Linux 2.6.28-rc6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43#include <asm/div64.h>
44#include <asm/timex.h>
45#include <asm/io.h>
46
ecea8d19
TG
47u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48
49EXPORT_SYMBOL(jiffies_64);
50
1da177e4
LT
51/*
52 * per-CPU timer vector definitions:
53 */
1da177e4
LT
54#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56#define TVN_SIZE (1 << TVN_BITS)
57#define TVR_SIZE (1 << TVR_BITS)
58#define TVN_MASK (TVN_SIZE - 1)
59#define TVR_MASK (TVR_SIZE - 1)
60
a6fa8e5a 61struct tvec {
1da177e4 62 struct list_head vec[TVN_SIZE];
a6fa8e5a 63};
1da177e4 64
a6fa8e5a 65struct tvec_root {
1da177e4 66 struct list_head vec[TVR_SIZE];
a6fa8e5a 67};
1da177e4 68
a6fa8e5a 69struct tvec_base {
3691c519
ON
70 spinlock_t lock;
71 struct timer_list *running_timer;
1da177e4 72 unsigned long timer_jiffies;
a6fa8e5a
PM
73 struct tvec_root tv1;
74 struct tvec tv2;
75 struct tvec tv3;
76 struct tvec tv4;
77 struct tvec tv5;
6e453a67 78} ____cacheline_aligned;
1da177e4 79
a6fa8e5a 80struct tvec_base boot_tvec_bases;
3691c519 81EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 82static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 83
6e453a67 84/*
a6fa8e5a 85 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
88 */
89#define TBASE_DEFERRABLE_FLAG (0x1)
90
91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
a6fa8e5a 104 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 105 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
106}
107
108static inline void
a6fa8e5a 109timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 110{
a6fa8e5a 111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 112 tbase_get_deferrable(timer->base));
6e453a67
VP
113}
114
9c133c46
AS
115static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
4c36a5de
AV
117{
118 int rem;
119 unsigned long original = j;
120
121 /*
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
128 */
129 j += cpu * 3;
130
131 rem = j % HZ;
132
133 /*
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 138 * But never round down if @force_up is set.
4c36a5de 139 */
9c133c46 140 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
144
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
147
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
151}
9c133c46
AS
152
153/**
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
157 *
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
162 *
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
166 *
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
170 *
171 * The return value is the rounded version of the @j parameter.
172 */
173unsigned long __round_jiffies(unsigned long j, int cpu)
174{
175 return round_jiffies_common(j, cpu, false);
176}
4c36a5de
AV
177EXPORT_SYMBOL_GPL(__round_jiffies);
178
179/**
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
183 *
72fd4a35 184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
188 *
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
192 *
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
196 *
72fd4a35 197 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
198 */
199unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200{
9c133c46
AS
201 unsigned long j0 = jiffies;
202
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
205}
206EXPORT_SYMBOL_GPL(__round_jiffies_relative);
207
208/**
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
211 *
72fd4a35 212 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
216 *
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
220 *
72fd4a35 221 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
222 */
223unsigned long round_jiffies(unsigned long j)
224{
9c133c46 225 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
226}
227EXPORT_SYMBOL_GPL(round_jiffies);
228
229/**
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
232 *
72fd4a35 233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
237 *
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
241 *
72fd4a35 242 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
243 */
244unsigned long round_jiffies_relative(unsigned long j)
245{
246 return __round_jiffies_relative(j, raw_smp_processor_id());
247}
248EXPORT_SYMBOL_GPL(round_jiffies_relative);
249
9c133c46
AS
250/**
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
254 *
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
259 */
260unsigned long __round_jiffies_up(unsigned long j, int cpu)
261{
262 return round_jiffies_common(j, cpu, true);
263}
264EXPORT_SYMBOL_GPL(__round_jiffies_up);
265
266/**
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
270 *
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
275 */
276unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277{
278 unsigned long j0 = jiffies;
279
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
282}
283EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
284
285/**
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294unsigned long round_jiffies_up(unsigned long j)
295{
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
297}
298EXPORT_SYMBOL_GPL(round_jiffies_up);
299
300/**
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
303 *
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
308 */
309unsigned long round_jiffies_up_relative(unsigned long j)
310{
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312}
313EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
314
4c36a5de 315
a6fa8e5a 316static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
317 struct timer_list *timer)
318{
319#ifdef CONFIG_SMP
3691c519 320 base->running_timer = timer;
1da177e4
LT
321#endif
322}
323
a6fa8e5a 324static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
325{
326 unsigned long expires = timer->expires;
327 unsigned long idx = expires - base->timer_jiffies;
328 struct list_head *vec;
329
330 if (idx < TVR_SIZE) {
331 int i = expires & TVR_MASK;
332 vec = base->tv1.vec + i;
333 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
334 int i = (expires >> TVR_BITS) & TVN_MASK;
335 vec = base->tv2.vec + i;
336 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
337 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
338 vec = base->tv3.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
341 vec = base->tv4.vec + i;
342 } else if ((signed long) idx < 0) {
343 /*
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
346 */
347 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
348 } else {
349 int i;
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
352 */
353 if (idx > 0xffffffffUL) {
354 idx = 0xffffffffUL;
355 expires = idx + base->timer_jiffies;
356 }
357 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv5.vec + i;
359 }
360 /*
361 * Timers are FIFO:
362 */
363 list_add_tail(&timer->entry, vec);
364}
365
82f67cd9
IM
366#ifdef CONFIG_TIMER_STATS
367void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
368{
369 if (timer->start_site)
370 return;
371
372 timer->start_site = addr;
373 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
374 timer->start_pid = current->pid;
375}
c5c061b8
VP
376
377static void timer_stats_account_timer(struct timer_list *timer)
378{
379 unsigned int flag = 0;
380
381 if (unlikely(tbase_get_deferrable(timer->base)))
382 flag |= TIMER_STATS_FLAG_DEFERRABLE;
383
384 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
385 timer->function, timer->start_comm, flag);
386}
387
388#else
389static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
390#endif
391
c6f3a97f
TG
392#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
393
394static struct debug_obj_descr timer_debug_descr;
395
396/*
397 * fixup_init is called when:
398 * - an active object is initialized
55c888d6 399 */
c6f3a97f
TG
400static int timer_fixup_init(void *addr, enum debug_obj_state state)
401{
402 struct timer_list *timer = addr;
403
404 switch (state) {
405 case ODEBUG_STATE_ACTIVE:
406 del_timer_sync(timer);
407 debug_object_init(timer, &timer_debug_descr);
408 return 1;
409 default:
410 return 0;
411 }
412}
413
414/*
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
418 */
419static int timer_fixup_activate(void *addr, enum debug_obj_state state)
420{
421 struct timer_list *timer = addr;
422
423 switch (state) {
424
425 case ODEBUG_STATE_NOTAVAILABLE:
426 /*
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
430 */
431 if (timer->entry.next == NULL &&
432 timer->entry.prev == TIMER_ENTRY_STATIC) {
433 debug_object_init(timer, &timer_debug_descr);
434 debug_object_activate(timer, &timer_debug_descr);
435 return 0;
436 } else {
437 WARN_ON_ONCE(1);
438 }
439 return 0;
440
441 case ODEBUG_STATE_ACTIVE:
442 WARN_ON(1);
443
444 default:
445 return 0;
446 }
447}
448
449/*
450 * fixup_free is called when:
451 * - an active object is freed
452 */
453static int timer_fixup_free(void *addr, enum debug_obj_state state)
454{
455 struct timer_list *timer = addr;
456
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 del_timer_sync(timer);
460 debug_object_free(timer, &timer_debug_descr);
461 return 1;
462 default:
463 return 0;
464 }
465}
466
467static struct debug_obj_descr timer_debug_descr = {
468 .name = "timer_list",
469 .fixup_init = timer_fixup_init,
470 .fixup_activate = timer_fixup_activate,
471 .fixup_free = timer_fixup_free,
472};
473
474static inline void debug_timer_init(struct timer_list *timer)
475{
476 debug_object_init(timer, &timer_debug_descr);
477}
478
479static inline void debug_timer_activate(struct timer_list *timer)
480{
481 debug_object_activate(timer, &timer_debug_descr);
482}
483
484static inline void debug_timer_deactivate(struct timer_list *timer)
485{
486 debug_object_deactivate(timer, &timer_debug_descr);
487}
488
489static inline void debug_timer_free(struct timer_list *timer)
490{
491 debug_object_free(timer, &timer_debug_descr);
492}
493
494static void __init_timer(struct timer_list *timer);
495
496void init_timer_on_stack(struct timer_list *timer)
497{
498 debug_object_init_on_stack(timer, &timer_debug_descr);
499 __init_timer(timer);
500}
501EXPORT_SYMBOL_GPL(init_timer_on_stack);
502
503void destroy_timer_on_stack(struct timer_list *timer)
504{
505 debug_object_free(timer, &timer_debug_descr);
506}
507EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
508
509#else
510static inline void debug_timer_init(struct timer_list *timer) { }
511static inline void debug_timer_activate(struct timer_list *timer) { }
512static inline void debug_timer_deactivate(struct timer_list *timer) { }
513#endif
514
515static void __init_timer(struct timer_list *timer)
55c888d6
ON
516{
517 timer->entry.next = NULL;
bfe5d834 518 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
519#ifdef CONFIG_TIMER_STATS
520 timer->start_site = NULL;
521 timer->start_pid = -1;
522 memset(timer->start_comm, 0, TASK_COMM_LEN);
523#endif
55c888d6 524}
c6f3a97f
TG
525
526/**
527 * init_timer - initialize a timer.
528 * @timer: the timer to be initialized
529 *
530 * init_timer() must be done to a timer prior calling *any* of the
531 * other timer functions.
532 */
533void init_timer(struct timer_list *timer)
534{
535 debug_timer_init(timer);
536 __init_timer(timer);
537}
55c888d6
ON
538EXPORT_SYMBOL(init_timer);
539
7ad5b3a5 540void init_timer_deferrable(struct timer_list *timer)
6e453a67
VP
541{
542 init_timer(timer);
543 timer_set_deferrable(timer);
544}
545EXPORT_SYMBOL(init_timer_deferrable);
546
55c888d6 547static inline void detach_timer(struct timer_list *timer,
82f67cd9 548 int clear_pending)
55c888d6
ON
549{
550 struct list_head *entry = &timer->entry;
551
c6f3a97f
TG
552 debug_timer_deactivate(timer);
553
55c888d6
ON
554 __list_del(entry->prev, entry->next);
555 if (clear_pending)
556 entry->next = NULL;
557 entry->prev = LIST_POISON2;
558}
559
560/*
3691c519 561 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
562 * means that all timers which are tied to this base via timer->base are
563 * locked, and the base itself is locked too.
564 *
565 * So __run_timers/migrate_timers can safely modify all timers which could
566 * be found on ->tvX lists.
567 *
568 * When the timer's base is locked, and the timer removed from list, it is
569 * possible to set timer->base = NULL and drop the lock: the timer remains
570 * locked.
571 */
a6fa8e5a 572static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 573 unsigned long *flags)
89e7e374 574 __acquires(timer->base->lock)
55c888d6 575{
a6fa8e5a 576 struct tvec_base *base;
55c888d6
ON
577
578 for (;;) {
a6fa8e5a 579 struct tvec_base *prelock_base = timer->base;
6e453a67 580 base = tbase_get_base(prelock_base);
55c888d6
ON
581 if (likely(base != NULL)) {
582 spin_lock_irqsave(&base->lock, *flags);
6e453a67 583 if (likely(prelock_base == timer->base))
55c888d6
ON
584 return base;
585 /* The timer has migrated to another CPU */
586 spin_unlock_irqrestore(&base->lock, *flags);
587 }
588 cpu_relax();
589 }
590}
591
1da177e4
LT
592int __mod_timer(struct timer_list *timer, unsigned long expires)
593{
a6fa8e5a 594 struct tvec_base *base, *new_base;
1da177e4
LT
595 unsigned long flags;
596 int ret = 0;
597
82f67cd9 598 timer_stats_timer_set_start_info(timer);
1da177e4 599 BUG_ON(!timer->function);
1da177e4 600
55c888d6
ON
601 base = lock_timer_base(timer, &flags);
602
603 if (timer_pending(timer)) {
604 detach_timer(timer, 0);
605 ret = 1;
606 }
607
c6f3a97f
TG
608 debug_timer_activate(timer);
609
a4a6198b 610 new_base = __get_cpu_var(tvec_bases);
1da177e4 611
3691c519 612 if (base != new_base) {
1da177e4 613 /*
55c888d6
ON
614 * We are trying to schedule the timer on the local CPU.
615 * However we can't change timer's base while it is running,
616 * otherwise del_timer_sync() can't detect that the timer's
617 * handler yet has not finished. This also guarantees that
618 * the timer is serialized wrt itself.
1da177e4 619 */
a2c348fe 620 if (likely(base->running_timer != timer)) {
55c888d6 621 /* See the comment in lock_timer_base() */
6e453a67 622 timer_set_base(timer, NULL);
55c888d6 623 spin_unlock(&base->lock);
a2c348fe
ON
624 base = new_base;
625 spin_lock(&base->lock);
6e453a67 626 timer_set_base(timer, base);
1da177e4
LT
627 }
628 }
629
1da177e4 630 timer->expires = expires;
a2c348fe
ON
631 internal_add_timer(base, timer);
632 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
633
634 return ret;
635}
636
637EXPORT_SYMBOL(__mod_timer);
638
2aae4a10 639/**
1da177e4
LT
640 * add_timer_on - start a timer on a particular CPU
641 * @timer: the timer to be added
642 * @cpu: the CPU to start it on
643 *
644 * This is not very scalable on SMP. Double adds are not possible.
645 */
646void add_timer_on(struct timer_list *timer, int cpu)
647{
a6fa8e5a 648 struct tvec_base *base = per_cpu(tvec_bases, cpu);
6819457d 649 unsigned long flags;
55c888d6 650
82f67cd9 651 timer_stats_timer_set_start_info(timer);
6819457d 652 BUG_ON(timer_pending(timer) || !timer->function);
3691c519 653 spin_lock_irqsave(&base->lock, flags);
6e453a67 654 timer_set_base(timer, base);
c6f3a97f 655 debug_timer_activate(timer);
1da177e4 656 internal_add_timer(base, timer);
06d8308c
TG
657 /*
658 * Check whether the other CPU is idle and needs to be
659 * triggered to reevaluate the timer wheel when nohz is
660 * active. We are protected against the other CPU fiddling
661 * with the timer by holding the timer base lock. This also
662 * makes sure that a CPU on the way to idle can not evaluate
663 * the timer wheel.
664 */
665 wake_up_idle_cpu(cpu);
3691c519 666 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
667}
668
2aae4a10 669/**
1da177e4
LT
670 * mod_timer - modify a timer's timeout
671 * @timer: the timer to be modified
2aae4a10 672 * @expires: new timeout in jiffies
1da177e4 673 *
72fd4a35 674 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
675 * active timer (if the timer is inactive it will be activated)
676 *
677 * mod_timer(timer, expires) is equivalent to:
678 *
679 * del_timer(timer); timer->expires = expires; add_timer(timer);
680 *
681 * Note that if there are multiple unserialized concurrent users of the
682 * same timer, then mod_timer() is the only safe way to modify the timeout,
683 * since add_timer() cannot modify an already running timer.
684 *
685 * The function returns whether it has modified a pending timer or not.
686 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
687 * active timer returns 1.)
688 */
689int mod_timer(struct timer_list *timer, unsigned long expires)
690{
691 BUG_ON(!timer->function);
692
82f67cd9 693 timer_stats_timer_set_start_info(timer);
1da177e4
LT
694 /*
695 * This is a common optimization triggered by the
696 * networking code - if the timer is re-modified
697 * to be the same thing then just return:
698 */
699 if (timer->expires == expires && timer_pending(timer))
700 return 1;
701
702 return __mod_timer(timer, expires);
703}
704
705EXPORT_SYMBOL(mod_timer);
706
2aae4a10 707/**
1da177e4
LT
708 * del_timer - deactive a timer.
709 * @timer: the timer to be deactivated
710 *
711 * del_timer() deactivates a timer - this works on both active and inactive
712 * timers.
713 *
714 * The function returns whether it has deactivated a pending timer or not.
715 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
716 * active timer returns 1.)
717 */
718int del_timer(struct timer_list *timer)
719{
a6fa8e5a 720 struct tvec_base *base;
1da177e4 721 unsigned long flags;
55c888d6 722 int ret = 0;
1da177e4 723
82f67cd9 724 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
725 if (timer_pending(timer)) {
726 base = lock_timer_base(timer, &flags);
727 if (timer_pending(timer)) {
728 detach_timer(timer, 1);
729 ret = 1;
730 }
1da177e4 731 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 732 }
1da177e4 733
55c888d6 734 return ret;
1da177e4
LT
735}
736
737EXPORT_SYMBOL(del_timer);
738
739#ifdef CONFIG_SMP
2aae4a10
REB
740/**
741 * try_to_del_timer_sync - Try to deactivate a timer
742 * @timer: timer do del
743 *
fd450b73
ON
744 * This function tries to deactivate a timer. Upon successful (ret >= 0)
745 * exit the timer is not queued and the handler is not running on any CPU.
746 *
747 * It must not be called from interrupt contexts.
748 */
749int try_to_del_timer_sync(struct timer_list *timer)
750{
a6fa8e5a 751 struct tvec_base *base;
fd450b73
ON
752 unsigned long flags;
753 int ret = -1;
754
755 base = lock_timer_base(timer, &flags);
756
757 if (base->running_timer == timer)
758 goto out;
759
760 ret = 0;
761 if (timer_pending(timer)) {
762 detach_timer(timer, 1);
763 ret = 1;
764 }
765out:
766 spin_unlock_irqrestore(&base->lock, flags);
767
768 return ret;
769}
770
e19dff1f
DH
771EXPORT_SYMBOL(try_to_del_timer_sync);
772
2aae4a10 773/**
1da177e4
LT
774 * del_timer_sync - deactivate a timer and wait for the handler to finish.
775 * @timer: the timer to be deactivated
776 *
777 * This function only differs from del_timer() on SMP: besides deactivating
778 * the timer it also makes sure the handler has finished executing on other
779 * CPUs.
780 *
72fd4a35 781 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
782 * otherwise this function is meaningless. It must not be called from
783 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
784 * completion of the timer's handler. The timer's handler must not call
785 * add_timer_on(). Upon exit the timer is not queued and the handler is
786 * not running on any CPU.
1da177e4
LT
787 *
788 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
789 */
790int del_timer_sync(struct timer_list *timer)
791{
fd450b73
ON
792 for (;;) {
793 int ret = try_to_del_timer_sync(timer);
794 if (ret >= 0)
795 return ret;
a0009652 796 cpu_relax();
fd450b73 797 }
1da177e4 798}
1da177e4 799
55c888d6 800EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
801#endif
802
a6fa8e5a 803static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
804{
805 /* cascade all the timers from tv up one level */
3439dd86
P
806 struct timer_list *timer, *tmp;
807 struct list_head tv_list;
808
809 list_replace_init(tv->vec + index, &tv_list);
1da177e4 810
1da177e4 811 /*
3439dd86
P
812 * We are removing _all_ timers from the list, so we
813 * don't have to detach them individually.
1da177e4 814 */
3439dd86 815 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 816 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 817 internal_add_timer(base, timer);
1da177e4 818 }
1da177e4
LT
819
820 return index;
821}
822
2aae4a10
REB
823#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
824
825/**
1da177e4
LT
826 * __run_timers - run all expired timers (if any) on this CPU.
827 * @base: the timer vector to be processed.
828 *
829 * This function cascades all vectors and executes all expired timer
830 * vectors.
831 */
a6fa8e5a 832static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
833{
834 struct timer_list *timer;
835
3691c519 836 spin_lock_irq(&base->lock);
1da177e4 837 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 838 struct list_head work_list;
1da177e4 839 struct list_head *head = &work_list;
6819457d 840 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 841
1da177e4
LT
842 /*
843 * Cascade timers:
844 */
845 if (!index &&
846 (!cascade(base, &base->tv2, INDEX(0))) &&
847 (!cascade(base, &base->tv3, INDEX(1))) &&
848 !cascade(base, &base->tv4, INDEX(2)))
849 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
850 ++base->timer_jiffies;
851 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 852 while (!list_empty(head)) {
1da177e4
LT
853 void (*fn)(unsigned long);
854 unsigned long data;
855
b5e61818 856 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
857 fn = timer->function;
858 data = timer->data;
1da177e4 859
82f67cd9
IM
860 timer_stats_account_timer(timer);
861
1da177e4 862 set_running_timer(base, timer);
55c888d6 863 detach_timer(timer, 1);
3691c519 864 spin_unlock_irq(&base->lock);
1da177e4 865 {
be5b4fbd 866 int preempt_count = preempt_count();
1da177e4
LT
867 fn(data);
868 if (preempt_count != preempt_count()) {
4c9dc641 869 printk(KERN_ERR "huh, entered %p "
be5b4fbd
JJ
870 "with preempt_count %08x, exited"
871 " with %08x?\n",
872 fn, preempt_count,
873 preempt_count());
1da177e4
LT
874 BUG();
875 }
876 }
3691c519 877 spin_lock_irq(&base->lock);
1da177e4
LT
878 }
879 }
880 set_running_timer(base, NULL);
3691c519 881 spin_unlock_irq(&base->lock);
1da177e4
LT
882}
883
ee9c5785 884#ifdef CONFIG_NO_HZ
1da177e4
LT
885/*
886 * Find out when the next timer event is due to happen. This
887 * is used on S/390 to stop all activity when a cpus is idle.
888 * This functions needs to be called disabled.
889 */
a6fa8e5a 890static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 891{
1cfd6849 892 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 893 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 894 int index, slot, array, found = 0;
1da177e4 895 struct timer_list *nte;
a6fa8e5a 896 struct tvec *varray[4];
1da177e4
LT
897
898 /* Look for timer events in tv1. */
1cfd6849 899 index = slot = timer_jiffies & TVR_MASK;
1da177e4 900 do {
1cfd6849 901 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
902 if (tbase_get_deferrable(nte->base))
903 continue;
6e453a67 904
1cfd6849 905 found = 1;
1da177e4 906 expires = nte->expires;
1cfd6849
TG
907 /* Look at the cascade bucket(s)? */
908 if (!index || slot < index)
909 goto cascade;
910 return expires;
1da177e4 911 }
1cfd6849
TG
912 slot = (slot + 1) & TVR_MASK;
913 } while (slot != index);
914
915cascade:
916 /* Calculate the next cascade event */
917 if (index)
918 timer_jiffies += TVR_SIZE - index;
919 timer_jiffies >>= TVR_BITS;
1da177e4
LT
920
921 /* Check tv2-tv5. */
922 varray[0] = &base->tv2;
923 varray[1] = &base->tv3;
924 varray[2] = &base->tv4;
925 varray[3] = &base->tv5;
1cfd6849
TG
926
927 for (array = 0; array < 4; array++) {
a6fa8e5a 928 struct tvec *varp = varray[array];
1cfd6849
TG
929
930 index = slot = timer_jiffies & TVN_MASK;
1da177e4 931 do {
1cfd6849
TG
932 list_for_each_entry(nte, varp->vec + slot, entry) {
933 found = 1;
1da177e4
LT
934 if (time_before(nte->expires, expires))
935 expires = nte->expires;
1cfd6849
TG
936 }
937 /*
938 * Do we still search for the first timer or are
939 * we looking up the cascade buckets ?
940 */
941 if (found) {
942 /* Look at the cascade bucket(s)? */
943 if (!index || slot < index)
944 break;
945 return expires;
946 }
947 slot = (slot + 1) & TVN_MASK;
948 } while (slot != index);
949
950 if (index)
951 timer_jiffies += TVN_SIZE - index;
952 timer_jiffies >>= TVN_BITS;
1da177e4 953 }
1cfd6849
TG
954 return expires;
955}
69239749 956
1cfd6849
TG
957/*
958 * Check, if the next hrtimer event is before the next timer wheel
959 * event:
960 */
961static unsigned long cmp_next_hrtimer_event(unsigned long now,
962 unsigned long expires)
963{
964 ktime_t hr_delta = hrtimer_get_next_event();
965 struct timespec tsdelta;
9501b6cf 966 unsigned long delta;
1cfd6849
TG
967
968 if (hr_delta.tv64 == KTIME_MAX)
969 return expires;
0662b713 970
9501b6cf
TG
971 /*
972 * Expired timer available, let it expire in the next tick
973 */
974 if (hr_delta.tv64 <= 0)
975 return now + 1;
69239749 976
1cfd6849 977 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 978 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
979
980 /*
981 * Limit the delta to the max value, which is checked in
982 * tick_nohz_stop_sched_tick():
983 */
984 if (delta > NEXT_TIMER_MAX_DELTA)
985 delta = NEXT_TIMER_MAX_DELTA;
986
9501b6cf
TG
987 /*
988 * Take rounding errors in to account and make sure, that it
989 * expires in the next tick. Otherwise we go into an endless
990 * ping pong due to tick_nohz_stop_sched_tick() retriggering
991 * the timer softirq
992 */
993 if (delta < 1)
994 delta = 1;
995 now += delta;
1cfd6849
TG
996 if (time_before(now, expires))
997 return now;
1da177e4
LT
998 return expires;
999}
1cfd6849
TG
1000
1001/**
8dce39c2 1002 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1003 * @now: current time (in jiffies)
1cfd6849 1004 */
fd064b9b 1005unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1006{
a6fa8e5a 1007 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1008 unsigned long expires;
1cfd6849
TG
1009
1010 spin_lock(&base->lock);
1011 expires = __next_timer_interrupt(base);
1012 spin_unlock(&base->lock);
1013
1014 if (time_before_eq(expires, now))
1015 return now;
1016
1017 return cmp_next_hrtimer_event(now, expires);
1018}
1da177e4
LT
1019#endif
1020
fa13a5a1
PM
1021#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1022void account_process_tick(struct task_struct *p, int user_tick)
1023{
06b8e878
MN
1024 cputime_t one_jiffy = jiffies_to_cputime(1);
1025
fa13a5a1 1026 if (user_tick) {
06b8e878
MN
1027 account_user_time(p, one_jiffy);
1028 account_user_time_scaled(p, cputime_to_scaled(one_jiffy));
fa13a5a1 1029 } else {
06b8e878
MN
1030 account_system_time(p, HARDIRQ_OFFSET, one_jiffy);
1031 account_system_time_scaled(p, cputime_to_scaled(one_jiffy));
fa13a5a1
PM
1032 }
1033}
1034#endif
1035
1da177e4 1036/*
5b4db0c2 1037 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1038 * process. user_tick is 1 if the tick is user time, 0 for system.
1039 */
1040void update_process_times(int user_tick)
1041{
1042 struct task_struct *p = current;
1043 int cpu = smp_processor_id();
1044
1045 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1046 account_process_tick(p, user_tick);
1da177e4
LT
1047 run_local_timers();
1048 if (rcu_pending(cpu))
1049 rcu_check_callbacks(cpu, user_tick);
b845b517 1050 printk_tick();
1da177e4 1051 scheduler_tick();
6819457d 1052 run_posix_cpu_timers(p);
1da177e4
LT
1053}
1054
1055/*
1056 * Nr of active tasks - counted in fixed-point numbers
1057 */
1058static unsigned long count_active_tasks(void)
1059{
db1b1fef 1060 return nr_active() * FIXED_1;
1da177e4
LT
1061}
1062
1063/*
1064 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1065 * imply that avenrun[] is the standard name for this kind of thing.
1066 * Nothing else seems to be standardized: the fractional size etc
1067 * all seem to differ on different machines.
1068 *
1069 * Requires xtime_lock to access.
1070 */
1071unsigned long avenrun[3];
1072
1073EXPORT_SYMBOL(avenrun);
1074
1075/*
1076 * calc_load - given tick count, update the avenrun load estimates.
1077 * This is called while holding a write_lock on xtime_lock.
1078 */
1079static inline void calc_load(unsigned long ticks)
1080{
1081 unsigned long active_tasks; /* fixed-point */
1082 static int count = LOAD_FREQ;
1083
cd7175ed
ED
1084 count -= ticks;
1085 if (unlikely(count < 0)) {
1086 active_tasks = count_active_tasks();
1087 do {
1088 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1089 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1090 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1091 count += LOAD_FREQ;
1092 } while (count < 0);
1da177e4
LT
1093 }
1094}
1095
1da177e4
LT
1096/*
1097 * This function runs timers and the timer-tq in bottom half context.
1098 */
1099static void run_timer_softirq(struct softirq_action *h)
1100{
a6fa8e5a 1101 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1102
d3d74453 1103 hrtimer_run_pending();
82f67cd9 1104
1da177e4
LT
1105 if (time_after_eq(jiffies, base->timer_jiffies))
1106 __run_timers(base);
1107}
1108
1109/*
1110 * Called by the local, per-CPU timer interrupt on SMP.
1111 */
1112void run_local_timers(void)
1113{
d3d74453 1114 hrtimer_run_queues();
1da177e4 1115 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1116 softlockup_tick();
1da177e4
LT
1117}
1118
1119/*
1120 * Called by the timer interrupt. xtime_lock must already be taken
1121 * by the timer IRQ!
1122 */
3171a030 1123static inline void update_times(unsigned long ticks)
1da177e4 1124{
ad596171 1125 update_wall_time();
1da177e4
LT
1126 calc_load(ticks);
1127}
6819457d 1128
1da177e4
LT
1129/*
1130 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1131 * without sampling the sequence number in xtime_lock.
1132 * jiffies is defined in the linker script...
1133 */
1134
3171a030 1135void do_timer(unsigned long ticks)
1da177e4 1136{
3171a030
AN
1137 jiffies_64 += ticks;
1138 update_times(ticks);
1da177e4
LT
1139}
1140
1141#ifdef __ARCH_WANT_SYS_ALARM
1142
1143/*
1144 * For backwards compatibility? This can be done in libc so Alpha
1145 * and all newer ports shouldn't need it.
1146 */
1147asmlinkage unsigned long sys_alarm(unsigned int seconds)
1148{
c08b8a49 1149 return alarm_setitimer(seconds);
1da177e4
LT
1150}
1151
1152#endif
1153
1154#ifndef __alpha__
1155
1156/*
1157 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1158 * should be moved into arch/i386 instead?
1159 */
1160
1161/**
1162 * sys_getpid - return the thread group id of the current process
1163 *
1164 * Note, despite the name, this returns the tgid not the pid. The tgid and
1165 * the pid are identical unless CLONE_THREAD was specified on clone() in
1166 * which case the tgid is the same in all threads of the same group.
1167 *
1168 * This is SMP safe as current->tgid does not change.
1169 */
1170asmlinkage long sys_getpid(void)
1171{
b488893a 1172 return task_tgid_vnr(current);
1da177e4
LT
1173}
1174
1175/*
6997a6fa
KK
1176 * Accessing ->real_parent is not SMP-safe, it could
1177 * change from under us. However, we can use a stale
1178 * value of ->real_parent under rcu_read_lock(), see
1179 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4
LT
1180 */
1181asmlinkage long sys_getppid(void)
1182{
1183 int pid;
1da177e4 1184
6997a6fa 1185 rcu_read_lock();
6c5f3e7b 1186 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1187 rcu_read_unlock();
1da177e4 1188
1da177e4
LT
1189 return pid;
1190}
1191
1192asmlinkage long sys_getuid(void)
1193{
1194 /* Only we change this so SMP safe */
1195 return current->uid;
1196}
1197
1198asmlinkage long sys_geteuid(void)
1199{
1200 /* Only we change this so SMP safe */
1201 return current->euid;
1202}
1203
1204asmlinkage long sys_getgid(void)
1205{
1206 /* Only we change this so SMP safe */
1207 return current->gid;
1208}
1209
1210asmlinkage long sys_getegid(void)
1211{
1212 /* Only we change this so SMP safe */
1213 return current->egid;
1214}
1215
1216#endif
1217
1218static void process_timeout(unsigned long __data)
1219{
36c8b586 1220 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1221}
1222
1223/**
1224 * schedule_timeout - sleep until timeout
1225 * @timeout: timeout value in jiffies
1226 *
1227 * Make the current task sleep until @timeout jiffies have
1228 * elapsed. The routine will return immediately unless
1229 * the current task state has been set (see set_current_state()).
1230 *
1231 * You can set the task state as follows -
1232 *
1233 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1234 * pass before the routine returns. The routine will return 0
1235 *
1236 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1237 * delivered to the current task. In this case the remaining time
1238 * in jiffies will be returned, or 0 if the timer expired in time
1239 *
1240 * The current task state is guaranteed to be TASK_RUNNING when this
1241 * routine returns.
1242 *
1243 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1244 * the CPU away without a bound on the timeout. In this case the return
1245 * value will be %MAX_SCHEDULE_TIMEOUT.
1246 *
1247 * In all cases the return value is guaranteed to be non-negative.
1248 */
7ad5b3a5 1249signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1250{
1251 struct timer_list timer;
1252 unsigned long expire;
1253
1254 switch (timeout)
1255 {
1256 case MAX_SCHEDULE_TIMEOUT:
1257 /*
1258 * These two special cases are useful to be comfortable
1259 * in the caller. Nothing more. We could take
1260 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1261 * but I' d like to return a valid offset (>=0) to allow
1262 * the caller to do everything it want with the retval.
1263 */
1264 schedule();
1265 goto out;
1266 default:
1267 /*
1268 * Another bit of PARANOID. Note that the retval will be
1269 * 0 since no piece of kernel is supposed to do a check
1270 * for a negative retval of schedule_timeout() (since it
1271 * should never happens anyway). You just have the printk()
1272 * that will tell you if something is gone wrong and where.
1273 */
5b149bcc 1274 if (timeout < 0) {
1da177e4 1275 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1276 "value %lx\n", timeout);
1277 dump_stack();
1da177e4
LT
1278 current->state = TASK_RUNNING;
1279 goto out;
1280 }
1281 }
1282
1283 expire = timeout + jiffies;
1284
c6f3a97f 1285 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
a8db2db1 1286 __mod_timer(&timer, expire);
1da177e4
LT
1287 schedule();
1288 del_singleshot_timer_sync(&timer);
1289
c6f3a97f
TG
1290 /* Remove the timer from the object tracker */
1291 destroy_timer_on_stack(&timer);
1292
1da177e4
LT
1293 timeout = expire - jiffies;
1294
1295 out:
1296 return timeout < 0 ? 0 : timeout;
1297}
1da177e4
LT
1298EXPORT_SYMBOL(schedule_timeout);
1299
8a1c1757
AM
1300/*
1301 * We can use __set_current_state() here because schedule_timeout() calls
1302 * schedule() unconditionally.
1303 */
64ed93a2
NA
1304signed long __sched schedule_timeout_interruptible(signed long timeout)
1305{
a5a0d52c
AM
1306 __set_current_state(TASK_INTERRUPTIBLE);
1307 return schedule_timeout(timeout);
64ed93a2
NA
1308}
1309EXPORT_SYMBOL(schedule_timeout_interruptible);
1310
294d5cc2
MW
1311signed long __sched schedule_timeout_killable(signed long timeout)
1312{
1313 __set_current_state(TASK_KILLABLE);
1314 return schedule_timeout(timeout);
1315}
1316EXPORT_SYMBOL(schedule_timeout_killable);
1317
64ed93a2
NA
1318signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1319{
a5a0d52c
AM
1320 __set_current_state(TASK_UNINTERRUPTIBLE);
1321 return schedule_timeout(timeout);
64ed93a2
NA
1322}
1323EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1324
1da177e4
LT
1325/* Thread ID - the internal kernel "pid" */
1326asmlinkage long sys_gettid(void)
1327{
b488893a 1328 return task_pid_vnr(current);
1da177e4
LT
1329}
1330
2aae4a10 1331/**
d4d23add 1332 * do_sysinfo - fill in sysinfo struct
2aae4a10 1333 * @info: pointer to buffer to fill
6819457d 1334 */
d4d23add 1335int do_sysinfo(struct sysinfo *info)
1da177e4 1336{
1da177e4
LT
1337 unsigned long mem_total, sav_total;
1338 unsigned int mem_unit, bitcount;
1339 unsigned long seq;
1340
d4d23add 1341 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1342
1343 do {
1344 struct timespec tp;
1345 seq = read_seqbegin(&xtime_lock);
1346
1347 /*
1348 * This is annoying. The below is the same thing
1349 * posix_get_clock_monotonic() does, but it wants to
1350 * take the lock which we want to cover the loads stuff
1351 * too.
1352 */
1353
1354 getnstimeofday(&tp);
1355 tp.tv_sec += wall_to_monotonic.tv_sec;
1356 tp.tv_nsec += wall_to_monotonic.tv_nsec;
d6214141 1357 monotonic_to_bootbased(&tp);
1da177e4
LT
1358 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1359 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1360 tp.tv_sec++;
1361 }
d4d23add 1362 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1363
d4d23add
KM
1364 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1365 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1366 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1367
d4d23add 1368 info->procs = nr_threads;
1da177e4
LT
1369 } while (read_seqretry(&xtime_lock, seq));
1370
d4d23add
KM
1371 si_meminfo(info);
1372 si_swapinfo(info);
1da177e4
LT
1373
1374 /*
1375 * If the sum of all the available memory (i.e. ram + swap)
1376 * is less than can be stored in a 32 bit unsigned long then
1377 * we can be binary compatible with 2.2.x kernels. If not,
1378 * well, in that case 2.2.x was broken anyways...
1379 *
1380 * -Erik Andersen <andersee@debian.org>
1381 */
1382
d4d23add
KM
1383 mem_total = info->totalram + info->totalswap;
1384 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1385 goto out;
1386 bitcount = 0;
d4d23add 1387 mem_unit = info->mem_unit;
1da177e4
LT
1388 while (mem_unit > 1) {
1389 bitcount++;
1390 mem_unit >>= 1;
1391 sav_total = mem_total;
1392 mem_total <<= 1;
1393 if (mem_total < sav_total)
1394 goto out;
1395 }
1396
1397 /*
1398 * If mem_total did not overflow, multiply all memory values by
d4d23add 1399 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1400 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1401 * kernels...
1402 */
1403
d4d23add
KM
1404 info->mem_unit = 1;
1405 info->totalram <<= bitcount;
1406 info->freeram <<= bitcount;
1407 info->sharedram <<= bitcount;
1408 info->bufferram <<= bitcount;
1409 info->totalswap <<= bitcount;
1410 info->freeswap <<= bitcount;
1411 info->totalhigh <<= bitcount;
1412 info->freehigh <<= bitcount;
1413
1414out:
1415 return 0;
1416}
1417
1418asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1419{
1420 struct sysinfo val;
1421
1422 do_sysinfo(&val);
1da177e4 1423
1da177e4
LT
1424 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1425 return -EFAULT;
1426
1427 return 0;
1428}
1429
b4be6258 1430static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1431{
1432 int j;
a6fa8e5a 1433 struct tvec_base *base;
b4be6258 1434 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1435
ba6edfcd 1436 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1437 static char boot_done;
1438
a4a6198b 1439 if (boot_done) {
ba6edfcd
AM
1440 /*
1441 * The APs use this path later in boot
1442 */
94f6030c
CL
1443 base = kmalloc_node(sizeof(*base),
1444 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1445 cpu_to_node(cpu));
1446 if (!base)
1447 return -ENOMEM;
6e453a67
VP
1448
1449 /* Make sure that tvec_base is 2 byte aligned */
1450 if (tbase_get_deferrable(base)) {
1451 WARN_ON(1);
1452 kfree(base);
1453 return -ENOMEM;
1454 }
ba6edfcd 1455 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1456 } else {
ba6edfcd
AM
1457 /*
1458 * This is for the boot CPU - we use compile-time
1459 * static initialisation because per-cpu memory isn't
1460 * ready yet and because the memory allocators are not
1461 * initialised either.
1462 */
a4a6198b 1463 boot_done = 1;
ba6edfcd 1464 base = &boot_tvec_bases;
a4a6198b 1465 }
ba6edfcd
AM
1466 tvec_base_done[cpu] = 1;
1467 } else {
1468 base = per_cpu(tvec_bases, cpu);
a4a6198b 1469 }
ba6edfcd 1470
3691c519 1471 spin_lock_init(&base->lock);
d730e882 1472
1da177e4
LT
1473 for (j = 0; j < TVN_SIZE; j++) {
1474 INIT_LIST_HEAD(base->tv5.vec + j);
1475 INIT_LIST_HEAD(base->tv4.vec + j);
1476 INIT_LIST_HEAD(base->tv3.vec + j);
1477 INIT_LIST_HEAD(base->tv2.vec + j);
1478 }
1479 for (j = 0; j < TVR_SIZE; j++)
1480 INIT_LIST_HEAD(base->tv1.vec + j);
1481
1482 base->timer_jiffies = jiffies;
a4a6198b 1483 return 0;
1da177e4
LT
1484}
1485
1486#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1487static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1488{
1489 struct timer_list *timer;
1490
1491 while (!list_empty(head)) {
b5e61818 1492 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1493 detach_timer(timer, 0);
6e453a67 1494 timer_set_base(timer, new_base);
1da177e4 1495 internal_add_timer(new_base, timer);
1da177e4 1496 }
1da177e4
LT
1497}
1498
48ccf3da 1499static void __cpuinit migrate_timers(int cpu)
1da177e4 1500{
a6fa8e5a
PM
1501 struct tvec_base *old_base;
1502 struct tvec_base *new_base;
1da177e4
LT
1503 int i;
1504
1505 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1506 old_base = per_cpu(tvec_bases, cpu);
1507 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1508 /*
1509 * The caller is globally serialized and nobody else
1510 * takes two locks at once, deadlock is not possible.
1511 */
1512 spin_lock_irq(&new_base->lock);
0d180406 1513 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1514
1515 BUG_ON(old_base->running_timer);
1da177e4 1516
1da177e4 1517 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1518 migrate_timer_list(new_base, old_base->tv1.vec + i);
1519 for (i = 0; i < TVN_SIZE; i++) {
1520 migrate_timer_list(new_base, old_base->tv2.vec + i);
1521 migrate_timer_list(new_base, old_base->tv3.vec + i);
1522 migrate_timer_list(new_base, old_base->tv4.vec + i);
1523 migrate_timer_list(new_base, old_base->tv5.vec + i);
1524 }
1525
0d180406 1526 spin_unlock(&old_base->lock);
d82f0b0f 1527 spin_unlock_irq(&new_base->lock);
1da177e4 1528 put_cpu_var(tvec_bases);
1da177e4
LT
1529}
1530#endif /* CONFIG_HOTPLUG_CPU */
1531
8c78f307 1532static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1533 unsigned long action, void *hcpu)
1534{
1535 long cpu = (long)hcpu;
1536 switch(action) {
1537 case CPU_UP_PREPARE:
8bb78442 1538 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1539 if (init_timers_cpu(cpu) < 0)
1540 return NOTIFY_BAD;
1da177e4
LT
1541 break;
1542#ifdef CONFIG_HOTPLUG_CPU
1543 case CPU_DEAD:
8bb78442 1544 case CPU_DEAD_FROZEN:
1da177e4
LT
1545 migrate_timers(cpu);
1546 break;
1547#endif
1548 default:
1549 break;
1550 }
1551 return NOTIFY_OK;
1552}
1553
8c78f307 1554static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1555 .notifier_call = timer_cpu_notify,
1556};
1557
1558
1559void __init init_timers(void)
1560{
07dccf33 1561 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1562 (void *)(long)smp_processor_id());
07dccf33 1563
82f67cd9
IM
1564 init_timer_stats();
1565
07dccf33 1566 BUG_ON(err == NOTIFY_BAD);
1da177e4 1567 register_cpu_notifier(&timers_nb);
962cf36c 1568 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1569}
1570
1da177e4
LT
1571/**
1572 * msleep - sleep safely even with waitqueue interruptions
1573 * @msecs: Time in milliseconds to sleep for
1574 */
1575void msleep(unsigned int msecs)
1576{
1577 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1578
75bcc8c5
NA
1579 while (timeout)
1580 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1581}
1582
1583EXPORT_SYMBOL(msleep);
1584
1585/**
96ec3efd 1586 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1587 * @msecs: Time in milliseconds to sleep for
1588 */
1589unsigned long msleep_interruptible(unsigned int msecs)
1590{
1591 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1592
75bcc8c5
NA
1593 while (timeout && !signal_pending(current))
1594 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1595 return jiffies_to_msecs(timeout);
1596}
1597
1598EXPORT_SYMBOL(msleep_interruptible);