[PATCH] hrtimers: prevent possible itimer DoS
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
97a41e26 36#include <linux/delay.h>
79bf2bb3 37#include <linux/tick.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
40#include <asm/unistd.h>
41#include <asm/div64.h>
42#include <asm/timex.h>
43#include <asm/io.h>
44
ecea8d19
TG
45u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
46
47EXPORT_SYMBOL(jiffies_64);
48
1da177e4
LT
49/*
50 * per-CPU timer vector definitions:
51 */
1da177e4
LT
52#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
53#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
54#define TVN_SIZE (1 << TVN_BITS)
55#define TVR_SIZE (1 << TVR_BITS)
56#define TVN_MASK (TVN_SIZE - 1)
57#define TVR_MASK (TVR_SIZE - 1)
58
59typedef struct tvec_s {
60 struct list_head vec[TVN_SIZE];
61} tvec_t;
62
63typedef struct tvec_root_s {
64 struct list_head vec[TVR_SIZE];
65} tvec_root_t;
66
67struct tvec_t_base_s {
3691c519
ON
68 spinlock_t lock;
69 struct timer_list *running_timer;
1da177e4 70 unsigned long timer_jiffies;
1da177e4
LT
71 tvec_root_t tv1;
72 tvec_t tv2;
73 tvec_t tv3;
74 tvec_t tv4;
75 tvec_t tv5;
76} ____cacheline_aligned_in_smp;
77
78typedef struct tvec_t_base_s tvec_base_t;
ba6edfcd 79
3691c519
ON
80tvec_base_t boot_tvec_bases;
81EXPORT_SYMBOL(boot_tvec_bases);
51d8c5ed 82static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
1da177e4 83
4c36a5de
AV
84/**
85 * __round_jiffies - function to round jiffies to a full second
86 * @j: the time in (absolute) jiffies that should be rounded
87 * @cpu: the processor number on which the timeout will happen
88 *
72fd4a35 89 * __round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
90 * up or down to (approximately) full seconds. This is useful for timers
91 * for which the exact time they fire does not matter too much, as long as
92 * they fire approximately every X seconds.
93 *
94 * By rounding these timers to whole seconds, all such timers will fire
95 * at the same time, rather than at various times spread out. The goal
96 * of this is to have the CPU wake up less, which saves power.
97 *
98 * The exact rounding is skewed for each processor to avoid all
99 * processors firing at the exact same time, which could lead
100 * to lock contention or spurious cache line bouncing.
101 *
72fd4a35 102 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
103 */
104unsigned long __round_jiffies(unsigned long j, int cpu)
105{
106 int rem;
107 unsigned long original = j;
108
109 /*
110 * We don't want all cpus firing their timers at once hitting the
111 * same lock or cachelines, so we skew each extra cpu with an extra
112 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
113 * already did this.
114 * The skew is done by adding 3*cpunr, then round, then subtract this
115 * extra offset again.
116 */
117 j += cpu * 3;
118
119 rem = j % HZ;
120
121 /*
122 * If the target jiffie is just after a whole second (which can happen
123 * due to delays of the timer irq, long irq off times etc etc) then
124 * we should round down to the whole second, not up. Use 1/4th second
125 * as cutoff for this rounding as an extreme upper bound for this.
126 */
127 if (rem < HZ/4) /* round down */
128 j = j - rem;
129 else /* round up */
130 j = j - rem + HZ;
131
132 /* now that we have rounded, subtract the extra skew again */
133 j -= cpu * 3;
134
135 if (j <= jiffies) /* rounding ate our timeout entirely; */
136 return original;
137 return j;
138}
139EXPORT_SYMBOL_GPL(__round_jiffies);
140
141/**
142 * __round_jiffies_relative - function to round jiffies to a full second
143 * @j: the time in (relative) jiffies that should be rounded
144 * @cpu: the processor number on which the timeout will happen
145 *
72fd4a35 146 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
147 * up or down to (approximately) full seconds. This is useful for timers
148 * for which the exact time they fire does not matter too much, as long as
149 * they fire approximately every X seconds.
150 *
151 * By rounding these timers to whole seconds, all such timers will fire
152 * at the same time, rather than at various times spread out. The goal
153 * of this is to have the CPU wake up less, which saves power.
154 *
155 * The exact rounding is skewed for each processor to avoid all
156 * processors firing at the exact same time, which could lead
157 * to lock contention or spurious cache line bouncing.
158 *
72fd4a35 159 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
160 */
161unsigned long __round_jiffies_relative(unsigned long j, int cpu)
162{
163 /*
164 * In theory the following code can skip a jiffy in case jiffies
165 * increments right between the addition and the later subtraction.
166 * However since the entire point of this function is to use approximate
167 * timeouts, it's entirely ok to not handle that.
168 */
169 return __round_jiffies(j + jiffies, cpu) - jiffies;
170}
171EXPORT_SYMBOL_GPL(__round_jiffies_relative);
172
173/**
174 * round_jiffies - function to round jiffies to a full second
175 * @j: the time in (absolute) jiffies that should be rounded
176 *
72fd4a35 177 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
178 * up or down to (approximately) full seconds. This is useful for timers
179 * for which the exact time they fire does not matter too much, as long as
180 * they fire approximately every X seconds.
181 *
182 * By rounding these timers to whole seconds, all such timers will fire
183 * at the same time, rather than at various times spread out. The goal
184 * of this is to have the CPU wake up less, which saves power.
185 *
72fd4a35 186 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
187 */
188unsigned long round_jiffies(unsigned long j)
189{
190 return __round_jiffies(j, raw_smp_processor_id());
191}
192EXPORT_SYMBOL_GPL(round_jiffies);
193
194/**
195 * round_jiffies_relative - function to round jiffies to a full second
196 * @j: the time in (relative) jiffies that should be rounded
197 *
72fd4a35 198 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
199 * up or down to (approximately) full seconds. This is useful for timers
200 * for which the exact time they fire does not matter too much, as long as
201 * they fire approximately every X seconds.
202 *
203 * By rounding these timers to whole seconds, all such timers will fire
204 * at the same time, rather than at various times spread out. The goal
205 * of this is to have the CPU wake up less, which saves power.
206 *
72fd4a35 207 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
208 */
209unsigned long round_jiffies_relative(unsigned long j)
210{
211 return __round_jiffies_relative(j, raw_smp_processor_id());
212}
213EXPORT_SYMBOL_GPL(round_jiffies_relative);
214
215
1da177e4
LT
216static inline void set_running_timer(tvec_base_t *base,
217 struct timer_list *timer)
218{
219#ifdef CONFIG_SMP
3691c519 220 base->running_timer = timer;
1da177e4
LT
221#endif
222}
223
1da177e4
LT
224static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
225{
226 unsigned long expires = timer->expires;
227 unsigned long idx = expires - base->timer_jiffies;
228 struct list_head *vec;
229
230 if (idx < TVR_SIZE) {
231 int i = expires & TVR_MASK;
232 vec = base->tv1.vec + i;
233 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
234 int i = (expires >> TVR_BITS) & TVN_MASK;
235 vec = base->tv2.vec + i;
236 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
237 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
238 vec = base->tv3.vec + i;
239 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
240 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
241 vec = base->tv4.vec + i;
242 } else if ((signed long) idx < 0) {
243 /*
244 * Can happen if you add a timer with expires == jiffies,
245 * or you set a timer to go off in the past
246 */
247 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
248 } else {
249 int i;
250 /* If the timeout is larger than 0xffffffff on 64-bit
251 * architectures then we use the maximum timeout:
252 */
253 if (idx > 0xffffffffUL) {
254 idx = 0xffffffffUL;
255 expires = idx + base->timer_jiffies;
256 }
257 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
258 vec = base->tv5.vec + i;
259 }
260 /*
261 * Timers are FIFO:
262 */
263 list_add_tail(&timer->entry, vec);
264}
265
2aae4a10 266/**
55c888d6
ON
267 * init_timer - initialize a timer.
268 * @timer: the timer to be initialized
269 *
270 * init_timer() must be done to a timer prior calling *any* of the
271 * other timer functions.
272 */
273void fastcall init_timer(struct timer_list *timer)
274{
275 timer->entry.next = NULL;
bfe5d834 276 timer->base = __raw_get_cpu_var(tvec_bases);
55c888d6
ON
277}
278EXPORT_SYMBOL(init_timer);
279
280static inline void detach_timer(struct timer_list *timer,
281 int clear_pending)
282{
283 struct list_head *entry = &timer->entry;
284
285 __list_del(entry->prev, entry->next);
286 if (clear_pending)
287 entry->next = NULL;
288 entry->prev = LIST_POISON2;
289}
290
291/*
3691c519 292 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
293 * means that all timers which are tied to this base via timer->base are
294 * locked, and the base itself is locked too.
295 *
296 * So __run_timers/migrate_timers can safely modify all timers which could
297 * be found on ->tvX lists.
298 *
299 * When the timer's base is locked, and the timer removed from list, it is
300 * possible to set timer->base = NULL and drop the lock: the timer remains
301 * locked.
302 */
3691c519 303static tvec_base_t *lock_timer_base(struct timer_list *timer,
55c888d6 304 unsigned long *flags)
89e7e374 305 __acquires(timer->base->lock)
55c888d6 306{
3691c519 307 tvec_base_t *base;
55c888d6
ON
308
309 for (;;) {
310 base = timer->base;
311 if (likely(base != NULL)) {
312 spin_lock_irqsave(&base->lock, *flags);
313 if (likely(base == timer->base))
314 return base;
315 /* The timer has migrated to another CPU */
316 spin_unlock_irqrestore(&base->lock, *flags);
317 }
318 cpu_relax();
319 }
320}
321
1da177e4
LT
322int __mod_timer(struct timer_list *timer, unsigned long expires)
323{
3691c519 324 tvec_base_t *base, *new_base;
1da177e4
LT
325 unsigned long flags;
326 int ret = 0;
327
328 BUG_ON(!timer->function);
1da177e4 329
55c888d6
ON
330 base = lock_timer_base(timer, &flags);
331
332 if (timer_pending(timer)) {
333 detach_timer(timer, 0);
334 ret = 1;
335 }
336
a4a6198b 337 new_base = __get_cpu_var(tvec_bases);
1da177e4 338
3691c519 339 if (base != new_base) {
1da177e4 340 /*
55c888d6
ON
341 * We are trying to schedule the timer on the local CPU.
342 * However we can't change timer's base while it is running,
343 * otherwise del_timer_sync() can't detect that the timer's
344 * handler yet has not finished. This also guarantees that
345 * the timer is serialized wrt itself.
1da177e4 346 */
a2c348fe 347 if (likely(base->running_timer != timer)) {
55c888d6
ON
348 /* See the comment in lock_timer_base() */
349 timer->base = NULL;
350 spin_unlock(&base->lock);
a2c348fe
ON
351 base = new_base;
352 spin_lock(&base->lock);
353 timer->base = base;
1da177e4
LT
354 }
355 }
356
1da177e4 357 timer->expires = expires;
a2c348fe
ON
358 internal_add_timer(base, timer);
359 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
360
361 return ret;
362}
363
364EXPORT_SYMBOL(__mod_timer);
365
2aae4a10 366/**
1da177e4
LT
367 * add_timer_on - start a timer on a particular CPU
368 * @timer: the timer to be added
369 * @cpu: the CPU to start it on
370 *
371 * This is not very scalable on SMP. Double adds are not possible.
372 */
373void add_timer_on(struct timer_list *timer, int cpu)
374{
a4a6198b 375 tvec_base_t *base = per_cpu(tvec_bases, cpu);
1da177e4 376 unsigned long flags;
55c888d6 377
1da177e4 378 BUG_ON(timer_pending(timer) || !timer->function);
3691c519
ON
379 spin_lock_irqsave(&base->lock, flags);
380 timer->base = base;
1da177e4 381 internal_add_timer(base, timer);
3691c519 382 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
383}
384
385
2aae4a10 386/**
1da177e4
LT
387 * mod_timer - modify a timer's timeout
388 * @timer: the timer to be modified
2aae4a10 389 * @expires: new timeout in jiffies
1da177e4 390 *
72fd4a35 391 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
392 * active timer (if the timer is inactive it will be activated)
393 *
394 * mod_timer(timer, expires) is equivalent to:
395 *
396 * del_timer(timer); timer->expires = expires; add_timer(timer);
397 *
398 * Note that if there are multiple unserialized concurrent users of the
399 * same timer, then mod_timer() is the only safe way to modify the timeout,
400 * since add_timer() cannot modify an already running timer.
401 *
402 * The function returns whether it has modified a pending timer or not.
403 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
404 * active timer returns 1.)
405 */
406int mod_timer(struct timer_list *timer, unsigned long expires)
407{
408 BUG_ON(!timer->function);
409
1da177e4
LT
410 /*
411 * This is a common optimization triggered by the
412 * networking code - if the timer is re-modified
413 * to be the same thing then just return:
414 */
415 if (timer->expires == expires && timer_pending(timer))
416 return 1;
417
418 return __mod_timer(timer, expires);
419}
420
421EXPORT_SYMBOL(mod_timer);
422
2aae4a10 423/**
1da177e4
LT
424 * del_timer - deactive a timer.
425 * @timer: the timer to be deactivated
426 *
427 * del_timer() deactivates a timer - this works on both active and inactive
428 * timers.
429 *
430 * The function returns whether it has deactivated a pending timer or not.
431 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
432 * active timer returns 1.)
433 */
434int del_timer(struct timer_list *timer)
435{
3691c519 436 tvec_base_t *base;
1da177e4 437 unsigned long flags;
55c888d6 438 int ret = 0;
1da177e4 439
55c888d6
ON
440 if (timer_pending(timer)) {
441 base = lock_timer_base(timer, &flags);
442 if (timer_pending(timer)) {
443 detach_timer(timer, 1);
444 ret = 1;
445 }
1da177e4 446 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 447 }
1da177e4 448
55c888d6 449 return ret;
1da177e4
LT
450}
451
452EXPORT_SYMBOL(del_timer);
453
454#ifdef CONFIG_SMP
2aae4a10
REB
455/**
456 * try_to_del_timer_sync - Try to deactivate a timer
457 * @timer: timer do del
458 *
fd450b73
ON
459 * This function tries to deactivate a timer. Upon successful (ret >= 0)
460 * exit the timer is not queued and the handler is not running on any CPU.
461 *
462 * It must not be called from interrupt contexts.
463 */
464int try_to_del_timer_sync(struct timer_list *timer)
465{
3691c519 466 tvec_base_t *base;
fd450b73
ON
467 unsigned long flags;
468 int ret = -1;
469
470 base = lock_timer_base(timer, &flags);
471
472 if (base->running_timer == timer)
473 goto out;
474
475 ret = 0;
476 if (timer_pending(timer)) {
477 detach_timer(timer, 1);
478 ret = 1;
479 }
480out:
481 spin_unlock_irqrestore(&base->lock, flags);
482
483 return ret;
484}
485
2aae4a10 486/**
1da177e4
LT
487 * del_timer_sync - deactivate a timer and wait for the handler to finish.
488 * @timer: the timer to be deactivated
489 *
490 * This function only differs from del_timer() on SMP: besides deactivating
491 * the timer it also makes sure the handler has finished executing on other
492 * CPUs.
493 *
72fd4a35 494 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
495 * otherwise this function is meaningless. It must not be called from
496 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
497 * completion of the timer's handler. The timer's handler must not call
498 * add_timer_on(). Upon exit the timer is not queued and the handler is
499 * not running on any CPU.
1da177e4
LT
500 *
501 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
502 */
503int del_timer_sync(struct timer_list *timer)
504{
fd450b73
ON
505 for (;;) {
506 int ret = try_to_del_timer_sync(timer);
507 if (ret >= 0)
508 return ret;
a0009652 509 cpu_relax();
fd450b73 510 }
1da177e4 511}
1da177e4 512
55c888d6 513EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
514#endif
515
516static int cascade(tvec_base_t *base, tvec_t *tv, int index)
517{
518 /* cascade all the timers from tv up one level */
3439dd86
P
519 struct timer_list *timer, *tmp;
520 struct list_head tv_list;
521
522 list_replace_init(tv->vec + index, &tv_list);
1da177e4 523
1da177e4 524 /*
3439dd86
P
525 * We are removing _all_ timers from the list, so we
526 * don't have to detach them individually.
1da177e4 527 */
3439dd86
P
528 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
529 BUG_ON(timer->base != base);
530 internal_add_timer(base, timer);
1da177e4 531 }
1da177e4
LT
532
533 return index;
534}
535
2aae4a10
REB
536#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
537
538/**
1da177e4
LT
539 * __run_timers - run all expired timers (if any) on this CPU.
540 * @base: the timer vector to be processed.
541 *
542 * This function cascades all vectors and executes all expired timer
543 * vectors.
544 */
1da177e4
LT
545static inline void __run_timers(tvec_base_t *base)
546{
547 struct timer_list *timer;
548
3691c519 549 spin_lock_irq(&base->lock);
1da177e4 550 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 551 struct list_head work_list;
1da177e4
LT
552 struct list_head *head = &work_list;
553 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 554
1da177e4
LT
555 /*
556 * Cascade timers:
557 */
558 if (!index &&
559 (!cascade(base, &base->tv2, INDEX(0))) &&
560 (!cascade(base, &base->tv3, INDEX(1))) &&
561 !cascade(base, &base->tv4, INDEX(2)))
562 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
563 ++base->timer_jiffies;
564 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 565 while (!list_empty(head)) {
1da177e4
LT
566 void (*fn)(unsigned long);
567 unsigned long data;
568
569 timer = list_entry(head->next,struct timer_list,entry);
570 fn = timer->function;
571 data = timer->data;
572
1da177e4 573 set_running_timer(base, timer);
55c888d6 574 detach_timer(timer, 1);
3691c519 575 spin_unlock_irq(&base->lock);
1da177e4 576 {
be5b4fbd 577 int preempt_count = preempt_count();
1da177e4
LT
578 fn(data);
579 if (preempt_count != preempt_count()) {
be5b4fbd
JJ
580 printk(KERN_WARNING "huh, entered %p "
581 "with preempt_count %08x, exited"
582 " with %08x?\n",
583 fn, preempt_count,
584 preempt_count());
1da177e4
LT
585 BUG();
586 }
587 }
3691c519 588 spin_lock_irq(&base->lock);
1da177e4
LT
589 }
590 }
591 set_running_timer(base, NULL);
3691c519 592 spin_unlock_irq(&base->lock);
1da177e4
LT
593}
594
fd064b9b 595#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
1da177e4
LT
596/*
597 * Find out when the next timer event is due to happen. This
598 * is used on S/390 to stop all activity when a cpus is idle.
599 * This functions needs to be called disabled.
600 */
1cfd6849 601static unsigned long __next_timer_interrupt(tvec_base_t *base)
1da177e4 602{
1cfd6849
TG
603 unsigned long timer_jiffies = base->timer_jiffies;
604 unsigned long expires = timer_jiffies + (LONG_MAX >> 1);
605 int index, slot, array, found = 0;
1da177e4 606 struct timer_list *nte;
1da177e4 607 tvec_t *varray[4];
1da177e4
LT
608
609 /* Look for timer events in tv1. */
1cfd6849 610 index = slot = timer_jiffies & TVR_MASK;
1da177e4 611 do {
1cfd6849
TG
612 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
613 found = 1;
1da177e4 614 expires = nte->expires;
1cfd6849
TG
615 /* Look at the cascade bucket(s)? */
616 if (!index || slot < index)
617 goto cascade;
618 return expires;
1da177e4 619 }
1cfd6849
TG
620 slot = (slot + 1) & TVR_MASK;
621 } while (slot != index);
622
623cascade:
624 /* Calculate the next cascade event */
625 if (index)
626 timer_jiffies += TVR_SIZE - index;
627 timer_jiffies >>= TVR_BITS;
1da177e4
LT
628
629 /* Check tv2-tv5. */
630 varray[0] = &base->tv2;
631 varray[1] = &base->tv3;
632 varray[2] = &base->tv4;
633 varray[3] = &base->tv5;
1cfd6849
TG
634
635 for (array = 0; array < 4; array++) {
636 tvec_t *varp = varray[array];
637
638 index = slot = timer_jiffies & TVN_MASK;
1da177e4 639 do {
1cfd6849
TG
640 list_for_each_entry(nte, varp->vec + slot, entry) {
641 found = 1;
1da177e4
LT
642 if (time_before(nte->expires, expires))
643 expires = nte->expires;
1cfd6849
TG
644 }
645 /*
646 * Do we still search for the first timer or are
647 * we looking up the cascade buckets ?
648 */
649 if (found) {
650 /* Look at the cascade bucket(s)? */
651 if (!index || slot < index)
652 break;
653 return expires;
654 }
655 slot = (slot + 1) & TVN_MASK;
656 } while (slot != index);
657
658 if (index)
659 timer_jiffies += TVN_SIZE - index;
660 timer_jiffies >>= TVN_BITS;
1da177e4 661 }
1cfd6849
TG
662 return expires;
663}
69239749 664
1cfd6849
TG
665/*
666 * Check, if the next hrtimer event is before the next timer wheel
667 * event:
668 */
669static unsigned long cmp_next_hrtimer_event(unsigned long now,
670 unsigned long expires)
671{
672 ktime_t hr_delta = hrtimer_get_next_event();
673 struct timespec tsdelta;
674
675 if (hr_delta.tv64 == KTIME_MAX)
676 return expires;
0662b713 677
1cfd6849
TG
678 if (hr_delta.tv64 <= TICK_NSEC)
679 return now;
69239749 680
1cfd6849
TG
681 tsdelta = ktime_to_timespec(hr_delta);
682 now += timespec_to_jiffies(&tsdelta);
683 if (time_before(now, expires))
684 return now;
1da177e4
LT
685 return expires;
686}
1cfd6849
TG
687
688/**
689 * next_timer_interrupt - return the jiffy of the next pending timer
690 */
fd064b9b 691unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849
TG
692{
693 tvec_base_t *base = __get_cpu_var(tvec_bases);
fd064b9b 694 unsigned long expires;
1cfd6849
TG
695
696 spin_lock(&base->lock);
697 expires = __next_timer_interrupt(base);
698 spin_unlock(&base->lock);
699
700 if (time_before_eq(expires, now))
701 return now;
702
703 return cmp_next_hrtimer_event(now, expires);
704}
fd064b9b
TG
705
706#ifdef CONFIG_NO_IDLE_HZ
707unsigned long next_timer_interrupt(void)
708{
709 return get_next_timer_interrupt(jiffies);
710}
711#endif
712
1da177e4
LT
713#endif
714
715/******************************************************************/
716
1da177e4
LT
717/*
718 * The current time
719 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
720 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
721 * at zero at system boot time, so wall_to_monotonic will be negative,
722 * however, we will ALWAYS keep the tv_nsec part positive so we can use
723 * the usual normalization.
724 */
725struct timespec xtime __attribute__ ((aligned (16)));
726struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
727
728EXPORT_SYMBOL(xtime);
729
726c14bf 730
ad596171
JS
731/* XXX - all of this timekeeping code should be later moved to time.c */
732#include <linux/clocksource.h>
733static struct clocksource *clock; /* pointer to current clocksource */
cf3c769b
JS
734
735#ifdef CONFIG_GENERIC_TIME
736/**
737 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
738 *
739 * private function, must hold xtime_lock lock when being
740 * called. Returns the number of nanoseconds since the
741 * last call to update_wall_time() (adjusted by NTP scaling)
742 */
743static inline s64 __get_nsec_offset(void)
744{
745 cycle_t cycle_now, cycle_delta;
746 s64 ns_offset;
747
748 /* read clocksource: */
a2752549 749 cycle_now = clocksource_read(clock);
cf3c769b
JS
750
751 /* calculate the delta since the last update_wall_time: */
19923c19 752 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
cf3c769b
JS
753
754 /* convert to nanoseconds: */
755 ns_offset = cyc2ns(clock, cycle_delta);
756
757 return ns_offset;
758}
759
760/**
761 * __get_realtime_clock_ts - Returns the time of day in a timespec
762 * @ts: pointer to the timespec to be set
763 *
764 * Returns the time of day in a timespec. Used by
765 * do_gettimeofday() and get_realtime_clock_ts().
766 */
767static inline void __get_realtime_clock_ts(struct timespec *ts)
768{
769 unsigned long seq;
770 s64 nsecs;
771
772 do {
773 seq = read_seqbegin(&xtime_lock);
774
775 *ts = xtime;
776 nsecs = __get_nsec_offset();
777
778 } while (read_seqretry(&xtime_lock, seq));
779
780 timespec_add_ns(ts, nsecs);
781}
782
783/**
a2752549 784 * getnstimeofday - Returns the time of day in a timespec
cf3c769b
JS
785 * @ts: pointer to the timespec to be set
786 *
787 * Returns the time of day in a timespec.
788 */
789void getnstimeofday(struct timespec *ts)
790{
791 __get_realtime_clock_ts(ts);
792}
793
794EXPORT_SYMBOL(getnstimeofday);
795
796/**
797 * do_gettimeofday - Returns the time of day in a timeval
798 * @tv: pointer to the timeval to be set
799 *
800 * NOTE: Users should be converted to using get_realtime_clock_ts()
801 */
802void do_gettimeofday(struct timeval *tv)
803{
804 struct timespec now;
805
806 __get_realtime_clock_ts(&now);
807 tv->tv_sec = now.tv_sec;
808 tv->tv_usec = now.tv_nsec/1000;
809}
810
811EXPORT_SYMBOL(do_gettimeofday);
812/**
813 * do_settimeofday - Sets the time of day
814 * @tv: pointer to the timespec variable containing the new time
815 *
816 * Sets the time of day to the new time and update NTP and notify hrtimers
817 */
818int do_settimeofday(struct timespec *tv)
819{
820 unsigned long flags;
821 time_t wtm_sec, sec = tv->tv_sec;
822 long wtm_nsec, nsec = tv->tv_nsec;
823
824 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
825 return -EINVAL;
826
827 write_seqlock_irqsave(&xtime_lock, flags);
828
829 nsec -= __get_nsec_offset();
830
831 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
832 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
833
834 set_normalized_timespec(&xtime, sec, nsec);
835 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
836
e154ff3d 837 clock->error = 0;
cf3c769b
JS
838 ntp_clear();
839
840 write_sequnlock_irqrestore(&xtime_lock, flags);
841
842 /* signal hrtimers about time change */
843 clock_was_set();
844
845 return 0;
846}
847
848EXPORT_SYMBOL(do_settimeofday);
849
850/**
851 * change_clocksource - Swaps clocksources if a new one is available
852 *
853 * Accumulates current time interval and initializes new clocksource
854 */
5d8b34fd 855static void change_clocksource(void)
cf3c769b
JS
856{
857 struct clocksource *new;
858 cycle_t now;
859 u64 nsec;
5d8b34fd 860
a2752549 861 new = clocksource_get_next();
5d8b34fd
TG
862
863 if (clock == new)
864 return;
865
866 now = clocksource_read(new);
867 nsec = __get_nsec_offset();
868 timespec_add_ns(&xtime, nsec);
869
870 clock = new;
871 clock->cycle_last = now;
872
873 clock->error = 0;
874 clock->xtime_nsec = 0;
875 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
876
79bf2bb3
TG
877 tick_clock_notify();
878
5d8b34fd
TG
879 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
880 clock->name);
cf3c769b
JS
881}
882#else
5d8b34fd 883static inline void change_clocksource(void) { }
cf3c769b
JS
884#endif
885
886/**
887 * timeofday_is_continuous - check to see if timekeeping is free running
888 */
889int timekeeping_is_continuous(void)
890{
891 unsigned long seq;
892 int ret;
893
894 do {
895 seq = read_seqbegin(&xtime_lock);
896
5d8b34fd 897 ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
cf3c769b
JS
898
899 } while (read_seqretry(&xtime_lock, seq));
900
901 return ret;
902}
903
411187fb
JS
904/**
905 * read_persistent_clock - Return time in seconds from the persistent clock.
906 *
907 * Weak dummy function for arches that do not yet support it.
908 * Returns seconds from epoch using the battery backed persistent clock.
909 * Returns zero if unsupported.
910 *
911 * XXX - Do be sure to remove it once all arches implement it.
912 */
913unsigned long __attribute__((weak)) read_persistent_clock(void)
914{
915 return 0;
916}
917
1da177e4 918/*
ad596171 919 * timekeeping_init - Initializes the clocksource and common timekeeping values
1da177e4 920 */
ad596171 921void __init timekeeping_init(void)
1da177e4 922{
ad596171 923 unsigned long flags;
411187fb 924 unsigned long sec = read_persistent_clock();
ad596171
JS
925
926 write_seqlock_irqsave(&xtime_lock, flags);
b0ee7556
RZ
927
928 ntp_clear();
929
a2752549 930 clock = clocksource_get_next();
f4304ab2 931 clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH);
19923c19 932 clock->cycle_last = clocksource_read(clock);
b0ee7556 933
411187fb
JS
934 xtime.tv_sec = sec;
935 xtime.tv_nsec = 0;
936 set_normalized_timespec(&wall_to_monotonic,
937 -xtime.tv_sec, -xtime.tv_nsec);
938
ad596171
JS
939 write_sequnlock_irqrestore(&xtime_lock, flags);
940}
941
411187fb 942/* flag for if timekeeping is suspended */
3e143475 943static int timekeeping_suspended;
411187fb
JS
944/* time in seconds when suspend began */
945static unsigned long timekeeping_suspend_time;
946
2aae4a10 947/**
ad596171
JS
948 * timekeeping_resume - Resumes the generic timekeeping subsystem.
949 * @dev: unused
950 *
951 * This is for the generic clocksource timekeeping.
8ef38609 952 * xtime/wall_to_monotonic/jiffies/etc are
ad596171
JS
953 * still managed by arch specific suspend/resume code.
954 */
955static int timekeeping_resume(struct sys_device *dev)
956{
957 unsigned long flags;
411187fb 958 unsigned long now = read_persistent_clock();
ad596171
JS
959
960 write_seqlock_irqsave(&xtime_lock, flags);
411187fb
JS
961
962 if (now && (now > timekeeping_suspend_time)) {
963 unsigned long sleep_length = now - timekeeping_suspend_time;
964
965 xtime.tv_sec += sleep_length;
966 wall_to_monotonic.tv_sec -= sleep_length;
967 }
968 /* re-base the last cycle value */
19923c19 969 clock->cycle_last = clocksource_read(clock);
3e143475
JS
970 clock->error = 0;
971 timekeeping_suspended = 0;
972 write_sequnlock_irqrestore(&xtime_lock, flags);
411187fb
JS
973
974 touch_softlockup_watchdog();
d316c57f
TG
975 /* Resume hrtimers */
976 clock_was_set();
411187fb 977
3e143475
JS
978 return 0;
979}
980
981static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
982{
983 unsigned long flags;
984
985 write_seqlock_irqsave(&xtime_lock, flags);
986 timekeeping_suspended = 1;
411187fb 987 timekeeping_suspend_time = read_persistent_clock();
ad596171
JS
988 write_sequnlock_irqrestore(&xtime_lock, flags);
989 return 0;
990}
991
992/* sysfs resume/suspend bits for timekeeping */
993static struct sysdev_class timekeeping_sysclass = {
994 .resume = timekeeping_resume,
3e143475 995 .suspend = timekeeping_suspend,
ad596171
JS
996 set_kset_name("timekeeping"),
997};
998
999static struct sys_device device_timer = {
1000 .id = 0,
1001 .cls = &timekeeping_sysclass,
1002};
1003
1004static int __init timekeeping_init_device(void)
1005{
1006 int error = sysdev_class_register(&timekeeping_sysclass);
1007 if (!error)
1008 error = sysdev_register(&device_timer);
1009 return error;
1010}
1011
1012device_initcall(timekeeping_init_device);
1013
19923c19 1014/*
e154ff3d 1015 * If the error is already larger, we look ahead even further
19923c19
RZ
1016 * to compensate for late or lost adjustments.
1017 */
f5f1a24a
DW
1018static __always_inline int clocksource_bigadjust(s64 error, s64 *interval,
1019 s64 *offset)
19923c19 1020{
e154ff3d
RZ
1021 s64 tick_error, i;
1022 u32 look_ahead, adj;
1023 s32 error2, mult;
19923c19
RZ
1024
1025 /*
e154ff3d
RZ
1026 * Use the current error value to determine how much to look ahead.
1027 * The larger the error the slower we adjust for it to avoid problems
1028 * with losing too many ticks, otherwise we would overadjust and
1029 * produce an even larger error. The smaller the adjustment the
1030 * faster we try to adjust for it, as lost ticks can do less harm
1031 * here. This is tuned so that an error of about 1 msec is adusted
1032 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
19923c19 1033 */
e154ff3d
RZ
1034 error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
1035 error2 = abs(error2);
1036 for (look_ahead = 0; error2 > 0; look_ahead++)
1037 error2 >>= 2;
19923c19
RZ
1038
1039 /*
e154ff3d
RZ
1040 * Now calculate the error in (1 << look_ahead) ticks, but first
1041 * remove the single look ahead already included in the error.
19923c19 1042 */
f5f1a24a
DW
1043 tick_error = current_tick_length() >>
1044 (TICK_LENGTH_SHIFT - clock->shift + 1);
e154ff3d
RZ
1045 tick_error -= clock->xtime_interval >> 1;
1046 error = ((error - tick_error) >> look_ahead) + tick_error;
1047
1048 /* Finally calculate the adjustment shift value. */
1049 i = *interval;
1050 mult = 1;
1051 if (error < 0) {
1052 error = -error;
1053 *interval = -*interval;
1054 *offset = -*offset;
1055 mult = -1;
19923c19 1056 }
e154ff3d
RZ
1057 for (adj = 0; error > i; adj++)
1058 error >>= 1;
19923c19
RZ
1059
1060 *interval <<= adj;
1061 *offset <<= adj;
e154ff3d 1062 return mult << adj;
19923c19
RZ
1063}
1064
1065/*
1066 * Adjust the multiplier to reduce the error value,
1067 * this is optimized for the most common adjustments of -1,0,1,
1068 * for other values we can do a bit more work.
1069 */
1070static void clocksource_adjust(struct clocksource *clock, s64 offset)
1071{
1072 s64 error, interval = clock->cycle_interval;
1073 int adj;
1074
1075 error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
1076 if (error > interval) {
e154ff3d
RZ
1077 error >>= 2;
1078 if (likely(error <= interval))
1079 adj = 1;
1080 else
1081 adj = clocksource_bigadjust(error, &interval, &offset);
19923c19 1082 } else if (error < -interval) {
e154ff3d
RZ
1083 error >>= 2;
1084 if (likely(error >= -interval)) {
1085 adj = -1;
1086 interval = -interval;
1087 offset = -offset;
1088 } else
1089 adj = clocksource_bigadjust(error, &interval, &offset);
19923c19
RZ
1090 } else
1091 return;
1092
1093 clock->mult += adj;
1094 clock->xtime_interval += interval;
1095 clock->xtime_nsec -= offset;
f5f1a24a
DW
1096 clock->error -= (interval - offset) <<
1097 (TICK_LENGTH_SHIFT - clock->shift);
19923c19
RZ
1098}
1099
2aae4a10 1100/**
ad596171
JS
1101 * update_wall_time - Uses the current clocksource to increment the wall time
1102 *
1103 * Called from the timer interrupt, must hold a write on xtime_lock.
1104 */
1105static void update_wall_time(void)
1106{
19923c19 1107 cycle_t offset;
ad596171 1108
3e143475
JS
1109 /* Make sure we're fully resumed: */
1110 if (unlikely(timekeeping_suspended))
1111 return;
5eb6d205 1112
19923c19
RZ
1113#ifdef CONFIG_GENERIC_TIME
1114 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
1115#else
1116 offset = clock->cycle_interval;
1117#endif
3e143475 1118 clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
ad596171
JS
1119
1120 /* normally this loop will run just once, however in the
1121 * case of lost or late ticks, it will accumulate correctly.
1122 */
19923c19 1123 while (offset >= clock->cycle_interval) {
ad596171 1124 /* accumulate one interval */
19923c19
RZ
1125 clock->xtime_nsec += clock->xtime_interval;
1126 clock->cycle_last += clock->cycle_interval;
1127 offset -= clock->cycle_interval;
1128
1129 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
1130 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
1131 xtime.tv_sec++;
1132 second_overflow();
1133 }
ad596171 1134
5eb6d205 1135 /* interpolator bits */
19923c19 1136 time_interpolator_update(clock->xtime_interval
5eb6d205 1137 >> clock->shift);
5eb6d205
JS
1138
1139 /* accumulate error between NTP and clock interval */
19923c19
RZ
1140 clock->error += current_tick_length();
1141 clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
1142 }
5eb6d205 1143
19923c19
RZ
1144 /* correct the clock when NTP error is too big */
1145 clocksource_adjust(clock, offset);
5eb6d205 1146
5eb6d205 1147 /* store full nanoseconds into xtime */
e154ff3d 1148 xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
19923c19 1149 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
cf3c769b
JS
1150
1151 /* check to see if there is a new clocksource to use */
5d8b34fd 1152 change_clocksource();
1da177e4
LT
1153}
1154
1155/*
1156 * Called from the timer interrupt handler to charge one tick to the current
1157 * process. user_tick is 1 if the tick is user time, 0 for system.
1158 */
1159void update_process_times(int user_tick)
1160{
1161 struct task_struct *p = current;
1162 int cpu = smp_processor_id();
1163
1164 /* Note: this timer irq context must be accounted for as well. */
1165 if (user_tick)
1166 account_user_time(p, jiffies_to_cputime(1));
1167 else
1168 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1169 run_local_timers();
1170 if (rcu_pending(cpu))
1171 rcu_check_callbacks(cpu, user_tick);
1172 scheduler_tick();
1173 run_posix_cpu_timers(p);
1174}
1175
1176/*
1177 * Nr of active tasks - counted in fixed-point numbers
1178 */
1179static unsigned long count_active_tasks(void)
1180{
db1b1fef 1181 return nr_active() * FIXED_1;
1da177e4
LT
1182}
1183
1184/*
1185 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1186 * imply that avenrun[] is the standard name for this kind of thing.
1187 * Nothing else seems to be standardized: the fractional size etc
1188 * all seem to differ on different machines.
1189 *
1190 * Requires xtime_lock to access.
1191 */
1192unsigned long avenrun[3];
1193
1194EXPORT_SYMBOL(avenrun);
1195
1196/*
1197 * calc_load - given tick count, update the avenrun load estimates.
1198 * This is called while holding a write_lock on xtime_lock.
1199 */
1200static inline void calc_load(unsigned long ticks)
1201{
1202 unsigned long active_tasks; /* fixed-point */
1203 static int count = LOAD_FREQ;
1204
cd7175ed
ED
1205 count -= ticks;
1206 if (unlikely(count < 0)) {
1207 active_tasks = count_active_tasks();
1208 do {
1209 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1210 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1211 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1212 count += LOAD_FREQ;
1213 } while (count < 0);
1da177e4
LT
1214 }
1215}
1216
1da177e4
LT
1217/*
1218 * This read-write spinlock protects us from races in SMP while
1219 * playing with xtime and avenrun.
1220 */
5809f9d4 1221__attribute__((weak)) __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
1da177e4
LT
1222
1223EXPORT_SYMBOL(xtime_lock);
1da177e4
LT
1224
1225/*
1226 * This function runs timers and the timer-tq in bottom half context.
1227 */
1228static void run_timer_softirq(struct softirq_action *h)
1229{
a4a6198b 1230 tvec_base_t *base = __get_cpu_var(tvec_bases);
1da177e4 1231
c0a31329 1232 hrtimer_run_queues();
1da177e4
LT
1233 if (time_after_eq(jiffies, base->timer_jiffies))
1234 __run_timers(base);
1235}
1236
1237/*
1238 * Called by the local, per-CPU timer interrupt on SMP.
1239 */
1240void run_local_timers(void)
1241{
1242 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1243 softlockup_tick();
1da177e4
LT
1244}
1245
1246/*
1247 * Called by the timer interrupt. xtime_lock must already be taken
1248 * by the timer IRQ!
1249 */
3171a030 1250static inline void update_times(unsigned long ticks)
1da177e4 1251{
ad596171 1252 update_wall_time();
1da177e4
LT
1253 calc_load(ticks);
1254}
1255
1256/*
1257 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1258 * without sampling the sequence number in xtime_lock.
1259 * jiffies is defined in the linker script...
1260 */
1261
3171a030 1262void do_timer(unsigned long ticks)
1da177e4 1263{
3171a030
AN
1264 jiffies_64 += ticks;
1265 update_times(ticks);
1da177e4
LT
1266}
1267
1268#ifdef __ARCH_WANT_SYS_ALARM
1269
1270/*
1271 * For backwards compatibility? This can be done in libc so Alpha
1272 * and all newer ports shouldn't need it.
1273 */
1274asmlinkage unsigned long sys_alarm(unsigned int seconds)
1275{
c08b8a49 1276 return alarm_setitimer(seconds);
1da177e4
LT
1277}
1278
1279#endif
1280
1281#ifndef __alpha__
1282
1283/*
1284 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1285 * should be moved into arch/i386 instead?
1286 */
1287
1288/**
1289 * sys_getpid - return the thread group id of the current process
1290 *
1291 * Note, despite the name, this returns the tgid not the pid. The tgid and
1292 * the pid are identical unless CLONE_THREAD was specified on clone() in
1293 * which case the tgid is the same in all threads of the same group.
1294 *
1295 * This is SMP safe as current->tgid does not change.
1296 */
1297asmlinkage long sys_getpid(void)
1298{
1299 return current->tgid;
1300}
1301
1302/*
6997a6fa
KK
1303 * Accessing ->real_parent is not SMP-safe, it could
1304 * change from under us. However, we can use a stale
1305 * value of ->real_parent under rcu_read_lock(), see
1306 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4
LT
1307 */
1308asmlinkage long sys_getppid(void)
1309{
1310 int pid;
1da177e4 1311
6997a6fa
KK
1312 rcu_read_lock();
1313 pid = rcu_dereference(current->real_parent)->tgid;
1314 rcu_read_unlock();
1da177e4 1315
1da177e4
LT
1316 return pid;
1317}
1318
1319asmlinkage long sys_getuid(void)
1320{
1321 /* Only we change this so SMP safe */
1322 return current->uid;
1323}
1324
1325asmlinkage long sys_geteuid(void)
1326{
1327 /* Only we change this so SMP safe */
1328 return current->euid;
1329}
1330
1331asmlinkage long sys_getgid(void)
1332{
1333 /* Only we change this so SMP safe */
1334 return current->gid;
1335}
1336
1337asmlinkage long sys_getegid(void)
1338{
1339 /* Only we change this so SMP safe */
1340 return current->egid;
1341}
1342
1343#endif
1344
1345static void process_timeout(unsigned long __data)
1346{
36c8b586 1347 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1348}
1349
1350/**
1351 * schedule_timeout - sleep until timeout
1352 * @timeout: timeout value in jiffies
1353 *
1354 * Make the current task sleep until @timeout jiffies have
1355 * elapsed. The routine will return immediately unless
1356 * the current task state has been set (see set_current_state()).
1357 *
1358 * You can set the task state as follows -
1359 *
1360 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1361 * pass before the routine returns. The routine will return 0
1362 *
1363 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1364 * delivered to the current task. In this case the remaining time
1365 * in jiffies will be returned, or 0 if the timer expired in time
1366 *
1367 * The current task state is guaranteed to be TASK_RUNNING when this
1368 * routine returns.
1369 *
1370 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1371 * the CPU away without a bound on the timeout. In this case the return
1372 * value will be %MAX_SCHEDULE_TIMEOUT.
1373 *
1374 * In all cases the return value is guaranteed to be non-negative.
1375 */
1376fastcall signed long __sched schedule_timeout(signed long timeout)
1377{
1378 struct timer_list timer;
1379 unsigned long expire;
1380
1381 switch (timeout)
1382 {
1383 case MAX_SCHEDULE_TIMEOUT:
1384 /*
1385 * These two special cases are useful to be comfortable
1386 * in the caller. Nothing more. We could take
1387 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1388 * but I' d like to return a valid offset (>=0) to allow
1389 * the caller to do everything it want with the retval.
1390 */
1391 schedule();
1392 goto out;
1393 default:
1394 /*
1395 * Another bit of PARANOID. Note that the retval will be
1396 * 0 since no piece of kernel is supposed to do a check
1397 * for a negative retval of schedule_timeout() (since it
1398 * should never happens anyway). You just have the printk()
1399 * that will tell you if something is gone wrong and where.
1400 */
5b149bcc 1401 if (timeout < 0) {
1da177e4 1402 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1403 "value %lx\n", timeout);
1404 dump_stack();
1da177e4
LT
1405 current->state = TASK_RUNNING;
1406 goto out;
1407 }
1408 }
1409
1410 expire = timeout + jiffies;
1411
a8db2db1
ON
1412 setup_timer(&timer, process_timeout, (unsigned long)current);
1413 __mod_timer(&timer, expire);
1da177e4
LT
1414 schedule();
1415 del_singleshot_timer_sync(&timer);
1416
1417 timeout = expire - jiffies;
1418
1419 out:
1420 return timeout < 0 ? 0 : timeout;
1421}
1da177e4
LT
1422EXPORT_SYMBOL(schedule_timeout);
1423
8a1c1757
AM
1424/*
1425 * We can use __set_current_state() here because schedule_timeout() calls
1426 * schedule() unconditionally.
1427 */
64ed93a2
NA
1428signed long __sched schedule_timeout_interruptible(signed long timeout)
1429{
a5a0d52c
AM
1430 __set_current_state(TASK_INTERRUPTIBLE);
1431 return schedule_timeout(timeout);
64ed93a2
NA
1432}
1433EXPORT_SYMBOL(schedule_timeout_interruptible);
1434
1435signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1436{
a5a0d52c
AM
1437 __set_current_state(TASK_UNINTERRUPTIBLE);
1438 return schedule_timeout(timeout);
64ed93a2
NA
1439}
1440EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1441
1da177e4
LT
1442/* Thread ID - the internal kernel "pid" */
1443asmlinkage long sys_gettid(void)
1444{
1445 return current->pid;
1446}
1447
2aae4a10 1448/**
d4d23add 1449 * do_sysinfo - fill in sysinfo struct
2aae4a10 1450 * @info: pointer to buffer to fill
1da177e4 1451 */
d4d23add 1452int do_sysinfo(struct sysinfo *info)
1da177e4 1453{
1da177e4
LT
1454 unsigned long mem_total, sav_total;
1455 unsigned int mem_unit, bitcount;
1456 unsigned long seq;
1457
d4d23add 1458 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1459
1460 do {
1461 struct timespec tp;
1462 seq = read_seqbegin(&xtime_lock);
1463
1464 /*
1465 * This is annoying. The below is the same thing
1466 * posix_get_clock_monotonic() does, but it wants to
1467 * take the lock which we want to cover the loads stuff
1468 * too.
1469 */
1470
1471 getnstimeofday(&tp);
1472 tp.tv_sec += wall_to_monotonic.tv_sec;
1473 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1474 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1475 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1476 tp.tv_sec++;
1477 }
d4d23add 1478 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1479
d4d23add
KM
1480 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1481 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1482 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1483
d4d23add 1484 info->procs = nr_threads;
1da177e4
LT
1485 } while (read_seqretry(&xtime_lock, seq));
1486
d4d23add
KM
1487 si_meminfo(info);
1488 si_swapinfo(info);
1da177e4
LT
1489
1490 /*
1491 * If the sum of all the available memory (i.e. ram + swap)
1492 * is less than can be stored in a 32 bit unsigned long then
1493 * we can be binary compatible with 2.2.x kernels. If not,
1494 * well, in that case 2.2.x was broken anyways...
1495 *
1496 * -Erik Andersen <andersee@debian.org>
1497 */
1498
d4d23add
KM
1499 mem_total = info->totalram + info->totalswap;
1500 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1501 goto out;
1502 bitcount = 0;
d4d23add 1503 mem_unit = info->mem_unit;
1da177e4
LT
1504 while (mem_unit > 1) {
1505 bitcount++;
1506 mem_unit >>= 1;
1507 sav_total = mem_total;
1508 mem_total <<= 1;
1509 if (mem_total < sav_total)
1510 goto out;
1511 }
1512
1513 /*
1514 * If mem_total did not overflow, multiply all memory values by
d4d23add 1515 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1516 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1517 * kernels...
1518 */
1519
d4d23add
KM
1520 info->mem_unit = 1;
1521 info->totalram <<= bitcount;
1522 info->freeram <<= bitcount;
1523 info->sharedram <<= bitcount;
1524 info->bufferram <<= bitcount;
1525 info->totalswap <<= bitcount;
1526 info->freeswap <<= bitcount;
1527 info->totalhigh <<= bitcount;
1528 info->freehigh <<= bitcount;
1529
1530out:
1531 return 0;
1532}
1533
1534asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1535{
1536 struct sysinfo val;
1537
1538 do_sysinfo(&val);
1da177e4 1539
1da177e4
LT
1540 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1541 return -EFAULT;
1542
1543 return 0;
1544}
1545
d730e882
IM
1546/*
1547 * lockdep: we want to track each per-CPU base as a separate lock-class,
1548 * but timer-bases are kmalloc()-ed, so we need to attach separate
1549 * keys to them:
1550 */
1551static struct lock_class_key base_lock_keys[NR_CPUS];
1552
a4a6198b 1553static int __devinit init_timers_cpu(int cpu)
1da177e4
LT
1554{
1555 int j;
1556 tvec_base_t *base;
ba6edfcd 1557 static char __devinitdata tvec_base_done[NR_CPUS];
55c888d6 1558
ba6edfcd 1559 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1560 static char boot_done;
1561
a4a6198b 1562 if (boot_done) {
ba6edfcd
AM
1563 /*
1564 * The APs use this path later in boot
1565 */
a4a6198b
JB
1566 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1567 cpu_to_node(cpu));
1568 if (!base)
1569 return -ENOMEM;
1570 memset(base, 0, sizeof(*base));
ba6edfcd 1571 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1572 } else {
ba6edfcd
AM
1573 /*
1574 * This is for the boot CPU - we use compile-time
1575 * static initialisation because per-cpu memory isn't
1576 * ready yet and because the memory allocators are not
1577 * initialised either.
1578 */
a4a6198b 1579 boot_done = 1;
ba6edfcd 1580 base = &boot_tvec_bases;
a4a6198b 1581 }
ba6edfcd
AM
1582 tvec_base_done[cpu] = 1;
1583 } else {
1584 base = per_cpu(tvec_bases, cpu);
a4a6198b 1585 }
ba6edfcd 1586
3691c519 1587 spin_lock_init(&base->lock);
d730e882
IM
1588 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1589
1da177e4
LT
1590 for (j = 0; j < TVN_SIZE; j++) {
1591 INIT_LIST_HEAD(base->tv5.vec + j);
1592 INIT_LIST_HEAD(base->tv4.vec + j);
1593 INIT_LIST_HEAD(base->tv3.vec + j);
1594 INIT_LIST_HEAD(base->tv2.vec + j);
1595 }
1596 for (j = 0; j < TVR_SIZE; j++)
1597 INIT_LIST_HEAD(base->tv1.vec + j);
1598
1599 base->timer_jiffies = jiffies;
a4a6198b 1600 return 0;
1da177e4
LT
1601}
1602
1603#ifdef CONFIG_HOTPLUG_CPU
55c888d6 1604static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1da177e4
LT
1605{
1606 struct timer_list *timer;
1607
1608 while (!list_empty(head)) {
1609 timer = list_entry(head->next, struct timer_list, entry);
55c888d6 1610 detach_timer(timer, 0);
3691c519 1611 timer->base = new_base;
1da177e4 1612 internal_add_timer(new_base, timer);
1da177e4 1613 }
1da177e4
LT
1614}
1615
1616static void __devinit migrate_timers(int cpu)
1617{
1618 tvec_base_t *old_base;
1619 tvec_base_t *new_base;
1620 int i;
1621
1622 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1623 old_base = per_cpu(tvec_bases, cpu);
1624 new_base = get_cpu_var(tvec_bases);
1da177e4
LT
1625
1626 local_irq_disable();
3691c519
ON
1627 spin_lock(&new_base->lock);
1628 spin_lock(&old_base->lock);
1629
1630 BUG_ON(old_base->running_timer);
1da177e4 1631
1da177e4 1632 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1633 migrate_timer_list(new_base, old_base->tv1.vec + i);
1634 for (i = 0; i < TVN_SIZE; i++) {
1635 migrate_timer_list(new_base, old_base->tv2.vec + i);
1636 migrate_timer_list(new_base, old_base->tv3.vec + i);
1637 migrate_timer_list(new_base, old_base->tv4.vec + i);
1638 migrate_timer_list(new_base, old_base->tv5.vec + i);
1639 }
1640
3691c519
ON
1641 spin_unlock(&old_base->lock);
1642 spin_unlock(&new_base->lock);
1da177e4
LT
1643 local_irq_enable();
1644 put_cpu_var(tvec_bases);
1da177e4
LT
1645}
1646#endif /* CONFIG_HOTPLUG_CPU */
1647
8c78f307 1648static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1649 unsigned long action, void *hcpu)
1650{
1651 long cpu = (long)hcpu;
1652 switch(action) {
1653 case CPU_UP_PREPARE:
a4a6198b
JB
1654 if (init_timers_cpu(cpu) < 0)
1655 return NOTIFY_BAD;
1da177e4
LT
1656 break;
1657#ifdef CONFIG_HOTPLUG_CPU
1658 case CPU_DEAD:
1659 migrate_timers(cpu);
1660 break;
1661#endif
1662 default:
1663 break;
1664 }
1665 return NOTIFY_OK;
1666}
1667
8c78f307 1668static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1669 .notifier_call = timer_cpu_notify,
1670};
1671
1672
1673void __init init_timers(void)
1674{
07dccf33 1675 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1676 (void *)(long)smp_processor_id());
07dccf33
AM
1677
1678 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
1679 register_cpu_notifier(&timers_nb);
1680 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1681}
1682
1683#ifdef CONFIG_TIME_INTERPOLATION
1684
67890d70
CL
1685struct time_interpolator *time_interpolator __read_mostly;
1686static struct time_interpolator *time_interpolator_list __read_mostly;
1da177e4
LT
1687static DEFINE_SPINLOCK(time_interpolator_lock);
1688
3db5db4f 1689static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1da177e4
LT
1690{
1691 unsigned long (*x)(void);
1692
1693 switch (src)
1694 {
1695 case TIME_SOURCE_FUNCTION:
1696 x = time_interpolator->addr;
1697 return x();
1698
1699 case TIME_SOURCE_MMIO64 :
685db65e 1700 return readq_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1701
1702 case TIME_SOURCE_MMIO32 :
685db65e 1703 return readl_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1704
1705 default: return get_cycles();
1706 }
1707}
1708
486d46ae 1709static inline u64 time_interpolator_get_counter(int writelock)
1da177e4
LT
1710{
1711 unsigned int src = time_interpolator->source;
1712
1713 if (time_interpolator->jitter)
1714 {
3db5db4f
HD
1715 cycles_t lcycle;
1716 cycles_t now;
1da177e4
LT
1717
1718 do {
1719 lcycle = time_interpolator->last_cycle;
1720 now = time_interpolator_get_cycles(src);
1721 if (lcycle && time_after(lcycle, now))
1722 return lcycle;
486d46ae
AW
1723
1724 /* When holding the xtime write lock, there's no need
1725 * to add the overhead of the cmpxchg. Readers are
1726 * force to retry until the write lock is released.
1727 */
1728 if (writelock) {
1729 time_interpolator->last_cycle = now;
1730 return now;
1731 }
1da177e4
LT
1732 /* Keep track of the last timer value returned. The use of cmpxchg here
1733 * will cause contention in an SMP environment.
1734 */
1735 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1736 return now;
1737 }
1738 else
1739 return time_interpolator_get_cycles(src);
1740}
1741
1742void time_interpolator_reset(void)
1743{
1744 time_interpolator->offset = 0;
486d46ae 1745 time_interpolator->last_counter = time_interpolator_get_counter(1);
1da177e4
LT
1746}
1747
1748#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1749
1750unsigned long time_interpolator_get_offset(void)
1751{
1752 /* If we do not have a time interpolator set up then just return zero */
1753 if (!time_interpolator)
1754 return 0;
1755
1756 return time_interpolator->offset +
486d46ae 1757 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1da177e4
LT
1758}
1759
1760#define INTERPOLATOR_ADJUST 65536
1761#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1762
4c7ee8de 1763void time_interpolator_update(long delta_nsec)
1da177e4
LT
1764{
1765 u64 counter;
1766 unsigned long offset;
1767
1768 /* If there is no time interpolator set up then do nothing */
1769 if (!time_interpolator)
1770 return;
1771
a5a0d52c
AM
1772 /*
1773 * The interpolator compensates for late ticks by accumulating the late
1774 * time in time_interpolator->offset. A tick earlier than expected will
1775 * lead to a reset of the offset and a corresponding jump of the clock
1776 * forward. Again this only works if the interpolator clock is running
1777 * slightly slower than the regular clock and the tuning logic insures
1778 * that.
1779 */
1da177e4 1780
486d46ae 1781 counter = time_interpolator_get_counter(1);
a5a0d52c
AM
1782 offset = time_interpolator->offset +
1783 GET_TI_NSECS(counter, time_interpolator);
1da177e4
LT
1784
1785 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1786 time_interpolator->offset = offset - delta_nsec;
1787 else {
1788 time_interpolator->skips++;
1789 time_interpolator->ns_skipped += delta_nsec - offset;
1790 time_interpolator->offset = 0;
1791 }
1792 time_interpolator->last_counter = counter;
1793
1794 /* Tuning logic for time interpolator invoked every minute or so.
1795 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1796 * Increase interpolator clock speed if we skip too much time.
1797 */
1798 if (jiffies % INTERPOLATOR_ADJUST == 0)
1799 {
b20367a6 1800 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1da177e4
LT
1801 time_interpolator->nsec_per_cyc--;
1802 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1803 time_interpolator->nsec_per_cyc++;
1804 time_interpolator->skips = 0;
1805 time_interpolator->ns_skipped = 0;
1806 }
1807}
1808
1809static inline int
1810is_better_time_interpolator(struct time_interpolator *new)
1811{
1812 if (!time_interpolator)
1813 return 1;
1814 return new->frequency > 2*time_interpolator->frequency ||
1815 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1816}
1817
1818void
1819register_time_interpolator(struct time_interpolator *ti)
1820{
1821 unsigned long flags;
1822
1823 /* Sanity check */
9f31252c 1824 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1da177e4
LT
1825
1826 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1827 spin_lock(&time_interpolator_lock);
1828 write_seqlock_irqsave(&xtime_lock, flags);
1829 if (is_better_time_interpolator(ti)) {
1830 time_interpolator = ti;
1831 time_interpolator_reset();
1832 }
1833 write_sequnlock_irqrestore(&xtime_lock, flags);
1834
1835 ti->next = time_interpolator_list;
1836 time_interpolator_list = ti;
1837 spin_unlock(&time_interpolator_lock);
1838}
1839
1840void
1841unregister_time_interpolator(struct time_interpolator *ti)
1842{
1843 struct time_interpolator *curr, **prev;
1844 unsigned long flags;
1845
1846 spin_lock(&time_interpolator_lock);
1847 prev = &time_interpolator_list;
1848 for (curr = *prev; curr; curr = curr->next) {
1849 if (curr == ti) {
1850 *prev = curr->next;
1851 break;
1852 }
1853 prev = &curr->next;
1854 }
1855
1856 write_seqlock_irqsave(&xtime_lock, flags);
1857 if (ti == time_interpolator) {
1858 /* we lost the best time-interpolator: */
1859 time_interpolator = NULL;
1860 /* find the next-best interpolator */
1861 for (curr = time_interpolator_list; curr; curr = curr->next)
1862 if (is_better_time_interpolator(curr))
1863 time_interpolator = curr;
1864 time_interpolator_reset();
1865 }
1866 write_sequnlock_irqrestore(&xtime_lock, flags);
1867 spin_unlock(&time_interpolator_lock);
1868}
1869#endif /* CONFIG_TIME_INTERPOLATION */
1870
1871/**
1872 * msleep - sleep safely even with waitqueue interruptions
1873 * @msecs: Time in milliseconds to sleep for
1874 */
1875void msleep(unsigned int msecs)
1876{
1877 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1878
75bcc8c5
NA
1879 while (timeout)
1880 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1881}
1882
1883EXPORT_SYMBOL(msleep);
1884
1885/**
96ec3efd 1886 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1887 * @msecs: Time in milliseconds to sleep for
1888 */
1889unsigned long msleep_interruptible(unsigned int msecs)
1890{
1891 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1892
75bcc8c5
NA
1893 while (timeout && !signal_pending(current))
1894 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1895 return jiffies_to_msecs(timeout);
1896}
1897
1898EXPORT_SYMBOL(msleep_interruptible);