95a91 2315 if (!need_more_worker(pool))
e22bee78
TH
2316 goto sleep;
2317
2318 /* do we need to manage? */
63d95a91 2319 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2320 goto recheck;
2321
c8e55f36
TH
2322 /*
2323 * ->scheduled list can only be filled while a worker is
2324 * preparing to process a work or actually processing it.
2325 * Make sure nobody diddled with it while I was sleeping.
2326 */
6183c009 2327 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2328
e22bee78 2329 /*
a9ab775b
TH
2330 * Finish PREP stage. We're guaranteed to have at least one idle
2331 * worker or that someone else has already assumed the manager
2332 * role. This is where @worker starts participating in concurrency
2333 * management if applicable and concurrency management is restored
2334 * after being rebound. See rebind_workers() for details.
e22bee78 2335 */
a9ab775b 2336 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2337
2338 do {
c8e55f36 2339 struct work_struct *work =
bd7bdd43 2340 list_first_entry(&pool->worklist,
c8e55f36
TH
2341 struct work_struct, entry);
2342
2343 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2344 /* optimization path, not strictly necessary */
2345 process_one_work(worker, work);
2346 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2347 process_scheduled_works(worker);
c8e55f36
TH
2348 } else {
2349 move_linked_works(work, &worker->scheduled, NULL);
2350 process_scheduled_works(worker);
affee4b2 2351 }
63d95a91 2352 } while (keep_working(pool));
e22bee78
TH
2353
2354 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2355sleep:
63d95a91 2356 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2357 goto recheck;
d313dd85 2358
c8e55f36 2359 /*
d565ed63
TH
2360 * pool->lock is held and there's no work to process and no need to
2361 * manage, sleep. Workers are woken up only while holding
2362 * pool->lock or from local cpu, so setting the current state
2363 * before releasing pool->lock is enough to prevent losing any
2364 * event.
c8e55f36
TH
2365 */
2366 worker_enter_idle(worker);
2367 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2368 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2369 schedule();
2370 goto woke_up;
1da177e4
LT
2371}
2372
e22bee78
TH
2373/**
2374 * rescuer_thread - the rescuer thread function
111c225a 2375 * @__rescuer: self
e22bee78
TH
2376 *
2377 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2378 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2379 *
706026c2 2380 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2381 * worker which uses GFP_KERNEL allocation which has slight chance of
2382 * developing into deadlock if some works currently on the same queue
2383 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2384 * the problem rescuer solves.
2385 *
706026c2
TH
2386 * When such condition is possible, the pool summons rescuers of all
2387 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2388 * those works so that forward progress can be guaranteed.
2389 *
2390 * This should happen rarely.
2391 */
111c225a 2392static int rescuer_thread(void *__rescuer)
e22bee78 2393{
111c225a
TH
2394 struct worker *rescuer = __rescuer;
2395 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2396 struct list_head *scheduled = &rescuer->scheduled;
f56fb0d4 2397 bool should_stop;
e22bee78
TH
2398
2399 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2400
2401 /*
2402 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2403 * doesn't participate in concurrency management.
2404 */
2405 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2406repeat:
2407 set_current_state(TASK_INTERRUPTIBLE);
2408
f56fb0d4
LJ
2409 /*
2410 * By the time the rescuer is requested to stop, the workqueue
2411 * shouldn't have any work pending, but @wq->maydays may still have
2412 * pwq(s) queued. This can happen by non-rescuer workers consuming
2413 * all the work items before the rescuer got to them. Go through
2414 * @wq->maydays processing before acting on should_stop so that the
2415 * list is always empty on exit.
2416 */
2417 should_stop = kthread_should_stop();
e22bee78 2418
493a1724 2419 /* see whether any pwq is asking for help */
2e109a28 2420 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2421
2422 while (!list_empty(&wq->maydays)) {
2423 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2424 struct pool_workqueue, mayday_node);
112202d9 2425 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2426 struct work_struct *work, *n;
2427
2428 __set_current_state(TASK_RUNNING);
493a1724
TH
2429 list_del_init(&pwq->mayday_node);
2430
2e109a28 2431 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2432
2433 /* migrate to the target cpu if possible */
f36dc67b 2434 worker_maybe_bind_and_lock(pool);
b3104104 2435 rescuer->pool = pool;
e22bee78
TH
2436
2437 /*
2438 * Slurp in all works issued via this workqueue and
2439 * process'em.
2440 */
6183c009 2441 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2442 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2443 if (get_work_pwq(work) == pwq)
e22bee78
TH
2444 move_linked_works(work, scheduled, &n);
2445
2446 process_scheduled_works(rescuer);
7576958a 2447
aac8b37f
LJ
2448 /*
2449 * Put the reference grabbed by send_mayday(). @pool won't
2450 * go away while we're holding its lock.
2451 */
2452 put_pwq(pwq);
2453
7576958a 2454 /*
d565ed63 2455 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2456 * regular worker; otherwise, we end up with 0 concurrency
2457 * and stalling the execution.
2458 */
63d95a91
TH
2459 if (keep_working(pool))
2460 wake_up_worker(pool);
7576958a 2461
b3104104 2462 rescuer->pool = NULL;
493a1724 2463 spin_unlock(&pool->lock);
2e109a28 2464 spin_lock(&wq_mayday_lock);
e22bee78
TH
2465 }
2466
2e109a28 2467 spin_unlock_irq(&wq_mayday_lock);
493a1724 2468
f56fb0d4
LJ
2469 if (should_stop) {
2470 __set_current_state(TASK_RUNNING);
2471 rescuer->task->flags &= ~PF_WQ_WORKER;
2472 return 0;
2473 }
2474
111c225a
TH
2475 /* rescuers should never participate in concurrency management */
2476 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2477 schedule();
2478 goto repeat;
1da177e4
LT
2479}
2480
fc2e4d70
ON
2481struct wq_barrier {
2482 struct work_struct work;
2483 struct completion done;
2484};
2485
2486static void wq_barrier_func(struct work_struct *work)
2487{
2488 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2489 complete(&barr->done);
2490}
2491
4690c4ab
TH
2492/**
2493 * insert_wq_barrier - insert a barrier work
112202d9 2494 * @pwq: pwq to insert barrier into
4690c4ab 2495 * @barr: wq_barrier to insert
affee4b2
TH
2496 * @target: target work to attach @barr to
2497 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2498 *
affee4b2
TH
2499 * @barr is linked to @target such that @barr is completed only after
2500 * @target finishes execution. Please note that the ordering
2501 * guarantee is observed only with respect to @target and on the local
2502 * cpu.
2503 *
2504 * Currently, a queued barrier can't be canceled. This is because
2505 * try_to_grab_pending() can't determine whether the work to be
2506 * grabbed is at the head of the queue and thus can't clear LINKED
2507 * flag of the previous work while there must be a valid next work
2508 * after a work with LINKED flag set.
2509 *
2510 * Note that when @worker is non-NULL, @target may be modified
112202d9 2511 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2512 *
2513 * CONTEXT:
d565ed63 2514 * spin_lock_irq(pool->lock).
4690c4ab 2515 */
112202d9 2516static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2517 struct wq_barrier *barr,
2518 struct work_struct *target, struct worker *worker)
fc2e4d70 2519{
affee4b2
TH
2520 struct list_head *head;
2521 unsigned int linked = 0;
2522
dc186ad7 2523 /*
d565ed63 2524 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2525 * as we know for sure that this will not trigger any of the
2526 * checks and call back into the fixup functions where we
2527 * might deadlock.
2528 */
ca1cab37 2529 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2530 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2531 init_completion(&barr->done);
83c22520 2532
affee4b2
TH
2533 /*
2534 * If @target is currently being executed, schedule the
2535 * barrier to the worker; otherwise, put it after @target.
2536 */
2537 if (worker)
2538 head = worker->scheduled.next;
2539 else {
2540 unsigned long *bits = work_data_bits(target);
2541
2542 head = target->entry.next;
2543 /* there can already be other linked works, inherit and set */
2544 linked = *bits & WORK_STRUCT_LINKED;
2545 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2546 }
2547
dc186ad7 2548 debug_work_activate(&barr->work);
112202d9 2549 insert_work(pwq, &barr->work, head,
affee4b2 2550 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2551}
2552
73f53c4a 2553/**
112202d9 2554 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2555 * @wq: workqueue being flushed
2556 * @flush_color: new flush color, < 0 for no-op
2557 * @work_color: new work color, < 0 for no-op
2558 *
112202d9 2559 * Prepare pwqs for workqueue flushing.
73f53c4a 2560 *
112202d9
TH
2561 * If @flush_color is non-negative, flush_color on all pwqs should be
2562 * -1. If no pwq has in-flight commands at the specified color, all
2563 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2564 * has in flight commands, its pwq->flush_color is set to
2565 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2566 * wakeup logic is armed and %true is returned.
2567 *
2568 * The caller should have initialized @wq->first_flusher prior to
2569 * calling this function with non-negative @flush_color. If
2570 * @flush_color is negative, no flush color update is done and %false
2571 * is returned.
2572 *
112202d9 2573 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2574 * work_color which is previous to @work_color and all will be
2575 * advanced to @work_color.
2576 *
2577 * CONTEXT:
3c25a55d 2578 * mutex_lock(wq->mutex).
73f53c4a
TH
2579 *
2580 * RETURNS:
2581 * %true if @flush_color >= 0 and there's something to flush. %false
2582 * otherwise.
2583 */
112202d9 2584static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2585 int flush_color, int work_color)
1da177e4 2586{
73f53c4a 2587 bool wait = false;
49e3cf44 2588 struct pool_workqueue *pwq;
1da177e4 2589
73f53c4a 2590 if (flush_color >= 0) {
6183c009 2591 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2592 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2593 }
2355b70f 2594
49e3cf44 2595 for_each_pwq(pwq, wq) {
112202d9 2596 struct worker_pool *pool = pwq->pool;
fc2e4d70 2597
b09f4fd3 2598 spin_lock_irq(&pool->lock);
83c22520 2599
73f53c4a 2600 if (flush_color >= 0) {
6183c009 2601 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2602
112202d9
TH
2603 if (pwq->nr_in_flight[flush_color]) {
2604 pwq->flush_color = flush_color;
2605 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2606 wait = true;
2607 }
2608 }
1da177e4 2609
73f53c4a 2610 if (work_color >= 0) {
6183c009 2611 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2612 pwq->work_color = work_color;
73f53c4a 2613 }
1da177e4 2614
b09f4fd3 2615 spin_unlock_irq(&pool->lock);
1da177e4 2616 }
2355b70f 2617
112202d9 2618 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2619 complete(&wq->first_flusher->done);
14441960 2620
73f53c4a 2621 return wait;
1da177e4
LT
2622}
2623
0fcb78c2 2624/**
1da177e4 2625 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2626 * @wq: workqueue to flush
1da177e4 2627 *
c5aa87bb
TH
2628 * This function sleeps until all work items which were queued on entry
2629 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2630 */
7ad5b3a5 2631void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2632{
73f53c4a
TH
2633 struct wq_flusher this_flusher = {
2634 .list = LIST_HEAD_INIT(this_flusher.list),
2635 .flush_color = -1,
2636 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2637 };
2638 int next_color;
1da177e4 2639
3295f0ef
IM
2640 lock_map_acquire(&wq->lockdep_map);
2641 lock_map_release(&wq->lockdep_map);
73f53c4a 2642
3c25a55d 2643 mutex_lock(&wq->mutex);
73f53c4a
TH
2644
2645 /*
2646 * Start-to-wait phase
2647 */
2648 next_color = work_next_color(wq->work_color);
2649
2650 if (next_color != wq->flush_color) {
2651 /*
2652 * Color space is not full. The current work_color
2653 * becomes our flush_color and work_color is advanced
2654 * by one.
2655 */
6183c009 2656 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2657 this_flusher.flush_color = wq->work_color;
2658 wq->work_color = next_color;
2659
2660 if (!wq->first_flusher) {
2661 /* no flush in progress, become the first flusher */
6183c009 2662 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2663
2664 wq->first_flusher = &this_flusher;
2665
112202d9 2666 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2667 wq->work_color)) {
2668 /* nothing to flush, done */
2669 wq->flush_color = next_color;
2670 wq->first_flusher = NULL;
2671 goto out_unlock;
2672 }
2673 } else {
2674 /* wait in queue */
6183c009 2675 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2676 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2677 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2678 }
2679 } else {
2680 /*
2681 * Oops, color space is full, wait on overflow queue.
2682 * The next flush completion will assign us
2683 * flush_color and transfer to flusher_queue.
2684 */
2685 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2686 }
2687
3c25a55d 2688 mutex_unlock(&wq->mutex);
73f53c4a
TH
2689
2690 wait_for_completion(&this_flusher.done);
2691
2692 /*
2693 * Wake-up-and-cascade phase
2694 *
2695 * First flushers are responsible for cascading flushes and
2696 * handling overflow. Non-first flushers can simply return.
2697 */
2698 if (wq->first_flusher != &this_flusher)
2699 return;
2700
3c25a55d 2701 mutex_lock(&wq->mutex);
73f53c4a 2702
4ce48b37
TH
2703 /* we might have raced, check again with mutex held */
2704 if (wq->first_flusher != &this_flusher)
2705 goto out_unlock;
2706
73f53c4a
TH
2707 wq->first_flusher = NULL;
2708
6183c009
TH
2709 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2710 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2711
2712 while (true) {
2713 struct wq_flusher *next, *tmp;
2714
2715 /* complete all the flushers sharing the current flush color */
2716 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2717 if (next->flush_color != wq->flush_color)
2718 break;
2719 list_del_init(&next->list);
2720 complete(&next->done);
2721 }
2722
6183c009
TH
2723 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2724 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2725
2726 /* this flush_color is finished, advance by one */
2727 wq->flush_color = work_next_color(wq->flush_color);
2728
2729 /* one color has been freed, handle overflow queue */
2730 if (!list_empty(&wq->flusher_overflow)) {
2731 /*
2732 * Assign the same color to all overflowed
2733 * flushers, advance work_color and append to
2734 * flusher_queue. This is the start-to-wait
2735 * phase for these overflowed flushers.
2736 */
2737 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2738 tmp->flush_color = wq->work_color;
2739
2740 wq->work_color = work_next_color(wq->work_color);
2741
2742 list_splice_tail_init(&wq->flusher_overflow,
2743 &wq->flusher_queue);
112202d9 2744 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2745 }
2746
2747 if (list_empty(&wq->flusher_queue)) {
6183c009 2748 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2749 break;
2750 }
2751
2752 /*
2753 * Need to flush more colors. Make the next flusher
112202d9 2754 * the new first flusher and arm pwqs.
73f53c4a 2755 */
6183c009
TH
2756 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2757 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2758
2759 list_del_init(&next->list);
2760 wq->first_flusher = next;
2761
112202d9 2762 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2763 break;
2764
2765 /*
2766 * Meh... this color is already done, clear first
2767 * flusher and repeat cascading.
2768 */
2769 wq->first_flusher = NULL;
2770 }
2771
2772out_unlock:
3c25a55d 2773 mutex_unlock(&wq->mutex);
1da177e4 2774}
ae90dd5d 2775EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2776
9c5a2ba7
TH
2777/**
2778 * drain_workqueue - drain a workqueue
2779 * @wq: workqueue to drain
2780 *
2781 * Wait until the workqueue becomes empty. While draining is in progress,
2782 * only chain queueing is allowed. IOW, only currently pending or running
2783 * work items on @wq can queue further work items on it. @wq is flushed
2784 * repeatedly until it becomes empty. The number of flushing is detemined
2785 * by the depth of chaining and should be relatively short. Whine if it
2786 * takes too long.
2787 */
2788void drain_workqueue(struct workqueue_struct *wq)
2789{
2790 unsigned int flush_cnt = 0;
49e3cf44 2791 struct pool_workqueue *pwq;
9c5a2ba7
TH
2792
2793 /*
2794 * __queue_work() needs to test whether there are drainers, is much
2795 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2796 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2797 */
87fc741e 2798 mutex_lock(&wq->mutex);
9c5a2ba7 2799 if (!wq->nr_drainers++)
618b01eb 2800 wq->flags |= __WQ_DRAINING;
87fc741e 2801 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2802reflush:
2803 flush_workqueue(wq);
2804
b09f4fd3 2805 mutex_lock(&wq->mutex);
76af4d93 2806
49e3cf44 2807 for_each_pwq(pwq, wq) {
fa2563e4 2808 bool drained;
9c5a2ba7 2809
b09f4fd3 2810 spin_lock_irq(&pwq->pool->lock);
112202d9 2811 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2812 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2813
2814 if (drained)
9c5a2ba7
TH
2815 continue;
2816
2817 if (++flush_cnt == 10 ||
2818 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2819 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2820 wq->name, flush_cnt);
76af4d93 2821
b09f4fd3 2822 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2823 goto reflush;
2824 }
2825
9c5a2ba7 2826 if (!--wq->nr_drainers)
618b01eb 2827 wq->flags &= ~__WQ_DRAINING;
87fc741e 2828 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2829}
2830EXPORT_SYMBOL_GPL(drain_workqueue);
2831
606a5020 2832static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2833{
affee4b2 2834 struct worker *worker = NULL;
c9e7cf27 2835 struct worker_pool *pool;
112202d9 2836 struct pool_workqueue *pwq;
db700897
ON
2837
2838 might_sleep();
fa1b54e6
TH
2839
2840 local_irq_disable();
c9e7cf27 2841 pool = get_work_pool(work);
fa1b54e6
TH
2842 if (!pool) {
2843 local_irq_enable();
baf59022 2844 return false;
fa1b54e6 2845 }
db700897 2846
fa1b54e6 2847 spin_lock(&pool->lock);
0b3dae68 2848 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2849 pwq = get_work_pwq(work);
2850 if (pwq) {
2851 if (unlikely(pwq->pool != pool))
4690c4ab 2852 goto already_gone;
606a5020 2853 } else {
c9e7cf27 2854 worker = find_worker_executing_work(pool, work);
affee4b2 2855 if (!worker)
4690c4ab 2856 goto already_gone;
112202d9 2857 pwq = worker->current_pwq;
606a5020 2858 }
db700897 2859
112202d9 2860 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2861 spin_unlock_irq(&pool->lock);
7a22ad75 2862
e159489b
TH
2863 /*
2864 * If @max_active is 1 or rescuer is in use, flushing another work
2865 * item on the same workqueue may lead to deadlock. Make sure the
2866 * flusher is not running on the same workqueue by verifying write
2867 * access.
2868 */
493008a8 2869 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2870 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2871 else
112202d9
TH
2872 lock_map_acquire_read(&pwq->wq->lockdep_map);
2873 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2874
401a8d04 2875 return true;
4690c4ab 2876already_gone:
d565ed63 2877 spin_unlock_irq(&pool->lock);
401a8d04 2878 return false;
db700897 2879}
baf59022
TH
2880
2881/**
2882 * flush_work - wait for a work to finish executing the last queueing instance
2883 * @work: the work to flush
2884 *
606a5020
TH
2885 * Wait until @work has finished execution. @work is guaranteed to be idle
2886 * on return if it hasn't been requeued since flush started.
baf59022
TH
2887 *
2888 * RETURNS:
2889 * %true if flush_work() waited for the work to finish execution,
2890 * %false if it was already idle.
2891 */
2892bool flush_work(struct work_struct *work)
2893{
2894 struct wq_barrier barr;
2895
0976dfc1
SB
2896 lock_map_acquire(&work->lockdep_map);
2897 lock_map_release(&work->lockdep_map);
2898
606a5020 2899 if (start_flush_work(work, &barr)) {
401a8d04
TH
2900 wait_for_completion(&barr.done);
2901 destroy_work_on_stack(&barr.work);
2902 return true;
606a5020 2903 } else {
401a8d04 2904 return false;
6e84d644 2905 }
6e84d644 2906}
606a5020 2907EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2908
01fc83d7
TH
2909struct cwt_wait {
2910 wait_queue_t wait;
2911 struct work_struct *work;
2912};
2913
2914static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2915{
2916 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2917
2918 if (cwait->work != key)
2919 return 0;
2920 return autoremove_wake_function(wait, mode, sync, key);
2921}
2922
36e227d2 2923static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2924{
01fc83d7 2925 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2926 unsigned long flags;
1f1f642e
ON
2927 int ret;
2928
2929 do {
bbb68dfa
TH
2930 ret = try_to_grab_pending(work, is_dwork, &flags);
2931 /*
01fc83d7
TH
2932 * If someone else is already canceling, wait for it to
2933 * finish. flush_work() doesn't work for PREEMPT_NONE
2934 * because we may get scheduled between @work's completion
2935 * and the other canceling task resuming and clearing
2936 * CANCELING - flush_work() will return false immediately
2937 * as @work is no longer busy, try_to_grab_pending() will
2938 * return -ENOENT as @work is still being canceled and the
2939 * other canceling task won't be able to clear CANCELING as
2940 * we're hogging the CPU.
2941 *
2942 * Let's wait for completion using a waitqueue. As this
2943 * may lead to the thundering herd problem, use a custom
2944 * wake function which matches @work along with exclusive
2945 * wait and wakeup.
bbb68dfa 2946 */
01fc83d7
TH
2947 if (unlikely(ret == -ENOENT)) {
2948 struct cwt_wait cwait;
2949
2950 init_wait(&cwait.wait);
2951 cwait.wait.func = cwt_wakefn;
2952 cwait.work = work;
2953
2954 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2955 TASK_UNINTERRUPTIBLE);
2956 if (work_is_canceling(work))
2957 schedule();
2958 finish_wait(&cancel_waitq, &cwait.wait);
2959 }
1f1f642e
ON
2960 } while (unlikely(ret < 0));
2961
bbb68dfa
TH
2962 /* tell other tasks trying to grab @work to back off */
2963 mark_work_canceling(work);
2964 local_irq_restore(flags);
2965
606a5020 2966 flush_work(work);
7a22ad75 2967 clear_work_data(work);
01fc83d7
TH
2968
2969 /*
2970 * Paired with prepare_to_wait() above so that either
2971 * waitqueue_active() is visible here or !work_is_canceling() is
2972 * visible there.
2973 */
2974 smp_mb();
2975 if (waitqueue_active(&cancel_waitq))
2976 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2977
1f1f642e
ON
2978 return ret;
2979}
2980
6e84d644 2981/**
401a8d04
TH
2982 * cancel_work_sync - cancel a work and wait for it to finish
2983 * @work: the work to cancel
6e84d644 2984 *
401a8d04
TH
2985 * Cancel @work and wait for its execution to finish. This function
2986 * can be used even if the work re-queues itself or migrates to
2987 * another workqueue. On return from this function, @work is
2988 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2989 *
401a8d04
TH
2990 * cancel_work_sync(&delayed_work->work) must not be used for
2991 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2992 *
401a8d04 2993 * The caller must ensure that the workqueue on which @work was last
6e84d644 2994 * queued can't be destroyed before this function returns.
401a8d04
TH
2995 *
2996 * RETURNS:
2997 * %true if @work was pending, %false otherwise.
6e84d644 2998 */
401a8d04 2999bool cancel_work_sync(struct work_struct *work)
6e84d644 3000{
36e227d2 3001 return __cancel_work_timer(work, false);
b89deed3 3002}
28e53bdd 3003EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3004
6e84d644 3005/**
401a8d04
TH
3006 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3007 * @dwork: the delayed work to flush
6e84d644 3008 *
401a8d04
TH
3009 * Delayed timer is cancelled and the pending work is queued for
3010 * immediate execution. Like flush_work(), this function only
3011 * considers the last queueing instance of @dwork.
1f1f642e 3012 *
401a8d04
TH
3013 * RETURNS:
3014 * %true if flush_work() waited for the work to finish execution,
3015 * %false if it was already idle.
6e84d644 3016 */
401a8d04
TH
3017bool flush_delayed_work(struct delayed_work *dwork)
3018{
8930caba 3019 local_irq_disable();
401a8d04 3020 if (del_timer_sync(&dwork->timer))
60c057bc 3021 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3022 local_irq_enable();
401a8d04
TH
3023 return flush_work(&dwork->work);
3024}
3025EXPORT_SYMBOL(flush_delayed_work);
3026
09383498 3027/**
57b30ae7
TH
3028 * cancel_delayed_work - cancel a delayed work
3029 * @dwork: delayed_work to cancel
09383498 3030 *
57b30ae7
TH
3031 * Kill off a pending delayed_work. Returns %true if @dwork was pending
3032 * and canceled; %false if wasn't pending. Note that the work callback
3033 * function may still be running on return, unless it returns %true and the
3034 * work doesn't re-arm itself. Explicitly flush or use
3035 * cancel_delayed_work_sync() to wait on it.
09383498 3036 *
57b30ae7 3037 * This function is safe to call from any context including IRQ handler.
09383498 3038 */
57b30ae7 3039bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3040{
57b30ae7
TH
3041 unsigned long flags;
3042 int ret;
3043
3044 do {
3045 ret = try_to_grab_pending(&dwork->work, true, &flags);
3046 } while (unlikely(ret == -EAGAIN));
3047
3048 if (unlikely(ret < 0))
3049 return false;
3050
7c3eed5c
TH
3051 set_work_pool_and_clear_pending(&dwork->work,
3052 get_work_pool_id(&dwork->work));
57b30ae7 3053 local_irq_restore(flags);
c0158ca6 3054 return ret;
09383498 3055}
57b30ae7 3056EXPORT_SYMBOL(cancel_delayed_work);
09383498 3057
401a8d04
TH
3058/**
3059 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3060 * @dwork: the delayed work cancel
3061 *
3062 * This is cancel_work_sync() for delayed works.
3063 *
3064 * RETURNS:
3065 * %true if @dwork was pending, %false otherwise.
3066 */
3067bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3068{
36e227d2 3069 return __cancel_work_timer(&dwork->work, true);
6e84d644 3070}
f5a421a4 3071EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3072
b6136773 3073/**
31ddd871 3074 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3075 * @func: the function to call
b6136773 3076 *
31ddd871
TH
3077 * schedule_on_each_cpu() executes @func on each online CPU using the
3078 * system workqueue and blocks until all CPUs have completed.
b6136773 3079 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3080 *
3081 * RETURNS:
3082 * 0 on success, -errno on failure.
b6136773 3083 */
65f27f38 3084int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3085{
3086 int cpu;
38f51568 3087 struct work_struct __percpu *works;
15316ba8 3088
b6136773
AM
3089 works = alloc_percpu(struct work_struct);
3090 if (!works)
15316ba8 3091 return -ENOMEM;
b6136773 3092
93981800
TH
3093 get_online_cpus();
3094
15316ba8 3095 for_each_online_cpu(cpu) {
9bfb1839
IM
3096 struct work_struct *work = per_cpu_ptr(works, cpu);
3097
3098 INIT_WORK(work, func);
b71ab8c2 3099 schedule_work_on(cpu, work);
65a64464 3100 }
93981800
TH
3101
3102 for_each_online_cpu(cpu)
3103 flush_work(per_cpu_ptr(works, cpu));
3104
95402b38 3105 put_online_cpus();
b6136773 3106 free_percpu(works);
15316ba8
CL
3107 return 0;
3108}
3109
eef6a7d5
AS
3110/**
3111 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3112 *
3113 * Forces execution of the kernel-global workqueue and blocks until its
3114 * completion.
3115 *
3116 * Think twice before calling this function! It's very easy to get into
3117 * trouble if you don't take great care. Either of the following situations
3118 * will lead to deadlock:
3119 *
3120 * One of the work items currently on the workqueue needs to acquire
3121 * a lock held by your code or its caller.
3122 *
3123 * Your code is running in the context of a work routine.
3124 *
3125 * They will be detected by lockdep when they occur, but the first might not
3126 * occur very often. It depends on what work items are on the workqueue and
3127 * what locks they need, which you have no control over.
3128 *
3129 * In most situations flushing the entire workqueue is overkill; you merely
3130 * need to know that a particular work item isn't queued and isn't running.
3131 * In such cases you should use cancel_delayed_work_sync() or
3132 * cancel_work_sync() instead.
3133 */
1da177e4
LT
3134void flush_scheduled_work(void)
3135{
d320c038 3136 flush_workqueue(system_wq);
1da177e4 3137}
ae90dd5d 3138EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3139
1fa44eca
JB
3140/**
3141 * execute_in_process_context - reliably execute the routine with user context
3142 * @fn: the function to execute
1fa44eca
JB
3143 * @ew: guaranteed storage for the execute work structure (must
3144 * be available when the work executes)
3145 *
3146 * Executes the function immediately if process context is available,
3147 * otherwise schedules the function for delayed execution.
3148 *
3149 * Returns: 0 - function was executed
3150 * 1 - function was scheduled for execution
3151 */
65f27f38 3152int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3153{
3154 if (!in_interrupt()) {
65f27f38 3155 fn(&ew->work);
1fa44eca
JB
3156 return 0;
3157 }
3158
65f27f38 3159 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3160 schedule_work(&ew->work);
3161
3162 return 1;
3163}
3164EXPORT_SYMBOL_GPL(execute_in_process_context);
3165
226223ab
TH
3166#ifdef CONFIG_SYSFS
3167/*
3168 * Workqueues with WQ_SYSFS flag set is visible to userland via
3169 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3170 * following attributes.
3171 *
3172 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3173 * max_active RW int : maximum number of in-flight work items
3174 *
3175 * Unbound workqueues have the following extra attributes.
3176 *
3177 * id RO int : the associated pool ID
3178 * nice RW int : nice value of the workers
3179 * cpumask RW mask : bitmask of allowed CPUs for the workers
3180 */
3181struct wq_device {
3182 struct workqueue_struct *wq;
3183 struct device dev;
3184};
3185
3186static struct workqueue_struct *dev_to_wq(struct device *dev)
3187{
3188 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3189
3190 return wq_dev->wq;
3191}
3192
3193static ssize_t wq_per_cpu_show(struct device *dev,
3194 struct device_attribute *attr, char *buf)
3195{
3196 struct workqueue_struct *wq = dev_to_wq(dev);
3197
3198 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3199}
3200
3201static ssize_t wq_max_active_show(struct device *dev,
3202 struct device_attribute *attr, char *buf)
3203{
3204 struct workqueue_struct *wq = dev_to_wq(dev);
3205
3206 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3207}
3208
3209static ssize_t wq_max_active_store(struct device *dev,
3210 struct device_attribute *attr,
3211 const char *buf, size_t count)
3212{
3213 struct workqueue_struct *wq = dev_to_wq(dev);
3214 int val;
3215
3216 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3217 return -EINVAL;
3218
3219 workqueue_set_max_active(wq, val);
3220 return count;
3221}
3222
3223static struct device_attribute wq_sysfs_attrs[] = {
3224 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3225 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3226 __ATTR_NULL,
3227};
3228
d55262c4
TH
3229static ssize_t wq_pool_ids_show(struct device *dev,
3230 struct device_attribute *attr, char *buf)
226223ab
TH
3231{
3232 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3233 const char *delim = "";
3234 int node, written = 0;
226223ab
TH
3235
3236 rcu_read_lock_sched();
d55262c4
TH
3237 for_each_node(node) {
3238 written += scnprintf(buf + written, PAGE_SIZE - written,
3239 "%s%d:%d", delim, node,
3240 unbound_pwq_by_node(wq, node)->pool->id);
3241 delim = " ";
3242 }
3243 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3244 rcu_read_unlock_sched();
3245
3246 return written;
3247}
3248
3249static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3250 char *buf)
3251{
3252 struct workqueue_struct *wq = dev_to_wq(dev);
3253 int written;
3254
6029a918
TH
3255 mutex_lock(&wq->mutex);
3256 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3257 mutex_unlock(&wq->mutex);
226223ab
TH
3258
3259 return written;
3260}
3261
3262/* prepare workqueue_attrs for sysfs store operations */
3263static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3264{
3265 struct workqueue_attrs *attrs;
3266
3267 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3268 if (!attrs)
3269 return NULL;
3270
6029a918
TH
3271 mutex_lock(&wq->mutex);
3272 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3273 mutex_unlock(&wq->mutex);
226223ab
TH
3274 return attrs;
3275}
3276
3277static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3278 const char *buf, size_t count)
3279{
3280 struct workqueue_struct *wq = dev_to_wq(dev);
3281 struct workqueue_attrs *attrs;
3282 int ret;
3283
3284 attrs = wq_sysfs_prep_attrs(wq);
3285 if (!attrs)
3286 return -ENOMEM;
3287
3288 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3289 attrs->nice >= -20 && attrs->nice <= 19)
3290 ret = apply_workqueue_attrs(wq, attrs);
3291 else
3292 ret = -EINVAL;
3293
3294 free_workqueue_attrs(attrs);
3295 return ret ?: count;
3296}
3297
3298static ssize_t wq_cpumask_show(struct device *dev,
3299 struct device_attribute *attr, char *buf)
3300{
3301 struct workqueue_struct *wq = dev_to_wq(dev);
3302 int written;
3303
6029a918
TH
3304 mutex_lock(&wq->mutex);
3305 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3306 mutex_unlock(&wq->mutex);
226223ab
TH
3307
3308 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3309 return written;
3310}
3311
3312static ssize_t wq_cpumask_store(struct device *dev,
3313 struct device_attribute *attr,
3314 const char *buf, size_t count)
3315{
3316 struct workqueue_struct *wq = dev_to_wq(dev);
3317 struct workqueue_attrs *attrs;
3318 int ret;
3319
3320 attrs = wq_sysfs_prep_attrs(wq);
3321 if (!attrs)
3322 return -ENOMEM;
3323
3324 ret = cpumask_parse(buf, attrs->cpumask);
3325 if (!ret)
3326 ret = apply_workqueue_attrs(wq, attrs);
3327
3328 free_workqueue_attrs(attrs);
3329 return ret ?: count;
3330}
3331
d55262c4
TH
3332static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3333 char *buf)
3334{
3335 struct workqueue_struct *wq = dev_to_wq(dev);
3336 int written;
3337
3338 mutex_lock(&wq->mutex);
3339 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3340 !wq->unbound_attrs->no_numa);
3341 mutex_unlock(&wq->mutex);
3342
3343 return written;
3344}
3345
3346static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3347 const char *buf, size_t count)
3348{
3349 struct workqueue_struct *wq = dev_to_wq(dev);
3350 struct workqueue_attrs *attrs;
3351 int v, ret;
3352
3353 attrs = wq_sysfs_prep_attrs(wq);
3354 if (!attrs)
3355 return -ENOMEM;
3356
3357 ret = -EINVAL;
3358 if (sscanf(buf, "%d", &v) == 1) {
3359 attrs->no_numa = !v;
3360 ret = apply_workqueue_attrs(wq, attrs);
3361 }
3362
3363 free_workqueue_attrs(attrs);
3364 return ret ?: count;
3365}
3366
226223ab 3367static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3368 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3369 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3370 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3371 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3372 __ATTR_NULL,
3373};
3374
3375static struct bus_type wq_subsys = {
3376 .name = "workqueue",
3377 .dev_attrs = wq_sysfs_attrs,
3378};
3379
3380static int __init wq_sysfs_init(void)
3381{
3382 return subsys_virtual_register(&wq_subsys, NULL);
3383}
3384core_initcall(wq_sysfs_init);
3385
3386static void wq_device_release(struct device *dev)
3387{
3388 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3389
3390 kfree(wq_dev);
3391}
3392
3393/**
3394 * workqueue_sysfs_register - make a workqueue visible in sysfs
3395 * @wq: the workqueue to register
3396 *
3397 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3398 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3399 * which is the preferred method.
3400 *
3401 * Workqueue user should use this function directly iff it wants to apply
3402 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3403 * apply_workqueue_attrs() may race against userland updating the
3404 * attributes.
3405 *
3406 * Returns 0 on success, -errno on failure.
3407 */
3408int workqueue_sysfs_register(struct workqueue_struct *wq)
3409{
3410 struct wq_device *wq_dev;
3411 int ret;
3412
3413 /*
3414 * Adjusting max_active or creating new pwqs by applyting
3415 * attributes breaks ordering guarantee. Disallow exposing ordered
3416 * workqueues.
3417 */
f3538ebd 3418 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
226223ab
TH
3419 return -EINVAL;
3420
3421 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3422 if (!wq_dev)
3423 return -ENOMEM;
3424
3425 wq_dev->wq = wq;
3426 wq_dev->dev.bus = &wq_subsys;
3427 wq_dev->dev.init_name = wq->name;
3428 wq_dev->dev.release = wq_device_release;
3429
3430 /*
3431 * unbound_attrs are created separately. Suppress uevent until
3432 * everything is ready.
3433 */
3434 dev_set_uevent_suppress(&wq_dev->dev, true);
3435
3436 ret = device_register(&wq_dev->dev);
3437 if (ret) {
3438 kfree(wq_dev);
3439 wq->wq_dev = NULL;
3440 return ret;
3441 }
3442
3443 if (wq->flags & WQ_UNBOUND) {
3444 struct device_attribute *attr;
3445
3446 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3447 ret = device_create_file(&wq_dev->dev, attr);
3448 if (ret) {
3449 device_unregister(&wq_dev->dev);
3450 wq->wq_dev = NULL;
3451 return ret;
3452 }
3453 }
3454 }
3455
7c36f88c 3456 dev_set_uevent_suppress(&wq_dev->dev, false);
226223ab
TH
3457 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3458 return 0;
3459}
3460
3461/**
3462 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3463 * @wq: the workqueue to unregister
3464 *
3465 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3466 */
3467static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3468{
3469 struct wq_device *wq_dev = wq->wq_dev;
3470
3471 if (!wq->wq_dev)
3472 return;
3473
3474 wq->wq_dev = NULL;
3475 device_unregister(&wq_dev->dev);
3476}
3477#else /* CONFIG_SYSFS */
3478static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3479#endif /* CONFIG_SYSFS */
3480
7a4e344c
TH
3481/**
3482 * free_workqueue_attrs - free a workqueue_attrs
3483 * @attrs: workqueue_attrs to free
3484 *
3485 * Undo alloc_workqueue_attrs().
3486 */
3487void free_workqueue_attrs(struct workqueue_attrs *attrs)
3488{
3489 if (attrs) {
3490 free_cpumask_var(attrs->cpumask);
3491 kfree(attrs);
3492 }
3493}
3494
3495/**
3496 * alloc_workqueue_attrs - allocate a workqueue_attrs
3497 * @gfp_mask: allocation mask to use
3498 *
3499 * Allocate a new workqueue_attrs, initialize with default settings and
3500 * return it. Returns NULL on failure.
3501 */
3502struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3503{
3504 struct workqueue_attrs *attrs;
3505
3506 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3507 if (!attrs)
3508 goto fail;
3509 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3510 goto fail;
3511
13e2e556 3512 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3513 return attrs;
3514fail:
3515 free_workqueue_attrs(attrs);
3516 return NULL;
3517}
3518
29c91e99
TH
3519static void copy_workqueue_attrs(struct workqueue_attrs *to,
3520 const struct workqueue_attrs *from)
3521{
3522 to->nice = from->nice;
3523 cpumask_copy(to->cpumask, from->cpumask);
73b8bd6d
SL
3524 /*
3525 * Unlike hash and equality test, this function doesn't ignore
3526 * ->no_numa as it is used for both pool and wq attrs. Instead,
3527 * get_unbound_pool() explicitly clears ->no_numa after copying.
3528 */
3529 to->no_numa = from->no_numa;
29c91e99
TH
3530}
3531
29c91e99
TH
3532/* hash value of the content of @attr */
3533static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3534{
3535 u32 hash = 0;
3536
3537 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3538 hash = jhash(cpumask_bits(attrs->cpumask),
3539 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3540 return hash;
3541}
3542
3543/* content equality test */
3544static bool wqattrs_equal(const struct workqueue_attrs *a,
3545 const struct workqueue_attrs *b)
3546{
3547 if (a->nice != b->nice)
3548 return false;
3549 if (!cpumask_equal(a->cpumask, b->cpumask))
3550 return false;
3551 return true;
3552}
3553
7a4e344c
TH
3554/**
3555 * init_worker_pool - initialize a newly zalloc'd worker_pool
3556 * @pool: worker_pool to initialize
3557 *
3558 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3559 * Returns 0 on success, -errno on failure. Even on failure, all fields
3560 * inside @pool proper are initialized and put_unbound_pool() can be called
3561 * on @pool safely to release it.
7a4e344c
TH
3562 */
3563static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3564{
3565 spin_lock_init(&pool->lock);
29c91e99
TH
3566 pool->id = -1;
3567 pool->cpu = -1;
f3f90ad4 3568 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3569 pool->flags |= POOL_DISASSOCIATED;
3570 INIT_LIST_HEAD(&pool->worklist);
3571 INIT_LIST_HEAD(&pool->idle_list);
3572 hash_init(pool->busy_hash);
3573
3574 init_timer_deferrable(&pool->idle_timer);
3575 pool->idle_timer.function = idle_worker_timeout;
3576 pool->idle_timer.data = (unsigned long)pool;
3577
3578 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3579 (unsigned long)pool);
3580
3581 mutex_init(&pool->manager_arb);
bc3a1afc 3582 mutex_init(&pool->manager_mutex);
822d8405 3583 idr_init(&pool->worker_idr);
7a4e344c 3584
29c91e99
TH
3585 INIT_HLIST_NODE(&pool->hash_node);
3586 pool->refcnt = 1;
3587
3588 /* shouldn't fail above this point */
7a4e344c
TH
3589 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3590 if (!pool->attrs)
3591 return -ENOMEM;
3592 return 0;
4e1a1f9a
TH
3593}
3594
29c91e99
TH
3595static void rcu_free_pool(struct rcu_head *rcu)
3596{
3597 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3598
822d8405 3599 idr_destroy(&pool->worker_idr);
29c91e99
TH
3600 free_workqueue_attrs(pool->attrs);
3601 kfree(pool);
3602}
3603
3604/**
3605 * put_unbound_pool - put a worker_pool
3606 * @pool: worker_pool to put
3607 *
3608 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3609 * safe manner. get_unbound_pool() calls this function on its failure path
3610 * and this function should be able to release pools which went through,
3611 * successfully or not, init_worker_pool().
a892cacc
TH
3612 *
3613 * Should be called with wq_pool_mutex held.
29c91e99
TH
3614 */
3615static void put_unbound_pool(struct worker_pool *pool)
3616{
3617 struct worker *worker;
3618
a892cacc
TH
3619 lockdep_assert_held(&wq_pool_mutex);
3620
3621 if (--pool->refcnt)
29c91e99 3622 return;
29c91e99
TH
3623
3624 /* sanity checks */
3625 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3626 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3627 return;
29c91e99
TH
3628
3629 /* release id and unhash */
3630 if (pool->id >= 0)
3631 idr_remove(&worker_pool_idr, pool->id);
3632 hash_del(&pool->hash_node);
3633
c5aa87bb
TH
3634 /*
3635 * Become the manager and destroy all workers. Grabbing
3636 * manager_arb prevents @pool's workers from blocking on
3637 * manager_mutex.
3638 */
29c91e99 3639 mutex_lock(&pool->manager_arb);
cd549687 3640 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3641 spin_lock_irq(&pool->lock);
3642
3643 while ((worker = first_worker(pool)))
3644 destroy_worker(worker);
3645 WARN_ON(pool->nr_workers || pool->nr_idle);
3646
3647 spin_unlock_irq(&pool->lock);
cd549687 3648 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3649 mutex_unlock(&pool->manager_arb);
3650
3651 /* shut down the timers */
3652 del_timer_sync(&pool->idle_timer);
3653 del_timer_sync(&pool->mayday_timer);
3654
3655 /* sched-RCU protected to allow dereferences from get_work_pool() */
3656 call_rcu_sched(&pool->rcu, rcu_free_pool);
3657}
3658
3659/**
3660 * get_unbound_pool - get a worker_pool with the specified attributes
3661 * @attrs: the attributes of the worker_pool to get
3662 *
3663 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3664 * reference count and return it. If there already is a matching
3665 * worker_pool, it will be used; otherwise, this function attempts to
3666 * create a new one. On failure, returns NULL.
a892cacc
TH
3667 *
3668 * Should be called with wq_pool_mutex held.
29c91e99
TH
3669 */
3670static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3671{
29c91e99
TH
3672 u32 hash = wqattrs_hash(attrs);
3673 struct worker_pool *pool;
f3f90ad4 3674 int node;
29c91e99 3675
a892cacc 3676 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3677
3678 /* do we already have a matching pool? */
29c91e99
TH
3679 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3680 if (wqattrs_equal(pool->attrs, attrs)) {
3681 pool->refcnt++;
3682 goto out_unlock;
3683 }
3684 }
29c91e99
TH
3685
3686 /* nope, create a new one */
3687 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3688 if (!pool || init_worker_pool(pool) < 0)
3689 goto fail;
3690
12ee4fc6
LJ
3691 if (workqueue_freezing)
3692 pool->flags |= POOL_FREEZING;
3693
8864b4e5 3694 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3695 copy_workqueue_attrs(pool->attrs, attrs);
3696
73b8bd6d
SL
3697 /*
3698 * no_numa isn't a worker_pool attribute, always clear it. See
3699 * 'struct workqueue_attrs' comments for detail.
3700 */
3701 pool->attrs->no_numa = false;
3702
f3f90ad4
TH
3703 /* if cpumask is contained inside a NUMA node, we belong to that node */
3704 if (wq_numa_enabled) {
3705 for_each_node(node) {
3706 if (cpumask_subset(pool->attrs->cpumask,
3707 wq_numa_possible_cpumask[node])) {
3708 pool->node = node;
3709 break;
3710 }
3711 }
3712 }
3713
29c91e99
TH
3714 if (worker_pool_assign_id(pool) < 0)
3715 goto fail;
3716
3717 /* create and start the initial worker */
ebf44d16 3718 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3719 goto fail;
3720
29c91e99 3721 /* install */
29c91e99
TH
3722 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3723out_unlock:
29c91e99
TH
3724 return pool;
3725fail:
29c91e99
TH
3726 if (pool)
3727 put_unbound_pool(pool);
3728 return NULL;
3729}
3730
8864b4e5
TH
3731static void rcu_free_pwq(struct rcu_head *rcu)
3732{
3733 kmem_cache_free(pwq_cache,
3734 container_of(rcu, struct pool_workqueue, rcu));
3735}
3736
3737/*
3738 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3739 * and needs to be destroyed.
3740 */
3741static void pwq_unbound_release_workfn(struct work_struct *work)
3742{
3743 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3744 unbound_release_work);
3745 struct workqueue_struct *wq = pwq->wq;
3746 struct worker_pool *pool = pwq->pool;
bc0caf09 3747 bool is_last;
8864b4e5
TH
3748
3749 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3750 return;
3751
75ccf595 3752 /*
3c25a55d 3753 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3754 * necessary on release but do it anyway. It's easier to verify
3755 * and consistent with the linking path.
3756 */
3c25a55d 3757 mutex_lock(&wq->mutex);
8864b4e5 3758 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3759 is_last = list_empty(&wq->pwqs);
3c25a55d 3760 mutex_unlock(&wq->mutex);
8864b4e5 3761
a892cacc 3762 mutex_lock(&wq_pool_mutex);
8864b4e5 3763 put_unbound_pool(pool);
a892cacc
TH
3764 mutex_unlock(&wq_pool_mutex);
3765
8864b4e5
TH
3766 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3767
3768 /*
3769 * If we're the last pwq going away, @wq is already dead and no one
3770 * is gonna access it anymore. Free it.
3771 */
6029a918
TH
3772 if (is_last) {
3773 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3774 kfree(wq);
6029a918 3775 }
8864b4e5
TH
3776}
3777
0fbd95aa 3778/**
699ce097 3779 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3780 * @pwq: target pool_workqueue
0fbd95aa 3781 *
699ce097
TH
3782 * If @pwq isn't freezing, set @pwq->max_active to the associated
3783 * workqueue's saved_max_active and activate delayed work items
3784 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3785 */
699ce097 3786static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3787{
699ce097
TH
3788 struct workqueue_struct *wq = pwq->wq;
3789 bool freezable = wq->flags & WQ_FREEZABLE;
3790
3791 /* for @wq->saved_max_active */
a357fc03 3792 lockdep_assert_held(&wq->mutex);
699ce097
TH
3793
3794 /* fast exit for non-freezable wqs */
3795 if (!freezable && pwq->max_active == wq->saved_max_active)
3796 return;
3797
a357fc03 3798 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3799
3800 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3801 pwq->max_active = wq->saved_max_active;
0fbd95aa 3802
699ce097
TH
3803 while (!list_empty(&pwq->delayed_works) &&
3804 pwq->nr_active < pwq->max_active)
3805 pwq_activate_first_delayed(pwq);
951a078a
LJ
3806
3807 /*
3808 * Need to kick a worker after thawed or an unbound wq's
3809 * max_active is bumped. It's a slow path. Do it always.
3810 */
3811 wake_up_worker(pwq->pool);
699ce097
TH
3812 } else {
3813 pwq->max_active = 0;
3814 }
3815
a357fc03 3816 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3817}
3818
e50aba9a 3819/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3820static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3821 struct worker_pool *pool)
d2c1d404
TH
3822{
3823 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3824
e50aba9a
TH
3825 memset(pwq, 0, sizeof(*pwq));
3826
d2c1d404
TH
3827 pwq->pool = pool;
3828 pwq->wq = wq;
3829 pwq->flush_color = -1;
8864b4e5 3830 pwq->refcnt = 1;
d2c1d404 3831 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3832 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3833 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3834 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3835}
d2c1d404 3836
f147f29e 3837/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3838static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3839{
3840 struct workqueue_struct *wq = pwq->wq;
3841
3842 lockdep_assert_held(&wq->mutex);
75ccf595 3843
1befcf30
TH
3844 /* may be called multiple times, ignore if already linked */
3845 if (!list_empty(&pwq->pwqs_node))
3846 return;
3847
983ca25e
TH
3848 /*
3849 * Set the matching work_color. This is synchronized with
3c25a55d 3850 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3851 */
75ccf595 3852 pwq->work_color = wq->work_color;
983ca25e
TH
3853
3854 /* sync max_active to the current setting */
3855 pwq_adjust_max_active(pwq);
3856
3857 /* link in @pwq */
9e8cd2f5 3858 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3859}
a357fc03 3860
f147f29e
TH
3861/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3862static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3863 const struct workqueue_attrs *attrs)
3864{
3865 struct worker_pool *pool;
3866 struct pool_workqueue *pwq;
3867
3868 lockdep_assert_held(&wq_pool_mutex);
3869
3870 pool = get_unbound_pool(attrs);
3871 if (!pool)
3872 return NULL;
3873
e50aba9a 3874 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3875 if (!pwq) {
3876 put_unbound_pool(pool);
3877 return NULL;
df2d5ae4 3878 }
6029a918 3879
f147f29e
TH
3880 init_pwq(pwq, wq, pool);
3881 return pwq;
d2c1d404
TH
3882}
3883
4c16bd32
TH
3884/* undo alloc_unbound_pwq(), used only in the error path */
3885static void free_unbound_pwq(struct pool_workqueue *pwq)
3886{
3887 lockdep_assert_held(&wq_pool_mutex);
3888
3889 if (pwq) {
3890 put_unbound_pool(pwq->pool);
cece95df 3891 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3892 }
3893}
3894
3895/**
3896 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3897 * @attrs: the wq_attrs of interest
3898 * @node: the target NUMA node
3899 * @cpu_going_down: if >= 0, the CPU to consider as offline
3900 * @cpumask: outarg, the resulting cpumask
3901 *
3902 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3903 * @cpu_going_down is >= 0, that cpu is considered offline during
3904 * calculation. The result is stored in @cpumask. This function returns
3905 * %true if the resulting @cpumask is different from @attrs->cpumask,
3906 * %false if equal.
3907 *
3908 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3909 * enabled and @node has online CPUs requested by @attrs, the returned
3910 * cpumask is the intersection of the possible CPUs of @node and
3911 * @attrs->cpumask.
3912 *
3913 * The caller is responsible for ensuring that the cpumask of @node stays
3914 * stable.
3915 */
3916static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3917 int cpu_going_down, cpumask_t *cpumask)
3918{
d55262c4 3919 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3920 goto use_dfl;
3921
3922 /* does @node have any online CPUs @attrs wants? */
3923 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3924 if (cpu_going_down >= 0)
3925 cpumask_clear_cpu(cpu_going_down, cpumask);
3926
3927 if (cpumask_empty(cpumask))
3928 goto use_dfl;
3929
3930 /* yeap, return possible CPUs in @node that @attrs wants */
3931 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3932 return !cpumask_equal(cpumask, attrs->cpumask);
3933
3934use_dfl:
3935 cpumask_copy(cpumask, attrs->cpumask);
3936 return false;
3937}
3938
1befcf30
TH
3939/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3940static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3941 int node,
3942 struct pool_workqueue *pwq)
3943{
3944 struct pool_workqueue *old_pwq;
3945
3946 lockdep_assert_held(&wq->mutex);
3947
3948 /* link_pwq() can handle duplicate calls */
3949 link_pwq(pwq);
3950
3951 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3952 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3953 return old_pwq;
3954}
3955
9e8cd2f5
TH
3956/**
3957 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3958 * @wq: the target workqueue
3959 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3960 *
4c16bd32
TH
3961 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3962 * machines, this function maps a separate pwq to each NUMA node with
3963 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3964 * NUMA node it was issued on. Older pwqs are released as in-flight work
3965 * items finish. Note that a work item which repeatedly requeues itself
3966 * back-to-back will stay on its current pwq.
9e8cd2f5
TH
3967 *
3968 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3969 * failure.
3970 */
3971int apply_workqueue_attrs(struct workqueue_struct *wq,
3972 const struct workqueue_attrs *attrs)
3973{
4c16bd32
TH
3974 struct workqueue_attrs *new_attrs, *tmp_attrs;
3975 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3976 int node, ret;
9e8cd2f5 3977
8719dcea 3978 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3979 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3980 return -EINVAL;
3981
8719dcea 3982 /* creating multiple pwqs breaks ordering guarantee */
f3538ebd
TH
3983 if (!list_empty(&wq->pwqs)) {
3984 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3985 return -EINVAL;
3986
3987 wq->flags &= ~__WQ_ORDERED;
3988 }
8719dcea 3989
4c16bd32 3990 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3991 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3992 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3993 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3994 goto enomem;
3995
4c16bd32 3996 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3997 copy_workqueue_attrs(new_attrs, attrs);
3998 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3999
4c16bd32
TH
4000 /*
4001 * We may create multiple pwqs with differing cpumasks. Make a
4002 * copy of @new_attrs which will be modified and used to obtain
4003 * pools.
4004 */
4005 copy_workqueue_attrs(tmp_attrs, new_attrs);
4006
4007 /*
4008 * CPUs should stay stable across pwq creations and installations.
4009 * Pin CPUs, determine the target cpumask for each node and create
4010 * pwqs accordingly.
4011 */
4012 get_online_cpus();
4013
a892cacc 4014 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
4015
4016 /*
4017 * If something goes wrong during CPU up/down, we'll fall back to
4018 * the default pwq covering whole @attrs->cpumask. Always create
4019 * it even if we don't use it immediately.
4020 */
4021 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4022 if (!dfl_pwq)
4023 goto enomem_pwq;
4024
4025 for_each_node(node) {
4026 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
4027 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4028 if (!pwq_tbl[node])
4029 goto enomem_pwq;
4030 } else {
4031 dfl_pwq->refcnt++;
4032 pwq_tbl[node] = dfl_pwq;
4033 }
4034 }
4035
f147f29e 4036 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 4037
4c16bd32 4038 /* all pwqs have been created successfully, let's install'em */
f147f29e 4039 mutex_lock(&wq->mutex);
a892cacc 4040
f147f29e 4041 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
4042
4043 /* save the previous pwq and install the new one */
f147f29e 4044 for_each_node(node)
4c16bd32
TH
4045 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
4046
4047 /* @dfl_pwq might not have been used, ensure it's linked */
4048 link_pwq(dfl_pwq);
4049 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
4050
4051 mutex_unlock(&wq->mutex);
9e8cd2f5 4052
4c16bd32
TH
4053 /* put the old pwqs */
4054 for_each_node(node)
4055 put_pwq_unlocked(pwq_tbl[node]);
4056 put_pwq_unlocked(dfl_pwq);
4057
4058 put_online_cpus();
4862125b
TH
4059 ret = 0;
4060 /* fall through */
4061out_free:
4c16bd32 4062 free_workqueue_attrs(tmp_attrs);
4862125b 4063 free_workqueue_attrs(new_attrs);
4c16bd32 4064 kfree(pwq_tbl);
4862125b 4065 return ret;
13e2e556 4066
4c16bd32
TH
4067enomem_pwq:
4068 free_unbound_pwq(dfl_pwq);
4069 for_each_node(node)
4070 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4071 free_unbound_pwq(pwq_tbl[node]);
4072 mutex_unlock(&wq_pool_mutex);
4073 put_online_cpus();
13e2e556 4074enomem:
4862125b
TH
4075 ret = -ENOMEM;
4076 goto out_free;
9e8cd2f5
TH
4077}
4078
4c16bd32
TH
4079/**
4080 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4081 * @wq: the target workqueue
4082 * @cpu: the CPU coming up or going down
4083 * @online: whether @cpu is coming up or going down
4084 *
4085 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4086 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4087 * @wq accordingly.
4088 *
4089 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4090 * falls back to @wq->dfl_pwq which may not be optimal but is always
4091 * correct.
4092 *
4093 * Note that when the last allowed CPU of a NUMA node goes offline for a
4094 * workqueue with a cpumask spanning multiple nodes, the workers which were
4095 * already executing the work items for the workqueue will lose their CPU
4096 * affinity and may execute on any CPU. This is similar to how per-cpu
4097 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4098 * affinity, it's the user's responsibility to flush the work item from
4099 * CPU_DOWN_PREPARE.
4100 */
4101static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4102 bool online)
4103{
4104 int node = cpu_to_node(cpu);
4105 int cpu_off = online ? -1 : cpu;
4106 struct pool_workqueue *old_pwq = NULL, *pwq;
4107 struct workqueue_attrs *target_attrs;
4108 cpumask_t *cpumask;
4109
4110 lockdep_assert_held(&wq_pool_mutex);
4111
4112 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4113 return;
4114
4115 /*
4116 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4117 * Let's use a preallocated one. The following buf is protected by
4118 * CPU hotplug exclusion.
4119 */
4120 target_attrs = wq_update_unbound_numa_attrs_buf;
4121 cpumask = target_attrs->cpumask;
4122
4123 mutex_lock(&wq->mutex);
d55262c4
TH
4124 if (wq->unbound_attrs->no_numa)
4125 goto out_unlock;
4c16bd32
TH
4126
4127 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4128 pwq = unbound_pwq_by_node(wq, node);
4129
4130 /*
4131 * Let's determine what needs to be done. If the target cpumask is
4132 * different from wq's, we need to compare it to @pwq's and create
4133 * a new one if they don't match. If the target cpumask equals
4134 * wq's, the default pwq should be used. If @pwq is already the
4135 * default one, nothing to do; otherwise, install the default one.
4136 */
4137 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4138 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4139 goto out_unlock;
4140 } else {
4141 if (pwq == wq->dfl_pwq)
4142 goto out_unlock;
4143 else
4144 goto use_dfl_pwq;
4145 }
4146
4147 mutex_unlock(&wq->mutex);
4148
4149 /* create a new pwq */
4150 pwq = alloc_unbound_pwq(wq, target_attrs);
4151 if (!pwq) {
4152 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4153 wq->name);
55a3dfcc
DY
4154 mutex_lock(&wq->mutex);
4155 goto use_dfl_pwq;
4c16bd32
TH
4156 }
4157
4158 /*
4159 * Install the new pwq. As this function is called only from CPU
4160 * hotplug callbacks and applying a new attrs is wrapped with
4161 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4162 * inbetween.
4163 */
4164 mutex_lock(&wq->mutex);
4165 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4166 goto out_unlock;
4167
4168use_dfl_pwq:
4169 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4170 get_pwq(wq->dfl_pwq);
4171 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4172 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4173out_unlock:
4174 mutex_unlock(&wq->mutex);
4175 put_pwq_unlocked(old_pwq);
4176}
4177
30cdf249 4178static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4179{
49e3cf44 4180 bool highpri = wq->flags & WQ_HIGHPRI;
ced4ac92 4181 int cpu, ret;
30cdf249
TH
4182
4183 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4184 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4185 if (!wq->cpu_pwqs)
30cdf249
TH
4186 return -ENOMEM;
4187
4188 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4189 struct pool_workqueue *pwq =
4190 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4191 struct worker_pool *cpu_pools =
f02ae73a 4192 per_cpu(cpu_worker_pools, cpu);
f3421797 4193
f147f29e
TH
4194 init_pwq(pwq, wq, &cpu_pools[highpri]);
4195
4196 mutex_lock(&wq->mutex);
1befcf30 4197 link_pwq(pwq);
f147f29e 4198 mutex_unlock(&wq->mutex);
30cdf249 4199 }
9e8cd2f5 4200 return 0;
ced4ac92
TH
4201 } else if (wq->flags & __WQ_ORDERED) {
4202 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4203 /* there should only be single pwq for ordering guarantee */
4204 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4205 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4206 "ordering guarantee broken for workqueue %s\n", wq->name);
4207 return ret;
30cdf249 4208 } else {
9e8cd2f5 4209 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4210 }
0f900049
TH
4211}
4212
f3421797
TH
4213static int wq_clamp_max_active(int max_active, unsigned int flags,
4214 const char *name)
b71ab8c2 4215{
f3421797
TH
4216 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4217
4218 if (max_active < 1 || max_active > lim)
044c782c
VI
4219 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4220 max_active, name, 1, lim);
b71ab8c2 4221
f3421797 4222 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4223}
4224
b196be89 4225struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4226 unsigned int flags,
4227 int max_active,
4228 struct lock_class_key *key,
b196be89 4229 const char *lock_name, ...)
1da177e4 4230{
df2d5ae4 4231 size_t tbl_size = 0;
ecf6881f 4232 va_list args;
1da177e4 4233 struct workqueue_struct *wq;
49e3cf44 4234 struct pool_workqueue *pwq;
b196be89 4235
7a1dc940
TH
4236 /*
4237 * Unbound && max_active == 1 used to imply ordered, which is no
4238 * longer the case on NUMA machines due to per-node pools. While
4239 * alloc_ordered_workqueue() is the right way to create an ordered
4240 * workqueue, keep the previous behavior to avoid subtle breakages
4241 * on NUMA.
4242 */
4243 if ((flags & WQ_UNBOUND) && max_active == 1)
4244 flags |= __WQ_ORDERED;
4245
3c2a0909
S
4246 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4247 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4248 flags |= WQ_UNBOUND;
4249
ecf6881f 4250 /* allocate wq and format name */
df2d5ae4
TH
4251 if (flags & WQ_UNBOUND)
4252 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4253
4254 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4255 if (!wq)
d2c1d404 4256 return NULL;
b196be89 4257
6029a918
TH
4258 if (flags & WQ_UNBOUND) {
4259 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4260 if (!wq->unbound_attrs)
4261 goto err_free_wq;
4262 }
4263
ecf6881f
TH
4264 va_start(args, lock_name);
4265 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4266 va_end(args);
1da177e4 4267
d320c038 4268 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4269 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4270
b196be89 4271 /* init wq */
97e37d7b 4272 wq->flags = flags;
a0a1a5fd 4273 wq->saved_max_active = max_active;
3c25a55d 4274 mutex_init(&wq->mutex);
112202d9 4275 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4276 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4277 INIT_LIST_HEAD(&wq->flusher_queue);
4278 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4279 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4280
eb13ba87 4281 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4282 INIT_LIST_HEAD(&wq->list);
3af24433 4283
30cdf249 4284 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4285 goto err_free_wq;
1537663f 4286
493008a8
TH
4287 /*
4288 * Workqueues which may be used during memory reclaim should
4289 * have a rescuer to guarantee forward progress.
4290 */
4291 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4292 struct worker *rescuer;
4293
d2c1d404 4294 rescuer = alloc_worker();
e22bee78 4295 if (!rescuer)
d2c1d404 4296 goto err_destroy;
e22bee78 4297
111c225a
TH
4298 rescuer->rescue_wq = wq;
4299 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4300 wq->name);
d2c1d404
TH
4301 if (IS_ERR(rescuer->task)) {
4302 kfree(rescuer);
4303 goto err_destroy;
4304 }
e22bee78 4305
d2c1d404 4306 wq->rescuer = rescuer;
14a40ffc 4307 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4308 wake_up_process(rescuer->task);
3af24433
ON
4309 }
4310
226223ab
TH
4311 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4312 goto err_destroy;
4313
a0a1a5fd 4314 /*
68e13a67
LJ
4315 * wq_pool_mutex protects global freeze state and workqueues list.
4316 * Grab it, adjust max_active and add the new @wq to workqueues
4317 * list.
a0a1a5fd 4318 */
68e13a67 4319 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4320
a357fc03 4321 mutex_lock(&wq->mutex);
699ce097
TH
4322 for_each_pwq(pwq, wq)
4323 pwq_adjust_max_active(pwq);
a357fc03 4324 mutex_unlock(&wq->mutex);
a0a1a5fd 4325
1537663f 4326 list_add(&wq->list, &workqueues);
a0a1a5fd 4327
68e13a67 4328 mutex_unlock(&wq_pool_mutex);
1537663f 4329
3af24433 4330 return wq;
d2c1d404
TH
4331
4332err_free_wq:
6029a918 4333 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4334 kfree(wq);
4335 return NULL;
4336err_destroy:
4337 destroy_workqueue(wq);
4690c4ab 4338 return NULL;
3af24433 4339}
d320c038 4340EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4341
3af24433
ON
4342/**
4343 * destroy_workqueue - safely terminate a workqueue
4344 * @wq: target workqueue
4345 *
4346 * Safely destroy a workqueue. All work currently pending will be done first.
4347 */
4348void destroy_workqueue(struct workqueue_struct *wq)
4349{
49e3cf44 4350 struct pool_workqueue *pwq;
4c16bd32 4351 int node;
3af24433 4352
9c5a2ba7
TH
4353 /* drain it before proceeding with destruction */
4354 drain_workqueue(wq);
c8efcc25 4355
6183c009 4356 /* sanity checks */
b09f4fd3 4357 mutex_lock(&wq->mutex);
49e3cf44 4358 for_each_pwq(pwq, wq) {
6183c009
TH
4359 int i;
4360
76af4d93
TH
4361 for (i = 0; i < WORK_NR_COLORS; i++) {
4362 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4363 mutex_unlock(&wq->mutex);
6183c009 4364 return;
76af4d93
TH
4365 }
4366 }
4367
5c529597 4368 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4369 WARN_ON(pwq->nr_active) ||
76af4d93 4370 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4371 mutex_unlock(&wq->mutex);
6183c009 4372 return;
76af4d93 4373 }
6183c009 4374 }
b09f4fd3 4375 mutex_unlock(&wq->mutex);
6183c009 4376
a0a1a5fd
TH
4377 /*
4378 * wq list is used to freeze wq, remove from list after
4379 * flushing is complete in case freeze races us.
4380 */
68e13a67 4381 mutex_lock(&wq_pool_mutex);
d2c1d404 4382 list_del_init(&wq->list);
68e13a67 4383 mutex_unlock(&wq_pool_mutex);
3af24433 4384
226223ab
TH
4385 workqueue_sysfs_unregister(wq);
4386
493008a8 4387 if (wq->rescuer) {
e22bee78 4388 kthread_stop(wq->rescuer->task);
8d9df9f0 4389 kfree(wq->rescuer);
493008a8 4390 wq->rescuer = NULL;
e22bee78
TH
4391 }
4392
8864b4e5
TH
4393 if (!(wq->flags & WQ_UNBOUND)) {
4394 /*
4395 * The base ref is never dropped on per-cpu pwqs. Directly
4396 * free the pwqs and wq.
4397 */
4398 free_percpu(wq->cpu_pwqs);
4399 kfree(wq);
4400 } else {
4401 /*
4402 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4403 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4404 * @wq will be freed when the last pwq is released.
8864b4e5 4405 */
4c16bd32
TH
4406 for_each_node(node) {
4407 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4408 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4409 put_pwq_unlocked(pwq);
4410 }
4411
4412 /*
4413 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4414 * put. Don't access it afterwards.
4415 */
4416 pwq = wq->dfl_pwq;
4417 wq->dfl_pwq = NULL;
dce90d47 4418 put_pwq_unlocked(pwq);
29c91e99 4419 }
3af24433
ON
4420}
4421EXPORT_SYMBOL_GPL(destroy_workqueue);
4422
dcd989cb
TH
4423/**
4424 * workqueue_set_max_active - adjust max_active of a workqueue
4425 * @wq: target workqueue
4426 * @max_active: new max_active value.
4427 *
4428 * Set max_active of @wq to @max_active.
4429 *
4430 * CONTEXT:
4431 * Don't call from IRQ context.
4432 */
4433void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4434{
49e3cf44 4435 struct pool_workqueue *pwq;
dcd989cb 4436
8719dcea 4437 /* disallow meddling with max_active for ordered workqueues */
f3538ebd 4438 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4439 return;
4440
f3421797 4441 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4442
a357fc03 4443 mutex_lock(&wq->mutex);
dcd989cb 4444
f3538ebd 4445 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4446 wq->saved_max_active = max_active;
4447
699ce097
TH
4448 for_each_pwq(pwq, wq)
4449 pwq_adjust_max_active(pwq);
93981800 4450
a357fc03 4451 mutex_unlock(&wq->mutex);
15316ba8 4452}
dcd989cb 4453EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4454
e6267616
TH
4455/**
4456 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4457 *
4458 * Determine whether %current is a workqueue rescuer. Can be used from
4459 * work functions to determine whether it's being run off the rescuer task.
4460 */
4461bool current_is_workqueue_rescuer(void)
4462{
4463 struct worker *worker = current_wq_worker();
4464
6a092dfd 4465 return worker && worker->rescue_wq;
e6267616
TH
4466}
4467
eef6a7d5 4468/**
dcd989cb
TH
4469 * workqueue_congested - test whether a workqueue is congested
4470 * @cpu: CPU in question
4471 * @wq: target workqueue
eef6a7d5 4472 *
dcd989cb
TH
4473 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4474 * no synchronization around this function and the test result is
4475 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4476 *
d3251859
TH
4477 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4478 * Note that both per-cpu and unbound workqueues may be associated with
4479 * multiple pool_workqueues which have separate congested states. A
4480 * workqueue being congested on one CPU doesn't mean the workqueue is also
4481 * contested on other CPUs / NUMA nodes.
4482 *
dcd989cb
TH
4483 * RETURNS:
4484 * %true if congested, %false otherwise.
eef6a7d5 4485 */
d84ff051 4486bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4487{
7fb98ea7 4488 struct pool_workqueue *pwq;
76af4d93
TH
4489 bool ret;
4490
88109453 4491 rcu_read_lock_sched();
7fb98ea7 4492
d3251859
TH
4493 if (cpu == WORK_CPU_UNBOUND)
4494 cpu = smp_processor_id();
4495
7fb98ea7
TH
4496 if (!(wq->flags & WQ_UNBOUND))
4497 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4498 else
df2d5ae4 4499 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4500
76af4d93 4501 ret = !list_empty(&pwq->delayed_works);
88109453 4502 rcu_read_unlock_sched();
76af4d93
TH
4503
4504 return ret;
1da177e4 4505}
dcd989cb 4506EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4507
dcd989cb
TH
4508/**
4509 * work_busy - test whether a work is currently pending or running
4510 * @work: the work to be tested
4511 *
4512 * Test whether @work is currently pending or running. There is no
4513 * synchronization around this function and the test result is
4514 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4515 *
4516 * RETURNS:
4517 * OR'd bitmask of WORK_BUSY_* bits.
4518 */
4519unsigned int work_busy(struct work_struct *work)
1da177e4 4520{
fa1b54e6 4521 struct worker_pool *pool;
dcd989cb
TH
4522 unsigned long flags;
4523 unsigned int ret = 0;
1da177e4 4524
dcd989cb
TH
4525 if (work_pending(work))
4526 ret |= WORK_BUSY_PENDING;
1da177e4 4527
fa1b54e6
TH
4528 local_irq_save(flags);
4529 pool = get_work_pool(work);
038366c5 4530 if (pool) {
fa1b54e6 4531 spin_lock(&pool->lock);
038366c5
LJ
4532 if (find_worker_executing_work(pool, work))
4533 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4534 spin_unlock(&pool->lock);
038366c5 4535 }
fa1b54e6 4536 local_irq_restore(flags);
1da177e4 4537
dcd989cb 4538 return ret;
1da177e4 4539}
dcd989cb 4540EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4541
3d1cb205
TH
4542/**
4543 * set_worker_desc - set description for the current work item
4544 * @fmt: printf-style format string
4545 * @...: arguments for the format string
4546 *
4547 * This function can be called by a running work function to describe what
4548 * the work item is about. If the worker task gets dumped, this
4549 * information will be printed out together to help debugging. The
4550 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4551 */
4552void set_worker_desc(const char *fmt, ...)
4553{
4554 struct worker *worker = current_wq_worker();
4555 va_list args;
4556
4557 if (worker) {
4558 va_start(args, fmt);
4559 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4560 va_end(args);
4561 worker->desc_valid = true;
4562 }
4563}
4564
4565/**
4566 * print_worker_info - print out worker information and description
4567 * @log_lvl: the log level to use when printing
4568 * @task: target task
4569 *
4570 * If @task is a worker and currently executing a work item, print out the
4571 * name of the workqueue being serviced and worker description set with
4572 * set_worker_desc() by the currently executing work item.
4573 *
4574 * This function can be safely called on any task as long as the
4575 * task_struct itself is accessible. While safe, this function isn't
4576 * synchronized and may print out mixups or garbages of limited length.
4577 */
4578void print_worker_info(const char *log_lvl, struct task_struct *task)
4579{
4580 work_func_t *fn = NULL;
4581 char name[WQ_NAME_LEN] = { };
4582 char desc[WORKER_DESC_LEN] = { };
4583 struct pool_workqueue *pwq = NULL;
4584 struct workqueue_struct *wq = NULL;
4585 bool desc_valid = false;
4586 struct worker *worker;
4587
4588 if (!(task->flags & PF_WQ_WORKER))
4589 return;
4590
4591 /*
4592 * This function is called without any synchronization and @task
4593 * could be in any state. Be careful with dereferences.
4594 */
4595 worker = probe_kthread_data(task);
4596
4597 /*
4598 * Carefully copy the associated workqueue's workfn and name. Keep
4599 * the original last '\0' in case the original contains garbage.
4600 */
4601 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4602 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4603 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4604 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4605
4606 /* copy worker description */
4607 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4608 if (desc_valid)
4609 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4610
4611 if (fn || name[0] || desc[0]) {
4612 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4613 if (desc[0])
4614 pr_cont(" (%s)", desc);
4615 pr_cont("\n");
4616 }
4617}
4618
db7bccf4
TH
4619/*
4620 * CPU hotplug.
4621 *
e22bee78 4622 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4623 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4624 * pool which make migrating pending and scheduled works very
e22bee78 4625 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4626 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4627 * blocked draining impractical.
4628 *
24647570 4629 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4630 * running as an unbound one and allowing it to be reattached later if the
4631 * cpu comes back online.
db7bccf4 4632 */
1da177e4 4633
706026c2 4634static void wq_unbind_fn(struct work_struct *work)
3af24433 4635{
38db41d9 4636 int cpu = smp_processor_id();
4ce62e9e 4637 struct worker_pool *pool;
db7bccf4 4638 struct worker *worker;
a9ab775b 4639 int wi;
3af24433 4640
f02ae73a 4641 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4642 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4643
bc3a1afc 4644 mutex_lock(&pool->manager_mutex);
94cf58bb 4645 spin_lock_irq(&pool->lock);
3af24433 4646
94cf58bb 4647 /*
bc3a1afc 4648 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4649 * unbound and set DISASSOCIATED. Before this, all workers
4650 * except for the ones which are still executing works from
4651 * before the last CPU down must be on the cpu. After
4652 * this, they may become diasporas.
4653 */
a9ab775b 4654 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4655 worker->flags |= WORKER_UNBOUND;
06ba38a9 4656
24647570 4657 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4658
94cf58bb 4659 spin_unlock_irq(&pool->lock);
bc3a1afc 4660 mutex_unlock(&pool->manager_mutex);
628c78e7 4661
eb283428
LJ
4662 /*
4663 * Call schedule() so that we cross rq->lock and thus can
4664 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4665 * This is necessary as scheduler callbacks may be invoked
4666 * from other cpus.
4667 */
4668 schedule();
06ba38a9 4669
eb283428
LJ
4670 /*
4671 * Sched callbacks are disabled now. Zap nr_running.
4672 * After this, nr_running stays zero and need_more_worker()
4673 * and keep_working() are always true as long as the
4674 * worklist is not empty. This pool now behaves as an
4675 * unbound (in terms of concurrency management) pool which
4676 * are served by workers tied to the pool.
4677 */
e19e397a 4678 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4679
4680 /*
4681 * With concurrency management just turned off, a busy
4682 * worker blocking could lead to lengthy stalls. Kick off
4683 * unbound chain execution of currently pending work items.
4684 */
4685 spin_lock_irq(&pool->lock);
4686 wake_up_worker(pool);
4687 spin_unlock_irq(&pool->lock);
4688 }
3af24433 4689}
3af24433 4690
bd7c089e
TH
4691/**
4692 * rebind_workers - rebind all workers of a pool to the associated CPU
4693 * @pool: pool of interest
4694 *
a9ab775b 4695 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4696 */
4697static void rebind_workers(struct worker_pool *pool)
4698{
a9ab775b
TH
4699 struct worker *worker;
4700 int wi;
bd7c089e
TH
4701
4702 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4703
a9ab775b
TH
4704 /*
4705 * Restore CPU affinity of all workers. As all idle workers should
4706 * be on the run-queue of the associated CPU before any local
4707 * wake-ups for concurrency management happen, restore CPU affinty
4708 * of all workers first and then clear UNBOUND. As we're called
4709 * from CPU_ONLINE, the following shouldn't fail.
4710 */
4711 for_each_pool_worker(worker, wi, pool)
4712 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4713 pool->attrs->cpumask) < 0);
bd7c089e 4714
a9ab775b 4715 spin_lock_irq(&pool->lock);
bd7c089e 4716
a9ab775b
TH
4717 for_each_pool_worker(worker, wi, pool) {
4718 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4719
4720 /*
a9ab775b
TH
4721 * A bound idle worker should actually be on the runqueue
4722 * of the associated CPU for local wake-ups targeting it to
4723 * work. Kick all idle workers so that they migrate to the
4724 * associated CPU. Doing this in the same loop as
4725 * replacing UNBOUND with REBOUND is safe as no worker will
4726 * be bound before @pool->lock is released.
bd7c089e 4727 */
a9ab775b
TH
4728 if (worker_flags & WORKER_IDLE)
4729 wake_up_process(worker->task);
bd7c089e 4730
a9ab775b
TH
4731 /*
4732 * We want to clear UNBOUND but can't directly call
4733 * worker_clr_flags() or adjust nr_running. Atomically
4734 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4735 * @worker will clear REBOUND using worker_clr_flags() when
4736 * it initiates the next execution cycle thus restoring
4737 * concurrency management. Note that when or whether
4738 * @worker clears REBOUND doesn't affect correctness.
4739 *
4740 * ACCESS_ONCE() is necessary because @worker->flags may be
4741 * tested without holding any lock in
4742 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4743 * fail incorrectly leading to premature concurrency
4744 * management operations.
4745 */
4746 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4747 worker_flags |= WORKER_REBOUND;
4748 worker_flags &= ~WORKER_UNBOUND;
4749 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4750 }
a9ab775b
TH
4751
4752 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4753}
4754
7dbc725e
TH
4755/**
4756 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4757 * @pool: unbound pool of interest
4758 * @cpu: the CPU which is coming up
4759 *
4760 * An unbound pool may end up with a cpumask which doesn't have any online
4761 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4762 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4763 * online CPU before, cpus_allowed of all its workers should be restored.
4764 */
4765static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4766{
4767 static cpumask_t cpumask;
4768 struct worker *worker;
4769 int wi;
4770
4771 lockdep_assert_held(&pool->manager_mutex);
4772
4773 /* is @cpu allowed for @pool? */
4774 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4775 return;
4776
4777 /* is @cpu the only online CPU? */
4778 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4779 if (cpumask_weight(&cpumask) != 1)
4780 return;
4781
4782 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4783 for_each_pool_worker(worker, wi, pool)
4784 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4785 pool->attrs->cpumask) < 0);
4786}
4787
8db25e78
TH
4788/*
4789 * Workqueues should be brought up before normal priority CPU notifiers.
4790 * This will be registered high priority CPU notifier.
4791 */
9fdf9b73 4792static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4793 unsigned long action,
4794 void *hcpu)
3af24433 4795{
d84ff051 4796 int cpu = (unsigned long)hcpu;
4ce62e9e 4797 struct worker_pool *pool;
4c16bd32 4798 struct workqueue_struct *wq;
7dbc725e 4799 int pi;
3ce63377 4800
8db25e78 4801 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4802 case CPU_UP_PREPARE:
f02ae73a 4803 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4804 if (pool->nr_workers)
4805 continue;
ebf44d16 4806 if (create_and_start_worker(pool) < 0)
3ce63377 4807 return NOTIFY_BAD;
3af24433 4808 }
8db25e78 4809 break;
3af24433 4810
db7bccf4
TH
4811 case CPU_DOWN_FAILED:
4812 case CPU_ONLINE:
68e13a67 4813 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4814
4815 for_each_pool(pool, pi) {
bc3a1afc 4816 mutex_lock(&pool->manager_mutex);
94cf58bb 4817
7dbc725e
TH
4818 if (pool->cpu == cpu) {
4819 spin_lock_irq(&pool->lock);
4820 pool->flags &= ~POOL_DISASSOCIATED;
4821 spin_unlock_irq(&pool->lock);
a9ab775b 4822
7dbc725e
TH
4823 rebind_workers(pool);
4824 } else if (pool->cpu < 0) {
4825 restore_unbound_workers_cpumask(pool, cpu);
4826 }
94cf58bb 4827
bc3a1afc 4828 mutex_unlock(&pool->manager_mutex);
94cf58bb 4829 }
7dbc725e 4830
4c16bd32
TH
4831 /* update NUMA affinity of unbound workqueues */
4832 list_for_each_entry(wq, &workqueues, list)
4833 wq_update_unbound_numa(wq, cpu, true);
4834
68e13a67 4835 mutex_unlock(&wq_pool_mutex);
db7bccf4 4836 break;
00dfcaf7 4837 }
65758202
TH
4838 return NOTIFY_OK;
4839}
4840
4841/*
4842 * Workqueues should be brought down after normal priority CPU notifiers.
4843 * This will be registered as low priority CPU notifier.
4844 */
9fdf9b73 4845static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4846 unsigned long action,
4847 void *hcpu)
4848{
d84ff051 4849 int cpu = (unsigned long)hcpu;
8db25e78 4850 struct work_struct unbind_work;
4c16bd32 4851 struct workqueue_struct *wq;
8db25e78 4852
65758202
TH
4853 switch (action & ~CPU_TASKS_FROZEN) {
4854 case CPU_DOWN_PREPARE:
4c16bd32 4855 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4856 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4857 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4858
4859 /* update NUMA affinity of unbound workqueues */
4860 mutex_lock(&wq_pool_mutex);
4861 list_for_each_entry(wq, &workqueues, list)
4862 wq_update_unbound_numa(wq, cpu, false);
4863 mutex_unlock(&wq_pool_mutex);
4864
4865 /* wait for per-cpu unbinding to finish */
8db25e78
TH
4866 flush_work(&unbind_work);
4867 break;
65758202
TH
4868 }
4869 return NOTIFY_OK;
4870}
4871
2d3854a3 4872#ifdef CONFIG_SMP
8ccad40d 4873
2d3854a3 4874struct work_for_cpu {
ed48ece2 4875 struct work_struct work;
2d3854a3
RR
4876 long (*fn)(void *);
4877 void *arg;
4878 long ret;
4879};
4880
ed48ece2 4881static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4882{
ed48ece2
TH
4883 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4884
2d3854a3
RR
4885 wfc->ret = wfc->fn(wfc->arg);
4886}
4887
4888/**
4889 * work_on_cpu - run a function in user context on a particular cpu
4890 * @cpu: the cpu to run on
4891 * @fn: the function to run
4892 * @arg: the function arg
4893 *
31ad9081
RR
4894 * This will return the value @fn returns.
4895 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4896 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4897 */
d84ff051 4898long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4899{
ed48ece2 4900 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4901
ed48ece2
TH
4902 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4903 schedule_work_on(cpu, &wfc.work);
4904 flush_work(&wfc.work);
2d3854a3
RR
4905 return wfc.ret;
4906}
4907EXPORT_SYMBOL_GPL(work_on_cpu);
4908#endif /* CONFIG_SMP */
4909
a0a1a5fd
TH
4910#ifdef CONFIG_FREEZER
4911
4912/**
4913 * freeze_workqueues_begin - begin freezing workqueues
4914 *
58a69cb4 4915 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4916 * workqueues will queue new works to their delayed_works list instead of
706026c2 4917 * pool->worklist.
a0a1a5fd
TH
4918 *
4919 * CONTEXT:
a357fc03 4920 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4921 */
4922void freeze_workqueues_begin(void)
4923{
17116969 4924 struct worker_pool *pool;
24b8a847
TH
4925 struct workqueue_struct *wq;
4926 struct pool_workqueue *pwq;
611c92a0 4927 int pi;
a0a1a5fd 4928
68e13a67 4929 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4930
6183c009 4931 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4932 workqueue_freezing = true;
4933
24b8a847 4934 /* set FREEZING */
611c92a0 4935 for_each_pool(pool, pi) {
5bcab335 4936 spin_lock_irq(&pool->lock);
17116969
TH
4937 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4938 pool->flags |= POOL_FREEZING;
5bcab335 4939 spin_unlock_irq(&pool->lock);
24b8a847 4940 }
a0a1a5fd 4941
24b8a847 4942 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4943 mutex_lock(&wq->mutex);
699ce097
TH
4944 for_each_pwq(pwq, wq)
4945 pwq_adjust_max_active(pwq);
a357fc03 4946 mutex_unlock(&wq->mutex);
a0a1a5fd 4947 }
5bcab335 4948
68e13a67 4949 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4950}
4951
4952/**
58a69cb4 4953 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4954 *
4955 * Check whether freezing is complete. This function must be called
4956 * between freeze_workqueues_begin() and thaw_workqueues().
4957 *
4958 * CONTEXT:
68e13a67 4959 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4960 *
4961 * RETURNS:
58a69cb4
TH
4962 * %true if some freezable workqueues are still busy. %false if freezing
4963 * is complete.
a0a1a5fd
TH
4964 */
4965bool freeze_workqueues_busy(void)
4966{
a0a1a5fd 4967 bool busy = false;
24b8a847
TH
4968 struct workqueue_struct *wq;
4969 struct pool_workqueue *pwq;
a0a1a5fd 4970
68e13a67 4971 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4972
6183c009 4973 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4974
24b8a847
TH
4975 list_for_each_entry(wq, &workqueues, list) {
4976 if (!(wq->flags & WQ_FREEZABLE))
4977 continue;
a0a1a5fd
TH
4978 /*
4979 * nr_active is monotonically decreasing. It's safe
4980 * to peek without lock.
4981 */
88109453 4982 rcu_read_lock_sched();
24b8a847 4983 for_each_pwq(pwq, wq) {
6183c009 4984 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4985 if (pwq->nr_active) {
a0a1a5fd 4986 busy = true;
88109453 4987 rcu_read_unlock_sched();
a0a1a5fd
TH
4988 goto out_unlock;
4989 }
4990 }
88109453 4991 rcu_read_unlock_sched();
a0a1a5fd
TH
4992 }
4993out_unlock:
68e13a67 4994 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4995 return busy;
4996}
4997
4998/**
4999 * thaw_workqueues - thaw workqueues
5000 *
5001 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 5002 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
5003 *
5004 * CONTEXT:
a357fc03 5005 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
5006 */
5007void thaw_workqueues(void)
5008{
24b8a847
TH
5009 struct workqueue_struct *wq;
5010 struct pool_workqueue *pwq;
5011 struct worker_pool *pool;
611c92a0 5012 int pi;
a0a1a5fd 5013
68e13a67 5014 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
5015
5016 if (!workqueue_freezing)
5017 goto out_unlock;
5018
24b8a847 5019 /* clear FREEZING */
611c92a0 5020 for_each_pool(pool, pi) {
5bcab335 5021 spin_lock_irq(&pool->lock);
24b8a847
TH
5022 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
5023 pool->flags &= ~POOL_FREEZING;
5bcab335 5024 spin_unlock_irq(&pool->lock);
24b8a847 5025 }
8b03ae3c 5026
24b8a847
TH
5027 /* restore max_active and repopulate worklist */
5028 list_for_each_entry(wq, &workqueues, list) {
a357fc03 5029 mutex_lock(&wq->mutex);
699ce097
TH
5030 for_each_pwq(pwq, wq)
5031 pwq_adjust_max_active(pwq);
a357fc03 5032 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
5033 }
5034
5035 workqueue_freezing = false;
5036out_unlock:
68e13a67 5037 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
5038}
5039#endif /* CONFIG_FREEZER */
5040
bce90380
TH
5041static void __init wq_numa_init(void)
5042{
5043 cpumask_var_t *tbl;
5044 int node, cpu;
5045
5046 /* determine NUMA pwq table len - highest node id + 1 */
5047 for_each_node(node)
5048 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
5049
5050 if (num_possible_nodes() <= 1)
5051 return;
5052
d55262c4
TH
5053 if (wq_disable_numa) {
5054 pr_info("workqueue: NUMA affinity support disabled\n");
5055 return;
5056 }
5057
4c16bd32
TH
5058 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5059 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5060
bce90380
TH
5061 /*
5062 * We want masks of possible CPUs of each node which isn't readily
5063 * available. Build one from cpu_to_node() which should have been
5064 * fully initialized by now.
5065 */
5066 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5067 BUG_ON(!tbl);
5068
5069 for_each_node(node)
3e24998c 5070 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5071 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5072
5073 for_each_possible_cpu(cpu) {
5074 node = cpu_to_node(cpu);
5075 if (WARN_ON(node == NUMA_NO_NODE)) {
5076 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5077 /* happens iff arch is bonkers, let's just proceed */
5078 return;
5079 }
5080 cpumask_set_cpu(cpu, tbl[node]);
5081 }
5082
5083 wq_numa_possible_cpumask = tbl;
5084 wq_numa_enabled = true;
5085}
5086
6ee0578b 5087static int __init init_workqueues(void)
1da177e4 5088{
7a4e344c
TH
5089 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5090 int i, cpu;
c34056a3 5091
7c3eed5c
TH
5092 /* make sure we have enough bits for OFFQ pool ID */
5093 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 5094 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 5095
e904e6c2
TH
5096 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5097
5098 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5099
65758202 5100 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5101 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5102
bce90380
TH
5103 wq_numa_init();
5104
706026c2 5105 /* initialize CPU pools */
29c91e99 5106 for_each_possible_cpu(cpu) {
4ce62e9e 5107 struct worker_pool *pool;
8b03ae3c 5108
7a4e344c 5109 i = 0;
f02ae73a 5110 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5111 BUG_ON(init_worker_pool(pool));
ec22ca5e 5112 pool->cpu = cpu;
29c91e99 5113 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5114 pool->attrs->nice = std_nice[i++];
f3f90ad4 5115 pool->node = cpu_to_node(cpu);
7a4e344c 5116
9daf9e67 5117 /* alloc pool ID */
68e13a67 5118 mutex_lock(&wq_pool_mutex);
9daf9e67 5119 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5120 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5121 }
8b03ae3c
TH
5122 }
5123
e22bee78 5124 /* create the initial worker */
29c91e99 5125 for_each_online_cpu(cpu) {
4ce62e9e 5126 struct worker_pool *pool;
e22bee78 5127
f02ae73a 5128 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5129 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5130 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5131 }
e22bee78
TH
5132 }
5133
ced4ac92 5134 /* create default unbound and ordered wq attrs */
29c91e99
TH
5135 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5136 struct workqueue_attrs *attrs;
5137
5138 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5139 attrs->nice = std_nice[i];
29c91e99 5140 unbound_std_wq_attrs[i] = attrs;
ced4ac92
TH
5141
5142 /*
5143 * An ordered wq should have only one pwq as ordering is
5144 * guaranteed by max_active which is enforced by pwqs.
5145 * Turn off NUMA so that dfl_pwq is used for all nodes.
5146 */
5147 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5148 attrs->nice = std_nice[i];
5149 attrs->no_numa = true;
5150 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5151 }
5152
d320c038 5153 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5154 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5155 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5156 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5157 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5158 system_freezable_wq = alloc_workqueue("events_freezable",
5159 WQ_FREEZABLE, 0);
3c2a0909
S
5160 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5161 WQ_POWER_EFFICIENT, 0);
5162 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5163 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5164 0);
1aabe902 5165 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3c2a0909
S
5166 !system_unbound_wq || !system_freezable_wq ||
5167 !system_power_efficient_wq ||
5168 !system_freezable_power_efficient_wq);
6ee0578b 5169 return 0;
1da177e4 5170}
6ee0578b 5171early_initcall(init_workqueues);