Fix ZERO_OR_NULL_PTR(ZERO_SIZE_PTR)
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/errno.h>
1da177e4
LT
34#include <linux/syscalls.h>
35#include <linux/security.h>
36#include <linux/fs.h>
37#include <linux/module.h>
38
39#include <asm/uaccess.h>
40#include <asm/unistd.h>
41
42/*
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
45 */
46struct timezone sys_tz;
47
48EXPORT_SYMBOL(sys_tz);
49
50#ifdef __ARCH_WANT_SYS_TIME
51
52/*
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
57 */
58asmlinkage long sys_time(time_t __user * tloc)
59{
4e44f349
IM
60 /*
61 * We read xtime.tv_sec atomically - it's updated
62 * atomically by update_wall_time(), so no need to
63 * even read-lock the xtime seqlock:
64 */
65 time_t i = xtime.tv_sec;
1da177e4 66
4e44f349 67 smp_rmb(); /* sys_time() results are coherent */
1da177e4
LT
68
69 if (tloc) {
4e44f349 70 if (put_user(i, tloc))
1da177e4
LT
71 i = -EFAULT;
72 }
73 return i;
74}
75
76/*
77 * sys_stime() can be implemented in user-level using
78 * sys_settimeofday(). Is this for backwards compatibility? If so,
79 * why not move it into the appropriate arch directory (for those
80 * architectures that need it).
81 */
82
83asmlinkage long sys_stime(time_t __user *tptr)
84{
85 struct timespec tv;
86 int err;
87
88 if (get_user(tv.tv_sec, tptr))
89 return -EFAULT;
90
91 tv.tv_nsec = 0;
92
93 err = security_settime(&tv, NULL);
94 if (err)
95 return err;
96
97 do_settimeofday(&tv);
98 return 0;
99}
100
101#endif /* __ARCH_WANT_SYS_TIME */
102
103asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
104{
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116}
117
118/*
119 * Adjust the time obtained from the CMOS to be UTC time instead of
120 * local time.
121 *
122 * This is ugly, but preferable to the alternatives. Otherwise we
123 * would either need to write a program to do it in /etc/rc (and risk
124 * confusion if the program gets run more than once; it would also be
125 * hard to make the program warp the clock precisely n hours) or
126 * compile in the timezone information into the kernel. Bad, bad....
127 *
128 * - TYT, 1992-01-01
129 *
130 * The best thing to do is to keep the CMOS clock in universal time (UTC)
131 * as real UNIX machines always do it. This avoids all headaches about
132 * daylight saving times and warping kernel clocks.
133 */
77933d72 134static inline void warp_clock(void)
1da177e4
LT
135{
136 write_seqlock_irq(&xtime_lock);
137 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
138 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
1da177e4
LT
139 write_sequnlock_irq(&xtime_lock);
140 clock_was_set();
141}
142
143/*
144 * In case for some reason the CMOS clock has not already been running
145 * in UTC, but in some local time: The first time we set the timezone,
146 * we will warp the clock so that it is ticking UTC time instead of
147 * local time. Presumably, if someone is setting the timezone then we
148 * are running in an environment where the programs understand about
149 * timezones. This should be done at boot time in the /etc/rc script,
150 * as soon as possible, so that the clock can be set right. Otherwise,
151 * various programs will get confused when the clock gets warped.
152 */
153
154int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
155{
156 static int firsttime = 1;
157 int error = 0;
158
951069e3 159 if (tv && !timespec_valid(tv))
718bcceb
TG
160 return -EINVAL;
161
1da177e4
LT
162 error = security_settime(tv, tz);
163 if (error)
164 return error;
165
166 if (tz) {
167 /* SMP safe, global irq locking makes it work. */
168 sys_tz = *tz;
169 if (firsttime) {
170 firsttime = 0;
171 if (!tv)
172 warp_clock();
173 }
174 }
175 if (tv)
176 {
177 /* SMP safe, again the code in arch/foo/time.c should
178 * globally block out interrupts when it runs.
179 */
180 return do_settimeofday(tv);
181 }
182 return 0;
183}
184
185asmlinkage long sys_settimeofday(struct timeval __user *tv,
186 struct timezone __user *tz)
187{
188 struct timeval user_tv;
189 struct timespec new_ts;
190 struct timezone new_tz;
191
192 if (tv) {
193 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
194 return -EFAULT;
195 new_ts.tv_sec = user_tv.tv_sec;
196 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
197 }
198 if (tz) {
199 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
200 return -EFAULT;
201 }
202
203 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
204}
205
1da177e4
LT
206asmlinkage long sys_adjtimex(struct timex __user *txc_p)
207{
208 struct timex txc; /* Local copy of parameter */
209 int ret;
210
211 /* Copy the user data space into the kernel copy
212 * structure. But bear in mind that the structures
213 * may change
214 */
215 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
216 return -EFAULT;
217 ret = do_adjtimex(&txc);
218 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
219}
220
221inline struct timespec current_kernel_time(void)
222{
223 struct timespec now;
224 unsigned long seq;
225
226 do {
227 seq = read_seqbegin(&xtime_lock);
228
229 now = xtime;
230 } while (read_seqretry(&xtime_lock, seq));
231
232 return now;
233}
234
235EXPORT_SYMBOL(current_kernel_time);
236
237/**
238 * current_fs_time - Return FS time
239 * @sb: Superblock.
240 *
8ba8e95e 241 * Return the current time truncated to the time granularity supported by
1da177e4
LT
242 * the fs.
243 */
244struct timespec current_fs_time(struct super_block *sb)
245{
246 struct timespec now = current_kernel_time();
247 return timespec_trunc(now, sb->s_time_gran);
248}
249EXPORT_SYMBOL(current_fs_time);
250
753e9c5c
ED
251/*
252 * Convert jiffies to milliseconds and back.
253 *
254 * Avoid unnecessary multiplications/divisions in the
255 * two most common HZ cases:
256 */
257unsigned int inline jiffies_to_msecs(const unsigned long j)
258{
259#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
260 return (MSEC_PER_SEC / HZ) * j;
261#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
262 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
263#else
264 return (j * MSEC_PER_SEC) / HZ;
265#endif
266}
267EXPORT_SYMBOL(jiffies_to_msecs);
268
269unsigned int inline jiffies_to_usecs(const unsigned long j)
270{
271#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
272 return (USEC_PER_SEC / HZ) * j;
273#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
274 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
275#else
276 return (j * USEC_PER_SEC) / HZ;
277#endif
278}
279EXPORT_SYMBOL(jiffies_to_usecs);
280
1da177e4 281/**
8ba8e95e 282 * timespec_trunc - Truncate timespec to a granularity
1da177e4 283 * @t: Timespec
8ba8e95e 284 * @gran: Granularity in ns.
1da177e4 285 *
8ba8e95e 286 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
287 * Always rounds down.
288 *
289 * This function should be only used for timestamps returned by
290 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
291 * it doesn't handle the better resolution of the later.
292 */
293struct timespec timespec_trunc(struct timespec t, unsigned gran)
294{
295 /*
296 * Division is pretty slow so avoid it for common cases.
297 * Currently current_kernel_time() never returns better than
298 * jiffies resolution. Exploit that.
299 */
300 if (gran <= jiffies_to_usecs(1) * 1000) {
301 /* nothing */
302 } else if (gran == 1000000000) {
303 t.tv_nsec = 0;
304 } else {
305 t.tv_nsec -= t.tv_nsec % gran;
306 }
307 return t;
308}
309EXPORT_SYMBOL(timespec_trunc);
310
cf3c769b 311#ifndef CONFIG_GENERIC_TIME
1da177e4
LT
312/*
313 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
314 * and therefore only yields usec accuracy
315 */
316void getnstimeofday(struct timespec *tv)
317{
318 struct timeval x;
319
320 do_gettimeofday(&x);
321 tv->tv_sec = x.tv_sec;
322 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
323}
c6ecf7ed 324EXPORT_SYMBOL_GPL(getnstimeofday);
1da177e4
LT
325#endif
326
753be622
TG
327/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
328 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
329 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
330 *
331 * [For the Julian calendar (which was used in Russia before 1917,
332 * Britain & colonies before 1752, anywhere else before 1582,
333 * and is still in use by some communities) leave out the
334 * -year/100+year/400 terms, and add 10.]
335 *
336 * This algorithm was first published by Gauss (I think).
337 *
338 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
339 * machines were long is 32-bit! (However, as time_t is signed, we
340 * will already get problems at other places on 2038-01-19 03:14:08)
341 */
342unsigned long
f4818900
IM
343mktime(const unsigned int year0, const unsigned int mon0,
344 const unsigned int day, const unsigned int hour,
345 const unsigned int min, const unsigned int sec)
753be622 346{
f4818900
IM
347 unsigned int mon = mon0, year = year0;
348
349 /* 1..12 -> 11,12,1..10 */
350 if (0 >= (int) (mon -= 2)) {
351 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
352 year -= 1;
353 }
354
355 return ((((unsigned long)
356 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
357 year*365 - 719499
358 )*24 + hour /* now have hours */
359 )*60 + min /* now have minutes */
360 )*60 + sec; /* finally seconds */
361}
362
199e7056
AM
363EXPORT_SYMBOL(mktime);
364
753be622
TG
365/**
366 * set_normalized_timespec - set timespec sec and nsec parts and normalize
367 *
368 * @ts: pointer to timespec variable to be set
369 * @sec: seconds to set
370 * @nsec: nanoseconds to set
371 *
372 * Set seconds and nanoseconds field of a timespec variable and
373 * normalize to the timespec storage format
374 *
375 * Note: The tv_nsec part is always in the range of
376 * 0 <= tv_nsec < NSEC_PER_SEC
377 * For negative values only the tv_sec field is negative !
378 */
f4818900 379void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
753be622
TG
380{
381 while (nsec >= NSEC_PER_SEC) {
382 nsec -= NSEC_PER_SEC;
383 ++sec;
384 }
385 while (nsec < 0) {
386 nsec += NSEC_PER_SEC;
387 --sec;
388 }
389 ts->tv_sec = sec;
390 ts->tv_nsec = nsec;
391}
392
f8f46da3
TG
393/**
394 * ns_to_timespec - Convert nanoseconds to timespec
395 * @nsec: the nanoseconds value to be converted
396 *
397 * Returns the timespec representation of the nsec parameter.
398 */
df869b63 399struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
400{
401 struct timespec ts;
402
88fc3897
GA
403 if (!nsec)
404 return (struct timespec) {0, 0};
405
406 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
407 if (unlikely(nsec < 0))
408 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
f8f46da3
TG
409
410 return ts;
411}
85795d64 412EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
413
414/**
415 * ns_to_timeval - Convert nanoseconds to timeval
416 * @nsec: the nanoseconds value to be converted
417 *
418 * Returns the timeval representation of the nsec parameter.
419 */
df869b63 420struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
421{
422 struct timespec ts = ns_to_timespec(nsec);
423 struct timeval tv;
424
425 tv.tv_sec = ts.tv_sec;
426 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
427
428 return tv;
429}
b7aa0bf7 430EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 431
41cf5445
IM
432/*
433 * When we convert to jiffies then we interpret incoming values
434 * the following way:
435 *
436 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
437 *
438 * - 'too large' values [that would result in larger than
439 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
440 *
441 * - all other values are converted to jiffies by either multiplying
442 * the input value by a factor or dividing it with a factor
443 *
444 * We must also be careful about 32-bit overflows.
445 */
8b9365d7
IM
446unsigned long msecs_to_jiffies(const unsigned int m)
447{
41cf5445
IM
448 /*
449 * Negative value, means infinite timeout:
450 */
451 if ((int)m < 0)
8b9365d7 452 return MAX_JIFFY_OFFSET;
41cf5445 453
8b9365d7 454#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
455 /*
456 * HZ is equal to or smaller than 1000, and 1000 is a nice
457 * round multiple of HZ, divide with the factor between them,
458 * but round upwards:
459 */
8b9365d7
IM
460 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
461#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
462 /*
463 * HZ is larger than 1000, and HZ is a nice round multiple of
464 * 1000 - simply multiply with the factor between them.
465 *
466 * But first make sure the multiplication result cannot
467 * overflow:
468 */
469 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
470 return MAX_JIFFY_OFFSET;
471
8b9365d7
IM
472 return m * (HZ / MSEC_PER_SEC);
473#else
41cf5445
IM
474 /*
475 * Generic case - multiply, round and divide. But first
476 * check that if we are doing a net multiplication, that
477 * we wouldnt overflow:
478 */
479 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
480 return MAX_JIFFY_OFFSET;
481
8b9365d7
IM
482 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
483#endif
484}
485EXPORT_SYMBOL(msecs_to_jiffies);
486
487unsigned long usecs_to_jiffies(const unsigned int u)
488{
489 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
490 return MAX_JIFFY_OFFSET;
491#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
492 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
493#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
494 return u * (HZ / USEC_PER_SEC);
495#else
496 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
497#endif
498}
499EXPORT_SYMBOL(usecs_to_jiffies);
500
501/*
502 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
503 * that a remainder subtract here would not do the right thing as the
504 * resolution values don't fall on second boundries. I.e. the line:
505 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
506 *
507 * Rather, we just shift the bits off the right.
508 *
509 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
510 * value to a scaled second value.
511 */
512unsigned long
513timespec_to_jiffies(const struct timespec *value)
514{
515 unsigned long sec = value->tv_sec;
516 long nsec = value->tv_nsec + TICK_NSEC - 1;
517
518 if (sec >= MAX_SEC_IN_JIFFIES){
519 sec = MAX_SEC_IN_JIFFIES;
520 nsec = 0;
521 }
522 return (((u64)sec * SEC_CONVERSION) +
523 (((u64)nsec * NSEC_CONVERSION) >>
524 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
525
526}
527EXPORT_SYMBOL(timespec_to_jiffies);
528
529void
530jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
531{
532 /*
533 * Convert jiffies to nanoseconds and separate with
534 * one divide.
535 */
536 u64 nsec = (u64)jiffies * TICK_NSEC;
537 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
538}
539EXPORT_SYMBOL(jiffies_to_timespec);
540
541/* Same for "timeval"
542 *
543 * Well, almost. The problem here is that the real system resolution is
544 * in nanoseconds and the value being converted is in micro seconds.
545 * Also for some machines (those that use HZ = 1024, in-particular),
546 * there is a LARGE error in the tick size in microseconds.
547
548 * The solution we use is to do the rounding AFTER we convert the
549 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
550 * Instruction wise, this should cost only an additional add with carry
551 * instruction above the way it was done above.
552 */
553unsigned long
554timeval_to_jiffies(const struct timeval *value)
555{
556 unsigned long sec = value->tv_sec;
557 long usec = value->tv_usec;
558
559 if (sec >= MAX_SEC_IN_JIFFIES){
560 sec = MAX_SEC_IN_JIFFIES;
561 usec = 0;
562 }
563 return (((u64)sec * SEC_CONVERSION) +
564 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
565 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
566}
456a09dc 567EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
568
569void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
570{
571 /*
572 * Convert jiffies to nanoseconds and separate with
573 * one divide.
574 */
575 u64 nsec = (u64)jiffies * TICK_NSEC;
576 long tv_usec;
577
578 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
579 tv_usec /= NSEC_PER_USEC;
580 value->tv_usec = tv_usec;
581}
456a09dc 582EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
583
584/*
585 * Convert jiffies/jiffies_64 to clock_t and back.
586 */
587clock_t jiffies_to_clock_t(long x)
588{
589#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
590 return x / (HZ / USER_HZ);
591#else
592 u64 tmp = (u64)x * TICK_NSEC;
593 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
594 return (long)tmp;
595#endif
596}
597EXPORT_SYMBOL(jiffies_to_clock_t);
598
599unsigned long clock_t_to_jiffies(unsigned long x)
600{
601#if (HZ % USER_HZ)==0
602 if (x >= ~0UL / (HZ / USER_HZ))
603 return ~0UL;
604 return x * (HZ / USER_HZ);
605#else
606 u64 jif;
607
608 /* Don't worry about loss of precision here .. */
609 if (x >= ~0UL / HZ * USER_HZ)
610 return ~0UL;
611
612 /* .. but do try to contain it here */
613 jif = x * (u64) HZ;
614 do_div(jif, USER_HZ);
615 return jif;
616#endif
617}
618EXPORT_SYMBOL(clock_t_to_jiffies);
619
620u64 jiffies_64_to_clock_t(u64 x)
621{
622#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
623 do_div(x, HZ / USER_HZ);
624#else
625 /*
626 * There are better ways that don't overflow early,
627 * but even this doesn't overflow in hundreds of years
628 * in 64 bits, so..
629 */
630 x *= TICK_NSEC;
631 do_div(x, (NSEC_PER_SEC / USER_HZ));
632#endif
633 return x;
634}
635
636EXPORT_SYMBOL(jiffies_64_to_clock_t);
637
638u64 nsec_to_clock_t(u64 x)
639{
640#if (NSEC_PER_SEC % USER_HZ) == 0
641 do_div(x, (NSEC_PER_SEC / USER_HZ));
642#elif (USER_HZ % 512) == 0
643 x *= USER_HZ/512;
644 do_div(x, (NSEC_PER_SEC / 512));
645#else
646 /*
647 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
648 * overflow after 64.99 years.
649 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
650 */
651 x *= 9;
652 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
653 USER_HZ));
654#endif
655 return x;
656}
657
1da177e4
LT
658#if (BITS_PER_LONG < 64)
659u64 get_jiffies_64(void)
660{
661 unsigned long seq;
662 u64 ret;
663
664 do {
665 seq = read_seqbegin(&xtime_lock);
666 ret = jiffies_64;
667 } while (read_seqretry(&xtime_lock, seq));
668 return ret;
669}
670
671EXPORT_SYMBOL(get_jiffies_64);
672#endif
673
674EXPORT_SYMBOL(jiffies);