timers: /proc/sys sysctl hook to enable timer migration
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43#include <asm/div64.h>
44#include <asm/timex.h>
45#include <asm/io.h>
46
ecea8d19
TG
47u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48
49EXPORT_SYMBOL(jiffies_64);
50
1da177e4
LT
51/*
52 * per-CPU timer vector definitions:
53 */
1da177e4
LT
54#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56#define TVN_SIZE (1 << TVN_BITS)
57#define TVR_SIZE (1 << TVR_BITS)
58#define TVN_MASK (TVN_SIZE - 1)
59#define TVR_MASK (TVR_SIZE - 1)
60
a6fa8e5a 61struct tvec {
1da177e4 62 struct list_head vec[TVN_SIZE];
a6fa8e5a 63};
1da177e4 64
a6fa8e5a 65struct tvec_root {
1da177e4 66 struct list_head vec[TVR_SIZE];
a6fa8e5a 67};
1da177e4 68
a6fa8e5a 69struct tvec_base {
3691c519
ON
70 spinlock_t lock;
71 struct timer_list *running_timer;
1da177e4 72 unsigned long timer_jiffies;
a6fa8e5a
PM
73 struct tvec_root tv1;
74 struct tvec tv2;
75 struct tvec tv3;
76 struct tvec tv4;
77 struct tvec tv5;
6e453a67 78} ____cacheline_aligned;
1da177e4 79
a6fa8e5a 80struct tvec_base boot_tvec_bases;
3691c519 81EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 82static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 83
6e453a67 84/*
a6fa8e5a 85 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
88 */
89#define TBASE_DEFERRABLE_FLAG (0x1)
90
91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
a6fa8e5a 104 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 105 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
106}
107
108static inline void
a6fa8e5a 109timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 110{
a6fa8e5a 111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 112 tbase_get_deferrable(timer->base));
6e453a67
VP
113}
114
9c133c46
AS
115static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
4c36a5de
AV
117{
118 int rem;
119 unsigned long original = j;
120
121 /*
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
128 */
129 j += cpu * 3;
130
131 rem = j % HZ;
132
133 /*
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 138 * But never round down if @force_up is set.
4c36a5de 139 */
9c133c46 140 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
144
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
147
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
151}
9c133c46
AS
152
153/**
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
157 *
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
162 *
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
166 *
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
170 *
171 * The return value is the rounded version of the @j parameter.
172 */
173unsigned long __round_jiffies(unsigned long j, int cpu)
174{
175 return round_jiffies_common(j, cpu, false);
176}
4c36a5de
AV
177EXPORT_SYMBOL_GPL(__round_jiffies);
178
179/**
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
183 *
72fd4a35 184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
188 *
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
192 *
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
196 *
72fd4a35 197 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
198 */
199unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200{
9c133c46
AS
201 unsigned long j0 = jiffies;
202
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
205}
206EXPORT_SYMBOL_GPL(__round_jiffies_relative);
207
208/**
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
211 *
72fd4a35 212 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
216 *
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
220 *
72fd4a35 221 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
222 */
223unsigned long round_jiffies(unsigned long j)
224{
9c133c46 225 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
226}
227EXPORT_SYMBOL_GPL(round_jiffies);
228
229/**
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
232 *
72fd4a35 233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
237 *
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
241 *
72fd4a35 242 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
243 */
244unsigned long round_jiffies_relative(unsigned long j)
245{
246 return __round_jiffies_relative(j, raw_smp_processor_id());
247}
248EXPORT_SYMBOL_GPL(round_jiffies_relative);
249
9c133c46
AS
250/**
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
254 *
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
259 */
260unsigned long __round_jiffies_up(unsigned long j, int cpu)
261{
262 return round_jiffies_common(j, cpu, true);
263}
264EXPORT_SYMBOL_GPL(__round_jiffies_up);
265
266/**
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
270 *
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
275 */
276unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277{
278 unsigned long j0 = jiffies;
279
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
282}
283EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
284
285/**
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294unsigned long round_jiffies_up(unsigned long j)
295{
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
297}
298EXPORT_SYMBOL_GPL(round_jiffies_up);
299
300/**
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
303 *
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
308 */
309unsigned long round_jiffies_up_relative(unsigned long j)
310{
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312}
313EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
314
4c36a5de 315
a6fa8e5a 316static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
317 struct timer_list *timer)
318{
319#ifdef CONFIG_SMP
3691c519 320 base->running_timer = timer;
1da177e4
LT
321#endif
322}
323
a6fa8e5a 324static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
325{
326 unsigned long expires = timer->expires;
327 unsigned long idx = expires - base->timer_jiffies;
328 struct list_head *vec;
329
330 if (idx < TVR_SIZE) {
331 int i = expires & TVR_MASK;
332 vec = base->tv1.vec + i;
333 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
334 int i = (expires >> TVR_BITS) & TVN_MASK;
335 vec = base->tv2.vec + i;
336 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
337 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
338 vec = base->tv3.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
341 vec = base->tv4.vec + i;
342 } else if ((signed long) idx < 0) {
343 /*
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
346 */
347 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
348 } else {
349 int i;
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
352 */
353 if (idx > 0xffffffffUL) {
354 idx = 0xffffffffUL;
355 expires = idx + base->timer_jiffies;
356 }
357 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv5.vec + i;
359 }
360 /*
361 * Timers are FIFO:
362 */
363 list_add_tail(&timer->entry, vec);
364}
365
82f67cd9
IM
366#ifdef CONFIG_TIMER_STATS
367void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
368{
369 if (timer->start_site)
370 return;
371
372 timer->start_site = addr;
373 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
374 timer->start_pid = current->pid;
375}
c5c061b8
VP
376
377static void timer_stats_account_timer(struct timer_list *timer)
378{
379 unsigned int flag = 0;
380
381 if (unlikely(tbase_get_deferrable(timer->base)))
382 flag |= TIMER_STATS_FLAG_DEFERRABLE;
383
384 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
385 timer->function, timer->start_comm, flag);
386}
387
388#else
389static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
390#endif
391
c6f3a97f
TG
392#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
393
394static struct debug_obj_descr timer_debug_descr;
395
396/*
397 * fixup_init is called when:
398 * - an active object is initialized
55c888d6 399 */
c6f3a97f
TG
400static int timer_fixup_init(void *addr, enum debug_obj_state state)
401{
402 struct timer_list *timer = addr;
403
404 switch (state) {
405 case ODEBUG_STATE_ACTIVE:
406 del_timer_sync(timer);
407 debug_object_init(timer, &timer_debug_descr);
408 return 1;
409 default:
410 return 0;
411 }
412}
413
414/*
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
418 */
419static int timer_fixup_activate(void *addr, enum debug_obj_state state)
420{
421 struct timer_list *timer = addr;
422
423 switch (state) {
424
425 case ODEBUG_STATE_NOTAVAILABLE:
426 /*
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
430 */
431 if (timer->entry.next == NULL &&
432 timer->entry.prev == TIMER_ENTRY_STATIC) {
433 debug_object_init(timer, &timer_debug_descr);
434 debug_object_activate(timer, &timer_debug_descr);
435 return 0;
436 } else {
437 WARN_ON_ONCE(1);
438 }
439 return 0;
440
441 case ODEBUG_STATE_ACTIVE:
442 WARN_ON(1);
443
444 default:
445 return 0;
446 }
447}
448
449/*
450 * fixup_free is called when:
451 * - an active object is freed
452 */
453static int timer_fixup_free(void *addr, enum debug_obj_state state)
454{
455 struct timer_list *timer = addr;
456
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 del_timer_sync(timer);
460 debug_object_free(timer, &timer_debug_descr);
461 return 1;
462 default:
463 return 0;
464 }
465}
466
467static struct debug_obj_descr timer_debug_descr = {
468 .name = "timer_list",
469 .fixup_init = timer_fixup_init,
470 .fixup_activate = timer_fixup_activate,
471 .fixup_free = timer_fixup_free,
472};
473
474static inline void debug_timer_init(struct timer_list *timer)
475{
476 debug_object_init(timer, &timer_debug_descr);
477}
478
479static inline void debug_timer_activate(struct timer_list *timer)
480{
481 debug_object_activate(timer, &timer_debug_descr);
482}
483
484static inline void debug_timer_deactivate(struct timer_list *timer)
485{
486 debug_object_deactivate(timer, &timer_debug_descr);
487}
488
489static inline void debug_timer_free(struct timer_list *timer)
490{
491 debug_object_free(timer, &timer_debug_descr);
492}
493
6f2b9b9a
JB
494static void __init_timer(struct timer_list *timer,
495 const char *name,
496 struct lock_class_key *key);
c6f3a97f 497
6f2b9b9a
JB
498void init_timer_on_stack_key(struct timer_list *timer,
499 const char *name,
500 struct lock_class_key *key)
c6f3a97f
TG
501{
502 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 503 __init_timer(timer, name, key);
c6f3a97f 504}
6f2b9b9a 505EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
506
507void destroy_timer_on_stack(struct timer_list *timer)
508{
509 debug_object_free(timer, &timer_debug_descr);
510}
511EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
512
513#else
514static inline void debug_timer_init(struct timer_list *timer) { }
515static inline void debug_timer_activate(struct timer_list *timer) { }
516static inline void debug_timer_deactivate(struct timer_list *timer) { }
517#endif
518
6f2b9b9a
JB
519static void __init_timer(struct timer_list *timer,
520 const char *name,
521 struct lock_class_key *key)
55c888d6
ON
522{
523 timer->entry.next = NULL;
bfe5d834 524 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
525#ifdef CONFIG_TIMER_STATS
526 timer->start_site = NULL;
527 timer->start_pid = -1;
528 memset(timer->start_comm, 0, TASK_COMM_LEN);
529#endif
6f2b9b9a 530 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 531}
c6f3a97f
TG
532
533/**
633fe795 534 * init_timer_key - initialize a timer
c6f3a97f 535 * @timer: the timer to be initialized
633fe795
RD
536 * @name: name of the timer
537 * @key: lockdep class key of the fake lock used for tracking timer
538 * sync lock dependencies
c6f3a97f 539 *
633fe795 540 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
541 * other timer functions.
542 */
6f2b9b9a
JB
543void init_timer_key(struct timer_list *timer,
544 const char *name,
545 struct lock_class_key *key)
c6f3a97f
TG
546{
547 debug_timer_init(timer);
6f2b9b9a 548 __init_timer(timer, name, key);
c6f3a97f 549}
6f2b9b9a 550EXPORT_SYMBOL(init_timer_key);
55c888d6 551
6f2b9b9a
JB
552void init_timer_deferrable_key(struct timer_list *timer,
553 const char *name,
554 struct lock_class_key *key)
6e453a67 555{
6f2b9b9a 556 init_timer_key(timer, name, key);
6e453a67
VP
557 timer_set_deferrable(timer);
558}
6f2b9b9a 559EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 560
55c888d6 561static inline void detach_timer(struct timer_list *timer,
82f67cd9 562 int clear_pending)
55c888d6
ON
563{
564 struct list_head *entry = &timer->entry;
565
c6f3a97f
TG
566 debug_timer_deactivate(timer);
567
55c888d6
ON
568 __list_del(entry->prev, entry->next);
569 if (clear_pending)
570 entry->next = NULL;
571 entry->prev = LIST_POISON2;
572}
573
574/*
3691c519 575 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
576 * means that all timers which are tied to this base via timer->base are
577 * locked, and the base itself is locked too.
578 *
579 * So __run_timers/migrate_timers can safely modify all timers which could
580 * be found on ->tvX lists.
581 *
582 * When the timer's base is locked, and the timer removed from list, it is
583 * possible to set timer->base = NULL and drop the lock: the timer remains
584 * locked.
585 */
a6fa8e5a 586static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 587 unsigned long *flags)
89e7e374 588 __acquires(timer->base->lock)
55c888d6 589{
a6fa8e5a 590 struct tvec_base *base;
55c888d6
ON
591
592 for (;;) {
a6fa8e5a 593 struct tvec_base *prelock_base = timer->base;
6e453a67 594 base = tbase_get_base(prelock_base);
55c888d6
ON
595 if (likely(base != NULL)) {
596 spin_lock_irqsave(&base->lock, *flags);
6e453a67 597 if (likely(prelock_base == timer->base))
55c888d6
ON
598 return base;
599 /* The timer has migrated to another CPU */
600 spin_unlock_irqrestore(&base->lock, *flags);
601 }
602 cpu_relax();
603 }
604}
605
74019224 606static inline int
597d0275
AB
607__mod_timer(struct timer_list *timer, unsigned long expires,
608 bool pending_only, int pinned)
1da177e4 609{
a6fa8e5a 610 struct tvec_base *base, *new_base;
1da177e4 611 unsigned long flags;
74019224
IM
612 int ret;
613
614 ret = 0;
1da177e4 615
82f67cd9 616 timer_stats_timer_set_start_info(timer);
1da177e4 617 BUG_ON(!timer->function);
1da177e4 618
55c888d6
ON
619 base = lock_timer_base(timer, &flags);
620
621 if (timer_pending(timer)) {
622 detach_timer(timer, 0);
623 ret = 1;
74019224
IM
624 } else {
625 if (pending_only)
626 goto out_unlock;
55c888d6
ON
627 }
628
c6f3a97f
TG
629 debug_timer_activate(timer);
630
a4a6198b 631 new_base = __get_cpu_var(tvec_bases);
1da177e4 632
3691c519 633 if (base != new_base) {
1da177e4 634 /*
55c888d6
ON
635 * We are trying to schedule the timer on the local CPU.
636 * However we can't change timer's base while it is running,
637 * otherwise del_timer_sync() can't detect that the timer's
638 * handler yet has not finished. This also guarantees that
639 * the timer is serialized wrt itself.
1da177e4 640 */
a2c348fe 641 if (likely(base->running_timer != timer)) {
55c888d6 642 /* See the comment in lock_timer_base() */
6e453a67 643 timer_set_base(timer, NULL);
55c888d6 644 spin_unlock(&base->lock);
a2c348fe
ON
645 base = new_base;
646 spin_lock(&base->lock);
6e453a67 647 timer_set_base(timer, base);
1da177e4
LT
648 }
649 }
650
1da177e4 651 timer->expires = expires;
a2c348fe 652 internal_add_timer(base, timer);
74019224
IM
653
654out_unlock:
a2c348fe 655 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
656
657 return ret;
658}
659
2aae4a10 660/**
74019224
IM
661 * mod_timer_pending - modify a pending timer's timeout
662 * @timer: the pending timer to be modified
663 * @expires: new timeout in jiffies
1da177e4 664 *
74019224
IM
665 * mod_timer_pending() is the same for pending timers as mod_timer(),
666 * but will not re-activate and modify already deleted timers.
667 *
668 * It is useful for unserialized use of timers.
1da177e4 669 */
74019224 670int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 671{
597d0275 672 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 673}
74019224 674EXPORT_SYMBOL(mod_timer_pending);
1da177e4 675
2aae4a10 676/**
1da177e4
LT
677 * mod_timer - modify a timer's timeout
678 * @timer: the timer to be modified
2aae4a10 679 * @expires: new timeout in jiffies
1da177e4 680 *
72fd4a35 681 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
682 * active timer (if the timer is inactive it will be activated)
683 *
684 * mod_timer(timer, expires) is equivalent to:
685 *
686 * del_timer(timer); timer->expires = expires; add_timer(timer);
687 *
688 * Note that if there are multiple unserialized concurrent users of the
689 * same timer, then mod_timer() is the only safe way to modify the timeout,
690 * since add_timer() cannot modify an already running timer.
691 *
692 * The function returns whether it has modified a pending timer or not.
693 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
694 * active timer returns 1.)
695 */
696int mod_timer(struct timer_list *timer, unsigned long expires)
697{
1da177e4
LT
698 /*
699 * This is a common optimization triggered by the
700 * networking code - if the timer is re-modified
701 * to be the same thing then just return:
702 */
703 if (timer->expires == expires && timer_pending(timer))
704 return 1;
705
597d0275 706 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 707}
1da177e4
LT
708EXPORT_SYMBOL(mod_timer);
709
597d0275
AB
710/**
711 * mod_timer_pinned - modify a timer's timeout
712 * @timer: the timer to be modified
713 * @expires: new timeout in jiffies
714 *
715 * mod_timer_pinned() is a way to update the expire field of an
716 * active timer (if the timer is inactive it will be activated)
717 * and not allow the timer to be migrated to a different CPU.
718 *
719 * mod_timer_pinned(timer, expires) is equivalent to:
720 *
721 * del_timer(timer); timer->expires = expires; add_timer(timer);
722 */
723int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
724{
725 if (timer->expires == expires && timer_pending(timer))
726 return 1;
727
728 return __mod_timer(timer, expires, false, TIMER_PINNED);
729}
730EXPORT_SYMBOL(mod_timer_pinned);
731
74019224
IM
732/**
733 * add_timer - start a timer
734 * @timer: the timer to be added
735 *
736 * The kernel will do a ->function(->data) callback from the
737 * timer interrupt at the ->expires point in the future. The
738 * current time is 'jiffies'.
739 *
740 * The timer's ->expires, ->function (and if the handler uses it, ->data)
741 * fields must be set prior calling this function.
742 *
743 * Timers with an ->expires field in the past will be executed in the next
744 * timer tick.
745 */
746void add_timer(struct timer_list *timer)
747{
748 BUG_ON(timer_pending(timer));
749 mod_timer(timer, timer->expires);
750}
751EXPORT_SYMBOL(add_timer);
752
753/**
754 * add_timer_on - start a timer on a particular CPU
755 * @timer: the timer to be added
756 * @cpu: the CPU to start it on
757 *
758 * This is not very scalable on SMP. Double adds are not possible.
759 */
760void add_timer_on(struct timer_list *timer, int cpu)
761{
762 struct tvec_base *base = per_cpu(tvec_bases, cpu);
763 unsigned long flags;
764
765 timer_stats_timer_set_start_info(timer);
766 BUG_ON(timer_pending(timer) || !timer->function);
767 spin_lock_irqsave(&base->lock, flags);
768 timer_set_base(timer, base);
769 debug_timer_activate(timer);
770 internal_add_timer(base, timer);
771 /*
772 * Check whether the other CPU is idle and needs to be
773 * triggered to reevaluate the timer wheel when nohz is
774 * active. We are protected against the other CPU fiddling
775 * with the timer by holding the timer base lock. This also
776 * makes sure that a CPU on the way to idle can not evaluate
777 * the timer wheel.
778 */
779 wake_up_idle_cpu(cpu);
780 spin_unlock_irqrestore(&base->lock, flags);
781}
782
2aae4a10 783/**
1da177e4
LT
784 * del_timer - deactive a timer.
785 * @timer: the timer to be deactivated
786 *
787 * del_timer() deactivates a timer - this works on both active and inactive
788 * timers.
789 *
790 * The function returns whether it has deactivated a pending timer or not.
791 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
792 * active timer returns 1.)
793 */
794int del_timer(struct timer_list *timer)
795{
a6fa8e5a 796 struct tvec_base *base;
1da177e4 797 unsigned long flags;
55c888d6 798 int ret = 0;
1da177e4 799
82f67cd9 800 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
801 if (timer_pending(timer)) {
802 base = lock_timer_base(timer, &flags);
803 if (timer_pending(timer)) {
804 detach_timer(timer, 1);
805 ret = 1;
806 }
1da177e4 807 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 808 }
1da177e4 809
55c888d6 810 return ret;
1da177e4 811}
1da177e4
LT
812EXPORT_SYMBOL(del_timer);
813
814#ifdef CONFIG_SMP
2aae4a10
REB
815/**
816 * try_to_del_timer_sync - Try to deactivate a timer
817 * @timer: timer do del
818 *
fd450b73
ON
819 * This function tries to deactivate a timer. Upon successful (ret >= 0)
820 * exit the timer is not queued and the handler is not running on any CPU.
821 *
822 * It must not be called from interrupt contexts.
823 */
824int try_to_del_timer_sync(struct timer_list *timer)
825{
a6fa8e5a 826 struct tvec_base *base;
fd450b73
ON
827 unsigned long flags;
828 int ret = -1;
829
830 base = lock_timer_base(timer, &flags);
831
832 if (base->running_timer == timer)
833 goto out;
834
835 ret = 0;
836 if (timer_pending(timer)) {
837 detach_timer(timer, 1);
838 ret = 1;
839 }
840out:
841 spin_unlock_irqrestore(&base->lock, flags);
842
843 return ret;
844}
e19dff1f
DH
845EXPORT_SYMBOL(try_to_del_timer_sync);
846
2aae4a10 847/**
1da177e4
LT
848 * del_timer_sync - deactivate a timer and wait for the handler to finish.
849 * @timer: the timer to be deactivated
850 *
851 * This function only differs from del_timer() on SMP: besides deactivating
852 * the timer it also makes sure the handler has finished executing on other
853 * CPUs.
854 *
72fd4a35 855 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
856 * otherwise this function is meaningless. It must not be called from
857 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
858 * completion of the timer's handler. The timer's handler must not call
859 * add_timer_on(). Upon exit the timer is not queued and the handler is
860 * not running on any CPU.
1da177e4
LT
861 *
862 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
863 */
864int del_timer_sync(struct timer_list *timer)
865{
6f2b9b9a
JB
866#ifdef CONFIG_LOCKDEP
867 unsigned long flags;
868
869 local_irq_save(flags);
870 lock_map_acquire(&timer->lockdep_map);
871 lock_map_release(&timer->lockdep_map);
872 local_irq_restore(flags);
873#endif
874
fd450b73
ON
875 for (;;) {
876 int ret = try_to_del_timer_sync(timer);
877 if (ret >= 0)
878 return ret;
a0009652 879 cpu_relax();
fd450b73 880 }
1da177e4 881}
55c888d6 882EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
883#endif
884
a6fa8e5a 885static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
886{
887 /* cascade all the timers from tv up one level */
3439dd86
P
888 struct timer_list *timer, *tmp;
889 struct list_head tv_list;
890
891 list_replace_init(tv->vec + index, &tv_list);
1da177e4 892
1da177e4 893 /*
3439dd86
P
894 * We are removing _all_ timers from the list, so we
895 * don't have to detach them individually.
1da177e4 896 */
3439dd86 897 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 898 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 899 internal_add_timer(base, timer);
1da177e4 900 }
1da177e4
LT
901
902 return index;
903}
904
2aae4a10
REB
905#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
906
907/**
1da177e4
LT
908 * __run_timers - run all expired timers (if any) on this CPU.
909 * @base: the timer vector to be processed.
910 *
911 * This function cascades all vectors and executes all expired timer
912 * vectors.
913 */
a6fa8e5a 914static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
915{
916 struct timer_list *timer;
917
3691c519 918 spin_lock_irq(&base->lock);
1da177e4 919 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 920 struct list_head work_list;
1da177e4 921 struct list_head *head = &work_list;
6819457d 922 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 923
1da177e4
LT
924 /*
925 * Cascade timers:
926 */
927 if (!index &&
928 (!cascade(base, &base->tv2, INDEX(0))) &&
929 (!cascade(base, &base->tv3, INDEX(1))) &&
930 !cascade(base, &base->tv4, INDEX(2)))
931 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
932 ++base->timer_jiffies;
933 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 934 while (!list_empty(head)) {
1da177e4
LT
935 void (*fn)(unsigned long);
936 unsigned long data;
937
b5e61818 938 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
939 fn = timer->function;
940 data = timer->data;
1da177e4 941
82f67cd9
IM
942 timer_stats_account_timer(timer);
943
1da177e4 944 set_running_timer(base, timer);
55c888d6 945 detach_timer(timer, 1);
6f2b9b9a 946
3691c519 947 spin_unlock_irq(&base->lock);
1da177e4 948 {
be5b4fbd 949 int preempt_count = preempt_count();
6f2b9b9a
JB
950
951#ifdef CONFIG_LOCKDEP
952 /*
953 * It is permissible to free the timer from
954 * inside the function that is called from
955 * it, this we need to take into account for
956 * lockdep too. To avoid bogus "held lock
957 * freed" warnings as well as problems when
958 * looking into timer->lockdep_map, make a
959 * copy and use that here.
960 */
961 struct lockdep_map lockdep_map =
962 timer->lockdep_map;
963#endif
964 /*
965 * Couple the lock chain with the lock chain at
966 * del_timer_sync() by acquiring the lock_map
967 * around the fn() call here and in
968 * del_timer_sync().
969 */
970 lock_map_acquire(&lockdep_map);
971
1da177e4 972 fn(data);
6f2b9b9a
JB
973
974 lock_map_release(&lockdep_map);
975
1da177e4 976 if (preempt_count != preempt_count()) {
4c9dc641 977 printk(KERN_ERR "huh, entered %p "
be5b4fbd
JJ
978 "with preempt_count %08x, exited"
979 " with %08x?\n",
980 fn, preempt_count,
981 preempt_count());
1da177e4
LT
982 BUG();
983 }
984 }
3691c519 985 spin_lock_irq(&base->lock);
1da177e4
LT
986 }
987 }
988 set_running_timer(base, NULL);
3691c519 989 spin_unlock_irq(&base->lock);
1da177e4
LT
990}
991
ee9c5785 992#ifdef CONFIG_NO_HZ
1da177e4
LT
993/*
994 * Find out when the next timer event is due to happen. This
995 * is used on S/390 to stop all activity when a cpus is idle.
996 * This functions needs to be called disabled.
997 */
a6fa8e5a 998static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 999{
1cfd6849 1000 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1001 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1002 int index, slot, array, found = 0;
1da177e4 1003 struct timer_list *nte;
a6fa8e5a 1004 struct tvec *varray[4];
1da177e4
LT
1005
1006 /* Look for timer events in tv1. */
1cfd6849 1007 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1008 do {
1cfd6849 1009 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1010 if (tbase_get_deferrable(nte->base))
1011 continue;
6e453a67 1012
1cfd6849 1013 found = 1;
1da177e4 1014 expires = nte->expires;
1cfd6849
TG
1015 /* Look at the cascade bucket(s)? */
1016 if (!index || slot < index)
1017 goto cascade;
1018 return expires;
1da177e4 1019 }
1cfd6849
TG
1020 slot = (slot + 1) & TVR_MASK;
1021 } while (slot != index);
1022
1023cascade:
1024 /* Calculate the next cascade event */
1025 if (index)
1026 timer_jiffies += TVR_SIZE - index;
1027 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1028
1029 /* Check tv2-tv5. */
1030 varray[0] = &base->tv2;
1031 varray[1] = &base->tv3;
1032 varray[2] = &base->tv4;
1033 varray[3] = &base->tv5;
1cfd6849
TG
1034
1035 for (array = 0; array < 4; array++) {
a6fa8e5a 1036 struct tvec *varp = varray[array];
1cfd6849
TG
1037
1038 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1039 do {
1cfd6849 1040 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1041 if (tbase_get_deferrable(nte->base))
1042 continue;
1043
1cfd6849 1044 found = 1;
1da177e4
LT
1045 if (time_before(nte->expires, expires))
1046 expires = nte->expires;
1cfd6849
TG
1047 }
1048 /*
1049 * Do we still search for the first timer or are
1050 * we looking up the cascade buckets ?
1051 */
1052 if (found) {
1053 /* Look at the cascade bucket(s)? */
1054 if (!index || slot < index)
1055 break;
1056 return expires;
1057 }
1058 slot = (slot + 1) & TVN_MASK;
1059 } while (slot != index);
1060
1061 if (index)
1062 timer_jiffies += TVN_SIZE - index;
1063 timer_jiffies >>= TVN_BITS;
1da177e4 1064 }
1cfd6849
TG
1065 return expires;
1066}
69239749 1067
1cfd6849
TG
1068/*
1069 * Check, if the next hrtimer event is before the next timer wheel
1070 * event:
1071 */
1072static unsigned long cmp_next_hrtimer_event(unsigned long now,
1073 unsigned long expires)
1074{
1075 ktime_t hr_delta = hrtimer_get_next_event();
1076 struct timespec tsdelta;
9501b6cf 1077 unsigned long delta;
1cfd6849
TG
1078
1079 if (hr_delta.tv64 == KTIME_MAX)
1080 return expires;
0662b713 1081
9501b6cf
TG
1082 /*
1083 * Expired timer available, let it expire in the next tick
1084 */
1085 if (hr_delta.tv64 <= 0)
1086 return now + 1;
69239749 1087
1cfd6849 1088 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1089 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1090
1091 /*
1092 * Limit the delta to the max value, which is checked in
1093 * tick_nohz_stop_sched_tick():
1094 */
1095 if (delta > NEXT_TIMER_MAX_DELTA)
1096 delta = NEXT_TIMER_MAX_DELTA;
1097
9501b6cf
TG
1098 /*
1099 * Take rounding errors in to account and make sure, that it
1100 * expires in the next tick. Otherwise we go into an endless
1101 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1102 * the timer softirq
1103 */
1104 if (delta < 1)
1105 delta = 1;
1106 now += delta;
1cfd6849
TG
1107 if (time_before(now, expires))
1108 return now;
1da177e4
LT
1109 return expires;
1110}
1cfd6849
TG
1111
1112/**
8dce39c2 1113 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1114 * @now: current time (in jiffies)
1cfd6849 1115 */
fd064b9b 1116unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1117{
a6fa8e5a 1118 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1119 unsigned long expires;
1cfd6849
TG
1120
1121 spin_lock(&base->lock);
1122 expires = __next_timer_interrupt(base);
1123 spin_unlock(&base->lock);
1124
1125 if (time_before_eq(expires, now))
1126 return now;
1127
1128 return cmp_next_hrtimer_event(now, expires);
1129}
1da177e4
LT
1130#endif
1131
1da177e4 1132/*
5b4db0c2 1133 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1134 * process. user_tick is 1 if the tick is user time, 0 for system.
1135 */
1136void update_process_times(int user_tick)
1137{
1138 struct task_struct *p = current;
1139 int cpu = smp_processor_id();
1140
1141 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1142 account_process_tick(p, user_tick);
1da177e4
LT
1143 run_local_timers();
1144 if (rcu_pending(cpu))
1145 rcu_check_callbacks(cpu, user_tick);
b845b517 1146 printk_tick();
1da177e4 1147 scheduler_tick();
6819457d 1148 run_posix_cpu_timers(p);
1da177e4
LT
1149}
1150
1151/*
1152 * Nr of active tasks - counted in fixed-point numbers
1153 */
1154static unsigned long count_active_tasks(void)
1155{
db1b1fef 1156 return nr_active() * FIXED_1;
1da177e4
LT
1157}
1158
1159/*
1160 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1161 * imply that avenrun[] is the standard name for this kind of thing.
1162 * Nothing else seems to be standardized: the fractional size etc
1163 * all seem to differ on different machines.
1164 *
1165 * Requires xtime_lock to access.
1166 */
1167unsigned long avenrun[3];
1168
1169EXPORT_SYMBOL(avenrun);
1170
1171/*
1172 * calc_load - given tick count, update the avenrun load estimates.
1173 * This is called while holding a write_lock on xtime_lock.
1174 */
1175static inline void calc_load(unsigned long ticks)
1176{
1177 unsigned long active_tasks; /* fixed-point */
1178 static int count = LOAD_FREQ;
1179
cd7175ed
ED
1180 count -= ticks;
1181 if (unlikely(count < 0)) {
1182 active_tasks = count_active_tasks();
1183 do {
1184 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1185 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1186 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1187 count += LOAD_FREQ;
1188 } while (count < 0);
1da177e4
LT
1189 }
1190}
1191
1da177e4
LT
1192/*
1193 * This function runs timers and the timer-tq in bottom half context.
1194 */
1195static void run_timer_softirq(struct softirq_action *h)
1196{
a6fa8e5a 1197 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1198
d3d74453 1199 hrtimer_run_pending();
82f67cd9 1200
1da177e4
LT
1201 if (time_after_eq(jiffies, base->timer_jiffies))
1202 __run_timers(base);
1203}
1204
1205/*
1206 * Called by the local, per-CPU timer interrupt on SMP.
1207 */
1208void run_local_timers(void)
1209{
d3d74453 1210 hrtimer_run_queues();
1da177e4 1211 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1212 softlockup_tick();
1da177e4
LT
1213}
1214
1215/*
1216 * Called by the timer interrupt. xtime_lock must already be taken
1217 * by the timer IRQ!
1218 */
3171a030 1219static inline void update_times(unsigned long ticks)
1da177e4 1220{
ad596171 1221 update_wall_time();
1da177e4
LT
1222 calc_load(ticks);
1223}
6819457d 1224
1da177e4
LT
1225/*
1226 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1227 * without sampling the sequence number in xtime_lock.
1228 * jiffies is defined in the linker script...
1229 */
1230
3171a030 1231void do_timer(unsigned long ticks)
1da177e4 1232{
3171a030
AN
1233 jiffies_64 += ticks;
1234 update_times(ticks);
1da177e4
LT
1235}
1236
1237#ifdef __ARCH_WANT_SYS_ALARM
1238
1239/*
1240 * For backwards compatibility? This can be done in libc so Alpha
1241 * and all newer ports shouldn't need it.
1242 */
58fd3aa2 1243SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1244{
c08b8a49 1245 return alarm_setitimer(seconds);
1da177e4
LT
1246}
1247
1248#endif
1249
1250#ifndef __alpha__
1251
1252/*
1253 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1254 * should be moved into arch/i386 instead?
1255 */
1256
1257/**
1258 * sys_getpid - return the thread group id of the current process
1259 *
1260 * Note, despite the name, this returns the tgid not the pid. The tgid and
1261 * the pid are identical unless CLONE_THREAD was specified on clone() in
1262 * which case the tgid is the same in all threads of the same group.
1263 *
1264 * This is SMP safe as current->tgid does not change.
1265 */
58fd3aa2 1266SYSCALL_DEFINE0(getpid)
1da177e4 1267{
b488893a 1268 return task_tgid_vnr(current);
1da177e4
LT
1269}
1270
1271/*
6997a6fa
KK
1272 * Accessing ->real_parent is not SMP-safe, it could
1273 * change from under us. However, we can use a stale
1274 * value of ->real_parent under rcu_read_lock(), see
1275 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1276 */
dbf040d9 1277SYSCALL_DEFINE0(getppid)
1da177e4
LT
1278{
1279 int pid;
1da177e4 1280
6997a6fa 1281 rcu_read_lock();
6c5f3e7b 1282 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1283 rcu_read_unlock();
1da177e4 1284
1da177e4
LT
1285 return pid;
1286}
1287
dbf040d9 1288SYSCALL_DEFINE0(getuid)
1da177e4
LT
1289{
1290 /* Only we change this so SMP safe */
76aac0e9 1291 return current_uid();
1da177e4
LT
1292}
1293
dbf040d9 1294SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1295{
1296 /* Only we change this so SMP safe */
76aac0e9 1297 return current_euid();
1da177e4
LT
1298}
1299
dbf040d9 1300SYSCALL_DEFINE0(getgid)
1da177e4
LT
1301{
1302 /* Only we change this so SMP safe */
76aac0e9 1303 return current_gid();
1da177e4
LT
1304}
1305
dbf040d9 1306SYSCALL_DEFINE0(getegid)
1da177e4
LT
1307{
1308 /* Only we change this so SMP safe */
76aac0e9 1309 return current_egid();
1da177e4
LT
1310}
1311
1312#endif
1313
1314static void process_timeout(unsigned long __data)
1315{
36c8b586 1316 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1317}
1318
1319/**
1320 * schedule_timeout - sleep until timeout
1321 * @timeout: timeout value in jiffies
1322 *
1323 * Make the current task sleep until @timeout jiffies have
1324 * elapsed. The routine will return immediately unless
1325 * the current task state has been set (see set_current_state()).
1326 *
1327 * You can set the task state as follows -
1328 *
1329 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1330 * pass before the routine returns. The routine will return 0
1331 *
1332 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1333 * delivered to the current task. In this case the remaining time
1334 * in jiffies will be returned, or 0 if the timer expired in time
1335 *
1336 * The current task state is guaranteed to be TASK_RUNNING when this
1337 * routine returns.
1338 *
1339 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1340 * the CPU away without a bound on the timeout. In this case the return
1341 * value will be %MAX_SCHEDULE_TIMEOUT.
1342 *
1343 * In all cases the return value is guaranteed to be non-negative.
1344 */
7ad5b3a5 1345signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1346{
1347 struct timer_list timer;
1348 unsigned long expire;
1349
1350 switch (timeout)
1351 {
1352 case MAX_SCHEDULE_TIMEOUT:
1353 /*
1354 * These two special cases are useful to be comfortable
1355 * in the caller. Nothing more. We could take
1356 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1357 * but I' d like to return a valid offset (>=0) to allow
1358 * the caller to do everything it want with the retval.
1359 */
1360 schedule();
1361 goto out;
1362 default:
1363 /*
1364 * Another bit of PARANOID. Note that the retval will be
1365 * 0 since no piece of kernel is supposed to do a check
1366 * for a negative retval of schedule_timeout() (since it
1367 * should never happens anyway). You just have the printk()
1368 * that will tell you if something is gone wrong and where.
1369 */
5b149bcc 1370 if (timeout < 0) {
1da177e4 1371 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1372 "value %lx\n", timeout);
1373 dump_stack();
1da177e4
LT
1374 current->state = TASK_RUNNING;
1375 goto out;
1376 }
1377 }
1378
1379 expire = timeout + jiffies;
1380
c6f3a97f 1381 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1382 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1383 schedule();
1384 del_singleshot_timer_sync(&timer);
1385
c6f3a97f
TG
1386 /* Remove the timer from the object tracker */
1387 destroy_timer_on_stack(&timer);
1388
1da177e4
LT
1389 timeout = expire - jiffies;
1390
1391 out:
1392 return timeout < 0 ? 0 : timeout;
1393}
1da177e4
LT
1394EXPORT_SYMBOL(schedule_timeout);
1395
8a1c1757
AM
1396/*
1397 * We can use __set_current_state() here because schedule_timeout() calls
1398 * schedule() unconditionally.
1399 */
64ed93a2
NA
1400signed long __sched schedule_timeout_interruptible(signed long timeout)
1401{
a5a0d52c
AM
1402 __set_current_state(TASK_INTERRUPTIBLE);
1403 return schedule_timeout(timeout);
64ed93a2
NA
1404}
1405EXPORT_SYMBOL(schedule_timeout_interruptible);
1406
294d5cc2
MW
1407signed long __sched schedule_timeout_killable(signed long timeout)
1408{
1409 __set_current_state(TASK_KILLABLE);
1410 return schedule_timeout(timeout);
1411}
1412EXPORT_SYMBOL(schedule_timeout_killable);
1413
64ed93a2
NA
1414signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1415{
a5a0d52c
AM
1416 __set_current_state(TASK_UNINTERRUPTIBLE);
1417 return schedule_timeout(timeout);
64ed93a2
NA
1418}
1419EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1420
1da177e4 1421/* Thread ID - the internal kernel "pid" */
58fd3aa2 1422SYSCALL_DEFINE0(gettid)
1da177e4 1423{
b488893a 1424 return task_pid_vnr(current);
1da177e4
LT
1425}
1426
2aae4a10 1427/**
d4d23add 1428 * do_sysinfo - fill in sysinfo struct
2aae4a10 1429 * @info: pointer to buffer to fill
6819457d 1430 */
d4d23add 1431int do_sysinfo(struct sysinfo *info)
1da177e4 1432{
1da177e4
LT
1433 unsigned long mem_total, sav_total;
1434 unsigned int mem_unit, bitcount;
1435 unsigned long seq;
1436
d4d23add 1437 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1438
1439 do {
1440 struct timespec tp;
1441 seq = read_seqbegin(&xtime_lock);
1442
1443 /*
1444 * This is annoying. The below is the same thing
1445 * posix_get_clock_monotonic() does, but it wants to
1446 * take the lock which we want to cover the loads stuff
1447 * too.
1448 */
1449
1450 getnstimeofday(&tp);
1451 tp.tv_sec += wall_to_monotonic.tv_sec;
1452 tp.tv_nsec += wall_to_monotonic.tv_nsec;
d6214141 1453 monotonic_to_bootbased(&tp);
1da177e4
LT
1454 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1455 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1456 tp.tv_sec++;
1457 }
d4d23add 1458 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1459
d4d23add
KM
1460 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1461 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1462 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1463
d4d23add 1464 info->procs = nr_threads;
1da177e4
LT
1465 } while (read_seqretry(&xtime_lock, seq));
1466
d4d23add
KM
1467 si_meminfo(info);
1468 si_swapinfo(info);
1da177e4
LT
1469
1470 /*
1471 * If the sum of all the available memory (i.e. ram + swap)
1472 * is less than can be stored in a 32 bit unsigned long then
1473 * we can be binary compatible with 2.2.x kernels. If not,
1474 * well, in that case 2.2.x was broken anyways...
1475 *
1476 * -Erik Andersen <andersee@debian.org>
1477 */
1478
d4d23add
KM
1479 mem_total = info->totalram + info->totalswap;
1480 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1481 goto out;
1482 bitcount = 0;
d4d23add 1483 mem_unit = info->mem_unit;
1da177e4
LT
1484 while (mem_unit > 1) {
1485 bitcount++;
1486 mem_unit >>= 1;
1487 sav_total = mem_total;
1488 mem_total <<= 1;
1489 if (mem_total < sav_total)
1490 goto out;
1491 }
1492
1493 /*
1494 * If mem_total did not overflow, multiply all memory values by
d4d23add 1495 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1496 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1497 * kernels...
1498 */
1499
d4d23add
KM
1500 info->mem_unit = 1;
1501 info->totalram <<= bitcount;
1502 info->freeram <<= bitcount;
1503 info->sharedram <<= bitcount;
1504 info->bufferram <<= bitcount;
1505 info->totalswap <<= bitcount;
1506 info->freeswap <<= bitcount;
1507 info->totalhigh <<= bitcount;
1508 info->freehigh <<= bitcount;
1509
1510out:
1511 return 0;
1512}
1513
1e7bfb21 1514SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1515{
1516 struct sysinfo val;
1517
1518 do_sysinfo(&val);
1da177e4 1519
1da177e4
LT
1520 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1521 return -EFAULT;
1522
1523 return 0;
1524}
1525
b4be6258 1526static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1527{
1528 int j;
a6fa8e5a 1529 struct tvec_base *base;
b4be6258 1530 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1531
ba6edfcd 1532 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1533 static char boot_done;
1534
a4a6198b 1535 if (boot_done) {
ba6edfcd
AM
1536 /*
1537 * The APs use this path later in boot
1538 */
94f6030c
CL
1539 base = kmalloc_node(sizeof(*base),
1540 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1541 cpu_to_node(cpu));
1542 if (!base)
1543 return -ENOMEM;
6e453a67
VP
1544
1545 /* Make sure that tvec_base is 2 byte aligned */
1546 if (tbase_get_deferrable(base)) {
1547 WARN_ON(1);
1548 kfree(base);
1549 return -ENOMEM;
1550 }
ba6edfcd 1551 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1552 } else {
ba6edfcd
AM
1553 /*
1554 * This is for the boot CPU - we use compile-time
1555 * static initialisation because per-cpu memory isn't
1556 * ready yet and because the memory allocators are not
1557 * initialised either.
1558 */
a4a6198b 1559 boot_done = 1;
ba6edfcd 1560 base = &boot_tvec_bases;
a4a6198b 1561 }
ba6edfcd
AM
1562 tvec_base_done[cpu] = 1;
1563 } else {
1564 base = per_cpu(tvec_bases, cpu);
a4a6198b 1565 }
ba6edfcd 1566
3691c519 1567 spin_lock_init(&base->lock);
d730e882 1568
1da177e4
LT
1569 for (j = 0; j < TVN_SIZE; j++) {
1570 INIT_LIST_HEAD(base->tv5.vec + j);
1571 INIT_LIST_HEAD(base->tv4.vec + j);
1572 INIT_LIST_HEAD(base->tv3.vec + j);
1573 INIT_LIST_HEAD(base->tv2.vec + j);
1574 }
1575 for (j = 0; j < TVR_SIZE; j++)
1576 INIT_LIST_HEAD(base->tv1.vec + j);
1577
1578 base->timer_jiffies = jiffies;
a4a6198b 1579 return 0;
1da177e4
LT
1580}
1581
1582#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1583static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1584{
1585 struct timer_list *timer;
1586
1587 while (!list_empty(head)) {
b5e61818 1588 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1589 detach_timer(timer, 0);
6e453a67 1590 timer_set_base(timer, new_base);
1da177e4 1591 internal_add_timer(new_base, timer);
1da177e4 1592 }
1da177e4
LT
1593}
1594
48ccf3da 1595static void __cpuinit migrate_timers(int cpu)
1da177e4 1596{
a6fa8e5a
PM
1597 struct tvec_base *old_base;
1598 struct tvec_base *new_base;
1da177e4
LT
1599 int i;
1600
1601 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1602 old_base = per_cpu(tvec_bases, cpu);
1603 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1604 /*
1605 * The caller is globally serialized and nobody else
1606 * takes two locks at once, deadlock is not possible.
1607 */
1608 spin_lock_irq(&new_base->lock);
0d180406 1609 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1610
1611 BUG_ON(old_base->running_timer);
1da177e4 1612
1da177e4 1613 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1614 migrate_timer_list(new_base, old_base->tv1.vec + i);
1615 for (i = 0; i < TVN_SIZE; i++) {
1616 migrate_timer_list(new_base, old_base->tv2.vec + i);
1617 migrate_timer_list(new_base, old_base->tv3.vec + i);
1618 migrate_timer_list(new_base, old_base->tv4.vec + i);
1619 migrate_timer_list(new_base, old_base->tv5.vec + i);
1620 }
1621
0d180406 1622 spin_unlock(&old_base->lock);
d82f0b0f 1623 spin_unlock_irq(&new_base->lock);
1da177e4 1624 put_cpu_var(tvec_bases);
1da177e4
LT
1625}
1626#endif /* CONFIG_HOTPLUG_CPU */
1627
8c78f307 1628static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1629 unsigned long action, void *hcpu)
1630{
1631 long cpu = (long)hcpu;
1632 switch(action) {
1633 case CPU_UP_PREPARE:
8bb78442 1634 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1635 if (init_timers_cpu(cpu) < 0)
1636 return NOTIFY_BAD;
1da177e4
LT
1637 break;
1638#ifdef CONFIG_HOTPLUG_CPU
1639 case CPU_DEAD:
8bb78442 1640 case CPU_DEAD_FROZEN:
1da177e4
LT
1641 migrate_timers(cpu);
1642 break;
1643#endif
1644 default:
1645 break;
1646 }
1647 return NOTIFY_OK;
1648}
1649
8c78f307 1650static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1651 .notifier_call = timer_cpu_notify,
1652};
1653
1654
1655void __init init_timers(void)
1656{
07dccf33 1657 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1658 (void *)(long)smp_processor_id());
07dccf33 1659
82f67cd9
IM
1660 init_timer_stats();
1661
07dccf33 1662 BUG_ON(err == NOTIFY_BAD);
1da177e4 1663 register_cpu_notifier(&timers_nb);
962cf36c 1664 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1665}
1666
1da177e4
LT
1667/**
1668 * msleep - sleep safely even with waitqueue interruptions
1669 * @msecs: Time in milliseconds to sleep for
1670 */
1671void msleep(unsigned int msecs)
1672{
1673 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1674
75bcc8c5
NA
1675 while (timeout)
1676 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1677}
1678
1679EXPORT_SYMBOL(msleep);
1680
1681/**
96ec3efd 1682 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1683 * @msecs: Time in milliseconds to sleep for
1684 */
1685unsigned long msleep_interruptible(unsigned int msecs)
1686{
1687 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1688
75bcc8c5
NA
1689 while (timeout && !signal_pending(current))
1690 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1691 return jiffies_to_msecs(timeout);
1692}
1693
1694EXPORT_SYMBOL(msleep_interruptible);