defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
a6d5930c 51#include <linux/nmi.h>
dd101ca5 52#include <linux/debug-snapshot.h>
e22bee78 53
ea138446 54#include "workqueue_internal.h"
1da177e4 55
c8e55f36 56enum {
24647570
TH
57 /*
58 * worker_pool flags
bc2ae0f5 59 *
24647570 60 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 67 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 68 *
bc3a1afc 69 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 70 * attach_mutex to avoid changing binding state while
4736cbf7 71 * worker_attach_to_pool() is in progress.
bc2ae0f5 72 */
692b4825 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 75
c8e55f36 76 /* worker flags */
c8e55f36
TH
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
8698a745 103 * all cpus. Give MIN_NICE.
e22bee78 104 */
8698a745
DY
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
92f9c5c4 127 * A: pool->attach_mutex protected.
822d8405 128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
68e13a67 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 132 *
5b95e1af
LJ
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * sched-RCU for reads.
137 *
3c25a55d
LJ
138 * WQ: wq->mutex protected.
139 *
b5927605 140 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
141 *
142 * MD: wq_mayday_lock protected.
1da177e4 143 */
1da177e4 144
2eaebdb3 145/* struct worker is defined in workqueue_internal.h */
c34056a3 146
bd7bdd43 147struct worker_pool {
d565ed63 148 spinlock_t lock; /* the pool lock */
d84ff051 149 int cpu; /* I: the associated cpu */
f3f90ad4 150 int node; /* I: the associated node ID */
9daf9e67 151 int id; /* I: pool ID */
11ebea50 152 unsigned int flags; /* X: flags */
bd7bdd43 153
82607adc
TH
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
bd7bdd43
TH
156 struct list_head worklist; /* L: list of pending works */
157 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
158
159 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
160 int nr_idle; /* L: currently idle ones */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
c5aa87bb 166 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
bc3a1afc 170 /* see manage_workers() for details on the two manager mutexes */
2607d7a6 171 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
172 struct mutex attach_mutex; /* attach/detach exclusion */
173 struct list_head workers; /* A: attached workers */
60f5a4bc 174 struct completion *detach_completion; /* all workers detached */
e19e397a 175
7cda9aae 176 struct ida worker_ida; /* worker IDs for task name */
e19e397a 177
7a4e344c 178 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
179 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
180 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 181
e19e397a
TH
182 /*
183 * The current concurrency level. As it's likely to be accessed
184 * from other CPUs during try_to_wake_up(), put it in a separate
185 * cacheline.
186 */
187 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
188
189 /*
190 * Destruction of pool is sched-RCU protected to allow dereferences
191 * from get_work_pool().
192 */
193 struct rcu_head rcu;
8b03ae3c
TH
194} ____cacheline_aligned_in_smp;
195
1da177e4 196/*
112202d9
TH
197 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
198 * of work_struct->data are used for flags and the remaining high bits
199 * point to the pwq; thus, pwqs need to be aligned at two's power of the
200 * number of flag bits.
1da177e4 201 */
112202d9 202struct pool_workqueue {
bd7bdd43 203 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 204 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
205 int work_color; /* L: current color */
206 int flush_color; /* L: flushing color */
8864b4e5 207 int refcnt; /* L: reference count */
73f53c4a
TH
208 int nr_in_flight[WORK_NR_COLORS];
209 /* L: nr of in_flight works */
1e19ffc6 210 int nr_active; /* L: nr of active works */
a0a1a5fd 211 int max_active; /* L: max active works */
1e19ffc6 212 struct list_head delayed_works; /* L: delayed works */
3c25a55d 213 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 214 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
215
216 /*
217 * Release of unbound pwq is punted to system_wq. See put_pwq()
218 * and pwq_unbound_release_workfn() for details. pool_workqueue
219 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 220 * determined without grabbing wq->mutex.
8864b4e5
TH
221 */
222 struct work_struct unbound_release_work;
223 struct rcu_head rcu;
e904e6c2 224} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 225
73f53c4a
TH
226/*
227 * Structure used to wait for workqueue flush.
228 */
229struct wq_flusher {
3c25a55d
LJ
230 struct list_head list; /* WQ: list of flushers */
231 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
232 struct completion done; /* flush completion */
233};
234
226223ab
TH
235struct wq_device;
236
1da177e4 237/*
c5aa87bb
TH
238 * The externally visible workqueue. It relays the issued work items to
239 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
240 */
241struct workqueue_struct {
3c25a55d 242 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 243 struct list_head list; /* PR: list of all workqueues */
73f53c4a 244
3c25a55d
LJ
245 struct mutex mutex; /* protects this wq */
246 int work_color; /* WQ: current work color */
247 int flush_color; /* WQ: current flush color */
112202d9 248 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
249 struct wq_flusher *first_flusher; /* WQ: first flusher */
250 struct list_head flusher_queue; /* WQ: flush waiters */
251 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 252
2e109a28 253 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
254 struct worker *rescuer; /* I: rescue worker */
255
87fc741e 256 int nr_drainers; /* WQ: drain in progress */
a357fc03 257 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 258
5b95e1af
LJ
259 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
260 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 261
226223ab
TH
262#ifdef CONFIG_SYSFS
263 struct wq_device *wq_dev; /* I: for sysfs interface */
264#endif
4e6045f1 265#ifdef CONFIG_LOCKDEP
4690c4ab 266 struct lockdep_map lockdep_map;
4e6045f1 267#endif
ecf6881f 268 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 269
e2dca7ad
TH
270 /*
271 * Destruction of workqueue_struct is sched-RCU protected to allow
272 * walking the workqueues list without grabbing wq_pool_mutex.
273 * This is used to dump all workqueues from sysrq.
274 */
275 struct rcu_head rcu;
276
2728fd2f
TH
277 /* hot fields used during command issue, aligned to cacheline */
278 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 280 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
281};
282
e904e6c2
TH
283static struct kmem_cache *pwq_cache;
284
bce90380
TH
285static cpumask_var_t *wq_numa_possible_cpumask;
286 /* possible CPUs of each node */
287
d55262c4
TH
288static bool wq_disable_numa;
289module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290
cee22a15 291/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 292static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
293module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294
863b710b 295static bool wq_online; /* can kworkers be created yet? */
3347fa09 296
bce90380
TH
297static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
298
4c16bd32
TH
299/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301
68e13a67 302static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 303static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 304static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 305
e2dca7ad 306static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 307static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 308
ef557180
MG
309/* PL: allowable cpus for unbound wqs and work items */
310static cpumask_var_t wq_unbound_cpumask;
311
312/* CPU where unbound work was last round robin scheduled from this CPU */
313static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 314
f303fccb
TH
315/*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321static bool wq_debug_force_rr_cpu = true;
322#else
323static bool wq_debug_force_rr_cpu = false;
324#endif
325module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
7d19c5ce 327/* the per-cpu worker pools */
25528213 328static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 329
68e13a67 330static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 331
68e13a67 332/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
333static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
c5aa87bb 335/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
336static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
8a2b7538
TH
338/* I: attributes used when instantiating ordered pools on demand */
339static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
d320c038 341struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 342EXPORT_SYMBOL(system_wq);
044c782c 343struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 344EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 345struct workqueue_struct *system_long_wq __read_mostly;
d320c038 346EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 347struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 348EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 349struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 350EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
351struct workqueue_struct *system_power_efficient_wq __read_mostly;
352EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 355
7d19c5ce 356static int worker_thread(void *__worker);
6ba94429 357static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 358
97bd2347
TH
359#define CREATE_TRACE_POINTS
360#include <trace/events/workqueue.h>
361
68e13a67 362#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq_pool_mutex), \
365 "sched RCU or wq_pool_mutex should be held")
5bcab335 366
b09f4fd3 367#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex), \
370 "sched RCU or wq->mutex should be held")
76af4d93 371
5b95e1af 372#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
373 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
374 !lockdep_is_held(&wq->mutex) && \
375 !lockdep_is_held(&wq_pool_mutex), \
376 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 377
f02ae73a
TH
378#define for_each_cpu_worker_pool(pool, cpu) \
379 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
380 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 381 (pool)++)
4ce62e9e 382
17116969
TH
383/**
384 * for_each_pool - iterate through all worker_pools in the system
385 * @pool: iteration cursor
611c92a0 386 * @pi: integer used for iteration
fa1b54e6 387 *
68e13a67
LJ
388 * This must be called either with wq_pool_mutex held or sched RCU read
389 * locked. If the pool needs to be used beyond the locking in effect, the
390 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
391 *
392 * The if/else clause exists only for the lockdep assertion and can be
393 * ignored.
17116969 394 */
611c92a0
TH
395#define for_each_pool(pool, pi) \
396 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 397 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 398 else
17116969 399
822d8405
TH
400/**
401 * for_each_pool_worker - iterate through all workers of a worker_pool
402 * @worker: iteration cursor
822d8405
TH
403 * @pool: worker_pool to iterate workers of
404 *
92f9c5c4 405 * This must be called with @pool->attach_mutex.
822d8405
TH
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
409 */
da028469
LJ
410#define for_each_pool_worker(worker, pool) \
411 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 412 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
413 else
414
49e3cf44
TH
415/**
416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
417 * @pwq: iteration cursor
418 * @wq: the target workqueue
76af4d93 419 *
b09f4fd3 420 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
421 * If the pwq needs to be used beyond the locking in effect, the caller is
422 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
423 *
424 * The if/else clause exists only for the lockdep assertion and can be
425 * ignored.
49e3cf44
TH
426 */
427#define for_each_pwq(pwq, wq) \
76af4d93 428 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 429 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 430 else
f3421797 431
dc186ad7
TG
432#ifdef CONFIG_DEBUG_OBJECTS_WORK
433
434static struct debug_obj_descr work_debug_descr;
435
99777288
SG
436static void *work_debug_hint(void *addr)
437{
438 return ((struct work_struct *) addr)->func;
439}
440
b9fdac7f
DC
441static bool work_is_static_object(void *addr)
442{
443 struct work_struct *work = addr;
444
445 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
446}
447
dc186ad7
TG
448/*
449 * fixup_init is called when:
450 * - an active object is initialized
451 */
02a982a6 452static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
453{
454 struct work_struct *work = addr;
455
456 switch (state) {
457 case ODEBUG_STATE_ACTIVE:
458 cancel_work_sync(work);
459 debug_object_init(work, &work_debug_descr);
02a982a6 460 return true;
dc186ad7 461 default:
02a982a6 462 return false;
dc186ad7
TG
463 }
464}
465
dc186ad7
TG
466/*
467 * fixup_free is called when:
468 * - an active object is freed
469 */
02a982a6 470static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
471{
472 struct work_struct *work = addr;
473
474 switch (state) {
475 case ODEBUG_STATE_ACTIVE:
476 cancel_work_sync(work);
477 debug_object_free(work, &work_debug_descr);
02a982a6 478 return true;
dc186ad7 479 default:
02a982a6 480 return false;
dc186ad7
TG
481 }
482}
483
484static struct debug_obj_descr work_debug_descr = {
485 .name = "work_struct",
99777288 486 .debug_hint = work_debug_hint,
b9fdac7f 487 .is_static_object = work_is_static_object,
dc186ad7 488 .fixup_init = work_fixup_init,
dc186ad7
TG
489 .fixup_free = work_fixup_free,
490};
491
492static inline void debug_work_activate(struct work_struct *work)
493{
494 debug_object_activate(work, &work_debug_descr);
495}
496
497static inline void debug_work_deactivate(struct work_struct *work)
498{
499 debug_object_deactivate(work, &work_debug_descr);
500}
501
502void __init_work(struct work_struct *work, int onstack)
503{
504 if (onstack)
505 debug_object_init_on_stack(work, &work_debug_descr);
506 else
507 debug_object_init(work, &work_debug_descr);
508}
509EXPORT_SYMBOL_GPL(__init_work);
510
511void destroy_work_on_stack(struct work_struct *work)
512{
513 debug_object_free(work, &work_debug_descr);
514}
515EXPORT_SYMBOL_GPL(destroy_work_on_stack);
516
ea2e64f2
TG
517void destroy_delayed_work_on_stack(struct delayed_work *work)
518{
519 destroy_timer_on_stack(&work->timer);
520 debug_object_free(&work->work, &work_debug_descr);
521}
522EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
523
dc186ad7
TG
524#else
525static inline void debug_work_activate(struct work_struct *work) { }
526static inline void debug_work_deactivate(struct work_struct *work) { }
527#endif
528
4e8b22bd
LB
529/**
530 * worker_pool_assign_id - allocate ID and assing it to @pool
531 * @pool: the pool pointer of interest
532 *
533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
534 * successfully, -errno on failure.
535 */
9daf9e67
TH
536static int worker_pool_assign_id(struct worker_pool *pool)
537{
538 int ret;
539
68e13a67 540 lockdep_assert_held(&wq_pool_mutex);
5bcab335 541
4e8b22bd
LB
542 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
543 GFP_KERNEL);
229641a6 544 if (ret >= 0) {
e68035fb 545 pool->id = ret;
229641a6
TH
546 return 0;
547 }
fa1b54e6 548 return ret;
7c3eed5c
TH
549}
550
df2d5ae4
TH
551/**
552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
553 * @wq: the target workqueue
554 * @node: the node ID
555 *
5b95e1af
LJ
556 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
557 * read locked.
df2d5ae4
TH
558 * If the pwq needs to be used beyond the locking in effect, the caller is
559 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
560 *
561 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
562 */
563static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
564 int node)
565{
5b95e1af 566 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
567
568 /*
569 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
570 * delayed item is pending. The plan is to keep CPU -> NODE
571 * mapping valid and stable across CPU on/offlines. Once that
572 * happens, this workaround can be removed.
573 */
574 if (unlikely(node == NUMA_NO_NODE))
575 return wq->dfl_pwq;
576
df2d5ae4
TH
577 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
578}
579
73f53c4a
TH
580static unsigned int work_color_to_flags(int color)
581{
582 return color << WORK_STRUCT_COLOR_SHIFT;
583}
584
585static int get_work_color(struct work_struct *work)
586{
587 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
588 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
589}
590
591static int work_next_color(int color)
592{
593 return (color + 1) % WORK_NR_COLORS;
594}
1da177e4 595
14441960 596/*
112202d9
TH
597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
598 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 599 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 600 *
112202d9
TH
601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
602 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
603 * work->data. These functions should only be called while the work is
604 * owned - ie. while the PENDING bit is set.
7a22ad75 605 *
112202d9 606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 607 * corresponding to a work. Pool is available once the work has been
112202d9 608 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 609 * available only while the work item is queued.
7a22ad75 610 *
bbb68dfa
TH
611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
612 * canceled. While being canceled, a work item may have its PENDING set
613 * but stay off timer and worklist for arbitrarily long and nobody should
614 * try to steal the PENDING bit.
14441960 615 */
7a22ad75
TH
616static inline void set_work_data(struct work_struct *work, unsigned long data,
617 unsigned long flags)
365970a1 618{
6183c009 619 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
620 atomic_long_set(&work->data, data | flags | work_static(work));
621}
365970a1 622
112202d9 623static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
624 unsigned long extra_flags)
625{
112202d9
TH
626 set_work_data(work, (unsigned long)pwq,
627 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
628}
629
4468a00f
LJ
630static void set_work_pool_and_keep_pending(struct work_struct *work,
631 int pool_id)
632{
633 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
634 WORK_STRUCT_PENDING);
635}
636
7c3eed5c
TH
637static void set_work_pool_and_clear_pending(struct work_struct *work,
638 int pool_id)
7a22ad75 639{
23657bb1
TH
640 /*
641 * The following wmb is paired with the implied mb in
642 * test_and_set_bit(PENDING) and ensures all updates to @work made
643 * here are visible to and precede any updates by the next PENDING
644 * owner.
645 */
646 smp_wmb();
7c3eed5c 647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
648 /*
649 * The following mb guarantees that previous clear of a PENDING bit
650 * will not be reordered with any speculative LOADS or STORES from
651 * work->current_func, which is executed afterwards. This possible
652 * reordering can lead to a missed execution on attempt to qeueue
653 * the same @work. E.g. consider this case:
654 *
655 * CPU#0 CPU#1
656 * ---------------------------- --------------------------------
657 *
658 * 1 STORE event_indicated
659 * 2 queue_work_on() {
660 * 3 test_and_set_bit(PENDING)
661 * 4 } set_..._and_clear_pending() {
662 * 5 set_work_data() # clear bit
663 * 6 smp_mb()
664 * 7 work->current_func() {
665 * 8 LOAD event_indicated
666 * }
667 *
668 * Without an explicit full barrier speculative LOAD on line 8 can
669 * be executed before CPU#0 does STORE on line 1. If that happens,
670 * CPU#0 observes the PENDING bit is still set and new execution of
671 * a @work is not queued in a hope, that CPU#1 will eventually
672 * finish the queued @work. Meanwhile CPU#1 does not see
673 * event_indicated is set, because speculative LOAD was executed
674 * before actual STORE.
675 */
676 smp_mb();
7a22ad75 677}
f756d5e2 678
7a22ad75 679static void clear_work_data(struct work_struct *work)
1da177e4 680{
7c3eed5c
TH
681 smp_wmb(); /* see set_work_pool_and_clear_pending() */
682 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
683}
684
112202d9 685static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 686{
e120153d 687 unsigned long data = atomic_long_read(&work->data);
7a22ad75 688
112202d9 689 if (data & WORK_STRUCT_PWQ)
e120153d
TH
690 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
691 else
692 return NULL;
4d707b9f
ON
693}
694
7c3eed5c
TH
695/**
696 * get_work_pool - return the worker_pool a given work was associated with
697 * @work: the work item of interest
698 *
68e13a67
LJ
699 * Pools are created and destroyed under wq_pool_mutex, and allows read
700 * access under sched-RCU read lock. As such, this function should be
701 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
702 *
703 * All fields of the returned pool are accessible as long as the above
704 * mentioned locking is in effect. If the returned pool needs to be used
705 * beyond the critical section, the caller is responsible for ensuring the
706 * returned pool is and stays online.
d185af30
YB
707 *
708 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
709 */
710static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 711{
e120153d 712 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 713 int pool_id;
7a22ad75 714
68e13a67 715 assert_rcu_or_pool_mutex();
fa1b54e6 716
112202d9
TH
717 if (data & WORK_STRUCT_PWQ)
718 return ((struct pool_workqueue *)
7c3eed5c 719 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 720
7c3eed5c
TH
721 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
722 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
723 return NULL;
724
fa1b54e6 725 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
726}
727
728/**
729 * get_work_pool_id - return the worker pool ID a given work is associated with
730 * @work: the work item of interest
731 *
d185af30 732 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
733 * %WORK_OFFQ_POOL_NONE if none.
734 */
735static int get_work_pool_id(struct work_struct *work)
736{
54d5b7d0
LJ
737 unsigned long data = atomic_long_read(&work->data);
738
112202d9
TH
739 if (data & WORK_STRUCT_PWQ)
740 return ((struct pool_workqueue *)
54d5b7d0 741 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 742
54d5b7d0 743 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
744}
745
bbb68dfa
TH
746static void mark_work_canceling(struct work_struct *work)
747{
7c3eed5c 748 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 749
7c3eed5c
TH
750 pool_id <<= WORK_OFFQ_POOL_SHIFT;
751 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
752}
753
754static bool work_is_canceling(struct work_struct *work)
755{
756 unsigned long data = atomic_long_read(&work->data);
757
112202d9 758 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
759}
760
e22bee78 761/*
3270476a
TH
762 * Policy functions. These define the policies on how the global worker
763 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 764 * they're being called with pool->lock held.
e22bee78
TH
765 */
766
63d95a91 767static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 768{
e19e397a 769 return !atomic_read(&pool->nr_running);
a848e3b6
ON
770}
771
4594bf15 772/*
e22bee78
TH
773 * Need to wake up a worker? Called from anything but currently
774 * running workers.
974271c4
TH
775 *
776 * Note that, because unbound workers never contribute to nr_running, this
706026c2 777 * function will always return %true for unbound pools as long as the
974271c4 778 * worklist isn't empty.
4594bf15 779 */
63d95a91 780static bool need_more_worker(struct worker_pool *pool)
365970a1 781{
63d95a91 782 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 783}
4594bf15 784
e22bee78 785/* Can I start working? Called from busy but !running workers. */
63d95a91 786static bool may_start_working(struct worker_pool *pool)
e22bee78 787{
63d95a91 788 return pool->nr_idle;
e22bee78
TH
789}
790
791/* Do I need to keep working? Called from currently running workers. */
63d95a91 792static bool keep_working(struct worker_pool *pool)
e22bee78 793{
e19e397a
TH
794 return !list_empty(&pool->worklist) &&
795 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
796}
797
798/* Do we need a new worker? Called from manager. */
63d95a91 799static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 800{
63d95a91 801 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 802}
365970a1 803
e22bee78 804/* Do we have too many workers and should some go away? */
63d95a91 805static bool too_many_workers(struct worker_pool *pool)
e22bee78 806{
692b4825 807 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
808 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
809 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
810
811 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
812}
813
4d707b9f 814/*
e22bee78
TH
815 * Wake up functions.
816 */
817
1037de36
LJ
818/* Return the first idle worker. Safe with preemption disabled */
819static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 820{
63d95a91 821 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
822 return NULL;
823
63d95a91 824 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
825}
826
827/**
828 * wake_up_worker - wake up an idle worker
63d95a91 829 * @pool: worker pool to wake worker from
7e11629d 830 *
63d95a91 831 * Wake up the first idle worker of @pool.
7e11629d
TH
832 *
833 * CONTEXT:
d565ed63 834 * spin_lock_irq(pool->lock).
7e11629d 835 */
63d95a91 836static void wake_up_worker(struct worker_pool *pool)
7e11629d 837{
1037de36 838 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
839
840 if (likely(worker))
841 wake_up_process(worker->task);
842}
843
d302f017 844/**
e22bee78
TH
845 * wq_worker_waking_up - a worker is waking up
846 * @task: task waking up
847 * @cpu: CPU @task is waking up to
848 *
849 * This function is called during try_to_wake_up() when a worker is
850 * being awoken.
851 *
852 * CONTEXT:
853 * spin_lock_irq(rq->lock)
854 */
d84ff051 855void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
856{
857 struct worker *worker = kthread_data(task);
858
36576000 859 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 860 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 861 atomic_inc(&worker->pool->nr_running);
36576000 862 }
e22bee78
TH
863}
864
865/**
866 * wq_worker_sleeping - a worker is going to sleep
867 * @task: task going to sleep
e22bee78
TH
868 *
869 * This function is called during schedule() when a busy worker is
870 * going to sleep. Worker on the same cpu can be woken up by
871 * returning pointer to its task.
872 *
873 * CONTEXT:
874 * spin_lock_irq(rq->lock)
875 *
d185af30 876 * Return:
e22bee78
TH
877 * Worker task on @cpu to wake up, %NULL if none.
878 */
9b7f6597 879struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
880{
881 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 882 struct worker_pool *pool;
e22bee78 883
111c225a
TH
884 /*
885 * Rescuers, which may not have all the fields set up like normal
886 * workers, also reach here, let's not access anything before
887 * checking NOT_RUNNING.
888 */
2d64672e 889 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
890 return NULL;
891
111c225a 892 pool = worker->pool;
111c225a 893
e22bee78 894 /* this can only happen on the local cpu */
9b7f6597 895 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 896 return NULL;
e22bee78
TH
897
898 /*
899 * The counterpart of the following dec_and_test, implied mb,
900 * worklist not empty test sequence is in insert_work().
901 * Please read comment there.
902 *
628c78e7
TH
903 * NOT_RUNNING is clear. This means that we're bound to and
904 * running on the local cpu w/ rq lock held and preemption
905 * disabled, which in turn means that none else could be
d565ed63 906 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 907 * lock is safe.
e22bee78 908 */
e19e397a
TH
909 if (atomic_dec_and_test(&pool->nr_running) &&
910 !list_empty(&pool->worklist))
1037de36 911 to_wakeup = first_idle_worker(pool);
e22bee78
TH
912 return to_wakeup ? to_wakeup->task : NULL;
913}
914
7ab429b6
JW
915/**
916 * wq_worker_last_func - retrieve worker's last work function
917 *
918 * Determine the last function a worker executed. This is called from
919 * the scheduler to get a worker's last known identity.
920 *
921 * CONTEXT:
922 * spin_lock_irq(rq->lock)
923 *
924 * Return:
925 * The last work function %current executed as a worker, NULL if it
926 * hasn't executed any work yet.
927 */
928work_func_t wq_worker_last_func(struct task_struct *task)
929{
930 struct worker *worker = kthread_data(task);
931
932 return worker->last_func;
933}
934
e22bee78
TH
935/**
936 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 937 * @worker: self
d302f017 938 * @flags: flags to set
d302f017 939 *
228f1d00 940 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 941 *
cb444766 942 * CONTEXT:
d565ed63 943 * spin_lock_irq(pool->lock)
d302f017 944 */
228f1d00 945static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 946{
bd7bdd43 947 struct worker_pool *pool = worker->pool;
e22bee78 948
cb444766
TH
949 WARN_ON_ONCE(worker->task != current);
950
228f1d00 951 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
952 if ((flags & WORKER_NOT_RUNNING) &&
953 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 954 atomic_dec(&pool->nr_running);
e22bee78
TH
955 }
956
d302f017
TH
957 worker->flags |= flags;
958}
959
960/**
e22bee78 961 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 962 * @worker: self
d302f017
TH
963 * @flags: flags to clear
964 *
e22bee78 965 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 966 *
cb444766 967 * CONTEXT:
d565ed63 968 * spin_lock_irq(pool->lock)
d302f017
TH
969 */
970static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
971{
63d95a91 972 struct worker_pool *pool = worker->pool;
e22bee78
TH
973 unsigned int oflags = worker->flags;
974
cb444766
TH
975 WARN_ON_ONCE(worker->task != current);
976
d302f017 977 worker->flags &= ~flags;
e22bee78 978
42c025f3
TH
979 /*
980 * If transitioning out of NOT_RUNNING, increment nr_running. Note
981 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
982 * of multiple flags, not a single flag.
983 */
e22bee78
TH
984 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
985 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 986 atomic_inc(&pool->nr_running);
d302f017
TH
987}
988
8cca0eea
TH
989/**
990 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 991 * @pool: pool of interest
8cca0eea
TH
992 * @work: work to find worker for
993 *
c9e7cf27
TH
994 * Find a worker which is executing @work on @pool by searching
995 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
996 * to match, its current execution should match the address of @work and
997 * its work function. This is to avoid unwanted dependency between
998 * unrelated work executions through a work item being recycled while still
999 * being executed.
1000 *
1001 * This is a bit tricky. A work item may be freed once its execution
1002 * starts and nothing prevents the freed area from being recycled for
1003 * another work item. If the same work item address ends up being reused
1004 * before the original execution finishes, workqueue will identify the
1005 * recycled work item as currently executing and make it wait until the
1006 * current execution finishes, introducing an unwanted dependency.
1007 *
c5aa87bb
TH
1008 * This function checks the work item address and work function to avoid
1009 * false positives. Note that this isn't complete as one may construct a
1010 * work function which can introduce dependency onto itself through a
1011 * recycled work item. Well, if somebody wants to shoot oneself in the
1012 * foot that badly, there's only so much we can do, and if such deadlock
1013 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1014 *
1015 * CONTEXT:
d565ed63 1016 * spin_lock_irq(pool->lock).
8cca0eea 1017 *
d185af30
YB
1018 * Return:
1019 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1020 * otherwise.
4d707b9f 1021 */
c9e7cf27 1022static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1023 struct work_struct *work)
4d707b9f 1024{
42f8570f 1025 struct worker *worker;
42f8570f 1026
b67bfe0d 1027 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1028 (unsigned long)work)
1029 if (worker->current_work == work &&
1030 worker->current_func == work->func)
42f8570f
SL
1031 return worker;
1032
1033 return NULL;
4d707b9f
ON
1034}
1035
bf4ede01
TH
1036/**
1037 * move_linked_works - move linked works to a list
1038 * @work: start of series of works to be scheduled
1039 * @head: target list to append @work to
402dd89d 1040 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1041 *
1042 * Schedule linked works starting from @work to @head. Work series to
1043 * be scheduled starts at @work and includes any consecutive work with
1044 * WORK_STRUCT_LINKED set in its predecessor.
1045 *
1046 * If @nextp is not NULL, it's updated to point to the next work of
1047 * the last scheduled work. This allows move_linked_works() to be
1048 * nested inside outer list_for_each_entry_safe().
1049 *
1050 * CONTEXT:
d565ed63 1051 * spin_lock_irq(pool->lock).
bf4ede01
TH
1052 */
1053static void move_linked_works(struct work_struct *work, struct list_head *head,
1054 struct work_struct **nextp)
1055{
1056 struct work_struct *n;
1057
1058 /*
1059 * Linked worklist will always end before the end of the list,
1060 * use NULL for list head.
1061 */
1062 list_for_each_entry_safe_from(work, n, NULL, entry) {
1063 list_move_tail(&work->entry, head);
1064 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1065 break;
1066 }
1067
1068 /*
1069 * If we're already inside safe list traversal and have moved
1070 * multiple works to the scheduled queue, the next position
1071 * needs to be updated.
1072 */
1073 if (nextp)
1074 *nextp = n;
1075}
1076
8864b4e5
TH
1077/**
1078 * get_pwq - get an extra reference on the specified pool_workqueue
1079 * @pwq: pool_workqueue to get
1080 *
1081 * Obtain an extra reference on @pwq. The caller should guarantee that
1082 * @pwq has positive refcnt and be holding the matching pool->lock.
1083 */
1084static void get_pwq(struct pool_workqueue *pwq)
1085{
1086 lockdep_assert_held(&pwq->pool->lock);
1087 WARN_ON_ONCE(pwq->refcnt <= 0);
1088 pwq->refcnt++;
1089}
1090
1091/**
1092 * put_pwq - put a pool_workqueue reference
1093 * @pwq: pool_workqueue to put
1094 *
1095 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1096 * destruction. The caller should be holding the matching pool->lock.
1097 */
1098static void put_pwq(struct pool_workqueue *pwq)
1099{
1100 lockdep_assert_held(&pwq->pool->lock);
1101 if (likely(--pwq->refcnt))
1102 return;
1103 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1104 return;
1105 /*
1106 * @pwq can't be released under pool->lock, bounce to
1107 * pwq_unbound_release_workfn(). This never recurses on the same
1108 * pool->lock as this path is taken only for unbound workqueues and
1109 * the release work item is scheduled on a per-cpu workqueue. To
1110 * avoid lockdep warning, unbound pool->locks are given lockdep
1111 * subclass of 1 in get_unbound_pool().
1112 */
1113 schedule_work(&pwq->unbound_release_work);
1114}
1115
dce90d47
TH
1116/**
1117 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1118 * @pwq: pool_workqueue to put (can be %NULL)
1119 *
1120 * put_pwq() with locking. This function also allows %NULL @pwq.
1121 */
1122static void put_pwq_unlocked(struct pool_workqueue *pwq)
1123{
1124 if (pwq) {
1125 /*
1126 * As both pwqs and pools are sched-RCU protected, the
1127 * following lock operations are safe.
1128 */
1129 spin_lock_irq(&pwq->pool->lock);
1130 put_pwq(pwq);
1131 spin_unlock_irq(&pwq->pool->lock);
1132 }
1133}
1134
112202d9 1135static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1136{
112202d9 1137 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1138
1139 trace_workqueue_activate_work(work);
82607adc
TH
1140 if (list_empty(&pwq->pool->worklist))
1141 pwq->pool->watchdog_ts = jiffies;
112202d9 1142 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1143 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1144 pwq->nr_active++;
bf4ede01
TH
1145}
1146
112202d9 1147static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1148{
112202d9 1149 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1150 struct work_struct, entry);
1151
112202d9 1152 pwq_activate_delayed_work(work);
3aa62497
LJ
1153}
1154
bf4ede01 1155/**
112202d9
TH
1156 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1157 * @pwq: pwq of interest
bf4ede01 1158 * @color: color of work which left the queue
bf4ede01
TH
1159 *
1160 * A work either has completed or is removed from pending queue,
112202d9 1161 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1162 *
1163 * CONTEXT:
d565ed63 1164 * spin_lock_irq(pool->lock).
bf4ede01 1165 */
112202d9 1166static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1167{
8864b4e5 1168 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1169 if (color == WORK_NO_COLOR)
8864b4e5 1170 goto out_put;
bf4ede01 1171
112202d9 1172 pwq->nr_in_flight[color]--;
bf4ede01 1173
112202d9
TH
1174 pwq->nr_active--;
1175 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1176 /* one down, submit a delayed one */
112202d9
TH
1177 if (pwq->nr_active < pwq->max_active)
1178 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1179 }
1180
1181 /* is flush in progress and are we at the flushing tip? */
112202d9 1182 if (likely(pwq->flush_color != color))
8864b4e5 1183 goto out_put;
bf4ede01
TH
1184
1185 /* are there still in-flight works? */
112202d9 1186 if (pwq->nr_in_flight[color])
8864b4e5 1187 goto out_put;
bf4ede01 1188
112202d9
TH
1189 /* this pwq is done, clear flush_color */
1190 pwq->flush_color = -1;
bf4ede01
TH
1191
1192 /*
112202d9 1193 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1194 * will handle the rest.
1195 */
112202d9
TH
1196 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1197 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1198out_put:
1199 put_pwq(pwq);
bf4ede01
TH
1200}
1201
36e227d2 1202/**
bbb68dfa 1203 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1204 * @work: work item to steal
1205 * @is_dwork: @work is a delayed_work
bbb68dfa 1206 * @flags: place to store irq state
36e227d2
TH
1207 *
1208 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1209 * stable state - idle, on timer or on worklist.
36e227d2 1210 *
d185af30 1211 * Return:
36e227d2
TH
1212 * 1 if @work was pending and we successfully stole PENDING
1213 * 0 if @work was idle and we claimed PENDING
1214 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1215 * -ENOENT if someone else is canceling @work, this state may persist
1216 * for arbitrarily long
36e227d2 1217 *
d185af30 1218 * Note:
bbb68dfa 1219 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1220 * interrupted while holding PENDING and @work off queue, irq must be
1221 * disabled on entry. This, combined with delayed_work->timer being
1222 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1223 *
1224 * On successful return, >= 0, irq is disabled and the caller is
1225 * responsible for releasing it using local_irq_restore(*@flags).
1226 *
e0aecdd8 1227 * This function is safe to call from any context including IRQ handler.
bf4ede01 1228 */
bbb68dfa
TH
1229static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1230 unsigned long *flags)
bf4ede01 1231{
d565ed63 1232 struct worker_pool *pool;
112202d9 1233 struct pool_workqueue *pwq;
bf4ede01 1234
bbb68dfa
TH
1235 local_irq_save(*flags);
1236
36e227d2
TH
1237 /* try to steal the timer if it exists */
1238 if (is_dwork) {
1239 struct delayed_work *dwork = to_delayed_work(work);
1240
e0aecdd8
TH
1241 /*
1242 * dwork->timer is irqsafe. If del_timer() fails, it's
1243 * guaranteed that the timer is not queued anywhere and not
1244 * running on the local CPU.
1245 */
36e227d2
TH
1246 if (likely(del_timer(&dwork->timer)))
1247 return 1;
1248 }
1249
1250 /* try to claim PENDING the normal way */
bf4ede01
TH
1251 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1252 return 0;
1253
1254 /*
1255 * The queueing is in progress, or it is already queued. Try to
1256 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1257 */
d565ed63
TH
1258 pool = get_work_pool(work);
1259 if (!pool)
bbb68dfa 1260 goto fail;
bf4ede01 1261
d565ed63 1262 spin_lock(&pool->lock);
0b3dae68 1263 /*
112202d9
TH
1264 * work->data is guaranteed to point to pwq only while the work
1265 * item is queued on pwq->wq, and both updating work->data to point
1266 * to pwq on queueing and to pool on dequeueing are done under
1267 * pwq->pool->lock. This in turn guarantees that, if work->data
1268 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1269 * item is currently queued on that pool.
1270 */
112202d9
TH
1271 pwq = get_work_pwq(work);
1272 if (pwq && pwq->pool == pool) {
16062836
TH
1273 debug_work_deactivate(work);
1274
1275 /*
1276 * A delayed work item cannot be grabbed directly because
1277 * it might have linked NO_COLOR work items which, if left
112202d9 1278 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1279 * management later on and cause stall. Make sure the work
1280 * item is activated before grabbing.
1281 */
1282 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1283 pwq_activate_delayed_work(work);
16062836
TH
1284
1285 list_del_init(&work->entry);
9c34a704 1286 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1287
112202d9 1288 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1289 set_work_pool_and_keep_pending(work, pool->id);
1290
1291 spin_unlock(&pool->lock);
1292 return 1;
bf4ede01 1293 }
d565ed63 1294 spin_unlock(&pool->lock);
bbb68dfa
TH
1295fail:
1296 local_irq_restore(*flags);
1297 if (work_is_canceling(work))
1298 return -ENOENT;
1299 cpu_relax();
36e227d2 1300 return -EAGAIN;
bf4ede01
TH
1301}
1302
4690c4ab 1303/**
706026c2 1304 * insert_work - insert a work into a pool
112202d9 1305 * @pwq: pwq @work belongs to
4690c4ab
TH
1306 * @work: work to insert
1307 * @head: insertion point
1308 * @extra_flags: extra WORK_STRUCT_* flags to set
1309 *
112202d9 1310 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1311 * work_struct flags.
4690c4ab
TH
1312 *
1313 * CONTEXT:
d565ed63 1314 * spin_lock_irq(pool->lock).
4690c4ab 1315 */
112202d9
TH
1316static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1317 struct list_head *head, unsigned int extra_flags)
b89deed3 1318{
112202d9 1319 struct worker_pool *pool = pwq->pool;
e22bee78 1320
4690c4ab 1321 /* we own @work, set data and link */
112202d9 1322 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1323 list_add_tail(&work->entry, head);
8864b4e5 1324 get_pwq(pwq);
e22bee78
TH
1325
1326 /*
c5aa87bb
TH
1327 * Ensure either wq_worker_sleeping() sees the above
1328 * list_add_tail() or we see zero nr_running to avoid workers lying
1329 * around lazily while there are works to be processed.
e22bee78
TH
1330 */
1331 smp_mb();
1332
63d95a91
TH
1333 if (__need_more_worker(pool))
1334 wake_up_worker(pool);
b89deed3
ON
1335}
1336
c8efcc25
TH
1337/*
1338 * Test whether @work is being queued from another work executing on the
8d03ecfe 1339 * same workqueue.
c8efcc25
TH
1340 */
1341static bool is_chained_work(struct workqueue_struct *wq)
1342{
8d03ecfe
TH
1343 struct worker *worker;
1344
1345 worker = current_wq_worker();
1346 /*
1347 * Return %true iff I'm a worker execuing a work item on @wq. If
1348 * I'm @worker, it's safe to dereference it without locking.
1349 */
112202d9 1350 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1351}
1352
ef557180
MG
1353/*
1354 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1355 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1356 * avoid perturbing sensitive tasks.
1357 */
1358static int wq_select_unbound_cpu(int cpu)
1359{
f303fccb 1360 static bool printed_dbg_warning;
ef557180
MG
1361 int new_cpu;
1362
f303fccb
TH
1363 if (likely(!wq_debug_force_rr_cpu)) {
1364 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1365 return cpu;
1366 } else if (!printed_dbg_warning) {
1367 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1368 printed_dbg_warning = true;
1369 }
1370
ef557180
MG
1371 if (cpumask_empty(wq_unbound_cpumask))
1372 return cpu;
1373
1374 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1375 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1376 if (unlikely(new_cpu >= nr_cpu_ids)) {
1377 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1378 if (unlikely(new_cpu >= nr_cpu_ids))
1379 return cpu;
1380 }
1381 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1382
1383 return new_cpu;
1384}
1385
d84ff051 1386static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1387 struct work_struct *work)
1388{
112202d9 1389 struct pool_workqueue *pwq;
c9178087 1390 struct worker_pool *last_pool;
1e19ffc6 1391 struct list_head *worklist;
8a2e8e5d 1392 unsigned int work_flags;
b75cac93 1393 unsigned int req_cpu = cpu;
8930caba
TH
1394
1395 /*
1396 * While a work item is PENDING && off queue, a task trying to
1397 * steal the PENDING will busy-loop waiting for it to either get
1398 * queued or lose PENDING. Grabbing PENDING and queueing should
1399 * happen with IRQ disabled.
1400 */
1401 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1402
dc186ad7 1403 debug_work_activate(work);
1e19ffc6 1404
9ef28a73 1405 /* if draining, only works from the same workqueue are allowed */
618b01eb 1406 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1407 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1408 return;
9e8cd2f5 1409retry:
df2d5ae4 1410 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1411 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1412
c9178087 1413 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1414 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1415 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1416 else
1417 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1418
c9178087
TH
1419 /*
1420 * If @work was previously on a different pool, it might still be
1421 * running there, in which case the work needs to be queued on that
1422 * pool to guarantee non-reentrancy.
1423 */
1424 last_pool = get_work_pool(work);
1425 if (last_pool && last_pool != pwq->pool) {
1426 struct worker *worker;
18aa9eff 1427
c9178087 1428 spin_lock(&last_pool->lock);
18aa9eff 1429
c9178087 1430 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1431
c9178087
TH
1432 if (worker && worker->current_pwq->wq == wq) {
1433 pwq = worker->current_pwq;
8930caba 1434 } else {
c9178087
TH
1435 /* meh... not running there, queue here */
1436 spin_unlock(&last_pool->lock);
112202d9 1437 spin_lock(&pwq->pool->lock);
8930caba 1438 }
f3421797 1439 } else {
112202d9 1440 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1441 }
1442
9e8cd2f5
TH
1443 /*
1444 * pwq is determined and locked. For unbound pools, we could have
1445 * raced with pwq release and it could already be dead. If its
1446 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1447 * without another pwq replacing it in the numa_pwq_tbl or while
1448 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1449 * make forward-progress.
1450 */
1451 if (unlikely(!pwq->refcnt)) {
1452 if (wq->flags & WQ_UNBOUND) {
1453 spin_unlock(&pwq->pool->lock);
1454 cpu_relax();
1455 goto retry;
1456 }
1457 /* oops */
1458 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1459 wq->name, cpu);
1460 }
1461
112202d9
TH
1462 /* pwq determined, queue */
1463 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1464
f5b2552b 1465 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1466 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1467 return;
1468 }
1e19ffc6 1469
112202d9
TH
1470 pwq->nr_in_flight[pwq->work_color]++;
1471 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1472
112202d9 1473 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1474 trace_workqueue_activate_work(work);
112202d9
TH
1475 pwq->nr_active++;
1476 worklist = &pwq->pool->worklist;
82607adc
TH
1477 if (list_empty(worklist))
1478 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1479 } else {
1480 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1481 worklist = &pwq->delayed_works;
8a2e8e5d 1482 }
1e19ffc6 1483
112202d9 1484 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1485
112202d9 1486 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1487}
1488
0fcb78c2 1489/**
c1a220e7
ZR
1490 * queue_work_on - queue work on specific cpu
1491 * @cpu: CPU number to execute work on
0fcb78c2
REB
1492 * @wq: workqueue to use
1493 * @work: work to queue
1494 *
c1a220e7
ZR
1495 * We queue the work to a specific CPU, the caller must ensure it
1496 * can't go away.
d185af30
YB
1497 *
1498 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1499 */
d4283e93
TH
1500bool queue_work_on(int cpu, struct workqueue_struct *wq,
1501 struct work_struct *work)
1da177e4 1502{
d4283e93 1503 bool ret = false;
8930caba 1504 unsigned long flags;
ef1ca236 1505
8930caba 1506 local_irq_save(flags);
c1a220e7 1507
22df02bb 1508 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1509 __queue_work(cpu, wq, work);
d4283e93 1510 ret = true;
c1a220e7 1511 }
ef1ca236 1512
8930caba 1513 local_irq_restore(flags);
1da177e4
LT
1514 return ret;
1515}
ad7b1f84 1516EXPORT_SYMBOL(queue_work_on);
1da177e4 1517
d8e794df 1518void delayed_work_timer_fn(unsigned long __data)
1da177e4 1519{
52bad64d 1520 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1521
e0aecdd8 1522 /* should have been called from irqsafe timer with irq already off */
60c057bc 1523 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1524}
1438ade5 1525EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1526
7beb2edf
TH
1527static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1528 struct delayed_work *dwork, unsigned long delay)
1da177e4 1529{
7beb2edf
TH
1530 struct timer_list *timer = &dwork->timer;
1531 struct work_struct *work = &dwork->work;
7beb2edf 1532
637fdbae 1533 WARN_ON_ONCE(!wq);
7beb2edf
TH
1534 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1535 timer->data != (unsigned long)dwork);
fc4b514f
TH
1536 WARN_ON_ONCE(timer_pending(timer));
1537 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1538
8852aac2
TH
1539 /*
1540 * If @delay is 0, queue @dwork->work immediately. This is for
1541 * both optimization and correctness. The earliest @timer can
1542 * expire is on the closest next tick and delayed_work users depend
1543 * on that there's no such delay when @delay is 0.
1544 */
1545 if (!delay) {
1546 __queue_work(cpu, wq, &dwork->work);
1547 return;
1548 }
1549
60c057bc 1550 dwork->wq = wq;
1265057f 1551 dwork->cpu = cpu;
7beb2edf
TH
1552 timer->expires = jiffies + delay;
1553
041bd12e
TH
1554 if (unlikely(cpu != WORK_CPU_UNBOUND))
1555 add_timer_on(timer, cpu);
1556 else
1557 add_timer(timer);
1da177e4
LT
1558}
1559
0fcb78c2
REB
1560/**
1561 * queue_delayed_work_on - queue work on specific CPU after delay
1562 * @cpu: CPU number to execute work on
1563 * @wq: workqueue to use
af9997e4 1564 * @dwork: work to queue
0fcb78c2
REB
1565 * @delay: number of jiffies to wait before queueing
1566 *
d185af30 1567 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1568 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1569 * execution.
0fcb78c2 1570 */
d4283e93
TH
1571bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1572 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1573{
52bad64d 1574 struct work_struct *work = &dwork->work;
d4283e93 1575 bool ret = false;
8930caba 1576 unsigned long flags;
7a6bc1cd 1577
8930caba
TH
1578 /* read the comment in __queue_work() */
1579 local_irq_save(flags);
7a6bc1cd 1580
22df02bb 1581 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1582 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1583 ret = true;
7a6bc1cd 1584 }
8a3e77cc 1585
8930caba 1586 local_irq_restore(flags);
7a6bc1cd
VP
1587 return ret;
1588}
ad7b1f84 1589EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1590
8376fe22
TH
1591/**
1592 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1593 * @cpu: CPU number to execute work on
1594 * @wq: workqueue to use
1595 * @dwork: work to queue
1596 * @delay: number of jiffies to wait before queueing
1597 *
1598 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1599 * modify @dwork's timer so that it expires after @delay. If @delay is
1600 * zero, @work is guaranteed to be scheduled immediately regardless of its
1601 * current state.
1602 *
d185af30 1603 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1604 * pending and its timer was modified.
1605 *
e0aecdd8 1606 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1607 * See try_to_grab_pending() for details.
1608 */
1609bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1610 struct delayed_work *dwork, unsigned long delay)
1611{
1612 unsigned long flags;
1613 int ret;
c7fc77f7 1614
8376fe22
TH
1615 do {
1616 ret = try_to_grab_pending(&dwork->work, true, &flags);
1617 } while (unlikely(ret == -EAGAIN));
63bc0362 1618
8376fe22
TH
1619 if (likely(ret >= 0)) {
1620 __queue_delayed_work(cpu, wq, dwork, delay);
1621 local_irq_restore(flags);
7a6bc1cd 1622 }
8376fe22
TH
1623
1624 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1625 return ret;
1626}
8376fe22
TH
1627EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1628
c8e55f36
TH
1629/**
1630 * worker_enter_idle - enter idle state
1631 * @worker: worker which is entering idle state
1632 *
1633 * @worker is entering idle state. Update stats and idle timer if
1634 * necessary.
1635 *
1636 * LOCKING:
d565ed63 1637 * spin_lock_irq(pool->lock).
c8e55f36
TH
1638 */
1639static void worker_enter_idle(struct worker *worker)
1da177e4 1640{
bd7bdd43 1641 struct worker_pool *pool = worker->pool;
c8e55f36 1642
6183c009
TH
1643 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1644 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1645 (worker->hentry.next || worker->hentry.pprev)))
1646 return;
c8e55f36 1647
051e1850 1648 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1649 worker->flags |= WORKER_IDLE;
bd7bdd43 1650 pool->nr_idle++;
e22bee78 1651 worker->last_active = jiffies;
c8e55f36
TH
1652
1653 /* idle_list is LIFO */
bd7bdd43 1654 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1655
628c78e7
TH
1656 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1657 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1658
544ecf31 1659 /*
706026c2 1660 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1661 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1662 * nr_running, the warning may trigger spuriously. Check iff
1663 * unbind is not in progress.
544ecf31 1664 */
24647570 1665 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1666 pool->nr_workers == pool->nr_idle &&
e19e397a 1667 atomic_read(&pool->nr_running));
c8e55f36
TH
1668}
1669
1670/**
1671 * worker_leave_idle - leave idle state
1672 * @worker: worker which is leaving idle state
1673 *
1674 * @worker is leaving idle state. Update stats.
1675 *
1676 * LOCKING:
d565ed63 1677 * spin_lock_irq(pool->lock).
c8e55f36
TH
1678 */
1679static void worker_leave_idle(struct worker *worker)
1680{
bd7bdd43 1681 struct worker_pool *pool = worker->pool;
c8e55f36 1682
6183c009
TH
1683 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1684 return;
d302f017 1685 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1686 pool->nr_idle--;
c8e55f36
TH
1687 list_del_init(&worker->entry);
1688}
1689
f7537df5 1690static struct worker *alloc_worker(int node)
c34056a3
TH
1691{
1692 struct worker *worker;
1693
f7537df5 1694 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1695 if (worker) {
1696 INIT_LIST_HEAD(&worker->entry);
affee4b2 1697 INIT_LIST_HEAD(&worker->scheduled);
da028469 1698 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1699 /* on creation a worker is in !idle && prep state */
1700 worker->flags = WORKER_PREP;
c8e55f36 1701 }
c34056a3
TH
1702 return worker;
1703}
1704
4736cbf7
LJ
1705/**
1706 * worker_attach_to_pool() - attach a worker to a pool
1707 * @worker: worker to be attached
1708 * @pool: the target pool
1709 *
1710 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1711 * cpu-binding of @worker are kept coordinated with the pool across
1712 * cpu-[un]hotplugs.
1713 */
1714static void worker_attach_to_pool(struct worker *worker,
1715 struct worker_pool *pool)
1716{
1717 mutex_lock(&pool->attach_mutex);
1718
1719 /*
1720 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1721 * online CPUs. It'll be re-applied when any of the CPUs come up.
1722 */
1723 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1724
1725 /*
1726 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1727 * stable across this function. See the comments above the
1728 * flag definition for details.
1729 */
1730 if (pool->flags & POOL_DISASSOCIATED)
1731 worker->flags |= WORKER_UNBOUND;
1732
1733 list_add_tail(&worker->node, &pool->workers);
1734
1735 mutex_unlock(&pool->attach_mutex);
1736}
1737
60f5a4bc
LJ
1738/**
1739 * worker_detach_from_pool() - detach a worker from its pool
1740 * @worker: worker which is attached to its pool
1741 * @pool: the pool @worker is attached to
1742 *
4736cbf7
LJ
1743 * Undo the attaching which had been done in worker_attach_to_pool(). The
1744 * caller worker shouldn't access to the pool after detached except it has
1745 * other reference to the pool.
60f5a4bc
LJ
1746 */
1747static void worker_detach_from_pool(struct worker *worker,
1748 struct worker_pool *pool)
1749{
1750 struct completion *detach_completion = NULL;
1751
92f9c5c4 1752 mutex_lock(&pool->attach_mutex);
da028469
LJ
1753 list_del(&worker->node);
1754 if (list_empty(&pool->workers))
60f5a4bc 1755 detach_completion = pool->detach_completion;
92f9c5c4 1756 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1757
b62c0751
LJ
1758 /* clear leftover flags without pool->lock after it is detached */
1759 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1760
60f5a4bc
LJ
1761 if (detach_completion)
1762 complete(detach_completion);
1763}
1764
c34056a3
TH
1765/**
1766 * create_worker - create a new workqueue worker
63d95a91 1767 * @pool: pool the new worker will belong to
c34056a3 1768 *
051e1850 1769 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1770 *
1771 * CONTEXT:
1772 * Might sleep. Does GFP_KERNEL allocations.
1773 *
d185af30 1774 * Return:
c34056a3
TH
1775 * Pointer to the newly created worker.
1776 */
bc2ae0f5 1777static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1778{
c34056a3 1779 struct worker *worker = NULL;
f3421797 1780 int id = -1;
e3c916a4 1781 char id_buf[16];
c34056a3 1782
7cda9aae
LJ
1783 /* ID is needed to determine kthread name */
1784 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1785 if (id < 0)
1786 goto fail;
c34056a3 1787
f7537df5 1788 worker = alloc_worker(pool->node);
c34056a3
TH
1789 if (!worker)
1790 goto fail;
1791
bd7bdd43 1792 worker->pool = pool;
c34056a3
TH
1793 worker->id = id;
1794
29c91e99 1795 if (pool->cpu >= 0)
e3c916a4
TH
1796 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1797 pool->attrs->nice < 0 ? "H" : "");
f3421797 1798 else
e3c916a4
TH
1799 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1800
f3f90ad4 1801 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1802 "kworker/%s", id_buf);
c34056a3
TH
1803 if (IS_ERR(worker->task))
1804 goto fail;
1805
91151228 1806 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1807 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1808
da028469 1809 /* successful, attach the worker to the pool */
4736cbf7 1810 worker_attach_to_pool(worker, pool);
822d8405 1811
051e1850
LJ
1812 /* start the newly created worker */
1813 spin_lock_irq(&pool->lock);
1814 worker->pool->nr_workers++;
1815 worker_enter_idle(worker);
1816 wake_up_process(worker->task);
1817 spin_unlock_irq(&pool->lock);
1818
c34056a3 1819 return worker;
822d8405 1820
c34056a3 1821fail:
9625ab17 1822 if (id >= 0)
7cda9aae 1823 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1824 kfree(worker);
1825 return NULL;
1826}
1827
c34056a3
TH
1828/**
1829 * destroy_worker - destroy a workqueue worker
1830 * @worker: worker to be destroyed
1831 *
73eb7fe7
LJ
1832 * Destroy @worker and adjust @pool stats accordingly. The worker should
1833 * be idle.
c8e55f36
TH
1834 *
1835 * CONTEXT:
60f5a4bc 1836 * spin_lock_irq(pool->lock).
c34056a3
TH
1837 */
1838static void destroy_worker(struct worker *worker)
1839{
bd7bdd43 1840 struct worker_pool *pool = worker->pool;
c34056a3 1841
cd549687
TH
1842 lockdep_assert_held(&pool->lock);
1843
c34056a3 1844 /* sanity check frenzy */
6183c009 1845 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1846 WARN_ON(!list_empty(&worker->scheduled)) ||
1847 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1848 return;
c34056a3 1849
73eb7fe7
LJ
1850 pool->nr_workers--;
1851 pool->nr_idle--;
5bdfff96 1852
c8e55f36 1853 list_del_init(&worker->entry);
cb444766 1854 worker->flags |= WORKER_DIE;
60f5a4bc 1855 wake_up_process(worker->task);
c34056a3
TH
1856}
1857
63d95a91 1858static void idle_worker_timeout(unsigned long __pool)
e22bee78 1859{
63d95a91 1860 struct worker_pool *pool = (void *)__pool;
e22bee78 1861
d565ed63 1862 spin_lock_irq(&pool->lock);
e22bee78 1863
3347fc9f 1864 while (too_many_workers(pool)) {
e22bee78
TH
1865 struct worker *worker;
1866 unsigned long expires;
1867
1868 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1869 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1870 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1871
3347fc9f 1872 if (time_before(jiffies, expires)) {
63d95a91 1873 mod_timer(&pool->idle_timer, expires);
3347fc9f 1874 break;
d5abe669 1875 }
3347fc9f
LJ
1876
1877 destroy_worker(worker);
e22bee78
TH
1878 }
1879
d565ed63 1880 spin_unlock_irq(&pool->lock);
e22bee78 1881}
d5abe669 1882
493a1724 1883static void send_mayday(struct work_struct *work)
e22bee78 1884{
112202d9
TH
1885 struct pool_workqueue *pwq = get_work_pwq(work);
1886 struct workqueue_struct *wq = pwq->wq;
493a1724 1887
2e109a28 1888 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1889
493008a8 1890 if (!wq->rescuer)
493a1724 1891 return;
e22bee78
TH
1892
1893 /* mayday mayday mayday */
493a1724 1894 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1895 /*
1896 * If @pwq is for an unbound wq, its base ref may be put at
1897 * any time due to an attribute change. Pin @pwq until the
1898 * rescuer is done with it.
1899 */
1900 get_pwq(pwq);
493a1724 1901 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1902 wake_up_process(wq->rescuer->task);
493a1724 1903 }
e22bee78
TH
1904}
1905
706026c2 1906static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1907{
63d95a91 1908 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1909 struct work_struct *work;
1910
b2d82909
TH
1911 spin_lock_irq(&pool->lock);
1912 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1913
63d95a91 1914 if (need_to_create_worker(pool)) {
e22bee78
TH
1915 /*
1916 * We've been trying to create a new worker but
1917 * haven't been successful. We might be hitting an
1918 * allocation deadlock. Send distress signals to
1919 * rescuers.
1920 */
63d95a91 1921 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1922 send_mayday(work);
1da177e4 1923 }
e22bee78 1924
b2d82909
TH
1925 spin_unlock(&wq_mayday_lock);
1926 spin_unlock_irq(&pool->lock);
e22bee78 1927
63d95a91 1928 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1929}
1930
e22bee78
TH
1931/**
1932 * maybe_create_worker - create a new worker if necessary
63d95a91 1933 * @pool: pool to create a new worker for
e22bee78 1934 *
63d95a91 1935 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1936 * have at least one idle worker on return from this function. If
1937 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1938 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1939 * possible allocation deadlock.
1940 *
c5aa87bb
TH
1941 * On return, need_to_create_worker() is guaranteed to be %false and
1942 * may_start_working() %true.
e22bee78
TH
1943 *
1944 * LOCKING:
d565ed63 1945 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1946 * multiple times. Does GFP_KERNEL allocations. Called only from
1947 * manager.
e22bee78 1948 */
29187a9e 1949static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1950__releases(&pool->lock)
1951__acquires(&pool->lock)
1da177e4 1952{
e22bee78 1953restart:
d565ed63 1954 spin_unlock_irq(&pool->lock);
9f9c2364 1955
e22bee78 1956 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1957 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1958
1959 while (true) {
051e1850 1960 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1961 break;
1da177e4 1962
e212f361 1963 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1964
63d95a91 1965 if (!need_to_create_worker(pool))
e22bee78
TH
1966 break;
1967 }
1968
63d95a91 1969 del_timer_sync(&pool->mayday_timer);
d565ed63 1970 spin_lock_irq(&pool->lock);
051e1850
LJ
1971 /*
1972 * This is necessary even after a new worker was just successfully
1973 * created as @pool->lock was dropped and the new worker might have
1974 * already become busy.
1975 */
63d95a91 1976 if (need_to_create_worker(pool))
e22bee78 1977 goto restart;
e22bee78
TH
1978}
1979
73f53c4a 1980/**
e22bee78
TH
1981 * manage_workers - manage worker pool
1982 * @worker: self
73f53c4a 1983 *
706026c2 1984 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1985 * to. At any given time, there can be only zero or one manager per
706026c2 1986 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1987 *
1988 * The caller can safely start processing works on false return. On
1989 * true return, it's guaranteed that need_to_create_worker() is false
1990 * and may_start_working() is true.
73f53c4a
TH
1991 *
1992 * CONTEXT:
d565ed63 1993 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1994 * multiple times. Does GFP_KERNEL allocations.
1995 *
d185af30 1996 * Return:
29187a9e
TH
1997 * %false if the pool doesn't need management and the caller can safely
1998 * start processing works, %true if management function was performed and
1999 * the conditions that the caller verified before calling the function may
2000 * no longer be true.
73f53c4a 2001 */
e22bee78 2002static bool manage_workers(struct worker *worker)
73f53c4a 2003{
63d95a91 2004 struct worker_pool *pool = worker->pool;
73f53c4a 2005
692b4825 2006 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2007 return false;
692b4825
TH
2008
2009 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2010 pool->manager = worker;
1e19ffc6 2011
29187a9e 2012 maybe_create_worker(pool);
e22bee78 2013
2607d7a6 2014 pool->manager = NULL;
692b4825
TH
2015 pool->flags &= ~POOL_MANAGER_ACTIVE;
2016 wake_up(&wq_manager_wait);
29187a9e 2017 return true;
73f53c4a
TH
2018}
2019
a62428c0
TH
2020/**
2021 * process_one_work - process single work
c34056a3 2022 * @worker: self
a62428c0
TH
2023 * @work: work to process
2024 *
2025 * Process @work. This function contains all the logics necessary to
2026 * process a single work including synchronization against and
2027 * interaction with other workers on the same cpu, queueing and
2028 * flushing. As long as context requirement is met, any worker can
2029 * call this function to process a work.
2030 *
2031 * CONTEXT:
d565ed63 2032 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2033 */
c34056a3 2034static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2035__releases(&pool->lock)
2036__acquires(&pool->lock)
a62428c0 2037{
112202d9 2038 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2039 struct worker_pool *pool = worker->pool;
112202d9 2040 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2041 int work_color;
7e11629d 2042 struct worker *collision;
a62428c0
TH
2043#ifdef CONFIG_LOCKDEP
2044 /*
2045 * It is permissible to free the struct work_struct from
2046 * inside the function that is called from it, this we need to
2047 * take into account for lockdep too. To avoid bogus "held
2048 * lock freed" warnings as well as problems when looking into
2049 * work->lockdep_map, make a copy and use that here.
2050 */
4d82a1de
PZ
2051 struct lockdep_map lockdep_map;
2052
2053 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2054#endif
807407c0 2055 /* ensure we're on the correct CPU */
85327af6 2056 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2057 raw_smp_processor_id() != pool->cpu);
25511a47 2058
7e11629d
TH
2059 /*
2060 * A single work shouldn't be executed concurrently by
2061 * multiple workers on a single cpu. Check whether anyone is
2062 * already processing the work. If so, defer the work to the
2063 * currently executing one.
2064 */
c9e7cf27 2065 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2066 if (unlikely(collision)) {
2067 move_linked_works(work, &collision->scheduled, NULL);
2068 return;
2069 }
2070
8930caba 2071 /* claim and dequeue */
a62428c0 2072 debug_work_deactivate(work);
c9e7cf27 2073 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2074 worker->current_work = work;
a2c1c57b 2075 worker->current_func = work->func;
112202d9 2076 worker->current_pwq = pwq;
73f53c4a 2077 work_color = get_work_color(work);
7a22ad75 2078
a62428c0
TH
2079 list_del_init(&work->entry);
2080
fb0e7beb 2081 /*
228f1d00
LJ
2082 * CPU intensive works don't participate in concurrency management.
2083 * They're the scheduler's responsibility. This takes @worker out
2084 * of concurrency management and the next code block will chain
2085 * execution of the pending work items.
fb0e7beb
TH
2086 */
2087 if (unlikely(cpu_intensive))
228f1d00 2088 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2089
974271c4 2090 /*
a489a03e
LJ
2091 * Wake up another worker if necessary. The condition is always
2092 * false for normal per-cpu workers since nr_running would always
2093 * be >= 1 at this point. This is used to chain execution of the
2094 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2095 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2096 */
a489a03e 2097 if (need_more_worker(pool))
63d95a91 2098 wake_up_worker(pool);
974271c4 2099
8930caba 2100 /*
7c3eed5c 2101 * Record the last pool and clear PENDING which should be the last
d565ed63 2102 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2103 * PENDING and queued state changes happen together while IRQ is
2104 * disabled.
8930caba 2105 */
7c3eed5c 2106 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2107
d565ed63 2108 spin_unlock_irq(&pool->lock);
a62428c0 2109
a1d14934 2110 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2111 lock_map_acquire(&lockdep_map);
e6f3faa7 2112 /*
f52be570
PZ
2113 * Strictly speaking we should mark the invariant state without holding
2114 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2115 *
2116 * However, that would result in:
2117 *
2118 * A(W1)
2119 * WFC(C)
2120 * A(W1)
2121 * C(C)
2122 *
2123 * Which would create W1->C->W1 dependencies, even though there is no
2124 * actual deadlock possible. There are two solutions, using a
2125 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2126 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2127 * these locks.
2128 *
2129 * AFAICT there is no possible deadlock scenario between the
2130 * flush_work() and complete() primitives (except for single-threaded
2131 * workqueues), so hiding them isn't a problem.
2132 */
f52be570 2133 lockdep_invariant_state(true);
e36c886a 2134 trace_workqueue_execute_start(work);
dd101ca5 2135 dbg_snapshot_work(worker, worker->task, worker->current_func, DSS_FLAG_IN);
a2c1c57b 2136 worker->current_func(work);
dd101ca5 2137 dbg_snapshot_work(worker, worker->task, worker->current_func, DSS_FLAG_OUT);
e36c886a
AV
2138 /*
2139 * While we must be careful to not use "work" after this, the trace
2140 * point will only record its address.
2141 */
2142 trace_workqueue_execute_end(work);
a62428c0 2143 lock_map_release(&lockdep_map);
112202d9 2144 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2145
2146 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2147 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2148 " last function: %pf\n",
a2c1c57b
TH
2149 current->comm, preempt_count(), task_pid_nr(current),
2150 worker->current_func);
a62428c0
TH
2151 debug_show_held_locks(current);
2152 dump_stack();
2153 }
2154
b22ce278
TH
2155 /*
2156 * The following prevents a kworker from hogging CPU on !PREEMPT
2157 * kernels, where a requeueing work item waiting for something to
2158 * happen could deadlock with stop_machine as such work item could
2159 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2160 * stop_machine. At the same time, report a quiescent RCU state so
2161 * the same condition doesn't freeze RCU.
b22ce278 2162 */
3e28e377 2163 cond_resched_rcu_qs();
b22ce278 2164
d565ed63 2165 spin_lock_irq(&pool->lock);
a62428c0 2166
fb0e7beb
TH
2167 /* clear cpu intensive status */
2168 if (unlikely(cpu_intensive))
2169 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2170
7ab429b6
JW
2171 /* tag the worker for identification in schedule() */
2172 worker->last_func = worker->current_func;
2173
a62428c0 2174 /* we're done with it, release */
42f8570f 2175 hash_del(&worker->hentry);
c34056a3 2176 worker->current_work = NULL;
a2c1c57b 2177 worker->current_func = NULL;
112202d9 2178 worker->current_pwq = NULL;
3d1cb205 2179 worker->desc_valid = false;
112202d9 2180 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2181}
2182
affee4b2
TH
2183/**
2184 * process_scheduled_works - process scheduled works
2185 * @worker: self
2186 *
2187 * Process all scheduled works. Please note that the scheduled list
2188 * may change while processing a work, so this function repeatedly
2189 * fetches a work from the top and executes it.
2190 *
2191 * CONTEXT:
d565ed63 2192 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2193 * multiple times.
2194 */
2195static void process_scheduled_works(struct worker *worker)
1da177e4 2196{
affee4b2
TH
2197 while (!list_empty(&worker->scheduled)) {
2198 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2199 struct work_struct, entry);
c34056a3 2200 process_one_work(worker, work);
1da177e4 2201 }
1da177e4
LT
2202}
2203
4690c4ab
TH
2204/**
2205 * worker_thread - the worker thread function
c34056a3 2206 * @__worker: self
4690c4ab 2207 *
c5aa87bb
TH
2208 * The worker thread function. All workers belong to a worker_pool -
2209 * either a per-cpu one or dynamic unbound one. These workers process all
2210 * work items regardless of their specific target workqueue. The only
2211 * exception is work items which belong to workqueues with a rescuer which
2212 * will be explained in rescuer_thread().
d185af30
YB
2213 *
2214 * Return: 0
4690c4ab 2215 */
c34056a3 2216static int worker_thread(void *__worker)
1da177e4 2217{
c34056a3 2218 struct worker *worker = __worker;
bd7bdd43 2219 struct worker_pool *pool = worker->pool;
1da177e4 2220
e22bee78
TH
2221 /* tell the scheduler that this is a workqueue worker */
2222 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2223woke_up:
d565ed63 2224 spin_lock_irq(&pool->lock);
1da177e4 2225
a9ab775b
TH
2226 /* am I supposed to die? */
2227 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2228 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2229 WARN_ON_ONCE(!list_empty(&worker->entry));
2230 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2231
2232 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2233 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2234 worker_detach_from_pool(worker, pool);
2235 kfree(worker);
a9ab775b 2236 return 0;
c8e55f36 2237 }
affee4b2 2238
c8e55f36 2239 worker_leave_idle(worker);
db7bccf4 2240recheck:
e22bee78 2241 /* no more worker necessary? */
63d95a91 2242 if (!need_more_worker(pool))
e22bee78
TH
2243 goto sleep;
2244
2245 /* do we need to manage? */
63d95a91 2246 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2247 goto recheck;
2248
c8e55f36
TH
2249 /*
2250 * ->scheduled list can only be filled while a worker is
2251 * preparing to process a work or actually processing it.
2252 * Make sure nobody diddled with it while I was sleeping.
2253 */
6183c009 2254 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2255
e22bee78 2256 /*
a9ab775b
TH
2257 * Finish PREP stage. We're guaranteed to have at least one idle
2258 * worker or that someone else has already assumed the manager
2259 * role. This is where @worker starts participating in concurrency
2260 * management if applicable and concurrency management is restored
2261 * after being rebound. See rebind_workers() for details.
e22bee78 2262 */
a9ab775b 2263 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2264
2265 do {
c8e55f36 2266 struct work_struct *work =
bd7bdd43 2267 list_first_entry(&pool->worklist,
c8e55f36
TH
2268 struct work_struct, entry);
2269
82607adc
TH
2270 pool->watchdog_ts = jiffies;
2271
c8e55f36
TH
2272 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2273 /* optimization path, not strictly necessary */
2274 process_one_work(worker, work);
2275 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2276 process_scheduled_works(worker);
c8e55f36
TH
2277 } else {
2278 move_linked_works(work, &worker->scheduled, NULL);
2279 process_scheduled_works(worker);
affee4b2 2280 }
63d95a91 2281 } while (keep_working(pool));
e22bee78 2282
228f1d00 2283 worker_set_flags(worker, WORKER_PREP);
d313dd85 2284sleep:
c8e55f36 2285 /*
d565ed63
TH
2286 * pool->lock is held and there's no work to process and no need to
2287 * manage, sleep. Workers are woken up only while holding
2288 * pool->lock or from local cpu, so setting the current state
2289 * before releasing pool->lock is enough to prevent losing any
2290 * event.
c8e55f36
TH
2291 */
2292 worker_enter_idle(worker);
c5a94a61 2293 __set_current_state(TASK_IDLE);
d565ed63 2294 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2295 schedule();
2296 goto woke_up;
1da177e4
LT
2297}
2298
e22bee78
TH
2299/**
2300 * rescuer_thread - the rescuer thread function
111c225a 2301 * @__rescuer: self
e22bee78
TH
2302 *
2303 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2304 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2305 *
706026c2 2306 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2307 * worker which uses GFP_KERNEL allocation which has slight chance of
2308 * developing into deadlock if some works currently on the same queue
2309 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2310 * the problem rescuer solves.
2311 *
706026c2
TH
2312 * When such condition is possible, the pool summons rescuers of all
2313 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2314 * those works so that forward progress can be guaranteed.
2315 *
2316 * This should happen rarely.
d185af30
YB
2317 *
2318 * Return: 0
e22bee78 2319 */
111c225a 2320static int rescuer_thread(void *__rescuer)
e22bee78 2321{
111c225a
TH
2322 struct worker *rescuer = __rescuer;
2323 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2324 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2325 bool should_stop;
e22bee78
TH
2326
2327 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2328
2329 /*
2330 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2331 * doesn't participate in concurrency management.
2332 */
2333 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78 2334repeat:
c5a94a61 2335 set_current_state(TASK_IDLE);
e22bee78 2336
4d595b86
LJ
2337 /*
2338 * By the time the rescuer is requested to stop, the workqueue
2339 * shouldn't have any work pending, but @wq->maydays may still have
2340 * pwq(s) queued. This can happen by non-rescuer workers consuming
2341 * all the work items before the rescuer got to them. Go through
2342 * @wq->maydays processing before acting on should_stop so that the
2343 * list is always empty on exit.
2344 */
2345 should_stop = kthread_should_stop();
e22bee78 2346
493a1724 2347 /* see whether any pwq is asking for help */
2e109a28 2348 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2349
2350 while (!list_empty(&wq->maydays)) {
2351 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2352 struct pool_workqueue, mayday_node);
112202d9 2353 struct worker_pool *pool = pwq->pool;
e22bee78 2354 struct work_struct *work, *n;
82607adc 2355 bool first = true;
e22bee78
TH
2356
2357 __set_current_state(TASK_RUNNING);
493a1724
TH
2358 list_del_init(&pwq->mayday_node);
2359
2e109a28 2360 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2361
51697d39
LJ
2362 worker_attach_to_pool(rescuer, pool);
2363
2364 spin_lock_irq(&pool->lock);
b3104104 2365 rescuer->pool = pool;
e22bee78
TH
2366
2367 /*
2368 * Slurp in all works issued via this workqueue and
2369 * process'em.
2370 */
0479c8c5 2371 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2372 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2373 if (get_work_pwq(work) == pwq) {
2374 if (first)
2375 pool->watchdog_ts = jiffies;
e22bee78 2376 move_linked_works(work, scheduled, &n);
82607adc
TH
2377 }
2378 first = false;
2379 }
e22bee78 2380
008847f6
N
2381 if (!list_empty(scheduled)) {
2382 process_scheduled_works(rescuer);
2383
2384 /*
2385 * The above execution of rescued work items could
2386 * have created more to rescue through
2387 * pwq_activate_first_delayed() or chained
2388 * queueing. Let's put @pwq back on mayday list so
2389 * that such back-to-back work items, which may be
2390 * being used to relieve memory pressure, don't
2391 * incur MAYDAY_INTERVAL delay inbetween.
2392 */
2393 if (need_to_create_worker(pool)) {
2394 spin_lock(&wq_mayday_lock);
2395 get_pwq(pwq);
2396 list_move_tail(&pwq->mayday_node, &wq->maydays);
2397 spin_unlock(&wq_mayday_lock);
2398 }
2399 }
7576958a 2400
77668c8b
LJ
2401 /*
2402 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2403 * go away while we're still attached to it.
77668c8b
LJ
2404 */
2405 put_pwq(pwq);
2406
7576958a 2407 /*
d8ca83e6 2408 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2409 * regular worker; otherwise, we end up with 0 concurrency
2410 * and stalling the execution.
2411 */
d8ca83e6 2412 if (need_more_worker(pool))
63d95a91 2413 wake_up_worker(pool);
7576958a 2414
b3104104 2415 rescuer->pool = NULL;
13b1d625
LJ
2416 spin_unlock_irq(&pool->lock);
2417
2418 worker_detach_from_pool(rescuer, pool);
2419
2420 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2421 }
2422
2e109a28 2423 spin_unlock_irq(&wq_mayday_lock);
493a1724 2424
4d595b86
LJ
2425 if (should_stop) {
2426 __set_current_state(TASK_RUNNING);
2427 rescuer->task->flags &= ~PF_WQ_WORKER;
2428 return 0;
2429 }
2430
111c225a
TH
2431 /* rescuers should never participate in concurrency management */
2432 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2433 schedule();
2434 goto repeat;
1da177e4
LT
2435}
2436
fca839c0
TH
2437/**
2438 * check_flush_dependency - check for flush dependency sanity
2439 * @target_wq: workqueue being flushed
2440 * @target_work: work item being flushed (NULL for workqueue flushes)
2441 *
2442 * %current is trying to flush the whole @target_wq or @target_work on it.
2443 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2444 * reclaiming memory or running on a workqueue which doesn't have
2445 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2446 * a deadlock.
2447 */
2448static void check_flush_dependency(struct workqueue_struct *target_wq,
2449 struct work_struct *target_work)
2450{
2451 work_func_t target_func = target_work ? target_work->func : NULL;
2452 struct worker *worker;
2453
2454 if (target_wq->flags & WQ_MEM_RECLAIM)
2455 return;
2456
2457 worker = current_wq_worker();
2458
2459 WARN_ONCE(current->flags & PF_MEMALLOC,
2460 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2461 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2462 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2463 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2464 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2465 worker->current_pwq->wq->name, worker->current_func,
2466 target_wq->name, target_func);
2467}
2468
fc2e4d70
ON
2469struct wq_barrier {
2470 struct work_struct work;
2471 struct completion done;
2607d7a6 2472 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2473};
2474
2475static void wq_barrier_func(struct work_struct *work)
2476{
2477 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2478 complete(&barr->done);
2479}
2480
4690c4ab
TH
2481/**
2482 * insert_wq_barrier - insert a barrier work
112202d9 2483 * @pwq: pwq to insert barrier into
4690c4ab 2484 * @barr: wq_barrier to insert
affee4b2
TH
2485 * @target: target work to attach @barr to
2486 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2487 *
affee4b2
TH
2488 * @barr is linked to @target such that @barr is completed only after
2489 * @target finishes execution. Please note that the ordering
2490 * guarantee is observed only with respect to @target and on the local
2491 * cpu.
2492 *
2493 * Currently, a queued barrier can't be canceled. This is because
2494 * try_to_grab_pending() can't determine whether the work to be
2495 * grabbed is at the head of the queue and thus can't clear LINKED
2496 * flag of the previous work while there must be a valid next work
2497 * after a work with LINKED flag set.
2498 *
2499 * Note that when @worker is non-NULL, @target may be modified
112202d9 2500 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2501 *
2502 * CONTEXT:
d565ed63 2503 * spin_lock_irq(pool->lock).
4690c4ab 2504 */
112202d9 2505static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2506 struct wq_barrier *barr,
2507 struct work_struct *target, struct worker *worker)
fc2e4d70 2508{
affee4b2
TH
2509 struct list_head *head;
2510 unsigned int linked = 0;
2511
dc186ad7 2512 /*
d565ed63 2513 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2514 * as we know for sure that this will not trigger any of the
2515 * checks and call back into the fixup functions where we
2516 * might deadlock.
2517 */
ca1cab37 2518 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2519 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5
BF
2520
2521 /*
2522 * Explicitly init the crosslock for wq_barrier::done, make its lock
2523 * key a subkey of the corresponding work. As a result we won't
2524 * build a dependency between wq_barrier::done and unrelated work.
2525 */
2526 lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map,
2527 "(complete)wq_barr::done",
2528 target->lockdep_map.key, 1);
2529 __init_completion(&barr->done);
2607d7a6 2530 barr->task = current;
83c22520 2531
affee4b2
TH
2532 /*
2533 * If @target is currently being executed, schedule the
2534 * barrier to the worker; otherwise, put it after @target.
2535 */
2536 if (worker)
2537 head = worker->scheduled.next;
2538 else {
2539 unsigned long *bits = work_data_bits(target);
2540
2541 head = target->entry.next;
2542 /* there can already be other linked works, inherit and set */
2543 linked = *bits & WORK_STRUCT_LINKED;
2544 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2545 }
2546
dc186ad7 2547 debug_work_activate(&barr->work);
112202d9 2548 insert_work(pwq, &barr->work, head,
affee4b2 2549 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2550}
2551
73f53c4a 2552/**
112202d9 2553 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2554 * @wq: workqueue being flushed
2555 * @flush_color: new flush color, < 0 for no-op
2556 * @work_color: new work color, < 0 for no-op
2557 *
112202d9 2558 * Prepare pwqs for workqueue flushing.
73f53c4a 2559 *
112202d9
TH
2560 * If @flush_color is non-negative, flush_color on all pwqs should be
2561 * -1. If no pwq has in-flight commands at the specified color, all
2562 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2563 * has in flight commands, its pwq->flush_color is set to
2564 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2565 * wakeup logic is armed and %true is returned.
2566 *
2567 * The caller should have initialized @wq->first_flusher prior to
2568 * calling this function with non-negative @flush_color. If
2569 * @flush_color is negative, no flush color update is done and %false
2570 * is returned.
2571 *
112202d9 2572 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2573 * work_color which is previous to @work_color and all will be
2574 * advanced to @work_color.
2575 *
2576 * CONTEXT:
3c25a55d 2577 * mutex_lock(wq->mutex).
73f53c4a 2578 *
d185af30 2579 * Return:
73f53c4a
TH
2580 * %true if @flush_color >= 0 and there's something to flush. %false
2581 * otherwise.
2582 */
112202d9 2583static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2584 int flush_color, int work_color)
1da177e4 2585{
73f53c4a 2586 bool wait = false;
49e3cf44 2587 struct pool_workqueue *pwq;
1da177e4 2588
73f53c4a 2589 if (flush_color >= 0) {
6183c009 2590 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2591 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2592 }
2355b70f 2593
49e3cf44 2594 for_each_pwq(pwq, wq) {
112202d9 2595 struct worker_pool *pool = pwq->pool;
fc2e4d70 2596
b09f4fd3 2597 spin_lock_irq(&pool->lock);
83c22520 2598
73f53c4a 2599 if (flush_color >= 0) {
6183c009 2600 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2601
112202d9
TH
2602 if (pwq->nr_in_flight[flush_color]) {
2603 pwq->flush_color = flush_color;
2604 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2605 wait = true;
2606 }
2607 }
1da177e4 2608
73f53c4a 2609 if (work_color >= 0) {
6183c009 2610 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2611 pwq->work_color = work_color;
73f53c4a 2612 }
1da177e4 2613
b09f4fd3 2614 spin_unlock_irq(&pool->lock);
1da177e4 2615 }
2355b70f 2616
112202d9 2617 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2618 complete(&wq->first_flusher->done);
14441960 2619
73f53c4a 2620 return wait;
1da177e4
LT
2621}
2622
0fcb78c2 2623/**
1da177e4 2624 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2625 * @wq: workqueue to flush
1da177e4 2626 *
c5aa87bb
TH
2627 * This function sleeps until all work items which were queued on entry
2628 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2629 */
7ad5b3a5 2630void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2631{
73f53c4a
TH
2632 struct wq_flusher this_flusher = {
2633 .list = LIST_HEAD_INIT(this_flusher.list),
2634 .flush_color = -1,
2635 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2636 };
2637 int next_color;
1da177e4 2638
3347fa09
TH
2639 if (WARN_ON(!wq_online))
2640 return;
2641
3295f0ef
IM
2642 lock_map_acquire(&wq->lockdep_map);
2643 lock_map_release(&wq->lockdep_map);
73f53c4a 2644
3c25a55d 2645 mutex_lock(&wq->mutex);
73f53c4a
TH
2646
2647 /*
2648 * Start-to-wait phase
2649 */
2650 next_color = work_next_color(wq->work_color);
2651
2652 if (next_color != wq->flush_color) {
2653 /*
2654 * Color space is not full. The current work_color
2655 * becomes our flush_color and work_color is advanced
2656 * by one.
2657 */
6183c009 2658 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2659 this_flusher.flush_color = wq->work_color;
2660 wq->work_color = next_color;
2661
2662 if (!wq->first_flusher) {
2663 /* no flush in progress, become the first flusher */
6183c009 2664 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2665
2666 wq->first_flusher = &this_flusher;
2667
112202d9 2668 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2669 wq->work_color)) {
2670 /* nothing to flush, done */
2671 wq->flush_color = next_color;
2672 wq->first_flusher = NULL;
2673 goto out_unlock;
2674 }
2675 } else {
2676 /* wait in queue */
6183c009 2677 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2678 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2679 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2680 }
2681 } else {
2682 /*
2683 * Oops, color space is full, wait on overflow queue.
2684 * The next flush completion will assign us
2685 * flush_color and transfer to flusher_queue.
2686 */
2687 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2688 }
2689
fca839c0
TH
2690 check_flush_dependency(wq, NULL);
2691
3c25a55d 2692 mutex_unlock(&wq->mutex);
73f53c4a
TH
2693
2694 wait_for_completion(&this_flusher.done);
2695
2696 /*
2697 * Wake-up-and-cascade phase
2698 *
2699 * First flushers are responsible for cascading flushes and
2700 * handling overflow. Non-first flushers can simply return.
2701 */
2702 if (wq->first_flusher != &this_flusher)
2703 return;
2704
3c25a55d 2705 mutex_lock(&wq->mutex);
73f53c4a 2706
4ce48b37
TH
2707 /* we might have raced, check again with mutex held */
2708 if (wq->first_flusher != &this_flusher)
2709 goto out_unlock;
2710
73f53c4a
TH
2711 wq->first_flusher = NULL;
2712
6183c009
TH
2713 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2714 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2715
2716 while (true) {
2717 struct wq_flusher *next, *tmp;
2718
2719 /* complete all the flushers sharing the current flush color */
2720 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2721 if (next->flush_color != wq->flush_color)
2722 break;
2723 list_del_init(&next->list);
2724 complete(&next->done);
2725 }
2726
6183c009
TH
2727 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2728 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2729
2730 /* this flush_color is finished, advance by one */
2731 wq->flush_color = work_next_color(wq->flush_color);
2732
2733 /* one color has been freed, handle overflow queue */
2734 if (!list_empty(&wq->flusher_overflow)) {
2735 /*
2736 * Assign the same color to all overflowed
2737 * flushers, advance work_color and append to
2738 * flusher_queue. This is the start-to-wait
2739 * phase for these overflowed flushers.
2740 */
2741 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2742 tmp->flush_color = wq->work_color;
2743
2744 wq->work_color = work_next_color(wq->work_color);
2745
2746 list_splice_tail_init(&wq->flusher_overflow,
2747 &wq->flusher_queue);
112202d9 2748 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2749 }
2750
2751 if (list_empty(&wq->flusher_queue)) {
6183c009 2752 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2753 break;
2754 }
2755
2756 /*
2757 * Need to flush more colors. Make the next flusher
112202d9 2758 * the new first flusher and arm pwqs.
73f53c4a 2759 */
6183c009
TH
2760 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2761 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2762
2763 list_del_init(&next->list);
2764 wq->first_flusher = next;
2765
112202d9 2766 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2767 break;
2768
2769 /*
2770 * Meh... this color is already done, clear first
2771 * flusher and repeat cascading.
2772 */
2773 wq->first_flusher = NULL;
2774 }
2775
2776out_unlock:
3c25a55d 2777 mutex_unlock(&wq->mutex);
1da177e4 2778}
1dadafa8 2779EXPORT_SYMBOL(flush_workqueue);
1da177e4 2780
9c5a2ba7
TH
2781/**
2782 * drain_workqueue - drain a workqueue
2783 * @wq: workqueue to drain
2784 *
2785 * Wait until the workqueue becomes empty. While draining is in progress,
2786 * only chain queueing is allowed. IOW, only currently pending or running
2787 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2788 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2789 * by the depth of chaining and should be relatively short. Whine if it
2790 * takes too long.
2791 */
2792void drain_workqueue(struct workqueue_struct *wq)
2793{
2794 unsigned int flush_cnt = 0;
49e3cf44 2795 struct pool_workqueue *pwq;
9c5a2ba7
TH
2796
2797 /*
2798 * __queue_work() needs to test whether there are drainers, is much
2799 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2800 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2801 */
87fc741e 2802 mutex_lock(&wq->mutex);
9c5a2ba7 2803 if (!wq->nr_drainers++)
618b01eb 2804 wq->flags |= __WQ_DRAINING;
87fc741e 2805 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2806reflush:
2807 flush_workqueue(wq);
2808
b09f4fd3 2809 mutex_lock(&wq->mutex);
76af4d93 2810
49e3cf44 2811 for_each_pwq(pwq, wq) {
fa2563e4 2812 bool drained;
9c5a2ba7 2813
b09f4fd3 2814 spin_lock_irq(&pwq->pool->lock);
112202d9 2815 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2816 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2817
2818 if (drained)
9c5a2ba7
TH
2819 continue;
2820
2821 if (++flush_cnt == 10 ||
2822 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2823 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2824 wq->name, flush_cnt);
76af4d93 2825
b09f4fd3 2826 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2827 goto reflush;
2828 }
2829
9c5a2ba7 2830 if (!--wq->nr_drainers)
618b01eb 2831 wq->flags &= ~__WQ_DRAINING;
87fc741e 2832 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2833}
2834EXPORT_SYMBOL_GPL(drain_workqueue);
2835
606a5020 2836static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2837{
affee4b2 2838 struct worker *worker = NULL;
c9e7cf27 2839 struct worker_pool *pool;
112202d9 2840 struct pool_workqueue *pwq;
db700897
ON
2841
2842 might_sleep();
fa1b54e6
TH
2843
2844 local_irq_disable();
c9e7cf27 2845 pool = get_work_pool(work);
fa1b54e6
TH
2846 if (!pool) {
2847 local_irq_enable();
baf59022 2848 return false;
fa1b54e6 2849 }
db700897 2850
fa1b54e6 2851 spin_lock(&pool->lock);
0b3dae68 2852 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2853 pwq = get_work_pwq(work);
2854 if (pwq) {
2855 if (unlikely(pwq->pool != pool))
4690c4ab 2856 goto already_gone;
606a5020 2857 } else {
c9e7cf27 2858 worker = find_worker_executing_work(pool, work);
affee4b2 2859 if (!worker)
4690c4ab 2860 goto already_gone;
112202d9 2861 pwq = worker->current_pwq;
606a5020 2862 }
db700897 2863
fca839c0
TH
2864 check_flush_dependency(pwq->wq, work);
2865
112202d9 2866 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2867 spin_unlock_irq(&pool->lock);
7a22ad75 2868
e159489b 2869 /*
a1d14934
PZ
2870 * Force a lock recursion deadlock when using flush_work() inside a
2871 * single-threaded or rescuer equipped workqueue.
2872 *
2873 * For single threaded workqueues the deadlock happens when the work
2874 * is after the work issuing the flush_work(). For rescuer equipped
2875 * workqueues the deadlock happens when the rescuer stalls, blocking
2876 * forward progress.
e159489b 2877 */
a1d14934 2878 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
112202d9 2879 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
2880 lock_map_release(&pwq->wq->lockdep_map);
2881 }
e159489b 2882
401a8d04 2883 return true;
4690c4ab 2884already_gone:
d565ed63 2885 spin_unlock_irq(&pool->lock);
401a8d04 2886 return false;
db700897 2887}
baf59022
TH
2888
2889/**
2890 * flush_work - wait for a work to finish executing the last queueing instance
2891 * @work: the work to flush
2892 *
606a5020
TH
2893 * Wait until @work has finished execution. @work is guaranteed to be idle
2894 * on return if it hasn't been requeued since flush started.
baf59022 2895 *
d185af30 2896 * Return:
baf59022
TH
2897 * %true if flush_work() waited for the work to finish execution,
2898 * %false if it was already idle.
2899 */
2900bool flush_work(struct work_struct *work)
2901{
12997d1a
BH
2902 struct wq_barrier barr;
2903
3347fa09
TH
2904 if (WARN_ON(!wq_online))
2905 return false;
2906
0976dfc1
SB
2907 lock_map_acquire(&work->lockdep_map);
2908 lock_map_release(&work->lockdep_map);
2909
12997d1a
BH
2910 if (start_flush_work(work, &barr)) {
2911 wait_for_completion(&barr.done);
2912 destroy_work_on_stack(&barr.work);
2913 return true;
2914 } else {
2915 return false;
2916 }
6e84d644 2917}
606a5020 2918EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2919
8603e1b3 2920struct cwt_wait {
ac6424b9 2921 wait_queue_entry_t wait;
8603e1b3
TH
2922 struct work_struct *work;
2923};
2924
ac6424b9 2925static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
2926{
2927 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2928
2929 if (cwait->work != key)
2930 return 0;
2931 return autoremove_wake_function(wait, mode, sync, key);
2932}
2933
36e227d2 2934static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2935{
8603e1b3 2936 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2937 unsigned long flags;
1f1f642e
ON
2938 int ret;
2939
2940 do {
bbb68dfa
TH
2941 ret = try_to_grab_pending(work, is_dwork, &flags);
2942 /*
8603e1b3
TH
2943 * If someone else is already canceling, wait for it to
2944 * finish. flush_work() doesn't work for PREEMPT_NONE
2945 * because we may get scheduled between @work's completion
2946 * and the other canceling task resuming and clearing
2947 * CANCELING - flush_work() will return false immediately
2948 * as @work is no longer busy, try_to_grab_pending() will
2949 * return -ENOENT as @work is still being canceled and the
2950 * other canceling task won't be able to clear CANCELING as
2951 * we're hogging the CPU.
2952 *
2953 * Let's wait for completion using a waitqueue. As this
2954 * may lead to the thundering herd problem, use a custom
2955 * wake function which matches @work along with exclusive
2956 * wait and wakeup.
bbb68dfa 2957 */
8603e1b3
TH
2958 if (unlikely(ret == -ENOENT)) {
2959 struct cwt_wait cwait;
2960
2961 init_wait(&cwait.wait);
2962 cwait.wait.func = cwt_wakefn;
2963 cwait.work = work;
2964
2965 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2966 TASK_UNINTERRUPTIBLE);
2967 if (work_is_canceling(work))
2968 schedule();
2969 finish_wait(&cancel_waitq, &cwait.wait);
2970 }
1f1f642e
ON
2971 } while (unlikely(ret < 0));
2972
bbb68dfa
TH
2973 /* tell other tasks trying to grab @work to back off */
2974 mark_work_canceling(work);
2975 local_irq_restore(flags);
2976
3347fa09
TH
2977 /*
2978 * This allows canceling during early boot. We know that @work
2979 * isn't executing.
2980 */
2981 if (wq_online)
2982 flush_work(work);
2983
7a22ad75 2984 clear_work_data(work);
8603e1b3
TH
2985
2986 /*
2987 * Paired with prepare_to_wait() above so that either
2988 * waitqueue_active() is visible here or !work_is_canceling() is
2989 * visible there.
2990 */
2991 smp_mb();
2992 if (waitqueue_active(&cancel_waitq))
2993 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2994
1f1f642e
ON
2995 return ret;
2996}
2997
6e84d644 2998/**
401a8d04
TH
2999 * cancel_work_sync - cancel a work and wait for it to finish
3000 * @work: the work to cancel
6e84d644 3001 *
401a8d04
TH
3002 * Cancel @work and wait for its execution to finish. This function
3003 * can be used even if the work re-queues itself or migrates to
3004 * another workqueue. On return from this function, @work is
3005 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3006 *
401a8d04
TH
3007 * cancel_work_sync(&delayed_work->work) must not be used for
3008 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3009 *
401a8d04 3010 * The caller must ensure that the workqueue on which @work was last
6e84d644 3011 * queued can't be destroyed before this function returns.
401a8d04 3012 *
d185af30 3013 * Return:
401a8d04 3014 * %true if @work was pending, %false otherwise.
6e84d644 3015 */
401a8d04 3016bool cancel_work_sync(struct work_struct *work)
6e84d644 3017{
36e227d2 3018 return __cancel_work_timer(work, false);
b89deed3 3019}
28e53bdd 3020EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3021
6e84d644 3022/**
401a8d04
TH
3023 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3024 * @dwork: the delayed work to flush
6e84d644 3025 *
401a8d04
TH
3026 * Delayed timer is cancelled and the pending work is queued for
3027 * immediate execution. Like flush_work(), this function only
3028 * considers the last queueing instance of @dwork.
1f1f642e 3029 *
d185af30 3030 * Return:
401a8d04
TH
3031 * %true if flush_work() waited for the work to finish execution,
3032 * %false if it was already idle.
6e84d644 3033 */
401a8d04
TH
3034bool flush_delayed_work(struct delayed_work *dwork)
3035{
8930caba 3036 local_irq_disable();
401a8d04 3037 if (del_timer_sync(&dwork->timer))
60c057bc 3038 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3039 local_irq_enable();
401a8d04
TH
3040 return flush_work(&dwork->work);
3041}
3042EXPORT_SYMBOL(flush_delayed_work);
3043
f72b8792
JA
3044static bool __cancel_work(struct work_struct *work, bool is_dwork)
3045{
3046 unsigned long flags;
3047 int ret;
3048
3049 do {
3050 ret = try_to_grab_pending(work, is_dwork, &flags);
3051 } while (unlikely(ret == -EAGAIN));
3052
3053 if (unlikely(ret < 0))
3054 return false;
3055
3056 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3057 local_irq_restore(flags);
3058 return ret;
3059}
3060
3061/*
3062 * See cancel_delayed_work()
3063 */
3064bool cancel_work(struct work_struct *work)
3065{
3066 return __cancel_work(work, false);
3067}
3068
09383498 3069/**
57b30ae7
TH
3070 * cancel_delayed_work - cancel a delayed work
3071 * @dwork: delayed_work to cancel
09383498 3072 *
d185af30
YB
3073 * Kill off a pending delayed_work.
3074 *
3075 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3076 * pending.
3077 *
3078 * Note:
3079 * The work callback function may still be running on return, unless
3080 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3081 * use cancel_delayed_work_sync() to wait on it.
09383498 3082 *
57b30ae7 3083 * This function is safe to call from any context including IRQ handler.
09383498 3084 */
57b30ae7 3085bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3086{
f72b8792 3087 return __cancel_work(&dwork->work, true);
09383498 3088}
57b30ae7 3089EXPORT_SYMBOL(cancel_delayed_work);
09383498 3090
401a8d04
TH
3091/**
3092 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3093 * @dwork: the delayed work cancel
3094 *
3095 * This is cancel_work_sync() for delayed works.
3096 *
d185af30 3097 * Return:
401a8d04
TH
3098 * %true if @dwork was pending, %false otherwise.
3099 */
3100bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3101{
36e227d2 3102 return __cancel_work_timer(&dwork->work, true);
6e84d644 3103}
f5a421a4 3104EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3105
b6136773 3106/**
31ddd871 3107 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3108 * @func: the function to call
b6136773 3109 *
31ddd871
TH
3110 * schedule_on_each_cpu() executes @func on each online CPU using the
3111 * system workqueue and blocks until all CPUs have completed.
b6136773 3112 * schedule_on_each_cpu() is very slow.
31ddd871 3113 *
d185af30 3114 * Return:
31ddd871 3115 * 0 on success, -errno on failure.
b6136773 3116 */
65f27f38 3117int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3118{
3119 int cpu;
38f51568 3120 struct work_struct __percpu *works;
15316ba8 3121
b6136773
AM
3122 works = alloc_percpu(struct work_struct);
3123 if (!works)
15316ba8 3124 return -ENOMEM;
b6136773 3125
93981800
TH
3126 get_online_cpus();
3127
15316ba8 3128 for_each_online_cpu(cpu) {
9bfb1839
IM
3129 struct work_struct *work = per_cpu_ptr(works, cpu);
3130
3131 INIT_WORK(work, func);
b71ab8c2 3132 schedule_work_on(cpu, work);
65a64464 3133 }
93981800
TH
3134
3135 for_each_online_cpu(cpu)
3136 flush_work(per_cpu_ptr(works, cpu));
3137
95402b38 3138 put_online_cpus();
b6136773 3139 free_percpu(works);
15316ba8
CL
3140 return 0;
3141}
3142
1fa44eca
JB
3143/**
3144 * execute_in_process_context - reliably execute the routine with user context
3145 * @fn: the function to execute
1fa44eca
JB
3146 * @ew: guaranteed storage for the execute work structure (must
3147 * be available when the work executes)
3148 *
3149 * Executes the function immediately if process context is available,
3150 * otherwise schedules the function for delayed execution.
3151 *
d185af30 3152 * Return: 0 - function was executed
1fa44eca
JB
3153 * 1 - function was scheduled for execution
3154 */
65f27f38 3155int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3156{
3157 if (!in_interrupt()) {
65f27f38 3158 fn(&ew->work);
1fa44eca
JB
3159 return 0;
3160 }
3161
65f27f38 3162 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3163 schedule_work(&ew->work);
3164
3165 return 1;
3166}
3167EXPORT_SYMBOL_GPL(execute_in_process_context);
3168
6ba94429
FW
3169/**
3170 * free_workqueue_attrs - free a workqueue_attrs
3171 * @attrs: workqueue_attrs to free
226223ab 3172 *
6ba94429 3173 * Undo alloc_workqueue_attrs().
226223ab 3174 */
6ba94429 3175void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3176{
6ba94429
FW
3177 if (attrs) {
3178 free_cpumask_var(attrs->cpumask);
3179 kfree(attrs);
3180 }
226223ab
TH
3181}
3182
6ba94429
FW
3183/**
3184 * alloc_workqueue_attrs - allocate a workqueue_attrs
3185 * @gfp_mask: allocation mask to use
3186 *
3187 * Allocate a new workqueue_attrs, initialize with default settings and
3188 * return it.
3189 *
3190 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3191 */
3192struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3193{
6ba94429 3194 struct workqueue_attrs *attrs;
226223ab 3195
6ba94429
FW
3196 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3197 if (!attrs)
3198 goto fail;
3199 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3200 goto fail;
3201
3202 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3203 return attrs;
3204fail:
3205 free_workqueue_attrs(attrs);
3206 return NULL;
226223ab
TH
3207}
3208
6ba94429
FW
3209static void copy_workqueue_attrs(struct workqueue_attrs *to,
3210 const struct workqueue_attrs *from)
226223ab 3211{
6ba94429
FW
3212 to->nice = from->nice;
3213 cpumask_copy(to->cpumask, from->cpumask);
3214 /*
3215 * Unlike hash and equality test, this function doesn't ignore
3216 * ->no_numa as it is used for both pool and wq attrs. Instead,
3217 * get_unbound_pool() explicitly clears ->no_numa after copying.
3218 */
3219 to->no_numa = from->no_numa;
226223ab
TH
3220}
3221
6ba94429
FW
3222/* hash value of the content of @attr */
3223static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3224{
6ba94429 3225 u32 hash = 0;
226223ab 3226
6ba94429
FW
3227 hash = jhash_1word(attrs->nice, hash);
3228 hash = jhash(cpumask_bits(attrs->cpumask),
3229 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3230 return hash;
226223ab 3231}
226223ab 3232
6ba94429
FW
3233/* content equality test */
3234static bool wqattrs_equal(const struct workqueue_attrs *a,
3235 const struct workqueue_attrs *b)
226223ab 3236{
6ba94429
FW
3237 if (a->nice != b->nice)
3238 return false;
3239 if (!cpumask_equal(a->cpumask, b->cpumask))
3240 return false;
3241 return true;
226223ab
TH
3242}
3243
6ba94429
FW
3244/**
3245 * init_worker_pool - initialize a newly zalloc'd worker_pool
3246 * @pool: worker_pool to initialize
3247 *
402dd89d 3248 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3249 *
3250 * Return: 0 on success, -errno on failure. Even on failure, all fields
3251 * inside @pool proper are initialized and put_unbound_pool() can be called
3252 * on @pool safely to release it.
3253 */
3254static int init_worker_pool(struct worker_pool *pool)
226223ab 3255{
6ba94429
FW
3256 spin_lock_init(&pool->lock);
3257 pool->id = -1;
3258 pool->cpu = -1;
3259 pool->node = NUMA_NO_NODE;
3260 pool->flags |= POOL_DISASSOCIATED;
82607adc 3261 pool->watchdog_ts = jiffies;
6ba94429
FW
3262 INIT_LIST_HEAD(&pool->worklist);
3263 INIT_LIST_HEAD(&pool->idle_list);
3264 hash_init(pool->busy_hash);
226223ab 3265
c30fb26b
GT
3266 setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3267 (unsigned long)pool);
226223ab 3268
6ba94429
FW
3269 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3270 (unsigned long)pool);
226223ab 3271
6ba94429
FW
3272 mutex_init(&pool->attach_mutex);
3273 INIT_LIST_HEAD(&pool->workers);
226223ab 3274
6ba94429
FW
3275 ida_init(&pool->worker_ida);
3276 INIT_HLIST_NODE(&pool->hash_node);
3277 pool->refcnt = 1;
226223ab 3278
6ba94429
FW
3279 /* shouldn't fail above this point */
3280 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3281 if (!pool->attrs)
3282 return -ENOMEM;
3283 return 0;
226223ab
TH
3284}
3285
6ba94429 3286static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3287{
6ba94429
FW
3288 struct workqueue_struct *wq =
3289 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3290
6ba94429
FW
3291 if (!(wq->flags & WQ_UNBOUND))
3292 free_percpu(wq->cpu_pwqs);
226223ab 3293 else
6ba94429 3294 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3295
6ba94429
FW
3296 kfree(wq->rescuer);
3297 kfree(wq);
226223ab
TH
3298}
3299
6ba94429 3300static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3301{
6ba94429 3302 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3303
6ba94429
FW
3304 ida_destroy(&pool->worker_ida);
3305 free_workqueue_attrs(pool->attrs);
3306 kfree(pool);
226223ab
TH
3307}
3308
6ba94429
FW
3309/**
3310 * put_unbound_pool - put a worker_pool
3311 * @pool: worker_pool to put
3312 *
3313 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3314 * safe manner. get_unbound_pool() calls this function on its failure path
3315 * and this function should be able to release pools which went through,
3316 * successfully or not, init_worker_pool().
3317 *
3318 * Should be called with wq_pool_mutex held.
3319 */
3320static void put_unbound_pool(struct worker_pool *pool)
226223ab 3321{
6ba94429
FW
3322 DECLARE_COMPLETION_ONSTACK(detach_completion);
3323 struct worker *worker;
226223ab 3324
6ba94429 3325 lockdep_assert_held(&wq_pool_mutex);
226223ab 3326
6ba94429
FW
3327 if (--pool->refcnt)
3328 return;
226223ab 3329
6ba94429
FW
3330 /* sanity checks */
3331 if (WARN_ON(!(pool->cpu < 0)) ||
3332 WARN_ON(!list_empty(&pool->worklist)))
3333 return;
226223ab 3334
6ba94429
FW
3335 /* release id and unhash */
3336 if (pool->id >= 0)
3337 idr_remove(&worker_pool_idr, pool->id);
3338 hash_del(&pool->hash_node);
d55262c4 3339
6ba94429 3340 /*
692b4825
TH
3341 * Become the manager and destroy all workers. This prevents
3342 * @pool's workers from blocking on attach_mutex. We're the last
3343 * manager and @pool gets freed with the flag set.
6ba94429 3344 */
6ba94429 3345 spin_lock_irq(&pool->lock);
692b4825
TH
3346 wait_event_lock_irq(wq_manager_wait,
3347 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3348 pool->flags |= POOL_MANAGER_ACTIVE;
3349
6ba94429
FW
3350 while ((worker = first_idle_worker(pool)))
3351 destroy_worker(worker);
3352 WARN_ON(pool->nr_workers || pool->nr_idle);
3353 spin_unlock_irq(&pool->lock);
d55262c4 3354
6ba94429
FW
3355 mutex_lock(&pool->attach_mutex);
3356 if (!list_empty(&pool->workers))
3357 pool->detach_completion = &detach_completion;
3358 mutex_unlock(&pool->attach_mutex);
226223ab 3359
6ba94429
FW
3360 if (pool->detach_completion)
3361 wait_for_completion(pool->detach_completion);
226223ab 3362
6ba94429
FW
3363 /* shut down the timers */
3364 del_timer_sync(&pool->idle_timer);
3365 del_timer_sync(&pool->mayday_timer);
226223ab 3366
6ba94429
FW
3367 /* sched-RCU protected to allow dereferences from get_work_pool() */
3368 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3369}
3370
3371/**
6ba94429
FW
3372 * get_unbound_pool - get a worker_pool with the specified attributes
3373 * @attrs: the attributes of the worker_pool to get
226223ab 3374 *
6ba94429
FW
3375 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3376 * reference count and return it. If there already is a matching
3377 * worker_pool, it will be used; otherwise, this function attempts to
3378 * create a new one.
226223ab 3379 *
6ba94429 3380 * Should be called with wq_pool_mutex held.
226223ab 3381 *
6ba94429
FW
3382 * Return: On success, a worker_pool with the same attributes as @attrs.
3383 * On failure, %NULL.
226223ab 3384 */
6ba94429 3385static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3386{
6ba94429
FW
3387 u32 hash = wqattrs_hash(attrs);
3388 struct worker_pool *pool;
3389 int node;
e2273584 3390 int target_node = NUMA_NO_NODE;
226223ab 3391
6ba94429 3392 lockdep_assert_held(&wq_pool_mutex);
226223ab 3393
6ba94429
FW
3394 /* do we already have a matching pool? */
3395 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3396 if (wqattrs_equal(pool->attrs, attrs)) {
3397 pool->refcnt++;
3398 return pool;
3399 }
3400 }
226223ab 3401
e2273584
XP
3402 /* if cpumask is contained inside a NUMA node, we belong to that node */
3403 if (wq_numa_enabled) {
3404 for_each_node(node) {
3405 if (cpumask_subset(attrs->cpumask,
3406 wq_numa_possible_cpumask[node])) {
3407 target_node = node;
3408 break;
3409 }
3410 }
3411 }
3412
6ba94429 3413 /* nope, create a new one */
e2273584 3414 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3415 if (!pool || init_worker_pool(pool) < 0)
3416 goto fail;
3417
3418 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3419 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3420 pool->node = target_node;
226223ab
TH
3421
3422 /*
6ba94429
FW
3423 * no_numa isn't a worker_pool attribute, always clear it. See
3424 * 'struct workqueue_attrs' comments for detail.
226223ab 3425 */
6ba94429 3426 pool->attrs->no_numa = false;
226223ab 3427
6ba94429
FW
3428 if (worker_pool_assign_id(pool) < 0)
3429 goto fail;
226223ab 3430
6ba94429 3431 /* create and start the initial worker */
3347fa09 3432 if (wq_online && !create_worker(pool))
6ba94429 3433 goto fail;
226223ab 3434
6ba94429
FW
3435 /* install */
3436 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3437
6ba94429
FW
3438 return pool;
3439fail:
3440 if (pool)
3441 put_unbound_pool(pool);
3442 return NULL;
226223ab 3443}
226223ab 3444
6ba94429 3445static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3446{
6ba94429
FW
3447 kmem_cache_free(pwq_cache,
3448 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3449}
3450
6ba94429
FW
3451/*
3452 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3453 * and needs to be destroyed.
7a4e344c 3454 */
6ba94429 3455static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3456{
6ba94429
FW
3457 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3458 unbound_release_work);
3459 struct workqueue_struct *wq = pwq->wq;
3460 struct worker_pool *pool = pwq->pool;
3461 bool is_last;
7a4e344c 3462
6ba94429
FW
3463 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3464 return;
7a4e344c 3465
6ba94429
FW
3466 mutex_lock(&wq->mutex);
3467 list_del_rcu(&pwq->pwqs_node);
3468 is_last = list_empty(&wq->pwqs);
3469 mutex_unlock(&wq->mutex);
3470
3471 mutex_lock(&wq_pool_mutex);
3472 put_unbound_pool(pool);
3473 mutex_unlock(&wq_pool_mutex);
3474
3475 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3476
2865a8fb 3477 /*
6ba94429
FW
3478 * If we're the last pwq going away, @wq is already dead and no one
3479 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3480 */
6ba94429
FW
3481 if (is_last)
3482 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3483}
3484
7a4e344c 3485/**
6ba94429
FW
3486 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3487 * @pwq: target pool_workqueue
d185af30 3488 *
6ba94429
FW
3489 * If @pwq isn't freezing, set @pwq->max_active to the associated
3490 * workqueue's saved_max_active and activate delayed work items
3491 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3492 */
6ba94429 3493static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3494{
6ba94429
FW
3495 struct workqueue_struct *wq = pwq->wq;
3496 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3497 unsigned long flags;
4e1a1f9a 3498
6ba94429
FW
3499 /* for @wq->saved_max_active */
3500 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3501
6ba94429
FW
3502 /* fast exit for non-freezable wqs */
3503 if (!freezable && pwq->max_active == wq->saved_max_active)
3504 return;
7a4e344c 3505
3347fa09
TH
3506 /* this function can be called during early boot w/ irq disabled */
3507 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3508
6ba94429
FW
3509 /*
3510 * During [un]freezing, the caller is responsible for ensuring that
3511 * this function is called at least once after @workqueue_freezing
3512 * is updated and visible.
3513 */
3514 if (!freezable || !workqueue_freezing) {
3515 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3516
6ba94429
FW
3517 while (!list_empty(&pwq->delayed_works) &&
3518 pwq->nr_active < pwq->max_active)
3519 pwq_activate_first_delayed(pwq);
e2dca7ad 3520
6ba94429
FW
3521 /*
3522 * Need to kick a worker after thawed or an unbound wq's
3523 * max_active is bumped. It's a slow path. Do it always.
3524 */
3525 wake_up_worker(pwq->pool);
3526 } else {
3527 pwq->max_active = 0;
3528 }
e2dca7ad 3529
3347fa09 3530 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3531}
3532
6ba94429
FW
3533/* initialize newly alloced @pwq which is associated with @wq and @pool */
3534static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3535 struct worker_pool *pool)
29c91e99 3536{
6ba94429 3537 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3538
6ba94429
FW
3539 memset(pwq, 0, sizeof(*pwq));
3540
3541 pwq->pool = pool;
3542 pwq->wq = wq;
3543 pwq->flush_color = -1;
3544 pwq->refcnt = 1;
3545 INIT_LIST_HEAD(&pwq->delayed_works);
3546 INIT_LIST_HEAD(&pwq->pwqs_node);
3547 INIT_LIST_HEAD(&pwq->mayday_node);
3548 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3549}
3550
6ba94429
FW
3551/* sync @pwq with the current state of its associated wq and link it */
3552static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3553{
6ba94429 3554 struct workqueue_struct *wq = pwq->wq;
29c91e99 3555
6ba94429 3556 lockdep_assert_held(&wq->mutex);
a892cacc 3557
6ba94429
FW
3558 /* may be called multiple times, ignore if already linked */
3559 if (!list_empty(&pwq->pwqs_node))
29c91e99 3560 return;
29c91e99 3561
6ba94429
FW
3562 /* set the matching work_color */
3563 pwq->work_color = wq->work_color;
29c91e99 3564
6ba94429
FW
3565 /* sync max_active to the current setting */
3566 pwq_adjust_max_active(pwq);
29c91e99 3567
6ba94429
FW
3568 /* link in @pwq */
3569 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3570}
29c91e99 3571
6ba94429
FW
3572/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3573static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3574 const struct workqueue_attrs *attrs)
3575{
3576 struct worker_pool *pool;
3577 struct pool_workqueue *pwq;
60f5a4bc 3578
6ba94429 3579 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3580
6ba94429
FW
3581 pool = get_unbound_pool(attrs);
3582 if (!pool)
3583 return NULL;
60f5a4bc 3584
6ba94429
FW
3585 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3586 if (!pwq) {
3587 put_unbound_pool(pool);
3588 return NULL;
3589 }
29c91e99 3590
6ba94429
FW
3591 init_pwq(pwq, wq, pool);
3592 return pwq;
3593}
29c91e99 3594
29c91e99 3595/**
30186c6f 3596 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3597 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3598 * @node: the target NUMA node
3599 * @cpu_going_down: if >= 0, the CPU to consider as offline
3600 * @cpumask: outarg, the resulting cpumask
29c91e99 3601 *
6ba94429
FW
3602 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3603 * @cpu_going_down is >= 0, that cpu is considered offline during
3604 * calculation. The result is stored in @cpumask.
a892cacc 3605 *
6ba94429
FW
3606 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3607 * enabled and @node has online CPUs requested by @attrs, the returned
3608 * cpumask is the intersection of the possible CPUs of @node and
3609 * @attrs->cpumask.
d185af30 3610 *
6ba94429
FW
3611 * The caller is responsible for ensuring that the cpumask of @node stays
3612 * stable.
3613 *
3614 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3615 * %false if equal.
29c91e99 3616 */
6ba94429
FW
3617static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3618 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3619{
6ba94429
FW
3620 if (!wq_numa_enabled || attrs->no_numa)
3621 goto use_dfl;
29c91e99 3622
6ba94429
FW
3623 /* does @node have any online CPUs @attrs wants? */
3624 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3625 if (cpu_going_down >= 0)
3626 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3627
6ba94429
FW
3628 if (cpumask_empty(cpumask))
3629 goto use_dfl;
4c16bd32
TH
3630
3631 /* yeap, return possible CPUs in @node that @attrs wants */
3632 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3633
3634 if (cpumask_empty(cpumask)) {
3635 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3636 "possible intersect\n");
3637 return false;
3638 }
3639
4c16bd32
TH
3640 return !cpumask_equal(cpumask, attrs->cpumask);
3641
3642use_dfl:
3643 cpumask_copy(cpumask, attrs->cpumask);
3644 return false;
3645}
3646
1befcf30
TH
3647/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3648static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3649 int node,
3650 struct pool_workqueue *pwq)
3651{
3652 struct pool_workqueue *old_pwq;
3653
5b95e1af 3654 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3655 lockdep_assert_held(&wq->mutex);
3656
3657 /* link_pwq() can handle duplicate calls */
3658 link_pwq(pwq);
3659
3660 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3661 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3662 return old_pwq;
3663}
3664
2d5f0764
LJ
3665/* context to store the prepared attrs & pwqs before applying */
3666struct apply_wqattrs_ctx {
3667 struct workqueue_struct *wq; /* target workqueue */
3668 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3669 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3670 struct pool_workqueue *dfl_pwq;
3671 struct pool_workqueue *pwq_tbl[];
3672};
3673
3674/* free the resources after success or abort */
3675static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3676{
3677 if (ctx) {
3678 int node;
3679
3680 for_each_node(node)
3681 put_pwq_unlocked(ctx->pwq_tbl[node]);
3682 put_pwq_unlocked(ctx->dfl_pwq);
3683
3684 free_workqueue_attrs(ctx->attrs);
3685
3686 kfree(ctx);
3687 }
3688}
3689
3690/* allocate the attrs and pwqs for later installation */
3691static struct apply_wqattrs_ctx *
3692apply_wqattrs_prepare(struct workqueue_struct *wq,
3693 const struct workqueue_attrs *attrs)
9e8cd2f5 3694{
2d5f0764 3695 struct apply_wqattrs_ctx *ctx;
4c16bd32 3696 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3697 int node;
9e8cd2f5 3698
2d5f0764 3699 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3700
2d5f0764
LJ
3701 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3702 GFP_KERNEL);
8719dcea 3703
13e2e556 3704 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3705 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3706 if (!ctx || !new_attrs || !tmp_attrs)
3707 goto out_free;
13e2e556 3708
042f7df1
LJ
3709 /*
3710 * Calculate the attrs of the default pwq.
3711 * If the user configured cpumask doesn't overlap with the
3712 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3713 */
13e2e556 3714 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3715 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3716 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3717 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3718
4c16bd32
TH
3719 /*
3720 * We may create multiple pwqs with differing cpumasks. Make a
3721 * copy of @new_attrs which will be modified and used to obtain
3722 * pools.
3723 */
3724 copy_workqueue_attrs(tmp_attrs, new_attrs);
3725
4c16bd32
TH
3726 /*
3727 * If something goes wrong during CPU up/down, we'll fall back to
3728 * the default pwq covering whole @attrs->cpumask. Always create
3729 * it even if we don't use it immediately.
3730 */
2d5f0764
LJ
3731 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3732 if (!ctx->dfl_pwq)
3733 goto out_free;
4c16bd32
TH
3734
3735 for_each_node(node) {
042f7df1 3736 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3737 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3738 if (!ctx->pwq_tbl[node])
3739 goto out_free;
4c16bd32 3740 } else {
2d5f0764
LJ
3741 ctx->dfl_pwq->refcnt++;
3742 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3743 }
3744 }
3745
042f7df1
LJ
3746 /* save the user configured attrs and sanitize it. */
3747 copy_workqueue_attrs(new_attrs, attrs);
3748 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3749 ctx->attrs = new_attrs;
042f7df1 3750
2d5f0764
LJ
3751 ctx->wq = wq;
3752 free_workqueue_attrs(tmp_attrs);
3753 return ctx;
3754
3755out_free:
3756 free_workqueue_attrs(tmp_attrs);
3757 free_workqueue_attrs(new_attrs);
3758 apply_wqattrs_cleanup(ctx);
3759 return NULL;
3760}
3761
3762/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3763static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3764{
3765 int node;
9e8cd2f5 3766
4c16bd32 3767 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3768 mutex_lock(&ctx->wq->mutex);
a892cacc 3769
2d5f0764 3770 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3771
3772 /* save the previous pwq and install the new one */
f147f29e 3773 for_each_node(node)
2d5f0764
LJ
3774 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3775 ctx->pwq_tbl[node]);
4c16bd32
TH
3776
3777 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3778 link_pwq(ctx->dfl_pwq);
3779 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3780
2d5f0764
LJ
3781 mutex_unlock(&ctx->wq->mutex);
3782}
9e8cd2f5 3783
a0111cf6
LJ
3784static void apply_wqattrs_lock(void)
3785{
3786 /* CPUs should stay stable across pwq creations and installations */
3787 get_online_cpus();
3788 mutex_lock(&wq_pool_mutex);
3789}
3790
3791static void apply_wqattrs_unlock(void)
3792{
3793 mutex_unlock(&wq_pool_mutex);
3794 put_online_cpus();
3795}
3796
3797static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3798 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3799{
3800 struct apply_wqattrs_ctx *ctx;
4c16bd32 3801
2d5f0764
LJ
3802 /* only unbound workqueues can change attributes */
3803 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3804 return -EINVAL;
13e2e556 3805
2d5f0764 3806 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
3807 if (!list_empty(&wq->pwqs)) {
3808 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3809 return -EINVAL;
3810
3811 wq->flags &= ~__WQ_ORDERED;
3812 }
2d5f0764 3813
2d5f0764 3814 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3815 if (!ctx)
3816 return -ENOMEM;
2d5f0764
LJ
3817
3818 /* the ctx has been prepared successfully, let's commit it */
6201171e 3819 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3820 apply_wqattrs_cleanup(ctx);
3821
6201171e 3822 return 0;
9e8cd2f5
TH
3823}
3824
a0111cf6
LJ
3825/**
3826 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3827 * @wq: the target workqueue
3828 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3829 *
3830 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3831 * machines, this function maps a separate pwq to each NUMA node with
3832 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3833 * NUMA node it was issued on. Older pwqs are released as in-flight work
3834 * items finish. Note that a work item which repeatedly requeues itself
3835 * back-to-back will stay on its current pwq.
3836 *
3837 * Performs GFP_KERNEL allocations.
3838 *
3839 * Return: 0 on success and -errno on failure.
3840 */
3841int apply_workqueue_attrs(struct workqueue_struct *wq,
3842 const struct workqueue_attrs *attrs)
3843{
3844 int ret;
3845
3846 apply_wqattrs_lock();
3847 ret = apply_workqueue_attrs_locked(wq, attrs);
3848 apply_wqattrs_unlock();
3849
3850 return ret;
3851}
3852
4c16bd32
TH
3853/**
3854 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3855 * @wq: the target workqueue
3856 * @cpu: the CPU coming up or going down
3857 * @online: whether @cpu is coming up or going down
3858 *
3859 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3860 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3861 * @wq accordingly.
3862 *
3863 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3864 * falls back to @wq->dfl_pwq which may not be optimal but is always
3865 * correct.
3866 *
3867 * Note that when the last allowed CPU of a NUMA node goes offline for a
3868 * workqueue with a cpumask spanning multiple nodes, the workers which were
3869 * already executing the work items for the workqueue will lose their CPU
3870 * affinity and may execute on any CPU. This is similar to how per-cpu
3871 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3872 * affinity, it's the user's responsibility to flush the work item from
3873 * CPU_DOWN_PREPARE.
3874 */
3875static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3876 bool online)
3877{
3878 int node = cpu_to_node(cpu);
3879 int cpu_off = online ? -1 : cpu;
3880 struct pool_workqueue *old_pwq = NULL, *pwq;
3881 struct workqueue_attrs *target_attrs;
3882 cpumask_t *cpumask;
3883
3884 lockdep_assert_held(&wq_pool_mutex);
3885
f7142ed4
LJ
3886 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3887 wq->unbound_attrs->no_numa)
4c16bd32
TH
3888 return;
3889
3890 /*
3891 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3892 * Let's use a preallocated one. The following buf is protected by
3893 * CPU hotplug exclusion.
3894 */
3895 target_attrs = wq_update_unbound_numa_attrs_buf;
3896 cpumask = target_attrs->cpumask;
3897
4c16bd32
TH
3898 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3899 pwq = unbound_pwq_by_node(wq, node);
3900
3901 /*
3902 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3903 * different from the default pwq's, we need to compare it to @pwq's
3904 * and create a new one if they don't match. If the target cpumask
3905 * equals the default pwq's, the default pwq should be used.
4c16bd32 3906 */
042f7df1 3907 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3908 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3909 return;
4c16bd32 3910 } else {
534a3fbb 3911 goto use_dfl_pwq;
4c16bd32
TH
3912 }
3913
4c16bd32
TH
3914 /* create a new pwq */
3915 pwq = alloc_unbound_pwq(wq, target_attrs);
3916 if (!pwq) {
2d916033
FF
3917 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3918 wq->name);
77f300b1 3919 goto use_dfl_pwq;
4c16bd32
TH
3920 }
3921
f7142ed4 3922 /* Install the new pwq. */
4c16bd32
TH
3923 mutex_lock(&wq->mutex);
3924 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3925 goto out_unlock;
3926
3927use_dfl_pwq:
f7142ed4 3928 mutex_lock(&wq->mutex);
4c16bd32
TH
3929 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3930 get_pwq(wq->dfl_pwq);
3931 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3932 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3933out_unlock:
3934 mutex_unlock(&wq->mutex);
3935 put_pwq_unlocked(old_pwq);
3936}
3937
30cdf249 3938static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3939{
49e3cf44 3940 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3941 int cpu, ret;
30cdf249
TH
3942
3943 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3944 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3945 if (!wq->cpu_pwqs)
30cdf249
TH
3946 return -ENOMEM;
3947
3948 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3949 struct pool_workqueue *pwq =
3950 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3951 struct worker_pool *cpu_pools =
f02ae73a 3952 per_cpu(cpu_worker_pools, cpu);
f3421797 3953
f147f29e
TH
3954 init_pwq(pwq, wq, &cpu_pools[highpri]);
3955
3956 mutex_lock(&wq->mutex);
1befcf30 3957 link_pwq(pwq);
f147f29e 3958 mutex_unlock(&wq->mutex);
30cdf249 3959 }
9e8cd2f5 3960 return 0;
8a2b7538
TH
3961 } else if (wq->flags & __WQ_ORDERED) {
3962 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3963 /* there should only be single pwq for ordering guarantee */
3964 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3965 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3966 "ordering guarantee broken for workqueue %s\n", wq->name);
3967 return ret;
30cdf249 3968 } else {
9e8cd2f5 3969 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3970 }
0f900049
TH
3971}
3972
f3421797
TH
3973static int wq_clamp_max_active(int max_active, unsigned int flags,
3974 const char *name)
b71ab8c2 3975{
f3421797
TH
3976 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3977
3978 if (max_active < 1 || max_active > lim)
044c782c
VI
3979 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3980 max_active, name, 1, lim);
b71ab8c2 3981
f3421797 3982 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3983}
3984
b196be89 3985struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3986 unsigned int flags,
3987 int max_active,
3988 struct lock_class_key *key,
b196be89 3989 const char *lock_name, ...)
1da177e4 3990{
df2d5ae4 3991 size_t tbl_size = 0;
ecf6881f 3992 va_list args;
1da177e4 3993 struct workqueue_struct *wq;
49e3cf44 3994 struct pool_workqueue *pwq;
b196be89 3995
5c0338c6
TH
3996 /*
3997 * Unbound && max_active == 1 used to imply ordered, which is no
3998 * longer the case on NUMA machines due to per-node pools. While
3999 * alloc_ordered_workqueue() is the right way to create an ordered
4000 * workqueue, keep the previous behavior to avoid subtle breakages
4001 * on NUMA.
4002 */
4003 if ((flags & WQ_UNBOUND) && max_active == 1)
4004 flags |= __WQ_ORDERED;
4005
cee22a15
VK
4006 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4007 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4008 flags |= WQ_UNBOUND;
4009
ecf6881f 4010 /* allocate wq and format name */
df2d5ae4 4011 if (flags & WQ_UNBOUND)
ddcb57e2 4012 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4013
4014 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4015 if (!wq)
d2c1d404 4016 return NULL;
b196be89 4017
6029a918
TH
4018 if (flags & WQ_UNBOUND) {
4019 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4020 if (!wq->unbound_attrs)
4021 goto err_free_wq;
4022 }
4023
ecf6881f
TH
4024 va_start(args, lock_name);
4025 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4026 va_end(args);
1da177e4 4027
d320c038 4028 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4029 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4030
b196be89 4031 /* init wq */
97e37d7b 4032 wq->flags = flags;
a0a1a5fd 4033 wq->saved_max_active = max_active;
3c25a55d 4034 mutex_init(&wq->mutex);
112202d9 4035 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4036 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4037 INIT_LIST_HEAD(&wq->flusher_queue);
4038 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4039 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4040
eb13ba87 4041 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4042 INIT_LIST_HEAD(&wq->list);
3af24433 4043
30cdf249 4044 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4045 goto err_free_wq;
1537663f 4046
493008a8
TH
4047 /*
4048 * Workqueues which may be used during memory reclaim should
4049 * have a rescuer to guarantee forward progress.
4050 */
4051 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4052 struct worker *rescuer;
4053
f7537df5 4054 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 4055 if (!rescuer)
d2c1d404 4056 goto err_destroy;
e22bee78 4057
111c225a
TH
4058 rescuer->rescue_wq = wq;
4059 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4060 wq->name);
d2c1d404
TH
4061 if (IS_ERR(rescuer->task)) {
4062 kfree(rescuer);
4063 goto err_destroy;
4064 }
e22bee78 4065
d2c1d404 4066 wq->rescuer = rescuer;
25834c73 4067 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 4068 wake_up_process(rescuer->task);
3af24433
ON
4069 }
4070
226223ab
TH
4071 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4072 goto err_destroy;
4073
a0a1a5fd 4074 /*
68e13a67
LJ
4075 * wq_pool_mutex protects global freeze state and workqueues list.
4076 * Grab it, adjust max_active and add the new @wq to workqueues
4077 * list.
a0a1a5fd 4078 */
68e13a67 4079 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4080
a357fc03 4081 mutex_lock(&wq->mutex);
699ce097
TH
4082 for_each_pwq(pwq, wq)
4083 pwq_adjust_max_active(pwq);
a357fc03 4084 mutex_unlock(&wq->mutex);
a0a1a5fd 4085
e2dca7ad 4086 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4087
68e13a67 4088 mutex_unlock(&wq_pool_mutex);
1537663f 4089
3af24433 4090 return wq;
d2c1d404
TH
4091
4092err_free_wq:
6029a918 4093 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4094 kfree(wq);
4095 return NULL;
4096err_destroy:
4097 destroy_workqueue(wq);
4690c4ab 4098 return NULL;
3af24433 4099}
d320c038 4100EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4101
3af24433
ON
4102/**
4103 * destroy_workqueue - safely terminate a workqueue
4104 * @wq: target workqueue
4105 *
4106 * Safely destroy a workqueue. All work currently pending will be done first.
4107 */
4108void destroy_workqueue(struct workqueue_struct *wq)
4109{
49e3cf44 4110 struct pool_workqueue *pwq;
4c16bd32 4111 int node;
3af24433 4112
9c5a2ba7
TH
4113 /* drain it before proceeding with destruction */
4114 drain_workqueue(wq);
c8efcc25 4115
6183c009 4116 /* sanity checks */
b09f4fd3 4117 mutex_lock(&wq->mutex);
49e3cf44 4118 for_each_pwq(pwq, wq) {
6183c009
TH
4119 int i;
4120
76af4d93
TH
4121 for (i = 0; i < WORK_NR_COLORS; i++) {
4122 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4123 mutex_unlock(&wq->mutex);
fa07fb6a 4124 show_workqueue_state();
6183c009 4125 return;
76af4d93
TH
4126 }
4127 }
4128
5c529597 4129 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4130 WARN_ON(pwq->nr_active) ||
76af4d93 4131 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4132 mutex_unlock(&wq->mutex);
fa07fb6a 4133 show_workqueue_state();
6183c009 4134 return;
76af4d93 4135 }
6183c009 4136 }
b09f4fd3 4137 mutex_unlock(&wq->mutex);
6183c009 4138
a0a1a5fd
TH
4139 /*
4140 * wq list is used to freeze wq, remove from list after
4141 * flushing is complete in case freeze races us.
4142 */
68e13a67 4143 mutex_lock(&wq_pool_mutex);
e2dca7ad 4144 list_del_rcu(&wq->list);
68e13a67 4145 mutex_unlock(&wq_pool_mutex);
3af24433 4146
226223ab
TH
4147 workqueue_sysfs_unregister(wq);
4148
e2dca7ad 4149 if (wq->rescuer)
e22bee78 4150 kthread_stop(wq->rescuer->task);
e22bee78 4151
8864b4e5
TH
4152 if (!(wq->flags & WQ_UNBOUND)) {
4153 /*
4154 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4155 * schedule RCU free.
8864b4e5 4156 */
e2dca7ad 4157 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4158 } else {
4159 /*
4160 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4161 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4162 * @wq will be freed when the last pwq is released.
8864b4e5 4163 */
4c16bd32
TH
4164 for_each_node(node) {
4165 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4166 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4167 put_pwq_unlocked(pwq);
4168 }
4169
4170 /*
4171 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4172 * put. Don't access it afterwards.
4173 */
4174 pwq = wq->dfl_pwq;
4175 wq->dfl_pwq = NULL;
dce90d47 4176 put_pwq_unlocked(pwq);
29c91e99 4177 }
3af24433
ON
4178}
4179EXPORT_SYMBOL_GPL(destroy_workqueue);
4180
dcd989cb
TH
4181/**
4182 * workqueue_set_max_active - adjust max_active of a workqueue
4183 * @wq: target workqueue
4184 * @max_active: new max_active value.
4185 *
4186 * Set max_active of @wq to @max_active.
4187 *
4188 * CONTEXT:
4189 * Don't call from IRQ context.
4190 */
4191void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4192{
49e3cf44 4193 struct pool_workqueue *pwq;
dcd989cb 4194
8719dcea 4195 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4196 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4197 return;
4198
f3421797 4199 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4200
a357fc03 4201 mutex_lock(&wq->mutex);
dcd989cb 4202
0a94efb5 4203 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4204 wq->saved_max_active = max_active;
4205
699ce097
TH
4206 for_each_pwq(pwq, wq)
4207 pwq_adjust_max_active(pwq);
93981800 4208
a357fc03 4209 mutex_unlock(&wq->mutex);
15316ba8 4210}
dcd989cb 4211EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4212
363e3fd5
LW
4213/**
4214 * current_work - retrieve %current task's work struct
4215 *
4216 * Determine if %current task is a workqueue worker and what it's working on.
4217 * Useful to find out the context that the %current task is running in.
4218 *
4219 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4220 */
4221struct work_struct *current_work(void)
4222{
4223 struct worker *worker = current_wq_worker();
4224
4225 return worker ? worker->current_work : NULL;
4226}
4227EXPORT_SYMBOL(current_work);
4228
e6267616
TH
4229/**
4230 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4231 *
4232 * Determine whether %current is a workqueue rescuer. Can be used from
4233 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4234 *
4235 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4236 */
4237bool current_is_workqueue_rescuer(void)
4238{
4239 struct worker *worker = current_wq_worker();
4240
6a092dfd 4241 return worker && worker->rescue_wq;
e6267616
TH
4242}
4243
eef6a7d5 4244/**
dcd989cb
TH
4245 * workqueue_congested - test whether a workqueue is congested
4246 * @cpu: CPU in question
4247 * @wq: target workqueue
eef6a7d5 4248 *
dcd989cb
TH
4249 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4250 * no synchronization around this function and the test result is
4251 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4252 *
d3251859
TH
4253 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4254 * Note that both per-cpu and unbound workqueues may be associated with
4255 * multiple pool_workqueues which have separate congested states. A
4256 * workqueue being congested on one CPU doesn't mean the workqueue is also
4257 * contested on other CPUs / NUMA nodes.
4258 *
d185af30 4259 * Return:
dcd989cb 4260 * %true if congested, %false otherwise.
eef6a7d5 4261 */
d84ff051 4262bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4263{
7fb98ea7 4264 struct pool_workqueue *pwq;
76af4d93
TH
4265 bool ret;
4266
88109453 4267 rcu_read_lock_sched();
7fb98ea7 4268
d3251859
TH
4269 if (cpu == WORK_CPU_UNBOUND)
4270 cpu = smp_processor_id();
4271
7fb98ea7
TH
4272 if (!(wq->flags & WQ_UNBOUND))
4273 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4274 else
df2d5ae4 4275 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4276
76af4d93 4277 ret = !list_empty(&pwq->delayed_works);
88109453 4278 rcu_read_unlock_sched();
76af4d93
TH
4279
4280 return ret;
1da177e4 4281}
dcd989cb 4282EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4283
dcd989cb
TH
4284/**
4285 * work_busy - test whether a work is currently pending or running
4286 * @work: the work to be tested
4287 *
4288 * Test whether @work is currently pending or running. There is no
4289 * synchronization around this function and the test result is
4290 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4291 *
d185af30 4292 * Return:
dcd989cb
TH
4293 * OR'd bitmask of WORK_BUSY_* bits.
4294 */
4295unsigned int work_busy(struct work_struct *work)
1da177e4 4296{
fa1b54e6 4297 struct worker_pool *pool;
dcd989cb
TH
4298 unsigned long flags;
4299 unsigned int ret = 0;
1da177e4 4300
dcd989cb
TH
4301 if (work_pending(work))
4302 ret |= WORK_BUSY_PENDING;
1da177e4 4303
fa1b54e6
TH
4304 local_irq_save(flags);
4305 pool = get_work_pool(work);
038366c5 4306 if (pool) {
fa1b54e6 4307 spin_lock(&pool->lock);
038366c5
LJ
4308 if (find_worker_executing_work(pool, work))
4309 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4310 spin_unlock(&pool->lock);
038366c5 4311 }
fa1b54e6 4312 local_irq_restore(flags);
1da177e4 4313
dcd989cb 4314 return ret;
1da177e4 4315}
dcd989cb 4316EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4317
3d1cb205
TH
4318/**
4319 * set_worker_desc - set description for the current work item
4320 * @fmt: printf-style format string
4321 * @...: arguments for the format string
4322 *
4323 * This function can be called by a running work function to describe what
4324 * the work item is about. If the worker task gets dumped, this
4325 * information will be printed out together to help debugging. The
4326 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4327 */
4328void set_worker_desc(const char *fmt, ...)
4329{
4330 struct worker *worker = current_wq_worker();
4331 va_list args;
4332
4333 if (worker) {
4334 va_start(args, fmt);
4335 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4336 va_end(args);
4337 worker->desc_valid = true;
4338 }
4339}
4340
4341/**
4342 * print_worker_info - print out worker information and description
4343 * @log_lvl: the log level to use when printing
4344 * @task: target task
4345 *
4346 * If @task is a worker and currently executing a work item, print out the
4347 * name of the workqueue being serviced and worker description set with
4348 * set_worker_desc() by the currently executing work item.
4349 *
4350 * This function can be safely called on any task as long as the
4351 * task_struct itself is accessible. While safe, this function isn't
4352 * synchronized and may print out mixups or garbages of limited length.
4353 */
4354void print_worker_info(const char *log_lvl, struct task_struct *task)
4355{
4356 work_func_t *fn = NULL;
4357 char name[WQ_NAME_LEN] = { };
4358 char desc[WORKER_DESC_LEN] = { };
4359 struct pool_workqueue *pwq = NULL;
4360 struct workqueue_struct *wq = NULL;
4361 bool desc_valid = false;
4362 struct worker *worker;
4363
4364 if (!(task->flags & PF_WQ_WORKER))
4365 return;
4366
4367 /*
4368 * This function is called without any synchronization and @task
4369 * could be in any state. Be careful with dereferences.
4370 */
e700591a 4371 worker = kthread_probe_data(task);
3d1cb205
TH
4372
4373 /*
4374 * Carefully copy the associated workqueue's workfn and name. Keep
4375 * the original last '\0' in case the original contains garbage.
4376 */
4377 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4378 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4379 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4380 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4381
4382 /* copy worker description */
4383 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4384 if (desc_valid)
4385 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4386
4387 if (fn || name[0] || desc[0]) {
4388 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4389 if (desc[0])
4390 pr_cont(" (%s)", desc);
4391 pr_cont("\n");
4392 }
4393}
4394
3494fc30
TH
4395static void pr_cont_pool_info(struct worker_pool *pool)
4396{
4397 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4398 if (pool->node != NUMA_NO_NODE)
4399 pr_cont(" node=%d", pool->node);
4400 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4401}
4402
4403static void pr_cont_work(bool comma, struct work_struct *work)
4404{
4405 if (work->func == wq_barrier_func) {
4406 struct wq_barrier *barr;
4407
4408 barr = container_of(work, struct wq_barrier, work);
4409
4410 pr_cont("%s BAR(%d)", comma ? "," : "",
4411 task_pid_nr(barr->task));
4412 } else {
4413 pr_cont("%s %pf", comma ? "," : "", work->func);
4414 }
4415}
4416
4417static void show_pwq(struct pool_workqueue *pwq)
4418{
4419 struct worker_pool *pool = pwq->pool;
4420 struct work_struct *work;
4421 struct worker *worker;
4422 bool has_in_flight = false, has_pending = false;
4423 int bkt;
4424
4425 pr_info(" pwq %d:", pool->id);
4426 pr_cont_pool_info(pool);
4427
4428 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4429 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4430
4431 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4432 if (worker->current_pwq == pwq) {
4433 has_in_flight = true;
4434 break;
4435 }
4436 }
4437 if (has_in_flight) {
4438 bool comma = false;
4439
4440 pr_info(" in-flight:");
4441 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4442 if (worker->current_pwq != pwq)
4443 continue;
4444
4445 pr_cont("%s %d%s:%pf", comma ? "," : "",
4446 task_pid_nr(worker->task),
4447 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4448 worker->current_func);
4449 list_for_each_entry(work, &worker->scheduled, entry)
4450 pr_cont_work(false, work);
4451 comma = true;
4452 }
4453 pr_cont("\n");
4454 }
4455
4456 list_for_each_entry(work, &pool->worklist, entry) {
4457 if (get_work_pwq(work) == pwq) {
4458 has_pending = true;
4459 break;
4460 }
4461 }
4462 if (has_pending) {
4463 bool comma = false;
4464
4465 pr_info(" pending:");
4466 list_for_each_entry(work, &pool->worklist, entry) {
4467 if (get_work_pwq(work) != pwq)
4468 continue;
4469
4470 pr_cont_work(comma, work);
4471 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4472 }
4473 pr_cont("\n");
4474 }
4475
4476 if (!list_empty(&pwq->delayed_works)) {
4477 bool comma = false;
4478
4479 pr_info(" delayed:");
4480 list_for_each_entry(work, &pwq->delayed_works, entry) {
4481 pr_cont_work(comma, work);
4482 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4483 }
4484 pr_cont("\n");
4485 }
4486}
4487
4488/**
4489 * show_workqueue_state - dump workqueue state
4490 *
7b776af6
RL
4491 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4492 * all busy workqueues and pools.
3494fc30
TH
4493 */
4494void show_workqueue_state(void)
4495{
4496 struct workqueue_struct *wq;
4497 struct worker_pool *pool;
4498 unsigned long flags;
4499 int pi;
4500
4501 rcu_read_lock_sched();
4502
4503 pr_info("Showing busy workqueues and worker pools:\n");
4504
4505 list_for_each_entry_rcu(wq, &workqueues, list) {
4506 struct pool_workqueue *pwq;
4507 bool idle = true;
4508
4509 for_each_pwq(pwq, wq) {
4510 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4511 idle = false;
4512 break;
4513 }
4514 }
4515 if (idle)
4516 continue;
4517
4518 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4519
4520 for_each_pwq(pwq, wq) {
4521 spin_lock_irqsave(&pwq->pool->lock, flags);
4522 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4523 show_pwq(pwq);
4524 spin_unlock_irqrestore(&pwq->pool->lock, flags);
a6d5930c
SS
4525 /*
4526 * We could be printing a lot from atomic context, e.g.
4527 * sysrq-t -> show_workqueue_state(). Avoid triggering
4528 * hard lockup.
4529 */
4530 touch_nmi_watchdog();
3494fc30
TH
4531 }
4532 }
4533
4534 for_each_pool(pool, pi) {
4535 struct worker *worker;
4536 bool first = true;
4537
4538 spin_lock_irqsave(&pool->lock, flags);
4539 if (pool->nr_workers == pool->nr_idle)
4540 goto next_pool;
4541
4542 pr_info("pool %d:", pool->id);
4543 pr_cont_pool_info(pool);
82607adc
TH
4544 pr_cont(" hung=%us workers=%d",
4545 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4546 pool->nr_workers);
3494fc30
TH
4547 if (pool->manager)
4548 pr_cont(" manager: %d",
4549 task_pid_nr(pool->manager->task));
4550 list_for_each_entry(worker, &pool->idle_list, entry) {
4551 pr_cont(" %s%d", first ? "idle: " : "",
4552 task_pid_nr(worker->task));
4553 first = false;
4554 }
4555 pr_cont("\n");
4556 next_pool:
4557 spin_unlock_irqrestore(&pool->lock, flags);
a6d5930c
SS
4558 /*
4559 * We could be printing a lot from atomic context, e.g.
4560 * sysrq-t -> show_workqueue_state(). Avoid triggering
4561 * hard lockup.
4562 */
4563 touch_nmi_watchdog();
3494fc30
TH
4564 }
4565
4566 rcu_read_unlock_sched();
4567}
4568
db7bccf4
TH
4569/*
4570 * CPU hotplug.
4571 *
e22bee78 4572 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4573 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4574 * pool which make migrating pending and scheduled works very
e22bee78 4575 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4576 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4577 * blocked draining impractical.
4578 *
24647570 4579 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4580 * running as an unbound one and allowing it to be reattached later if the
4581 * cpu comes back online.
db7bccf4 4582 */
1da177e4 4583
706026c2 4584static void wq_unbind_fn(struct work_struct *work)
3af24433 4585{
38db41d9 4586 int cpu = smp_processor_id();
4ce62e9e 4587 struct worker_pool *pool;
db7bccf4 4588 struct worker *worker;
3af24433 4589
f02ae73a 4590 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4591 mutex_lock(&pool->attach_mutex);
94cf58bb 4592 spin_lock_irq(&pool->lock);
3af24433 4593
94cf58bb 4594 /*
92f9c5c4 4595 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4596 * unbound and set DISASSOCIATED. Before this, all workers
4597 * except for the ones which are still executing works from
4598 * before the last CPU down must be on the cpu. After
4599 * this, they may become diasporas.
4600 */
da028469 4601 for_each_pool_worker(worker, pool)
c9e7cf27 4602 worker->flags |= WORKER_UNBOUND;
06ba38a9 4603
24647570 4604 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4605
94cf58bb 4606 spin_unlock_irq(&pool->lock);
92f9c5c4 4607 mutex_unlock(&pool->attach_mutex);
628c78e7 4608
eb283428
LJ
4609 /*
4610 * Call schedule() so that we cross rq->lock and thus can
4611 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4612 * This is necessary as scheduler callbacks may be invoked
4613 * from other cpus.
4614 */
4615 schedule();
06ba38a9 4616
eb283428
LJ
4617 /*
4618 * Sched callbacks are disabled now. Zap nr_running.
4619 * After this, nr_running stays zero and need_more_worker()
4620 * and keep_working() are always true as long as the
4621 * worklist is not empty. This pool now behaves as an
4622 * unbound (in terms of concurrency management) pool which
4623 * are served by workers tied to the pool.
4624 */
e19e397a 4625 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4626
4627 /*
4628 * With concurrency management just turned off, a busy
4629 * worker blocking could lead to lengthy stalls. Kick off
4630 * unbound chain execution of currently pending work items.
4631 */
4632 spin_lock_irq(&pool->lock);
4633 wake_up_worker(pool);
4634 spin_unlock_irq(&pool->lock);
4635 }
3af24433 4636}
3af24433 4637
bd7c089e
TH
4638/**
4639 * rebind_workers - rebind all workers of a pool to the associated CPU
4640 * @pool: pool of interest
4641 *
a9ab775b 4642 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4643 */
4644static void rebind_workers(struct worker_pool *pool)
4645{
a9ab775b 4646 struct worker *worker;
bd7c089e 4647
92f9c5c4 4648 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4649
a9ab775b
TH
4650 /*
4651 * Restore CPU affinity of all workers. As all idle workers should
4652 * be on the run-queue of the associated CPU before any local
402dd89d 4653 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4654 * of all workers first and then clear UNBOUND. As we're called
4655 * from CPU_ONLINE, the following shouldn't fail.
4656 */
da028469 4657 for_each_pool_worker(worker, pool)
a9ab775b
TH
4658 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4659 pool->attrs->cpumask) < 0);
bd7c089e 4660
a9ab775b 4661 spin_lock_irq(&pool->lock);
f7c17d26
WL
4662
4663 /*
4664 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4665 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4666 * being reworked and this can go away in time.
4667 */
4668 if (!(pool->flags & POOL_DISASSOCIATED)) {
4669 spin_unlock_irq(&pool->lock);
4670 return;
4671 }
4672
3de5e884 4673 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4674
da028469 4675 for_each_pool_worker(worker, pool) {
a9ab775b 4676 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4677
4678 /*
a9ab775b
TH
4679 * A bound idle worker should actually be on the runqueue
4680 * of the associated CPU for local wake-ups targeting it to
4681 * work. Kick all idle workers so that they migrate to the
4682 * associated CPU. Doing this in the same loop as
4683 * replacing UNBOUND with REBOUND is safe as no worker will
4684 * be bound before @pool->lock is released.
bd7c089e 4685 */
a9ab775b
TH
4686 if (worker_flags & WORKER_IDLE)
4687 wake_up_process(worker->task);
bd7c089e 4688
a9ab775b
TH
4689 /*
4690 * We want to clear UNBOUND but can't directly call
4691 * worker_clr_flags() or adjust nr_running. Atomically
4692 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4693 * @worker will clear REBOUND using worker_clr_flags() when
4694 * it initiates the next execution cycle thus restoring
4695 * concurrency management. Note that when or whether
4696 * @worker clears REBOUND doesn't affect correctness.
4697 *
4698 * ACCESS_ONCE() is necessary because @worker->flags may be
4699 * tested without holding any lock in
4700 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4701 * fail incorrectly leading to premature concurrency
4702 * management operations.
4703 */
4704 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4705 worker_flags |= WORKER_REBOUND;
4706 worker_flags &= ~WORKER_UNBOUND;
4707 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4708 }
a9ab775b
TH
4709
4710 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4711}
4712
7dbc725e
TH
4713/**
4714 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4715 * @pool: unbound pool of interest
4716 * @cpu: the CPU which is coming up
4717 *
4718 * An unbound pool may end up with a cpumask which doesn't have any online
4719 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4720 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4721 * online CPU before, cpus_allowed of all its workers should be restored.
4722 */
4723static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4724{
4725 static cpumask_t cpumask;
4726 struct worker *worker;
7dbc725e 4727
92f9c5c4 4728 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4729
4730 /* is @cpu allowed for @pool? */
4731 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4732 return;
4733
7dbc725e 4734 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4735
4736 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4737 for_each_pool_worker(worker, pool)
d945b5e9 4738 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4739}
4740
7ee681b2
TG
4741int workqueue_prepare_cpu(unsigned int cpu)
4742{
4743 struct worker_pool *pool;
4744
4745 for_each_cpu_worker_pool(pool, cpu) {
4746 if (pool->nr_workers)
4747 continue;
4748 if (!create_worker(pool))
4749 return -ENOMEM;
4750 }
4751 return 0;
4752}
4753
4754int workqueue_online_cpu(unsigned int cpu)
3af24433 4755{
4ce62e9e 4756 struct worker_pool *pool;
4c16bd32 4757 struct workqueue_struct *wq;
7dbc725e 4758 int pi;
3ce63377 4759
7ee681b2 4760 mutex_lock(&wq_pool_mutex);
7dbc725e 4761
7ee681b2
TG
4762 for_each_pool(pool, pi) {
4763 mutex_lock(&pool->attach_mutex);
94cf58bb 4764
7ee681b2
TG
4765 if (pool->cpu == cpu)
4766 rebind_workers(pool);
4767 else if (pool->cpu < 0)
4768 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4769
7ee681b2
TG
4770 mutex_unlock(&pool->attach_mutex);
4771 }
6ba94429 4772
7ee681b2
TG
4773 /* update NUMA affinity of unbound workqueues */
4774 list_for_each_entry(wq, &workqueues, list)
4775 wq_update_unbound_numa(wq, cpu, true);
6ba94429 4776
7ee681b2
TG
4777 mutex_unlock(&wq_pool_mutex);
4778 return 0;
6ba94429
FW
4779}
4780
7ee681b2 4781int workqueue_offline_cpu(unsigned int cpu)
6ba94429 4782{
6ba94429
FW
4783 struct work_struct unbind_work;
4784 struct workqueue_struct *wq;
4785
7ee681b2
TG
4786 /* unbinding per-cpu workers should happen on the local CPU */
4787 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4788 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4789
4790 /* update NUMA affinity of unbound workqueues */
4791 mutex_lock(&wq_pool_mutex);
4792 list_for_each_entry(wq, &workqueues, list)
4793 wq_update_unbound_numa(wq, cpu, false);
4794 mutex_unlock(&wq_pool_mutex);
4795
4796 /* wait for per-cpu unbinding to finish */
4797 flush_work(&unbind_work);
4798 destroy_work_on_stack(&unbind_work);
4799 return 0;
6ba94429
FW
4800}
4801
4802#ifdef CONFIG_SMP
4803
4804struct work_for_cpu {
4805 struct work_struct work;
4806 long (*fn)(void *);
4807 void *arg;
4808 long ret;
4809};
4810
4811static void work_for_cpu_fn(struct work_struct *work)
4812{
4813 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4814
4815 wfc->ret = wfc->fn(wfc->arg);
4816}
4817
4818/**
22aceb31 4819 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4820 * @cpu: the cpu to run on
4821 * @fn: the function to run
4822 * @arg: the function arg
4823 *
4824 * It is up to the caller to ensure that the cpu doesn't go offline.
4825 * The caller must not hold any locks which would prevent @fn from completing.
4826 *
4827 * Return: The value @fn returns.
4828 */
4829long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4830{
4831 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4832
4833 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4834 schedule_work_on(cpu, &wfc.work);
4835 flush_work(&wfc.work);
4836 destroy_work_on_stack(&wfc.work);
4837 return wfc.ret;
4838}
4839EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
4840
4841/**
4842 * work_on_cpu_safe - run a function in thread context on a particular cpu
4843 * @cpu: the cpu to run on
4844 * @fn: the function to run
4845 * @arg: the function argument
4846 *
4847 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4848 * any locks which would prevent @fn from completing.
4849 *
4850 * Return: The value @fn returns.
4851 */
4852long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4853{
4854 long ret = -ENODEV;
4855
4856 get_online_cpus();
4857 if (cpu_online(cpu))
4858 ret = work_on_cpu(cpu, fn, arg);
4859 put_online_cpus();
4860 return ret;
4861}
4862EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
4863#endif /* CONFIG_SMP */
4864
4865#ifdef CONFIG_FREEZER
4866
4867/**
4868 * freeze_workqueues_begin - begin freezing workqueues
4869 *
4870 * Start freezing workqueues. After this function returns, all freezable
4871 * workqueues will queue new works to their delayed_works list instead of
4872 * pool->worklist.
4873 *
4874 * CONTEXT:
4875 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4876 */
4877void freeze_workqueues_begin(void)
4878{
4879 struct workqueue_struct *wq;
4880 struct pool_workqueue *pwq;
4881
4882 mutex_lock(&wq_pool_mutex);
4883
4884 WARN_ON_ONCE(workqueue_freezing);
4885 workqueue_freezing = true;
4886
4887 list_for_each_entry(wq, &workqueues, list) {
4888 mutex_lock(&wq->mutex);
4889 for_each_pwq(pwq, wq)
4890 pwq_adjust_max_active(pwq);
4891 mutex_unlock(&wq->mutex);
4892 }
4893
4894 mutex_unlock(&wq_pool_mutex);
4895}
4896
4897/**
4898 * freeze_workqueues_busy - are freezable workqueues still busy?
4899 *
4900 * Check whether freezing is complete. This function must be called
4901 * between freeze_workqueues_begin() and thaw_workqueues().
4902 *
4903 * CONTEXT:
4904 * Grabs and releases wq_pool_mutex.
4905 *
4906 * Return:
4907 * %true if some freezable workqueues are still busy. %false if freezing
4908 * is complete.
4909 */
4910bool freeze_workqueues_busy(void)
4911{
4912 bool busy = false;
4913 struct workqueue_struct *wq;
4914 struct pool_workqueue *pwq;
4915
4916 mutex_lock(&wq_pool_mutex);
4917
4918 WARN_ON_ONCE(!workqueue_freezing);
4919
4920 list_for_each_entry(wq, &workqueues, list) {
4921 if (!(wq->flags & WQ_FREEZABLE))
4922 continue;
4923 /*
4924 * nr_active is monotonically decreasing. It's safe
4925 * to peek without lock.
4926 */
4927 rcu_read_lock_sched();
4928 for_each_pwq(pwq, wq) {
4929 WARN_ON_ONCE(pwq->nr_active < 0);
4930 if (pwq->nr_active) {
4931 busy = true;
4932 rcu_read_unlock_sched();
4933 goto out_unlock;
4934 }
4935 }
4936 rcu_read_unlock_sched();
4937 }
4938out_unlock:
4939 mutex_unlock(&wq_pool_mutex);
4940 return busy;
4941}
4942
4943/**
4944 * thaw_workqueues - thaw workqueues
4945 *
4946 * Thaw workqueues. Normal queueing is restored and all collected
4947 * frozen works are transferred to their respective pool worklists.
4948 *
4949 * CONTEXT:
4950 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4951 */
4952void thaw_workqueues(void)
4953{
4954 struct workqueue_struct *wq;
4955 struct pool_workqueue *pwq;
4956
4957 mutex_lock(&wq_pool_mutex);
4958
4959 if (!workqueue_freezing)
4960 goto out_unlock;
4961
4962 workqueue_freezing = false;
4963
4964 /* restore max_active and repopulate worklist */
4965 list_for_each_entry(wq, &workqueues, list) {
4966 mutex_lock(&wq->mutex);
4967 for_each_pwq(pwq, wq)
4968 pwq_adjust_max_active(pwq);
4969 mutex_unlock(&wq->mutex);
4970 }
4971
4972out_unlock:
4973 mutex_unlock(&wq_pool_mutex);
4974}
4975#endif /* CONFIG_FREEZER */
4976
042f7df1
LJ
4977static int workqueue_apply_unbound_cpumask(void)
4978{
4979 LIST_HEAD(ctxs);
4980 int ret = 0;
4981 struct workqueue_struct *wq;
4982 struct apply_wqattrs_ctx *ctx, *n;
4983
4984 lockdep_assert_held(&wq_pool_mutex);
4985
4986 list_for_each_entry(wq, &workqueues, list) {
4987 if (!(wq->flags & WQ_UNBOUND))
4988 continue;
4989 /* creating multiple pwqs breaks ordering guarantee */
4990 if (wq->flags & __WQ_ORDERED)
4991 continue;
4992
4993 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4994 if (!ctx) {
4995 ret = -ENOMEM;
4996 break;
4997 }
4998
4999 list_add_tail(&ctx->list, &ctxs);
5000 }
5001
5002 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5003 if (!ret)
5004 apply_wqattrs_commit(ctx);
5005 apply_wqattrs_cleanup(ctx);
5006 }
5007
5008 return ret;
5009}
5010
5011/**
5012 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5013 * @cpumask: the cpumask to set
5014 *
5015 * The low-level workqueues cpumask is a global cpumask that limits
5016 * the affinity of all unbound workqueues. This function check the @cpumask
5017 * and apply it to all unbound workqueues and updates all pwqs of them.
5018 *
5019 * Retun: 0 - Success
5020 * -EINVAL - Invalid @cpumask
5021 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5022 */
5023int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5024{
5025 int ret = -EINVAL;
5026 cpumask_var_t saved_cpumask;
5027
5028 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5029 return -ENOMEM;
5030
042f7df1
LJ
5031 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5032 if (!cpumask_empty(cpumask)) {
a0111cf6 5033 apply_wqattrs_lock();
042f7df1
LJ
5034
5035 /* save the old wq_unbound_cpumask. */
5036 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5037
5038 /* update wq_unbound_cpumask at first and apply it to wqs. */
5039 cpumask_copy(wq_unbound_cpumask, cpumask);
5040 ret = workqueue_apply_unbound_cpumask();
5041
5042 /* restore the wq_unbound_cpumask when failed. */
5043 if (ret < 0)
5044 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5045
a0111cf6 5046 apply_wqattrs_unlock();
042f7df1 5047 }
042f7df1
LJ
5048
5049 free_cpumask_var(saved_cpumask);
5050 return ret;
5051}
5052
6ba94429
FW
5053#ifdef CONFIG_SYSFS
5054/*
5055 * Workqueues with WQ_SYSFS flag set is visible to userland via
5056 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5057 * following attributes.
5058 *
5059 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5060 * max_active RW int : maximum number of in-flight work items
5061 *
5062 * Unbound workqueues have the following extra attributes.
5063 *
5064 * id RO int : the associated pool ID
5065 * nice RW int : nice value of the workers
5066 * cpumask RW mask : bitmask of allowed CPUs for the workers
5067 */
5068struct wq_device {
5069 struct workqueue_struct *wq;
5070 struct device dev;
5071};
5072
5073static struct workqueue_struct *dev_to_wq(struct device *dev)
5074{
5075 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5076
5077 return wq_dev->wq;
5078}
5079
5080static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5081 char *buf)
5082{
5083 struct workqueue_struct *wq = dev_to_wq(dev);
5084
5085 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5086}
5087static DEVICE_ATTR_RO(per_cpu);
5088
5089static ssize_t max_active_show(struct device *dev,
5090 struct device_attribute *attr, char *buf)
5091{
5092 struct workqueue_struct *wq = dev_to_wq(dev);
5093
5094 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5095}
5096
5097static ssize_t max_active_store(struct device *dev,
5098 struct device_attribute *attr, const char *buf,
5099 size_t count)
5100{
5101 struct workqueue_struct *wq = dev_to_wq(dev);
5102 int val;
5103
5104 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5105 return -EINVAL;
5106
5107 workqueue_set_max_active(wq, val);
5108 return count;
5109}
5110static DEVICE_ATTR_RW(max_active);
5111
5112static struct attribute *wq_sysfs_attrs[] = {
5113 &dev_attr_per_cpu.attr,
5114 &dev_attr_max_active.attr,
5115 NULL,
5116};
5117ATTRIBUTE_GROUPS(wq_sysfs);
5118
5119static ssize_t wq_pool_ids_show(struct device *dev,
5120 struct device_attribute *attr, char *buf)
5121{
5122 struct workqueue_struct *wq = dev_to_wq(dev);
5123 const char *delim = "";
5124 int node, written = 0;
5125
5126 rcu_read_lock_sched();
5127 for_each_node(node) {
5128 written += scnprintf(buf + written, PAGE_SIZE - written,
5129 "%s%d:%d", delim, node,
5130 unbound_pwq_by_node(wq, node)->pool->id);
5131 delim = " ";
5132 }
5133 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5134 rcu_read_unlock_sched();
5135
5136 return written;
5137}
5138
5139static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5140 char *buf)
5141{
5142 struct workqueue_struct *wq = dev_to_wq(dev);
5143 int written;
5144
5145 mutex_lock(&wq->mutex);
5146 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5147 mutex_unlock(&wq->mutex);
5148
5149 return written;
5150}
5151
5152/* prepare workqueue_attrs for sysfs store operations */
5153static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5154{
5155 struct workqueue_attrs *attrs;
5156
899a94fe
LJ
5157 lockdep_assert_held(&wq_pool_mutex);
5158
6ba94429
FW
5159 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5160 if (!attrs)
5161 return NULL;
5162
6ba94429 5163 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5164 return attrs;
5165}
5166
5167static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5168 const char *buf, size_t count)
5169{
5170 struct workqueue_struct *wq = dev_to_wq(dev);
5171 struct workqueue_attrs *attrs;
d4d3e257
LJ
5172 int ret = -ENOMEM;
5173
5174 apply_wqattrs_lock();
6ba94429
FW
5175
5176 attrs = wq_sysfs_prep_attrs(wq);
5177 if (!attrs)
d4d3e257 5178 goto out_unlock;
6ba94429
FW
5179
5180 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5181 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5182 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5183 else
5184 ret = -EINVAL;
5185
d4d3e257
LJ
5186out_unlock:
5187 apply_wqattrs_unlock();
6ba94429
FW
5188 free_workqueue_attrs(attrs);
5189 return ret ?: count;
5190}
5191
5192static ssize_t wq_cpumask_show(struct device *dev,
5193 struct device_attribute *attr, char *buf)
5194{
5195 struct workqueue_struct *wq = dev_to_wq(dev);
5196 int written;
5197
5198 mutex_lock(&wq->mutex);
5199 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5200 cpumask_pr_args(wq->unbound_attrs->cpumask));
5201 mutex_unlock(&wq->mutex);
5202 return written;
5203}
5204
5205static ssize_t wq_cpumask_store(struct device *dev,
5206 struct device_attribute *attr,
5207 const char *buf, size_t count)
5208{
5209 struct workqueue_struct *wq = dev_to_wq(dev);
5210 struct workqueue_attrs *attrs;
d4d3e257
LJ
5211 int ret = -ENOMEM;
5212
5213 apply_wqattrs_lock();
6ba94429
FW
5214
5215 attrs = wq_sysfs_prep_attrs(wq);
5216 if (!attrs)
d4d3e257 5217 goto out_unlock;
6ba94429
FW
5218
5219 ret = cpumask_parse(buf, attrs->cpumask);
5220 if (!ret)
d4d3e257 5221 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5222
d4d3e257
LJ
5223out_unlock:
5224 apply_wqattrs_unlock();
6ba94429
FW
5225 free_workqueue_attrs(attrs);
5226 return ret ?: count;
5227}
5228
5229static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5230 char *buf)
5231{
5232 struct workqueue_struct *wq = dev_to_wq(dev);
5233 int written;
7dbc725e 5234
6ba94429
FW
5235 mutex_lock(&wq->mutex);
5236 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5237 !wq->unbound_attrs->no_numa);
5238 mutex_unlock(&wq->mutex);
4c16bd32 5239
6ba94429 5240 return written;
65758202
TH
5241}
5242
6ba94429
FW
5243static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5244 const char *buf, size_t count)
65758202 5245{
6ba94429
FW
5246 struct workqueue_struct *wq = dev_to_wq(dev);
5247 struct workqueue_attrs *attrs;
d4d3e257
LJ
5248 int v, ret = -ENOMEM;
5249
5250 apply_wqattrs_lock();
4c16bd32 5251
6ba94429
FW
5252 attrs = wq_sysfs_prep_attrs(wq);
5253 if (!attrs)
d4d3e257 5254 goto out_unlock;
4c16bd32 5255
6ba94429
FW
5256 ret = -EINVAL;
5257 if (sscanf(buf, "%d", &v) == 1) {
5258 attrs->no_numa = !v;
d4d3e257 5259 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5260 }
6ba94429 5261
d4d3e257
LJ
5262out_unlock:
5263 apply_wqattrs_unlock();
6ba94429
FW
5264 free_workqueue_attrs(attrs);
5265 return ret ?: count;
65758202
TH
5266}
5267
6ba94429
FW
5268static struct device_attribute wq_sysfs_unbound_attrs[] = {
5269 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5270 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5271 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5272 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5273 __ATTR_NULL,
5274};
8ccad40d 5275
6ba94429
FW
5276static struct bus_type wq_subsys = {
5277 .name = "workqueue",
5278 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5279};
5280
b05a7928
FW
5281static ssize_t wq_unbound_cpumask_show(struct device *dev,
5282 struct device_attribute *attr, char *buf)
5283{
5284 int written;
5285
042f7df1 5286 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5287 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5288 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5289 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5290
5291 return written;
5292}
5293
042f7df1
LJ
5294static ssize_t wq_unbound_cpumask_store(struct device *dev,
5295 struct device_attribute *attr, const char *buf, size_t count)
5296{
5297 cpumask_var_t cpumask;
5298 int ret;
5299
5300 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5301 return -ENOMEM;
5302
5303 ret = cpumask_parse(buf, cpumask);
5304 if (!ret)
5305 ret = workqueue_set_unbound_cpumask(cpumask);
5306
5307 free_cpumask_var(cpumask);
5308 return ret ? ret : count;
5309}
5310
b05a7928 5311static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5312 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5313 wq_unbound_cpumask_store);
b05a7928 5314
6ba94429 5315static int __init wq_sysfs_init(void)
2d3854a3 5316{
b05a7928
FW
5317 int err;
5318
5319 err = subsys_virtual_register(&wq_subsys, NULL);
5320 if (err)
5321 return err;
5322
5323 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5324}
6ba94429 5325core_initcall(wq_sysfs_init);
2d3854a3 5326
6ba94429 5327static void wq_device_release(struct device *dev)
2d3854a3 5328{
6ba94429 5329 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5330
6ba94429 5331 kfree(wq_dev);
2d3854a3 5332}
a0a1a5fd
TH
5333
5334/**
6ba94429
FW
5335 * workqueue_sysfs_register - make a workqueue visible in sysfs
5336 * @wq: the workqueue to register
a0a1a5fd 5337 *
6ba94429
FW
5338 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5339 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5340 * which is the preferred method.
a0a1a5fd 5341 *
6ba94429
FW
5342 * Workqueue user should use this function directly iff it wants to apply
5343 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5344 * apply_workqueue_attrs() may race against userland updating the
5345 * attributes.
5346 *
5347 * Return: 0 on success, -errno on failure.
a0a1a5fd 5348 */
6ba94429 5349int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5350{
6ba94429
FW
5351 struct wq_device *wq_dev;
5352 int ret;
a0a1a5fd 5353
6ba94429 5354 /*
402dd89d 5355 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5356 * attributes breaks ordering guarantee. Disallow exposing ordered
5357 * workqueues.
5358 */
0a94efb5 5359 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5360 return -EINVAL;
a0a1a5fd 5361
6ba94429
FW
5362 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5363 if (!wq_dev)
5364 return -ENOMEM;
5bcab335 5365
6ba94429
FW
5366 wq_dev->wq = wq;
5367 wq_dev->dev.bus = &wq_subsys;
6ba94429 5368 wq_dev->dev.release = wq_device_release;
23217b44 5369 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5370
6ba94429
FW
5371 /*
5372 * unbound_attrs are created separately. Suppress uevent until
5373 * everything is ready.
5374 */
5375 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5376
6ba94429
FW
5377 ret = device_register(&wq_dev->dev);
5378 if (ret) {
7c84e5e9 5379 put_device(&wq_dev->dev);
6ba94429
FW
5380 wq->wq_dev = NULL;
5381 return ret;
5382 }
a0a1a5fd 5383
6ba94429
FW
5384 if (wq->flags & WQ_UNBOUND) {
5385 struct device_attribute *attr;
a0a1a5fd 5386
6ba94429
FW
5387 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5388 ret = device_create_file(&wq_dev->dev, attr);
5389 if (ret) {
5390 device_unregister(&wq_dev->dev);
5391 wq->wq_dev = NULL;
5392 return ret;
a0a1a5fd
TH
5393 }
5394 }
5395 }
6ba94429
FW
5396
5397 dev_set_uevent_suppress(&wq_dev->dev, false);
5398 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5399 return 0;
a0a1a5fd
TH
5400}
5401
5402/**
6ba94429
FW
5403 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5404 * @wq: the workqueue to unregister
a0a1a5fd 5405 *
6ba94429 5406 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5407 */
6ba94429 5408static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5409{
6ba94429 5410 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5411
6ba94429
FW
5412 if (!wq->wq_dev)
5413 return;
a0a1a5fd 5414
6ba94429
FW
5415 wq->wq_dev = NULL;
5416 device_unregister(&wq_dev->dev);
a0a1a5fd 5417}
6ba94429
FW
5418#else /* CONFIG_SYSFS */
5419static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5420#endif /* CONFIG_SYSFS */
a0a1a5fd 5421
82607adc
TH
5422/*
5423 * Workqueue watchdog.
5424 *
5425 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5426 * flush dependency, a concurrency managed work item which stays RUNNING
5427 * indefinitely. Workqueue stalls can be very difficult to debug as the
5428 * usual warning mechanisms don't trigger and internal workqueue state is
5429 * largely opaque.
5430 *
5431 * Workqueue watchdog monitors all worker pools periodically and dumps
5432 * state if some pools failed to make forward progress for a while where
5433 * forward progress is defined as the first item on ->worklist changing.
5434 *
5435 * This mechanism is controlled through the kernel parameter
5436 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5437 * corresponding sysfs parameter file.
5438 */
5439#ifdef CONFIG_WQ_WATCHDOG
5440
5441static void wq_watchdog_timer_fn(unsigned long data);
5442
5443static unsigned long wq_watchdog_thresh = 30;
5444static struct timer_list wq_watchdog_timer =
5445 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5446
5447static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5448static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5449
5450static void wq_watchdog_reset_touched(void)
5451{
5452 int cpu;
5453
5454 wq_watchdog_touched = jiffies;
5455 for_each_possible_cpu(cpu)
5456 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5457}
5458
5459static void wq_watchdog_timer_fn(unsigned long data)
5460{
5461 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5462 bool lockup_detected = false;
5463 struct worker_pool *pool;
5464 int pi;
5465
5466 if (!thresh)
5467 return;
5468
5469 rcu_read_lock();
5470
5471 for_each_pool(pool, pi) {
5472 unsigned long pool_ts, touched, ts;
5473
5474 if (list_empty(&pool->worklist))
5475 continue;
5476
5477 /* get the latest of pool and touched timestamps */
5478 pool_ts = READ_ONCE(pool->watchdog_ts);
5479 touched = READ_ONCE(wq_watchdog_touched);
5480
5481 if (time_after(pool_ts, touched))
5482 ts = pool_ts;
5483 else
5484 ts = touched;
5485
5486 if (pool->cpu >= 0) {
5487 unsigned long cpu_touched =
5488 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5489 pool->cpu));
5490 if (time_after(cpu_touched, ts))
5491 ts = cpu_touched;
5492 }
5493
5494 /* did we stall? */
5495 if (time_after(jiffies, ts + thresh)) {
5496 lockup_detected = true;
5497 pr_emerg("BUG: workqueue lockup - pool");
5498 pr_cont_pool_info(pool);
5499 pr_cont(" stuck for %us!\n",
5500 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5501 }
5502 }
5503
5504 rcu_read_unlock();
5505
5506 if (lockup_detected)
5507 show_workqueue_state();
5508
5509 wq_watchdog_reset_touched();
5510 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5511}
5512
63a0f9de 5513notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5514{
5515 if (cpu >= 0)
5516 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5517 else
5518 wq_watchdog_touched = jiffies;
5519}
5520
5521static void wq_watchdog_set_thresh(unsigned long thresh)
5522{
5523 wq_watchdog_thresh = 0;
5524 del_timer_sync(&wq_watchdog_timer);
5525
5526 if (thresh) {
5527 wq_watchdog_thresh = thresh;
5528 wq_watchdog_reset_touched();
5529 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5530 }
5531}
5532
5533static int wq_watchdog_param_set_thresh(const char *val,
5534 const struct kernel_param *kp)
5535{
5536 unsigned long thresh;
5537 int ret;
5538
5539 ret = kstrtoul(val, 0, &thresh);
5540 if (ret)
5541 return ret;
5542
5543 if (system_wq)
5544 wq_watchdog_set_thresh(thresh);
5545 else
5546 wq_watchdog_thresh = thresh;
5547
5548 return 0;
5549}
5550
5551static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5552 .set = wq_watchdog_param_set_thresh,
5553 .get = param_get_ulong,
5554};
5555
5556module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5557 0644);
5558
5559static void wq_watchdog_init(void)
5560{
5561 wq_watchdog_set_thresh(wq_watchdog_thresh);
5562}
5563
5564#else /* CONFIG_WQ_WATCHDOG */
5565
5566static inline void wq_watchdog_init(void) { }
5567
5568#endif /* CONFIG_WQ_WATCHDOG */
5569
bce90380
TH
5570static void __init wq_numa_init(void)
5571{
5572 cpumask_var_t *tbl;
5573 int node, cpu;
5574
bce90380
TH
5575 if (num_possible_nodes() <= 1)
5576 return;
5577
d55262c4
TH
5578 if (wq_disable_numa) {
5579 pr_info("workqueue: NUMA affinity support disabled\n");
5580 return;
5581 }
5582
4c16bd32
TH
5583 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5584 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5585
bce90380
TH
5586 /*
5587 * We want masks of possible CPUs of each node which isn't readily
5588 * available. Build one from cpu_to_node() which should have been
5589 * fully initialized by now.
5590 */
ddcb57e2 5591 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5592 BUG_ON(!tbl);
5593
5594 for_each_node(node)
5a6024f1 5595 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5596 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5597
5598 for_each_possible_cpu(cpu) {
5599 node = cpu_to_node(cpu);
5600 if (WARN_ON(node == NUMA_NO_NODE)) {
5601 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5602 /* happens iff arch is bonkers, let's just proceed */
5603 return;
5604 }
5605 cpumask_set_cpu(cpu, tbl[node]);
5606 }
5607
5608 wq_numa_possible_cpumask = tbl;
5609 wq_numa_enabled = true;
5610}
5611
3347fa09
TH
5612/**
5613 * workqueue_init_early - early init for workqueue subsystem
5614 *
5615 * This is the first half of two-staged workqueue subsystem initialization
5616 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5617 * idr are up. It sets up all the data structures and system workqueues
5618 * and allows early boot code to create workqueues and queue/cancel work
5619 * items. Actual work item execution starts only after kthreads can be
5620 * created and scheduled right before early initcalls.
5621 */
5622int __init workqueue_init_early(void)
1da177e4 5623{
7a4e344c
TH
5624 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5625 int i, cpu;
c34056a3 5626
e904e6c2
TH
5627 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5628
b05a7928
FW
5629 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5630 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5631
e904e6c2
TH
5632 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5633
706026c2 5634 /* initialize CPU pools */
29c91e99 5635 for_each_possible_cpu(cpu) {
4ce62e9e 5636 struct worker_pool *pool;
8b03ae3c 5637
7a4e344c 5638 i = 0;
f02ae73a 5639 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5640 BUG_ON(init_worker_pool(pool));
ec22ca5e 5641 pool->cpu = cpu;
29c91e99 5642 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5643 pool->attrs->nice = std_nice[i++];
f3f90ad4 5644 pool->node = cpu_to_node(cpu);
7a4e344c 5645
9daf9e67 5646 /* alloc pool ID */
68e13a67 5647 mutex_lock(&wq_pool_mutex);
9daf9e67 5648 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5649 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5650 }
8b03ae3c
TH
5651 }
5652
8a2b7538 5653 /* create default unbound and ordered wq attrs */
29c91e99
TH
5654 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5655 struct workqueue_attrs *attrs;
5656
5657 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5658 attrs->nice = std_nice[i];
29c91e99 5659 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5660
5661 /*
5662 * An ordered wq should have only one pwq as ordering is
5663 * guaranteed by max_active which is enforced by pwqs.
5664 * Turn off NUMA so that dfl_pwq is used for all nodes.
5665 */
5666 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5667 attrs->nice = std_nice[i];
5668 attrs->no_numa = true;
5669 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5670 }
5671
d320c038 5672 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5673 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5674 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5675 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5676 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5677 system_freezable_wq = alloc_workqueue("events_freezable",
5678 WQ_FREEZABLE, 0);
0668106c
VK
5679 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5680 WQ_POWER_EFFICIENT, 0);
5681 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5682 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5683 0);
1aabe902 5684 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5685 !system_unbound_wq || !system_freezable_wq ||
5686 !system_power_efficient_wq ||
5687 !system_freezable_power_efficient_wq);
82607adc 5688
3347fa09
TH
5689 return 0;
5690}
5691
5692/**
5693 * workqueue_init - bring workqueue subsystem fully online
5694 *
5695 * This is the latter half of two-staged workqueue subsystem initialization
5696 * and invoked as soon as kthreads can be created and scheduled.
5697 * Workqueues have been created and work items queued on them, but there
5698 * are no kworkers executing the work items yet. Populate the worker pools
5699 * with the initial workers and enable future kworker creations.
5700 */
5701int __init workqueue_init(void)
5702{
2186d9f9 5703 struct workqueue_struct *wq;
3347fa09
TH
5704 struct worker_pool *pool;
5705 int cpu, bkt;
5706
2186d9f9
TH
5707 /*
5708 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5709 * CPU to node mapping may not be available that early on some
5710 * archs such as power and arm64. As per-cpu pools created
5711 * previously could be missing node hint and unbound pools NUMA
5712 * affinity, fix them up.
5713 */
5714 wq_numa_init();
5715
5716 mutex_lock(&wq_pool_mutex);
5717
5718 for_each_possible_cpu(cpu) {
5719 for_each_cpu_worker_pool(pool, cpu) {
5720 pool->node = cpu_to_node(cpu);
5721 }
5722 }
5723
5724 list_for_each_entry(wq, &workqueues, list)
5725 wq_update_unbound_numa(wq, smp_processor_id(), true);
5726
5727 mutex_unlock(&wq_pool_mutex);
5728
3347fa09
TH
5729 /* create the initial workers */
5730 for_each_online_cpu(cpu) {
5731 for_each_cpu_worker_pool(pool, cpu) {
5732 pool->flags &= ~POOL_DISASSOCIATED;
5733 BUG_ON(!create_worker(pool));
5734 }
5735 }
5736
5737 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5738 BUG_ON(!create_worker(pool));
5739
5740 wq_online = true;
82607adc
TH
5741 wq_watchdog_init();
5742
6ee0578b 5743 return 0;
1da177e4 5744}