[PATCH] remove kernel/kthread.c:kthread_stop_sem()
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
97a41e26 36#include <linux/delay.h>
1da177e4
LT
37
38#include <asm/uaccess.h>
39#include <asm/unistd.h>
40#include <asm/div64.h>
41#include <asm/timex.h>
42#include <asm/io.h>
43
44#ifdef CONFIG_TIME_INTERPOLATION
45static void time_interpolator_update(long delta_nsec);
46#else
47#define time_interpolator_update(x)
48#endif
49
ecea8d19
TG
50u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
51
52EXPORT_SYMBOL(jiffies_64);
53
1da177e4
LT
54/*
55 * per-CPU timer vector definitions:
56 */
1da177e4
LT
57#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
58#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
59#define TVN_SIZE (1 << TVN_BITS)
60#define TVR_SIZE (1 << TVR_BITS)
61#define TVN_MASK (TVN_SIZE - 1)
62#define TVR_MASK (TVR_SIZE - 1)
63
64typedef struct tvec_s {
65 struct list_head vec[TVN_SIZE];
66} tvec_t;
67
68typedef struct tvec_root_s {
69 struct list_head vec[TVR_SIZE];
70} tvec_root_t;
71
72struct tvec_t_base_s {
3691c519
ON
73 spinlock_t lock;
74 struct timer_list *running_timer;
1da177e4 75 unsigned long timer_jiffies;
1da177e4
LT
76 tvec_root_t tv1;
77 tvec_t tv2;
78 tvec_t tv3;
79 tvec_t tv4;
80 tvec_t tv5;
81} ____cacheline_aligned_in_smp;
82
83typedef struct tvec_t_base_s tvec_base_t;
ba6edfcd 84
3691c519
ON
85tvec_base_t boot_tvec_bases;
86EXPORT_SYMBOL(boot_tvec_bases);
ba6edfcd 87static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases };
1da177e4
LT
88
89static inline void set_running_timer(tvec_base_t *base,
90 struct timer_list *timer)
91{
92#ifdef CONFIG_SMP
3691c519 93 base->running_timer = timer;
1da177e4
LT
94#endif
95}
96
1da177e4
LT
97static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
98{
99 unsigned long expires = timer->expires;
100 unsigned long idx = expires - base->timer_jiffies;
101 struct list_head *vec;
102
103 if (idx < TVR_SIZE) {
104 int i = expires & TVR_MASK;
105 vec = base->tv1.vec + i;
106 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
107 int i = (expires >> TVR_BITS) & TVN_MASK;
108 vec = base->tv2.vec + i;
109 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
110 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
111 vec = base->tv3.vec + i;
112 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
113 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
114 vec = base->tv4.vec + i;
115 } else if ((signed long) idx < 0) {
116 /*
117 * Can happen if you add a timer with expires == jiffies,
118 * or you set a timer to go off in the past
119 */
120 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
121 } else {
122 int i;
123 /* If the timeout is larger than 0xffffffff on 64-bit
124 * architectures then we use the maximum timeout:
125 */
126 if (idx > 0xffffffffUL) {
127 idx = 0xffffffffUL;
128 expires = idx + base->timer_jiffies;
129 }
130 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
131 vec = base->tv5.vec + i;
132 }
133 /*
134 * Timers are FIFO:
135 */
136 list_add_tail(&timer->entry, vec);
137}
138
55c888d6
ON
139/***
140 * init_timer - initialize a timer.
141 * @timer: the timer to be initialized
142 *
143 * init_timer() must be done to a timer prior calling *any* of the
144 * other timer functions.
145 */
146void fastcall init_timer(struct timer_list *timer)
147{
148 timer->entry.next = NULL;
bfe5d834 149 timer->base = __raw_get_cpu_var(tvec_bases);
55c888d6
ON
150}
151EXPORT_SYMBOL(init_timer);
152
153static inline void detach_timer(struct timer_list *timer,
154 int clear_pending)
155{
156 struct list_head *entry = &timer->entry;
157
158 __list_del(entry->prev, entry->next);
159 if (clear_pending)
160 entry->next = NULL;
161 entry->prev = LIST_POISON2;
162}
163
164/*
3691c519 165 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
166 * means that all timers which are tied to this base via timer->base are
167 * locked, and the base itself is locked too.
168 *
169 * So __run_timers/migrate_timers can safely modify all timers which could
170 * be found on ->tvX lists.
171 *
172 * When the timer's base is locked, and the timer removed from list, it is
173 * possible to set timer->base = NULL and drop the lock: the timer remains
174 * locked.
175 */
3691c519 176static tvec_base_t *lock_timer_base(struct timer_list *timer,
55c888d6
ON
177 unsigned long *flags)
178{
3691c519 179 tvec_base_t *base;
55c888d6
ON
180
181 for (;;) {
182 base = timer->base;
183 if (likely(base != NULL)) {
184 spin_lock_irqsave(&base->lock, *flags);
185 if (likely(base == timer->base))
186 return base;
187 /* The timer has migrated to another CPU */
188 spin_unlock_irqrestore(&base->lock, *flags);
189 }
190 cpu_relax();
191 }
192}
193
1da177e4
LT
194int __mod_timer(struct timer_list *timer, unsigned long expires)
195{
3691c519 196 tvec_base_t *base, *new_base;
1da177e4
LT
197 unsigned long flags;
198 int ret = 0;
199
200 BUG_ON(!timer->function);
1da177e4 201
55c888d6
ON
202 base = lock_timer_base(timer, &flags);
203
204 if (timer_pending(timer)) {
205 detach_timer(timer, 0);
206 ret = 1;
207 }
208
a4a6198b 209 new_base = __get_cpu_var(tvec_bases);
1da177e4 210
3691c519 211 if (base != new_base) {
1da177e4 212 /*
55c888d6
ON
213 * We are trying to schedule the timer on the local CPU.
214 * However we can't change timer's base while it is running,
215 * otherwise del_timer_sync() can't detect that the timer's
216 * handler yet has not finished. This also guarantees that
217 * the timer is serialized wrt itself.
1da177e4 218 */
a2c348fe 219 if (likely(base->running_timer != timer)) {
55c888d6
ON
220 /* See the comment in lock_timer_base() */
221 timer->base = NULL;
222 spin_unlock(&base->lock);
a2c348fe
ON
223 base = new_base;
224 spin_lock(&base->lock);
225 timer->base = base;
1da177e4
LT
226 }
227 }
228
1da177e4 229 timer->expires = expires;
a2c348fe
ON
230 internal_add_timer(base, timer);
231 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
232
233 return ret;
234}
235
236EXPORT_SYMBOL(__mod_timer);
237
238/***
239 * add_timer_on - start a timer on a particular CPU
240 * @timer: the timer to be added
241 * @cpu: the CPU to start it on
242 *
243 * This is not very scalable on SMP. Double adds are not possible.
244 */
245void add_timer_on(struct timer_list *timer, int cpu)
246{
a4a6198b 247 tvec_base_t *base = per_cpu(tvec_bases, cpu);
1da177e4 248 unsigned long flags;
55c888d6 249
1da177e4 250 BUG_ON(timer_pending(timer) || !timer->function);
3691c519
ON
251 spin_lock_irqsave(&base->lock, flags);
252 timer->base = base;
1da177e4 253 internal_add_timer(base, timer);
3691c519 254 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
255}
256
257
258/***
259 * mod_timer - modify a timer's timeout
260 * @timer: the timer to be modified
261 *
262 * mod_timer is a more efficient way to update the expire field of an
263 * active timer (if the timer is inactive it will be activated)
264 *
265 * mod_timer(timer, expires) is equivalent to:
266 *
267 * del_timer(timer); timer->expires = expires; add_timer(timer);
268 *
269 * Note that if there are multiple unserialized concurrent users of the
270 * same timer, then mod_timer() is the only safe way to modify the timeout,
271 * since add_timer() cannot modify an already running timer.
272 *
273 * The function returns whether it has modified a pending timer or not.
274 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
275 * active timer returns 1.)
276 */
277int mod_timer(struct timer_list *timer, unsigned long expires)
278{
279 BUG_ON(!timer->function);
280
1da177e4
LT
281 /*
282 * This is a common optimization triggered by the
283 * networking code - if the timer is re-modified
284 * to be the same thing then just return:
285 */
286 if (timer->expires == expires && timer_pending(timer))
287 return 1;
288
289 return __mod_timer(timer, expires);
290}
291
292EXPORT_SYMBOL(mod_timer);
293
294/***
295 * del_timer - deactive a timer.
296 * @timer: the timer to be deactivated
297 *
298 * del_timer() deactivates a timer - this works on both active and inactive
299 * timers.
300 *
301 * The function returns whether it has deactivated a pending timer or not.
302 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
303 * active timer returns 1.)
304 */
305int del_timer(struct timer_list *timer)
306{
3691c519 307 tvec_base_t *base;
1da177e4 308 unsigned long flags;
55c888d6 309 int ret = 0;
1da177e4 310
55c888d6
ON
311 if (timer_pending(timer)) {
312 base = lock_timer_base(timer, &flags);
313 if (timer_pending(timer)) {
314 detach_timer(timer, 1);
315 ret = 1;
316 }
1da177e4 317 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 318 }
1da177e4 319
55c888d6 320 return ret;
1da177e4
LT
321}
322
323EXPORT_SYMBOL(del_timer);
324
325#ifdef CONFIG_SMP
fd450b73
ON
326/*
327 * This function tries to deactivate a timer. Upon successful (ret >= 0)
328 * exit the timer is not queued and the handler is not running on any CPU.
329 *
330 * It must not be called from interrupt contexts.
331 */
332int try_to_del_timer_sync(struct timer_list *timer)
333{
3691c519 334 tvec_base_t *base;
fd450b73
ON
335 unsigned long flags;
336 int ret = -1;
337
338 base = lock_timer_base(timer, &flags);
339
340 if (base->running_timer == timer)
341 goto out;
342
343 ret = 0;
344 if (timer_pending(timer)) {
345 detach_timer(timer, 1);
346 ret = 1;
347 }
348out:
349 spin_unlock_irqrestore(&base->lock, flags);
350
351 return ret;
352}
353
1da177e4
LT
354/***
355 * del_timer_sync - deactivate a timer and wait for the handler to finish.
356 * @timer: the timer to be deactivated
357 *
358 * This function only differs from del_timer() on SMP: besides deactivating
359 * the timer it also makes sure the handler has finished executing on other
360 * CPUs.
361 *
362 * Synchronization rules: callers must prevent restarting of the timer,
363 * otherwise this function is meaningless. It must not be called from
364 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
365 * completion of the timer's handler. The timer's handler must not call
366 * add_timer_on(). Upon exit the timer is not queued and the handler is
367 * not running on any CPU.
1da177e4
LT
368 *
369 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
370 */
371int del_timer_sync(struct timer_list *timer)
372{
fd450b73
ON
373 for (;;) {
374 int ret = try_to_del_timer_sync(timer);
375 if (ret >= 0)
376 return ret;
377 }
1da177e4 378}
1da177e4 379
55c888d6 380EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
381#endif
382
383static int cascade(tvec_base_t *base, tvec_t *tv, int index)
384{
385 /* cascade all the timers from tv up one level */
3439dd86
P
386 struct timer_list *timer, *tmp;
387 struct list_head tv_list;
388
389 list_replace_init(tv->vec + index, &tv_list);
1da177e4 390
1da177e4 391 /*
3439dd86
P
392 * We are removing _all_ timers from the list, so we
393 * don't have to detach them individually.
1da177e4 394 */
3439dd86
P
395 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
396 BUG_ON(timer->base != base);
397 internal_add_timer(base, timer);
1da177e4 398 }
1da177e4
LT
399
400 return index;
401}
402
403/***
404 * __run_timers - run all expired timers (if any) on this CPU.
405 * @base: the timer vector to be processed.
406 *
407 * This function cascades all vectors and executes all expired timer
408 * vectors.
409 */
410#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
411
412static inline void __run_timers(tvec_base_t *base)
413{
414 struct timer_list *timer;
415
3691c519 416 spin_lock_irq(&base->lock);
1da177e4 417 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 418 struct list_head work_list;
1da177e4
LT
419 struct list_head *head = &work_list;
420 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 421
1da177e4
LT
422 /*
423 * Cascade timers:
424 */
425 if (!index &&
426 (!cascade(base, &base->tv2, INDEX(0))) &&
427 (!cascade(base, &base->tv3, INDEX(1))) &&
428 !cascade(base, &base->tv4, INDEX(2)))
429 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
430 ++base->timer_jiffies;
431 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 432 while (!list_empty(head)) {
1da177e4
LT
433 void (*fn)(unsigned long);
434 unsigned long data;
435
436 timer = list_entry(head->next,struct timer_list,entry);
437 fn = timer->function;
438 data = timer->data;
439
1da177e4 440 set_running_timer(base, timer);
55c888d6 441 detach_timer(timer, 1);
3691c519 442 spin_unlock_irq(&base->lock);
1da177e4 443 {
be5b4fbd 444 int preempt_count = preempt_count();
1da177e4
LT
445 fn(data);
446 if (preempt_count != preempt_count()) {
be5b4fbd
JJ
447 printk(KERN_WARNING "huh, entered %p "
448 "with preempt_count %08x, exited"
449 " with %08x?\n",
450 fn, preempt_count,
451 preempt_count());
1da177e4
LT
452 BUG();
453 }
454 }
3691c519 455 spin_lock_irq(&base->lock);
1da177e4
LT
456 }
457 }
458 set_running_timer(base, NULL);
3691c519 459 spin_unlock_irq(&base->lock);
1da177e4
LT
460}
461
462#ifdef CONFIG_NO_IDLE_HZ
463/*
464 * Find out when the next timer event is due to happen. This
465 * is used on S/390 to stop all activity when a cpus is idle.
466 * This functions needs to be called disabled.
467 */
468unsigned long next_timer_interrupt(void)
469{
470 tvec_base_t *base;
471 struct list_head *list;
472 struct timer_list *nte;
473 unsigned long expires;
69239749
TL
474 unsigned long hr_expires = MAX_JIFFY_OFFSET;
475 ktime_t hr_delta;
1da177e4
LT
476 tvec_t *varray[4];
477 int i, j;
478
69239749
TL
479 hr_delta = hrtimer_get_next_event();
480 if (hr_delta.tv64 != KTIME_MAX) {
481 struct timespec tsdelta;
482 tsdelta = ktime_to_timespec(hr_delta);
483 hr_expires = timespec_to_jiffies(&tsdelta);
484 if (hr_expires < 3)
485 return hr_expires + jiffies;
486 }
487 hr_expires += jiffies;
488
a4a6198b 489 base = __get_cpu_var(tvec_bases);
3691c519 490 spin_lock(&base->lock);
1da177e4 491 expires = base->timer_jiffies + (LONG_MAX >> 1);
53f087fe 492 list = NULL;
1da177e4
LT
493
494 /* Look for timer events in tv1. */
495 j = base->timer_jiffies & TVR_MASK;
496 do {
497 list_for_each_entry(nte, base->tv1.vec + j, entry) {
498 expires = nte->expires;
499 if (j < (base->timer_jiffies & TVR_MASK))
500 list = base->tv2.vec + (INDEX(0));
501 goto found;
502 }
503 j = (j + 1) & TVR_MASK;
504 } while (j != (base->timer_jiffies & TVR_MASK));
505
506 /* Check tv2-tv5. */
507 varray[0] = &base->tv2;
508 varray[1] = &base->tv3;
509 varray[2] = &base->tv4;
510 varray[3] = &base->tv5;
511 for (i = 0; i < 4; i++) {
512 j = INDEX(i);
513 do {
514 if (list_empty(varray[i]->vec + j)) {
515 j = (j + 1) & TVN_MASK;
516 continue;
517 }
518 list_for_each_entry(nte, varray[i]->vec + j, entry)
519 if (time_before(nte->expires, expires))
520 expires = nte->expires;
521 if (j < (INDEX(i)) && i < 3)
522 list = varray[i + 1]->vec + (INDEX(i + 1));
523 goto found;
524 } while (j != (INDEX(i)));
525 }
526found:
527 if (list) {
528 /*
529 * The search wrapped. We need to look at the next list
530 * from next tv element that would cascade into tv element
531 * where we found the timer element.
532 */
533 list_for_each_entry(nte, list, entry) {
534 if (time_before(nte->expires, expires))
535 expires = nte->expires;
536 }
537 }
3691c519 538 spin_unlock(&base->lock);
69239749 539
0662b713
ZA
540 /*
541 * It can happen that other CPUs service timer IRQs and increment
542 * jiffies, but we have not yet got a local timer tick to process
543 * the timer wheels. In that case, the expiry time can be before
544 * jiffies, but since the high-resolution timer here is relative to
545 * jiffies, the default expression when high-resolution timers are
546 * not active,
547 *
548 * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
549 *
550 * would falsely evaluate to true. If that is the case, just
551 * return jiffies so that we can immediately fire the local timer
552 */
553 if (time_before(expires, jiffies))
554 return jiffies;
555
69239749
TL
556 if (time_before(hr_expires, expires))
557 return hr_expires;
558
1da177e4
LT
559 return expires;
560}
561#endif
562
563/******************************************************************/
564
565/*
566 * Timekeeping variables
567 */
568unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
569unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
570
571/*
572 * The current time
573 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
574 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
575 * at zero at system boot time, so wall_to_monotonic will be negative,
576 * however, we will ALWAYS keep the tv_nsec part positive so we can use
577 * the usual normalization.
578 */
579struct timespec xtime __attribute__ ((aligned (16)));
580struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
581
582EXPORT_SYMBOL(xtime);
583
584/* Don't completely fail for HZ > 500. */
585int tickadj = 500/HZ ? : 1; /* microsecs */
586
587
588/*
589 * phase-lock loop variables
590 */
591/* TIME_ERROR prevents overwriting the CMOS clock */
592int time_state = TIME_OK; /* clock synchronization status */
593int time_status = STA_UNSYNC; /* clock status bits */
594long time_offset; /* time adjustment (us) */
595long time_constant = 2; /* pll time constant */
596long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
597long time_precision = 1; /* clock precision (us) */
598long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
599long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
1da177e4
LT
600long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
601 /* frequency offset (scaled ppm)*/
602static long time_adj; /* tick adjust (scaled 1 / HZ) */
603long time_reftime; /* time at last adjustment (s) */
604long time_adjust;
605long time_next_adjust;
606
607/*
608 * this routine handles the overflow of the microsecond field
609 *
610 * The tricky bits of code to handle the accurate clock support
611 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
612 * They were originally developed for SUN and DEC kernels.
613 * All the kudos should go to Dave for this stuff.
614 *
615 */
616static void second_overflow(void)
617{
a5a0d52c
AM
618 long ltemp;
619
620 /* Bump the maxerror field */
621 time_maxerror += time_tolerance >> SHIFT_USEC;
622 if (time_maxerror > NTP_PHASE_LIMIT) {
623 time_maxerror = NTP_PHASE_LIMIT;
624 time_status |= STA_UNSYNC;
1da177e4 625 }
a5a0d52c
AM
626
627 /*
628 * Leap second processing. If in leap-insert state at the end of the
629 * day, the system clock is set back one second; if in leap-delete
630 * state, the system clock is set ahead one second. The microtime()
631 * routine or external clock driver will insure that reported time is
632 * always monotonic. The ugly divides should be replaced.
633 */
634 switch (time_state) {
635 case TIME_OK:
636 if (time_status & STA_INS)
637 time_state = TIME_INS;
638 else if (time_status & STA_DEL)
639 time_state = TIME_DEL;
640 break;
641 case TIME_INS:
642 if (xtime.tv_sec % 86400 == 0) {
643 xtime.tv_sec--;
644 wall_to_monotonic.tv_sec++;
645 /*
646 * The timer interpolator will make time change
647 * gradually instead of an immediate jump by one second
648 */
649 time_interpolator_update(-NSEC_PER_SEC);
650 time_state = TIME_OOP;
651 clock_was_set();
652 printk(KERN_NOTICE "Clock: inserting leap second "
653 "23:59:60 UTC\n");
654 }
655 break;
656 case TIME_DEL:
657 if ((xtime.tv_sec + 1) % 86400 == 0) {
658 xtime.tv_sec++;
659 wall_to_monotonic.tv_sec--;
660 /*
661 * Use of time interpolator for a gradual change of
662 * time
663 */
664 time_interpolator_update(NSEC_PER_SEC);
665 time_state = TIME_WAIT;
666 clock_was_set();
667 printk(KERN_NOTICE "Clock: deleting leap second "
668 "23:59:59 UTC\n");
669 }
670 break;
671 case TIME_OOP:
672 time_state = TIME_WAIT;
673 break;
674 case TIME_WAIT:
675 if (!(time_status & (STA_INS | STA_DEL)))
676 time_state = TIME_OK;
1da177e4 677 }
a5a0d52c
AM
678
679 /*
680 * Compute the phase adjustment for the next second. In PLL mode, the
681 * offset is reduced by a fixed factor times the time constant. In FLL
682 * mode the offset is used directly. In either mode, the maximum phase
683 * adjustment for each second is clamped so as to spread the adjustment
684 * over not more than the number of seconds between updates.
685 */
1da177e4
LT
686 ltemp = time_offset;
687 if (!(time_status & STA_FLL))
1bb34a41 688 ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
689 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
690 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
1da177e4
LT
691 time_offset -= ltemp;
692 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
1da177e4 693
a5a0d52c
AM
694 /*
695 * Compute the frequency estimate and additional phase adjustment due
5ddcfa87 696 * to frequency error for the next second.
a5a0d52c 697 */
5ddcfa87 698 ltemp = time_freq;
a5a0d52c 699 time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
1da177e4
LT
700
701#if HZ == 100
a5a0d52c
AM
702 /*
703 * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
704 * get 128.125; => only 0.125% error (p. 14)
705 */
706 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
1da177e4 707#endif
4b8f573b 708#if HZ == 250
a5a0d52c
AM
709 /*
710 * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
711 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
712 */
713 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
4b8f573b 714#endif
1da177e4 715#if HZ == 1000
a5a0d52c
AM
716 /*
717 * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
718 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
719 */
720 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
1da177e4
LT
721#endif
722}
723
726c14bf
PM
724/*
725 * Returns how many microseconds we need to add to xtime this tick
726 * in doing an adjustment requested with adjtime.
727 */
728static long adjtime_adjustment(void)
1da177e4 729{
726c14bf 730 long time_adjust_step;
1da177e4 731
726c14bf
PM
732 time_adjust_step = time_adjust;
733 if (time_adjust_step) {
a5a0d52c
AM
734 /*
735 * We are doing an adjtime thing. Prepare time_adjust_step to
736 * be within bounds. Note that a positive time_adjust means we
737 * want the clock to run faster.
738 *
739 * Limit the amount of the step to be in the range
740 * -tickadj .. +tickadj
741 */
742 time_adjust_step = min(time_adjust_step, (long)tickadj);
743 time_adjust_step = max(time_adjust_step, (long)-tickadj);
726c14bf
PM
744 }
745 return time_adjust_step;
746}
a5a0d52c 747
726c14bf 748/* in the NTP reference this is called "hardclock()" */
5eb6d205 749static void update_ntp_one_tick(void)
726c14bf 750{
5eb6d205 751 long time_adjust_step;
726c14bf
PM
752
753 time_adjust_step = adjtime_adjustment();
754 if (time_adjust_step)
a5a0d52c
AM
755 /* Reduce by this step the amount of time left */
756 time_adjust -= time_adjust_step;
1da177e4
LT
757
758 /* Changes by adjtime() do not take effect till next tick. */
759 if (time_next_adjust != 0) {
760 time_adjust = time_next_adjust;
761 time_next_adjust = 0;
762 }
763}
764
726c14bf
PM
765/*
766 * Return how long ticks are at the moment, that is, how much time
767 * update_wall_time_one_tick will add to xtime next time we call it
768 * (assuming no calls to do_adjtimex in the meantime).
260a4230 769 * The return value is in fixed-point nanoseconds shifted by the
770 * specified number of bits to the right of the binary point.
726c14bf
PM
771 * This function has no side-effects.
772 */
19923c19 773u64 current_tick_length(void)
726c14bf
PM
774{
775 long delta_nsec;
260a4230 776 u64 ret;
726c14bf 777
260a4230 778 /* calculate the finest interval NTP will allow.
779 * ie: nanosecond value shifted by (SHIFT_SCALE - 10)
780 */
726c14bf 781 delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
19923c19
RZ
782 ret = (u64)delta_nsec << TICK_LENGTH_SHIFT;
783 ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10));
260a4230 784
785 return ret;
726c14bf
PM
786}
787
ad596171 788/* XXX - all of this timekeeping code should be later moved to time.c */
789#include <linux/clocksource.h>
790static struct clocksource *clock; /* pointer to current clocksource */
cf3c769b 791
792#ifdef CONFIG_GENERIC_TIME
793/**
794 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
795 *
796 * private function, must hold xtime_lock lock when being
797 * called. Returns the number of nanoseconds since the
798 * last call to update_wall_time() (adjusted by NTP scaling)
799 */
800static inline s64 __get_nsec_offset(void)
801{
802 cycle_t cycle_now, cycle_delta;
803 s64 ns_offset;
804
805 /* read clocksource: */
a2752549 806 cycle_now = clocksource_read(clock);
cf3c769b 807
808 /* calculate the delta since the last update_wall_time: */
19923c19 809 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
cf3c769b 810
811 /* convert to nanoseconds: */
812 ns_offset = cyc2ns(clock, cycle_delta);
813
814 return ns_offset;
815}
816
817/**
818 * __get_realtime_clock_ts - Returns the time of day in a timespec
819 * @ts: pointer to the timespec to be set
820 *
821 * Returns the time of day in a timespec. Used by
822 * do_gettimeofday() and get_realtime_clock_ts().
823 */
824static inline void __get_realtime_clock_ts(struct timespec *ts)
825{
826 unsigned long seq;
827 s64 nsecs;
828
829 do {
830 seq = read_seqbegin(&xtime_lock);
831
832 *ts = xtime;
833 nsecs = __get_nsec_offset();
834
835 } while (read_seqretry(&xtime_lock, seq));
836
837 timespec_add_ns(ts, nsecs);
838}
839
840/**
a2752549 841 * getnstimeofday - Returns the time of day in a timespec
cf3c769b 842 * @ts: pointer to the timespec to be set
843 *
844 * Returns the time of day in a timespec.
845 */
846void getnstimeofday(struct timespec *ts)
847{
848 __get_realtime_clock_ts(ts);
849}
850
851EXPORT_SYMBOL(getnstimeofday);
852
853/**
854 * do_gettimeofday - Returns the time of day in a timeval
855 * @tv: pointer to the timeval to be set
856 *
857 * NOTE: Users should be converted to using get_realtime_clock_ts()
858 */
859void do_gettimeofday(struct timeval *tv)
860{
861 struct timespec now;
862
863 __get_realtime_clock_ts(&now);
864 tv->tv_sec = now.tv_sec;
865 tv->tv_usec = now.tv_nsec/1000;
866}
867
868EXPORT_SYMBOL(do_gettimeofday);
869/**
870 * do_settimeofday - Sets the time of day
871 * @tv: pointer to the timespec variable containing the new time
872 *
873 * Sets the time of day to the new time and update NTP and notify hrtimers
874 */
875int do_settimeofday(struct timespec *tv)
876{
877 unsigned long flags;
878 time_t wtm_sec, sec = tv->tv_sec;
879 long wtm_nsec, nsec = tv->tv_nsec;
880
881 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
882 return -EINVAL;
883
884 write_seqlock_irqsave(&xtime_lock, flags);
885
886 nsec -= __get_nsec_offset();
887
888 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
889 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
890
891 set_normalized_timespec(&xtime, sec, nsec);
892 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
893
e154ff3d 894 clock->error = 0;
cf3c769b 895 ntp_clear();
896
897 write_sequnlock_irqrestore(&xtime_lock, flags);
898
899 /* signal hrtimers about time change */
900 clock_was_set();
901
902 return 0;
903}
904
905EXPORT_SYMBOL(do_settimeofday);
906
907/**
908 * change_clocksource - Swaps clocksources if a new one is available
909 *
910 * Accumulates current time interval and initializes new clocksource
911 */
912static int change_clocksource(void)
913{
914 struct clocksource *new;
915 cycle_t now;
916 u64 nsec;
a2752549 917 new = clocksource_get_next();
cf3c769b 918 if (clock != new) {
a2752549 919 now = clocksource_read(new);
cf3c769b 920 nsec = __get_nsec_offset();
921 timespec_add_ns(&xtime, nsec);
922
923 clock = new;
19923c19 924 clock->cycle_last = now;
cf3c769b 925 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
926 clock->name);
927 return 1;
928 } else if (clock->update_callback) {
929 return clock->update_callback();
930 }
931 return 0;
932}
933#else
934#define change_clocksource() (0)
935#endif
936
937/**
938 * timeofday_is_continuous - check to see if timekeeping is free running
939 */
940int timekeeping_is_continuous(void)
941{
942 unsigned long seq;
943 int ret;
944
945 do {
946 seq = read_seqbegin(&xtime_lock);
947
948 ret = clock->is_continuous;
949
950 } while (read_seqretry(&xtime_lock, seq));
951
952 return ret;
953}
954
1da177e4 955/*
ad596171 956 * timekeeping_init - Initializes the clocksource and common timekeeping values
1da177e4 957 */
ad596171 958void __init timekeeping_init(void)
1da177e4 959{
ad596171 960 unsigned long flags;
961
962 write_seqlock_irqsave(&xtime_lock, flags);
a2752549 963 clock = clocksource_get_next();
964 clocksource_calculate_interval(clock, tick_nsec);
19923c19 965 clock->cycle_last = clocksource_read(clock);
ad596171 966 ntp_clear();
967 write_sequnlock_irqrestore(&xtime_lock, flags);
968}
969
970
971/*
972 * timekeeping_resume - Resumes the generic timekeeping subsystem.
973 * @dev: unused
974 *
975 * This is for the generic clocksource timekeeping.
976 * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are
977 * still managed by arch specific suspend/resume code.
978 */
979static int timekeeping_resume(struct sys_device *dev)
980{
981 unsigned long flags;
982
983 write_seqlock_irqsave(&xtime_lock, flags);
984 /* restart the last cycle value */
19923c19 985 clock->cycle_last = clocksource_read(clock);
ad596171 986 write_sequnlock_irqrestore(&xtime_lock, flags);
987 return 0;
988}
989
990/* sysfs resume/suspend bits for timekeeping */
991static struct sysdev_class timekeeping_sysclass = {
992 .resume = timekeeping_resume,
993 set_kset_name("timekeeping"),
994};
995
996static struct sys_device device_timer = {
997 .id = 0,
998 .cls = &timekeeping_sysclass,
999};
1000
1001static int __init timekeeping_init_device(void)
1002{
1003 int error = sysdev_class_register(&timekeeping_sysclass);
1004 if (!error)
1005 error = sysdev_register(&device_timer);
1006 return error;
1007}
1008
1009device_initcall(timekeeping_init_device);
1010
19923c19 1011/*
e154ff3d 1012 * If the error is already larger, we look ahead even further
19923c19
RZ
1013 * to compensate for late or lost adjustments.
1014 */
e154ff3d 1015static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, s64 *offset)
19923c19 1016{
e154ff3d
RZ
1017 s64 tick_error, i;
1018 u32 look_ahead, adj;
1019 s32 error2, mult;
19923c19
RZ
1020
1021 /*
e154ff3d
RZ
1022 * Use the current error value to determine how much to look ahead.
1023 * The larger the error the slower we adjust for it to avoid problems
1024 * with losing too many ticks, otherwise we would overadjust and
1025 * produce an even larger error. The smaller the adjustment the
1026 * faster we try to adjust for it, as lost ticks can do less harm
1027 * here. This is tuned so that an error of about 1 msec is adusted
1028 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
19923c19 1029 */
e154ff3d
RZ
1030 error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
1031 error2 = abs(error2);
1032 for (look_ahead = 0; error2 > 0; look_ahead++)
1033 error2 >>= 2;
19923c19
RZ
1034
1035 /*
e154ff3d
RZ
1036 * Now calculate the error in (1 << look_ahead) ticks, but first
1037 * remove the single look ahead already included in the error.
19923c19 1038 */
e154ff3d
RZ
1039 tick_error = current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1);
1040 tick_error -= clock->xtime_interval >> 1;
1041 error = ((error - tick_error) >> look_ahead) + tick_error;
1042
1043 /* Finally calculate the adjustment shift value. */
1044 i = *interval;
1045 mult = 1;
1046 if (error < 0) {
1047 error = -error;
1048 *interval = -*interval;
1049 *offset = -*offset;
1050 mult = -1;
19923c19 1051 }
e154ff3d
RZ
1052 for (adj = 0; error > i; adj++)
1053 error >>= 1;
19923c19
RZ
1054
1055 *interval <<= adj;
1056 *offset <<= adj;
e154ff3d 1057 return mult << adj;
19923c19
RZ
1058}
1059
1060/*
1061 * Adjust the multiplier to reduce the error value,
1062 * this is optimized for the most common adjustments of -1,0,1,
1063 * for other values we can do a bit more work.
1064 */
1065static void clocksource_adjust(struct clocksource *clock, s64 offset)
1066{
1067 s64 error, interval = clock->cycle_interval;
1068 int adj;
1069
1070 error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
1071 if (error > interval) {
e154ff3d
RZ
1072 error >>= 2;
1073 if (likely(error <= interval))
1074 adj = 1;
1075 else
1076 adj = clocksource_bigadjust(error, &interval, &offset);
19923c19 1077 } else if (error < -interval) {
e154ff3d
RZ
1078 error >>= 2;
1079 if (likely(error >= -interval)) {
1080 adj = -1;
1081 interval = -interval;
1082 offset = -offset;
1083 } else
1084 adj = clocksource_bigadjust(error, &interval, &offset);
19923c19
RZ
1085 } else
1086 return;
1087
1088 clock->mult += adj;
1089 clock->xtime_interval += interval;
1090 clock->xtime_nsec -= offset;
1091 clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift);
1092}
1093
ad596171 1094/*
1095 * update_wall_time - Uses the current clocksource to increment the wall time
1096 *
1097 * Called from the timer interrupt, must hold a write on xtime_lock.
1098 */
1099static void update_wall_time(void)
1100{
19923c19 1101 cycle_t offset;
ad596171 1102
19923c19 1103 clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
5eb6d205 1104
19923c19
RZ
1105#ifdef CONFIG_GENERIC_TIME
1106 offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
1107#else
1108 offset = clock->cycle_interval;
1109#endif
ad596171 1110
1111 /* normally this loop will run just once, however in the
1112 * case of lost or late ticks, it will accumulate correctly.
1113 */
19923c19 1114 while (offset >= clock->cycle_interval) {
ad596171 1115 /* accumulate one interval */
19923c19
RZ
1116 clock->xtime_nsec += clock->xtime_interval;
1117 clock->cycle_last += clock->cycle_interval;
1118 offset -= clock->cycle_interval;
1119
1120 if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
1121 clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
1122 xtime.tv_sec++;
1123 second_overflow();
1124 }
ad596171 1125
5eb6d205 1126 /* interpolator bits */
19923c19 1127 time_interpolator_update(clock->xtime_interval
5eb6d205 1128 >> clock->shift);
1129 /* increment the NTP state machine */
1130 update_ntp_one_tick();
1131
1132 /* accumulate error between NTP and clock interval */
19923c19
RZ
1133 clock->error += current_tick_length();
1134 clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
1135 }
5eb6d205 1136
19923c19
RZ
1137 /* correct the clock when NTP error is too big */
1138 clocksource_adjust(clock, offset);
5eb6d205 1139
5eb6d205 1140 /* store full nanoseconds into xtime */
e154ff3d 1141 xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
19923c19 1142 clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
cf3c769b 1143
1144 /* check to see if there is a new clocksource to use */
1145 if (change_clocksource()) {
19923c19
RZ
1146 clock->error = 0;
1147 clock->xtime_nsec = 0;
a2752549 1148 clocksource_calculate_interval(clock, tick_nsec);
cf3c769b 1149 }
1da177e4
LT
1150}
1151
1152/*
1153 * Called from the timer interrupt handler to charge one tick to the current
1154 * process. user_tick is 1 if the tick is user time, 0 for system.
1155 */
1156void update_process_times(int user_tick)
1157{
1158 struct task_struct *p = current;
1159 int cpu = smp_processor_id();
1160
1161 /* Note: this timer irq context must be accounted for as well. */
1162 if (user_tick)
1163 account_user_time(p, jiffies_to_cputime(1));
1164 else
1165 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1166 run_local_timers();
1167 if (rcu_pending(cpu))
1168 rcu_check_callbacks(cpu, user_tick);
1169 scheduler_tick();
1170 run_posix_cpu_timers(p);
1171}
1172
1173/*
1174 * Nr of active tasks - counted in fixed-point numbers
1175 */
1176static unsigned long count_active_tasks(void)
1177{
db1b1fef 1178 return nr_active() * FIXED_1;
1da177e4
LT
1179}
1180
1181/*
1182 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1183 * imply that avenrun[] is the standard name for this kind of thing.
1184 * Nothing else seems to be standardized: the fractional size etc
1185 * all seem to differ on different machines.
1186 *
1187 * Requires xtime_lock to access.
1188 */
1189unsigned long avenrun[3];
1190
1191EXPORT_SYMBOL(avenrun);
1192
1193/*
1194 * calc_load - given tick count, update the avenrun load estimates.
1195 * This is called while holding a write_lock on xtime_lock.
1196 */
1197static inline void calc_load(unsigned long ticks)
1198{
1199 unsigned long active_tasks; /* fixed-point */
1200 static int count = LOAD_FREQ;
1201
1202 count -= ticks;
1203 if (count < 0) {
1204 count += LOAD_FREQ;
1205 active_tasks = count_active_tasks();
1206 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1207 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1208 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1209 }
1210}
1211
1212/* jiffies at the most recent update of wall time */
1213unsigned long wall_jiffies = INITIAL_JIFFIES;
1214
1215/*
1216 * This read-write spinlock protects us from races in SMP while
1217 * playing with xtime and avenrun.
1218 */
1219#ifndef ARCH_HAVE_XTIME_LOCK
e4d91918 1220__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
1da177e4
LT
1221
1222EXPORT_SYMBOL(xtime_lock);
1223#endif
1224
1225/*
1226 * This function runs timers and the timer-tq in bottom half context.
1227 */
1228static void run_timer_softirq(struct softirq_action *h)
1229{
a4a6198b 1230 tvec_base_t *base = __get_cpu_var(tvec_bases);
1da177e4 1231
c0a31329 1232 hrtimer_run_queues();
1da177e4
LT
1233 if (time_after_eq(jiffies, base->timer_jiffies))
1234 __run_timers(base);
1235}
1236
1237/*
1238 * Called by the local, per-CPU timer interrupt on SMP.
1239 */
1240void run_local_timers(void)
1241{
1242 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1243 softlockup_tick();
1da177e4
LT
1244}
1245
1246/*
1247 * Called by the timer interrupt. xtime_lock must already be taken
1248 * by the timer IRQ!
1249 */
1250static inline void update_times(void)
1251{
1252 unsigned long ticks;
1253
1254 ticks = jiffies - wall_jiffies;
ad596171 1255 wall_jiffies += ticks;
1256 update_wall_time();
1da177e4
LT
1257 calc_load(ticks);
1258}
1259
1260/*
1261 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1262 * without sampling the sequence number in xtime_lock.
1263 * jiffies is defined in the linker script...
1264 */
1265
1266void do_timer(struct pt_regs *regs)
1267{
1268 jiffies_64++;
5aee405c
AN
1269 /* prevent loading jiffies before storing new jiffies_64 value. */
1270 barrier();
1da177e4
LT
1271 update_times();
1272}
1273
1274#ifdef __ARCH_WANT_SYS_ALARM
1275
1276/*
1277 * For backwards compatibility? This can be done in libc so Alpha
1278 * and all newer ports shouldn't need it.
1279 */
1280asmlinkage unsigned long sys_alarm(unsigned int seconds)
1281{
c08b8a49 1282 return alarm_setitimer(seconds);
1da177e4
LT
1283}
1284
1285#endif
1286
1287#ifndef __alpha__
1288
1289/*
1290 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1291 * should be moved into arch/i386 instead?
1292 */
1293
1294/**
1295 * sys_getpid - return the thread group id of the current process
1296 *
1297 * Note, despite the name, this returns the tgid not the pid. The tgid and
1298 * the pid are identical unless CLONE_THREAD was specified on clone() in
1299 * which case the tgid is the same in all threads of the same group.
1300 *
1301 * This is SMP safe as current->tgid does not change.
1302 */
1303asmlinkage long sys_getpid(void)
1304{
1305 return current->tgid;
1306}
1307
1308/*
1309 * Accessing ->group_leader->real_parent is not SMP-safe, it could
1310 * change from under us. However, rather than getting any lock
1311 * we can use an optimistic algorithm: get the parent
1312 * pid, and go back and check that the parent is still
1313 * the same. If it has changed (which is extremely unlikely
1314 * indeed), we just try again..
1315 *
1316 * NOTE! This depends on the fact that even if we _do_
1317 * get an old value of "parent", we can happily dereference
1318 * the pointer (it was and remains a dereferencable kernel pointer
1319 * no matter what): we just can't necessarily trust the result
1320 * until we know that the parent pointer is valid.
1321 *
1322 * NOTE2: ->group_leader never changes from under us.
1323 */
1324asmlinkage long sys_getppid(void)
1325{
1326 int pid;
1327 struct task_struct *me = current;
1328 struct task_struct *parent;
1329
1330 parent = me->group_leader->real_parent;
1331 for (;;) {
1332 pid = parent->tgid;
4c5640cb 1333#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1da177e4
LT
1334{
1335 struct task_struct *old = parent;
1336
1337 /*
1338 * Make sure we read the pid before re-reading the
1339 * parent pointer:
1340 */
d59dd462 1341 smp_rmb();
1da177e4
LT
1342 parent = me->group_leader->real_parent;
1343 if (old != parent)
1344 continue;
1345}
1346#endif
1347 break;
1348 }
1349 return pid;
1350}
1351
1352asmlinkage long sys_getuid(void)
1353{
1354 /* Only we change this so SMP safe */
1355 return current->uid;
1356}
1357
1358asmlinkage long sys_geteuid(void)
1359{
1360 /* Only we change this so SMP safe */
1361 return current->euid;
1362}
1363
1364asmlinkage long sys_getgid(void)
1365{
1366 /* Only we change this so SMP safe */
1367 return current->gid;
1368}
1369
1370asmlinkage long sys_getegid(void)
1371{
1372 /* Only we change this so SMP safe */
1373 return current->egid;
1374}
1375
1376#endif
1377
1378static void process_timeout(unsigned long __data)
1379{
36c8b586 1380 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1381}
1382
1383/**
1384 * schedule_timeout - sleep until timeout
1385 * @timeout: timeout value in jiffies
1386 *
1387 * Make the current task sleep until @timeout jiffies have
1388 * elapsed. The routine will return immediately unless
1389 * the current task state has been set (see set_current_state()).
1390 *
1391 * You can set the task state as follows -
1392 *
1393 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1394 * pass before the routine returns. The routine will return 0
1395 *
1396 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1397 * delivered to the current task. In this case the remaining time
1398 * in jiffies will be returned, or 0 if the timer expired in time
1399 *
1400 * The current task state is guaranteed to be TASK_RUNNING when this
1401 * routine returns.
1402 *
1403 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1404 * the CPU away without a bound on the timeout. In this case the return
1405 * value will be %MAX_SCHEDULE_TIMEOUT.
1406 *
1407 * In all cases the return value is guaranteed to be non-negative.
1408 */
1409fastcall signed long __sched schedule_timeout(signed long timeout)
1410{
1411 struct timer_list timer;
1412 unsigned long expire;
1413
1414 switch (timeout)
1415 {
1416 case MAX_SCHEDULE_TIMEOUT:
1417 /*
1418 * These two special cases are useful to be comfortable
1419 * in the caller. Nothing more. We could take
1420 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1421 * but I' d like to return a valid offset (>=0) to allow
1422 * the caller to do everything it want with the retval.
1423 */
1424 schedule();
1425 goto out;
1426 default:
1427 /*
1428 * Another bit of PARANOID. Note that the retval will be
1429 * 0 since no piece of kernel is supposed to do a check
1430 * for a negative retval of schedule_timeout() (since it
1431 * should never happens anyway). You just have the printk()
1432 * that will tell you if something is gone wrong and where.
1433 */
1434 if (timeout < 0)
1435 {
1436 printk(KERN_ERR "schedule_timeout: wrong timeout "
a5a0d52c
AM
1437 "value %lx from %p\n", timeout,
1438 __builtin_return_address(0));
1da177e4
LT
1439 current->state = TASK_RUNNING;
1440 goto out;
1441 }
1442 }
1443
1444 expire = timeout + jiffies;
1445
a8db2db1
ON
1446 setup_timer(&timer, process_timeout, (unsigned long)current);
1447 __mod_timer(&timer, expire);
1da177e4
LT
1448 schedule();
1449 del_singleshot_timer_sync(&timer);
1450
1451 timeout = expire - jiffies;
1452
1453 out:
1454 return timeout < 0 ? 0 : timeout;
1455}
1da177e4
LT
1456EXPORT_SYMBOL(schedule_timeout);
1457
8a1c1757
AM
1458/*
1459 * We can use __set_current_state() here because schedule_timeout() calls
1460 * schedule() unconditionally.
1461 */
64ed93a2
NA
1462signed long __sched schedule_timeout_interruptible(signed long timeout)
1463{
a5a0d52c
AM
1464 __set_current_state(TASK_INTERRUPTIBLE);
1465 return schedule_timeout(timeout);
64ed93a2
NA
1466}
1467EXPORT_SYMBOL(schedule_timeout_interruptible);
1468
1469signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1470{
a5a0d52c
AM
1471 __set_current_state(TASK_UNINTERRUPTIBLE);
1472 return schedule_timeout(timeout);
64ed93a2
NA
1473}
1474EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1475
1da177e4
LT
1476/* Thread ID - the internal kernel "pid" */
1477asmlinkage long sys_gettid(void)
1478{
1479 return current->pid;
1480}
1481
1da177e4
LT
1482/*
1483 * sys_sysinfo - fill in sysinfo struct
1484 */
1485asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1486{
1487 struct sysinfo val;
1488 unsigned long mem_total, sav_total;
1489 unsigned int mem_unit, bitcount;
1490 unsigned long seq;
1491
1492 memset((char *)&val, 0, sizeof(struct sysinfo));
1493
1494 do {
1495 struct timespec tp;
1496 seq = read_seqbegin(&xtime_lock);
1497
1498 /*
1499 * This is annoying. The below is the same thing
1500 * posix_get_clock_monotonic() does, but it wants to
1501 * take the lock which we want to cover the loads stuff
1502 * too.
1503 */
1504
1505 getnstimeofday(&tp);
1506 tp.tv_sec += wall_to_monotonic.tv_sec;
1507 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1508 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1509 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1510 tp.tv_sec++;
1511 }
1512 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1513
1514 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1515 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1516 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1517
1518 val.procs = nr_threads;
1519 } while (read_seqretry(&xtime_lock, seq));
1520
1521 si_meminfo(&val);
1522 si_swapinfo(&val);
1523
1524 /*
1525 * If the sum of all the available memory (i.e. ram + swap)
1526 * is less than can be stored in a 32 bit unsigned long then
1527 * we can be binary compatible with 2.2.x kernels. If not,
1528 * well, in that case 2.2.x was broken anyways...
1529 *
1530 * -Erik Andersen <andersee@debian.org>
1531 */
1532
1533 mem_total = val.totalram + val.totalswap;
1534 if (mem_total < val.totalram || mem_total < val.totalswap)
1535 goto out;
1536 bitcount = 0;
1537 mem_unit = val.mem_unit;
1538 while (mem_unit > 1) {
1539 bitcount++;
1540 mem_unit >>= 1;
1541 sav_total = mem_total;
1542 mem_total <<= 1;
1543 if (mem_total < sav_total)
1544 goto out;
1545 }
1546
1547 /*
1548 * If mem_total did not overflow, multiply all memory values by
1549 * val.mem_unit and set it to 1. This leaves things compatible
1550 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1551 * kernels...
1552 */
1553
1554 val.mem_unit = 1;
1555 val.totalram <<= bitcount;
1556 val.freeram <<= bitcount;
1557 val.sharedram <<= bitcount;
1558 val.bufferram <<= bitcount;
1559 val.totalswap <<= bitcount;
1560 val.freeswap <<= bitcount;
1561 val.totalhigh <<= bitcount;
1562 val.freehigh <<= bitcount;
1563
1564 out:
1565 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1566 return -EFAULT;
1567
1568 return 0;
1569}
1570
d730e882
IM
1571/*
1572 * lockdep: we want to track each per-CPU base as a separate lock-class,
1573 * but timer-bases are kmalloc()-ed, so we need to attach separate
1574 * keys to them:
1575 */
1576static struct lock_class_key base_lock_keys[NR_CPUS];
1577
a4a6198b 1578static int __devinit init_timers_cpu(int cpu)
1da177e4
LT
1579{
1580 int j;
1581 tvec_base_t *base;
ba6edfcd 1582 static char __devinitdata tvec_base_done[NR_CPUS];
55c888d6 1583
ba6edfcd 1584 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1585 static char boot_done;
1586
a4a6198b 1587 if (boot_done) {
ba6edfcd
AM
1588 /*
1589 * The APs use this path later in boot
1590 */
a4a6198b
JB
1591 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1592 cpu_to_node(cpu));
1593 if (!base)
1594 return -ENOMEM;
1595 memset(base, 0, sizeof(*base));
ba6edfcd 1596 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1597 } else {
ba6edfcd
AM
1598 /*
1599 * This is for the boot CPU - we use compile-time
1600 * static initialisation because per-cpu memory isn't
1601 * ready yet and because the memory allocators are not
1602 * initialised either.
1603 */
a4a6198b 1604 boot_done = 1;
ba6edfcd 1605 base = &boot_tvec_bases;
a4a6198b 1606 }
ba6edfcd
AM
1607 tvec_base_done[cpu] = 1;
1608 } else {
1609 base = per_cpu(tvec_bases, cpu);
a4a6198b 1610 }
ba6edfcd 1611
3691c519 1612 spin_lock_init(&base->lock);
d730e882
IM
1613 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1614
1da177e4
LT
1615 for (j = 0; j < TVN_SIZE; j++) {
1616 INIT_LIST_HEAD(base->tv5.vec + j);
1617 INIT_LIST_HEAD(base->tv4.vec + j);
1618 INIT_LIST_HEAD(base->tv3.vec + j);
1619 INIT_LIST_HEAD(base->tv2.vec + j);
1620 }
1621 for (j = 0; j < TVR_SIZE; j++)
1622 INIT_LIST_HEAD(base->tv1.vec + j);
1623
1624 base->timer_jiffies = jiffies;
a4a6198b 1625 return 0;
1da177e4
LT
1626}
1627
1628#ifdef CONFIG_HOTPLUG_CPU
55c888d6 1629static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1da177e4
LT
1630{
1631 struct timer_list *timer;
1632
1633 while (!list_empty(head)) {
1634 timer = list_entry(head->next, struct timer_list, entry);
55c888d6 1635 detach_timer(timer, 0);
3691c519 1636 timer->base = new_base;
1da177e4 1637 internal_add_timer(new_base, timer);
1da177e4 1638 }
1da177e4
LT
1639}
1640
1641static void __devinit migrate_timers(int cpu)
1642{
1643 tvec_base_t *old_base;
1644 tvec_base_t *new_base;
1645 int i;
1646
1647 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1648 old_base = per_cpu(tvec_bases, cpu);
1649 new_base = get_cpu_var(tvec_bases);
1da177e4
LT
1650
1651 local_irq_disable();
3691c519
ON
1652 spin_lock(&new_base->lock);
1653 spin_lock(&old_base->lock);
1654
1655 BUG_ON(old_base->running_timer);
1da177e4 1656
1da177e4 1657 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1658 migrate_timer_list(new_base, old_base->tv1.vec + i);
1659 for (i = 0; i < TVN_SIZE; i++) {
1660 migrate_timer_list(new_base, old_base->tv2.vec + i);
1661 migrate_timer_list(new_base, old_base->tv3.vec + i);
1662 migrate_timer_list(new_base, old_base->tv4.vec + i);
1663 migrate_timer_list(new_base, old_base->tv5.vec + i);
1664 }
1665
3691c519
ON
1666 spin_unlock(&old_base->lock);
1667 spin_unlock(&new_base->lock);
1da177e4
LT
1668 local_irq_enable();
1669 put_cpu_var(tvec_bases);
1da177e4
LT
1670}
1671#endif /* CONFIG_HOTPLUG_CPU */
1672
9c7b216d 1673static int __devinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1674 unsigned long action, void *hcpu)
1675{
1676 long cpu = (long)hcpu;
1677 switch(action) {
1678 case CPU_UP_PREPARE:
a4a6198b
JB
1679 if (init_timers_cpu(cpu) < 0)
1680 return NOTIFY_BAD;
1da177e4
LT
1681 break;
1682#ifdef CONFIG_HOTPLUG_CPU
1683 case CPU_DEAD:
1684 migrate_timers(cpu);
1685 break;
1686#endif
1687 default:
1688 break;
1689 }
1690 return NOTIFY_OK;
1691}
1692
054cc8a2 1693static struct notifier_block __devinitdata timers_nb = {
1da177e4
LT
1694 .notifier_call = timer_cpu_notify,
1695};
1696
1697
1698void __init init_timers(void)
1699{
1700 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1701 (void *)(long)smp_processor_id());
1702 register_cpu_notifier(&timers_nb);
1703 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1704}
1705
1706#ifdef CONFIG_TIME_INTERPOLATION
1707
67890d70
CL
1708struct time_interpolator *time_interpolator __read_mostly;
1709static struct time_interpolator *time_interpolator_list __read_mostly;
1da177e4
LT
1710static DEFINE_SPINLOCK(time_interpolator_lock);
1711
1712static inline u64 time_interpolator_get_cycles(unsigned int src)
1713{
1714 unsigned long (*x)(void);
1715
1716 switch (src)
1717 {
1718 case TIME_SOURCE_FUNCTION:
1719 x = time_interpolator->addr;
1720 return x();
1721
1722 case TIME_SOURCE_MMIO64 :
685db65e 1723 return readq_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1724
1725 case TIME_SOURCE_MMIO32 :
685db65e 1726 return readl_relaxed((void __iomem *)time_interpolator->addr);
1da177e4
LT
1727
1728 default: return get_cycles();
1729 }
1730}
1731
486d46ae 1732static inline u64 time_interpolator_get_counter(int writelock)
1da177e4
LT
1733{
1734 unsigned int src = time_interpolator->source;
1735
1736 if (time_interpolator->jitter)
1737 {
1738 u64 lcycle;
1739 u64 now;
1740
1741 do {
1742 lcycle = time_interpolator->last_cycle;
1743 now = time_interpolator_get_cycles(src);
1744 if (lcycle && time_after(lcycle, now))
1745 return lcycle;
486d46ae
AW
1746
1747 /* When holding the xtime write lock, there's no need
1748 * to add the overhead of the cmpxchg. Readers are
1749 * force to retry until the write lock is released.
1750 */
1751 if (writelock) {
1752 time_interpolator->last_cycle = now;
1753 return now;
1754 }
1da177e4
LT
1755 /* Keep track of the last timer value returned. The use of cmpxchg here
1756 * will cause contention in an SMP environment.
1757 */
1758 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1759 return now;
1760 }
1761 else
1762 return time_interpolator_get_cycles(src);
1763}
1764
1765void time_interpolator_reset(void)
1766{
1767 time_interpolator->offset = 0;
486d46ae 1768 time_interpolator->last_counter = time_interpolator_get_counter(1);
1da177e4
LT
1769}
1770
1771#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1772
1773unsigned long time_interpolator_get_offset(void)
1774{
1775 /* If we do not have a time interpolator set up then just return zero */
1776 if (!time_interpolator)
1777 return 0;
1778
1779 return time_interpolator->offset +
486d46ae 1780 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1da177e4
LT
1781}
1782
1783#define INTERPOLATOR_ADJUST 65536
1784#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1785
1786static void time_interpolator_update(long delta_nsec)
1787{
1788 u64 counter;
1789 unsigned long offset;
1790
1791 /* If there is no time interpolator set up then do nothing */
1792 if (!time_interpolator)
1793 return;
1794
a5a0d52c
AM
1795 /*
1796 * The interpolator compensates for late ticks by accumulating the late
1797 * time in time_interpolator->offset. A tick earlier than expected will
1798 * lead to a reset of the offset and a corresponding jump of the clock
1799 * forward. Again this only works if the interpolator clock is running
1800 * slightly slower than the regular clock and the tuning logic insures
1801 * that.
1802 */
1da177e4 1803
486d46ae 1804 counter = time_interpolator_get_counter(1);
a5a0d52c
AM
1805 offset = time_interpolator->offset +
1806 GET_TI_NSECS(counter, time_interpolator);
1da177e4
LT
1807
1808 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1809 time_interpolator->offset = offset - delta_nsec;
1810 else {
1811 time_interpolator->skips++;
1812 time_interpolator->ns_skipped += delta_nsec - offset;
1813 time_interpolator->offset = 0;
1814 }
1815 time_interpolator->last_counter = counter;
1816
1817 /* Tuning logic for time interpolator invoked every minute or so.
1818 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1819 * Increase interpolator clock speed if we skip too much time.
1820 */
1821 if (jiffies % INTERPOLATOR_ADJUST == 0)
1822 {
b20367a6 1823 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1da177e4
LT
1824 time_interpolator->nsec_per_cyc--;
1825 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1826 time_interpolator->nsec_per_cyc++;
1827 time_interpolator->skips = 0;
1828 time_interpolator->ns_skipped = 0;
1829 }
1830}
1831
1832static inline int
1833is_better_time_interpolator(struct time_interpolator *new)
1834{
1835 if (!time_interpolator)
1836 return 1;
1837 return new->frequency > 2*time_interpolator->frequency ||
1838 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1839}
1840
1841void
1842register_time_interpolator(struct time_interpolator *ti)
1843{
1844 unsigned long flags;
1845
1846 /* Sanity check */
9f31252c 1847 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1da177e4
LT
1848
1849 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1850 spin_lock(&time_interpolator_lock);
1851 write_seqlock_irqsave(&xtime_lock, flags);
1852 if (is_better_time_interpolator(ti)) {
1853 time_interpolator = ti;
1854 time_interpolator_reset();
1855 }
1856 write_sequnlock_irqrestore(&xtime_lock, flags);
1857
1858 ti->next = time_interpolator_list;
1859 time_interpolator_list = ti;
1860 spin_unlock(&time_interpolator_lock);
1861}
1862
1863void
1864unregister_time_interpolator(struct time_interpolator *ti)
1865{
1866 struct time_interpolator *curr, **prev;
1867 unsigned long flags;
1868
1869 spin_lock(&time_interpolator_lock);
1870 prev = &time_interpolator_list;
1871 for (curr = *prev; curr; curr = curr->next) {
1872 if (curr == ti) {
1873 *prev = curr->next;
1874 break;
1875 }
1876 prev = &curr->next;
1877 }
1878
1879 write_seqlock_irqsave(&xtime_lock, flags);
1880 if (ti == time_interpolator) {
1881 /* we lost the best time-interpolator: */
1882 time_interpolator = NULL;
1883 /* find the next-best interpolator */
1884 for (curr = time_interpolator_list; curr; curr = curr->next)
1885 if (is_better_time_interpolator(curr))
1886 time_interpolator = curr;
1887 time_interpolator_reset();
1888 }
1889 write_sequnlock_irqrestore(&xtime_lock, flags);
1890 spin_unlock(&time_interpolator_lock);
1891}
1892#endif /* CONFIG_TIME_INTERPOLATION */
1893
1894/**
1895 * msleep - sleep safely even with waitqueue interruptions
1896 * @msecs: Time in milliseconds to sleep for
1897 */
1898void msleep(unsigned int msecs)
1899{
1900 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1901
75bcc8c5
NA
1902 while (timeout)
1903 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1904}
1905
1906EXPORT_SYMBOL(msleep);
1907
1908/**
96ec3efd 1909 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1910 * @msecs: Time in milliseconds to sleep for
1911 */
1912unsigned long msleep_interruptible(unsigned int msecs)
1913{
1914 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1915
75bcc8c5
NA
1916 while (timeout && !signal_pending(current))
1917 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1918 return jiffies_to_msecs(timeout);
1919}
1920
1921EXPORT_SYMBOL(msleep_interruptible);