[ALSA] hda-codec - Add quirk for another MSI laptop to alc883_cfg_tbl[]
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4 33#include <linux/errno.h>
1da177e4
LT
34#include <linux/syscalls.h>
35#include <linux/security.h>
36#include <linux/fs.h>
37#include <linux/module.h>
38
39#include <asm/uaccess.h>
40#include <asm/unistd.h>
41
42/*
43 * The timezone where the local system is located. Used as a default by some
44 * programs who obtain this value by using gettimeofday.
45 */
46struct timezone sys_tz;
47
48EXPORT_SYMBOL(sys_tz);
49
50#ifdef __ARCH_WANT_SYS_TIME
51
52/*
53 * sys_time() can be implemented in user-level using
54 * sys_gettimeofday(). Is this for backwards compatibility? If so,
55 * why not move it into the appropriate arch directory (for those
56 * architectures that need it).
57 */
58asmlinkage long sys_time(time_t __user * tloc)
59{
4e44f349
IM
60 /*
61 * We read xtime.tv_sec atomically - it's updated
62 * atomically by update_wall_time(), so no need to
63 * even read-lock the xtime seqlock:
64 */
65 time_t i = xtime.tv_sec;
1da177e4 66
4e44f349 67 smp_rmb(); /* sys_time() results are coherent */
1da177e4
LT
68
69 if (tloc) {
4e44f349 70 if (put_user(i, tloc))
1da177e4
LT
71 i = -EFAULT;
72 }
73 return i;
74}
75
76/*
77 * sys_stime() can be implemented in user-level using
78 * sys_settimeofday(). Is this for backwards compatibility? If so,
79 * why not move it into the appropriate arch directory (for those
80 * architectures that need it).
81 */
82
83asmlinkage long sys_stime(time_t __user *tptr)
84{
85 struct timespec tv;
86 int err;
87
88 if (get_user(tv.tv_sec, tptr))
89 return -EFAULT;
90
91 tv.tv_nsec = 0;
92
93 err = security_settime(&tv, NULL);
94 if (err)
95 return err;
96
97 do_settimeofday(&tv);
98 return 0;
99}
100
101#endif /* __ARCH_WANT_SYS_TIME */
102
103asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
104{
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116}
117
118/*
119 * Adjust the time obtained from the CMOS to be UTC time instead of
120 * local time.
121 *
122 * This is ugly, but preferable to the alternatives. Otherwise we
123 * would either need to write a program to do it in /etc/rc (and risk
124 * confusion if the program gets run more than once; it would also be
125 * hard to make the program warp the clock precisely n hours) or
126 * compile in the timezone information into the kernel. Bad, bad....
127 *
128 * - TYT, 1992-01-01
129 *
130 * The best thing to do is to keep the CMOS clock in universal time (UTC)
131 * as real UNIX machines always do it. This avoids all headaches about
132 * daylight saving times and warping kernel clocks.
133 */
77933d72 134static inline void warp_clock(void)
1da177e4
LT
135{
136 write_seqlock_irq(&xtime_lock);
137 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
138 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
139 time_interpolator_reset();
140 write_sequnlock_irq(&xtime_lock);
141 clock_was_set();
142}
143
144/*
145 * In case for some reason the CMOS clock has not already been running
146 * in UTC, but in some local time: The first time we set the timezone,
147 * we will warp the clock so that it is ticking UTC time instead of
148 * local time. Presumably, if someone is setting the timezone then we
149 * are running in an environment where the programs understand about
150 * timezones. This should be done at boot time in the /etc/rc script,
151 * as soon as possible, so that the clock can be set right. Otherwise,
152 * various programs will get confused when the clock gets warped.
153 */
154
155int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
156{
157 static int firsttime = 1;
158 int error = 0;
159
951069e3 160 if (tv && !timespec_valid(tv))
718bcceb
TG
161 return -EINVAL;
162
1da177e4
LT
163 error = security_settime(tv, tz);
164 if (error)
165 return error;
166
167 if (tz) {
168 /* SMP safe, global irq locking makes it work. */
169 sys_tz = *tz;
170 if (firsttime) {
171 firsttime = 0;
172 if (!tv)
173 warp_clock();
174 }
175 }
176 if (tv)
177 {
178 /* SMP safe, again the code in arch/foo/time.c should
179 * globally block out interrupts when it runs.
180 */
181 return do_settimeofday(tv);
182 }
183 return 0;
184}
185
186asmlinkage long sys_settimeofday(struct timeval __user *tv,
187 struct timezone __user *tz)
188{
189 struct timeval user_tv;
190 struct timespec new_ts;
191 struct timezone new_tz;
192
193 if (tv) {
194 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
195 return -EFAULT;
196 new_ts.tv_sec = user_tv.tv_sec;
197 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
198 }
199 if (tz) {
200 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
201 return -EFAULT;
202 }
203
204 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
205}
206
1da177e4
LT
207asmlinkage long sys_adjtimex(struct timex __user *txc_p)
208{
209 struct timex txc; /* Local copy of parameter */
210 int ret;
211
212 /* Copy the user data space into the kernel copy
213 * structure. But bear in mind that the structures
214 * may change
215 */
216 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
217 return -EFAULT;
218 ret = do_adjtimex(&txc);
219 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
220}
221
222inline struct timespec current_kernel_time(void)
223{
224 struct timespec now;
225 unsigned long seq;
226
227 do {
228 seq = read_seqbegin(&xtime_lock);
229
230 now = xtime;
231 } while (read_seqretry(&xtime_lock, seq));
232
233 return now;
234}
235
236EXPORT_SYMBOL(current_kernel_time);
237
238/**
239 * current_fs_time - Return FS time
240 * @sb: Superblock.
241 *
8ba8e95e 242 * Return the current time truncated to the time granularity supported by
1da177e4
LT
243 * the fs.
244 */
245struct timespec current_fs_time(struct super_block *sb)
246{
247 struct timespec now = current_kernel_time();
248 return timespec_trunc(now, sb->s_time_gran);
249}
250EXPORT_SYMBOL(current_fs_time);
251
753e9c5c
ED
252/*
253 * Convert jiffies to milliseconds and back.
254 *
255 * Avoid unnecessary multiplications/divisions in the
256 * two most common HZ cases:
257 */
258unsigned int inline jiffies_to_msecs(const unsigned long j)
259{
260#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
261 return (MSEC_PER_SEC / HZ) * j;
262#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
263 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
264#else
265 return (j * MSEC_PER_SEC) / HZ;
266#endif
267}
268EXPORT_SYMBOL(jiffies_to_msecs);
269
270unsigned int inline jiffies_to_usecs(const unsigned long j)
271{
272#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
273 return (USEC_PER_SEC / HZ) * j;
274#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
275 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
276#else
277 return (j * USEC_PER_SEC) / HZ;
278#endif
279}
280EXPORT_SYMBOL(jiffies_to_usecs);
281
1da177e4 282/**
8ba8e95e 283 * timespec_trunc - Truncate timespec to a granularity
1da177e4 284 * @t: Timespec
8ba8e95e 285 * @gran: Granularity in ns.
1da177e4 286 *
8ba8e95e 287 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
288 * Always rounds down.
289 *
290 * This function should be only used for timestamps returned by
291 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
292 * it doesn't handle the better resolution of the later.
293 */
294struct timespec timespec_trunc(struct timespec t, unsigned gran)
295{
296 /*
297 * Division is pretty slow so avoid it for common cases.
298 * Currently current_kernel_time() never returns better than
299 * jiffies resolution. Exploit that.
300 */
301 if (gran <= jiffies_to_usecs(1) * 1000) {
302 /* nothing */
303 } else if (gran == 1000000000) {
304 t.tv_nsec = 0;
305 } else {
306 t.tv_nsec -= t.tv_nsec % gran;
307 }
308 return t;
309}
310EXPORT_SYMBOL(timespec_trunc);
311
312#ifdef CONFIG_TIME_INTERPOLATION
313void getnstimeofday (struct timespec *tv)
314{
315 unsigned long seq,sec,nsec;
316
317 do {
318 seq = read_seqbegin(&xtime_lock);
319 sec = xtime.tv_sec;
320 nsec = xtime.tv_nsec+time_interpolator_get_offset();
321 } while (unlikely(read_seqretry(&xtime_lock, seq)));
322
323 while (unlikely(nsec >= NSEC_PER_SEC)) {
324 nsec -= NSEC_PER_SEC;
325 ++sec;
326 }
327 tv->tv_sec = sec;
328 tv->tv_nsec = nsec;
329}
330EXPORT_SYMBOL_GPL(getnstimeofday);
331
332int do_settimeofday (struct timespec *tv)
333{
334 time_t wtm_sec, sec = tv->tv_sec;
335 long wtm_nsec, nsec = tv->tv_nsec;
336
337 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
338 return -EINVAL;
339
340 write_seqlock_irq(&xtime_lock);
341 {
1da177e4
LT
342 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
343 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
344
345 set_normalized_timespec(&xtime, sec, nsec);
346 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
347
348 time_adjust = 0; /* stop active adjtime() */
349 time_status |= STA_UNSYNC;
350 time_maxerror = NTP_PHASE_LIMIT;
351 time_esterror = NTP_PHASE_LIMIT;
352 time_interpolator_reset();
353 }
354 write_sequnlock_irq(&xtime_lock);
355 clock_was_set();
356 return 0;
357}
943eae03 358EXPORT_SYMBOL(do_settimeofday);
1da177e4
LT
359
360void do_gettimeofday (struct timeval *tv)
361{
362 unsigned long seq, nsec, usec, sec, offset;
363 do {
364 seq = read_seqbegin(&xtime_lock);
365 offset = time_interpolator_get_offset();
366 sec = xtime.tv_sec;
367 nsec = xtime.tv_nsec;
368 } while (unlikely(read_seqretry(&xtime_lock, seq)));
369
370 usec = (nsec + offset) / 1000;
371
372 while (unlikely(usec >= USEC_PER_SEC)) {
373 usec -= USEC_PER_SEC;
374 ++sec;
375 }
376
377 tv->tv_sec = sec;
378 tv->tv_usec = usec;
1da177e4 379
4e44f349
IM
380 /*
381 * Make sure xtime.tv_sec [returned by sys_time()] always
382 * follows the gettimeofday() result precisely. This
383 * condition is extremely unlikely, it can hit at most
384 * once per second:
385 */
386 if (unlikely(xtime.tv_sec != tv->tv_sec)) {
387 unsigned long flags;
388
389 write_seqlock_irqsave(&xtime_lock, flags);
390 update_wall_time();
391 write_sequnlock_irqrestore(&xtime_lock, flags);
392 }
393}
1da177e4
LT
394EXPORT_SYMBOL(do_gettimeofday);
395
4e44f349 396#else /* CONFIG_TIME_INTERPOLATION */
1da177e4 397
cf3c769b 398#ifndef CONFIG_GENERIC_TIME
1da177e4
LT
399/*
400 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
401 * and therefore only yields usec accuracy
402 */
403void getnstimeofday(struct timespec *tv)
404{
405 struct timeval x;
406
407 do_gettimeofday(&x);
408 tv->tv_sec = x.tv_sec;
409 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
410}
c6ecf7ed 411EXPORT_SYMBOL_GPL(getnstimeofday);
1da177e4 412#endif
4e44f349 413#endif /* CONFIG_TIME_INTERPOLATION */
1da177e4 414
753be622
TG
415/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
416 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
417 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
418 *
419 * [For the Julian calendar (which was used in Russia before 1917,
420 * Britain & colonies before 1752, anywhere else before 1582,
421 * and is still in use by some communities) leave out the
422 * -year/100+year/400 terms, and add 10.]
423 *
424 * This algorithm was first published by Gauss (I think).
425 *
426 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
427 * machines were long is 32-bit! (However, as time_t is signed, we
428 * will already get problems at other places on 2038-01-19 03:14:08)
429 */
430unsigned long
f4818900
IM
431mktime(const unsigned int year0, const unsigned int mon0,
432 const unsigned int day, const unsigned int hour,
433 const unsigned int min, const unsigned int sec)
753be622 434{
f4818900
IM
435 unsigned int mon = mon0, year = year0;
436
437 /* 1..12 -> 11,12,1..10 */
438 if (0 >= (int) (mon -= 2)) {
439 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
440 year -= 1;
441 }
442
443 return ((((unsigned long)
444 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
445 year*365 - 719499
446 )*24 + hour /* now have hours */
447 )*60 + min /* now have minutes */
448 )*60 + sec; /* finally seconds */
449}
450
199e7056
AM
451EXPORT_SYMBOL(mktime);
452
753be622
TG
453/**
454 * set_normalized_timespec - set timespec sec and nsec parts and normalize
455 *
456 * @ts: pointer to timespec variable to be set
457 * @sec: seconds to set
458 * @nsec: nanoseconds to set
459 *
460 * Set seconds and nanoseconds field of a timespec variable and
461 * normalize to the timespec storage format
462 *
463 * Note: The tv_nsec part is always in the range of
464 * 0 <= tv_nsec < NSEC_PER_SEC
465 * For negative values only the tv_sec field is negative !
466 */
f4818900 467void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
753be622
TG
468{
469 while (nsec >= NSEC_PER_SEC) {
470 nsec -= NSEC_PER_SEC;
471 ++sec;
472 }
473 while (nsec < 0) {
474 nsec += NSEC_PER_SEC;
475 --sec;
476 }
477 ts->tv_sec = sec;
478 ts->tv_nsec = nsec;
479}
480
f8f46da3
TG
481/**
482 * ns_to_timespec - Convert nanoseconds to timespec
483 * @nsec: the nanoseconds value to be converted
484 *
485 * Returns the timespec representation of the nsec parameter.
486 */
df869b63 487struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
488{
489 struct timespec ts;
490
88fc3897
GA
491 if (!nsec)
492 return (struct timespec) {0, 0};
493
494 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
495 if (unlikely(nsec < 0))
496 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
f8f46da3
TG
497
498 return ts;
499}
85795d64 500EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
501
502/**
503 * ns_to_timeval - Convert nanoseconds to timeval
504 * @nsec: the nanoseconds value to be converted
505 *
506 * Returns the timeval representation of the nsec parameter.
507 */
df869b63 508struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
509{
510 struct timespec ts = ns_to_timespec(nsec);
511 struct timeval tv;
512
513 tv.tv_sec = ts.tv_sec;
514 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
515
516 return tv;
517}
b7aa0bf7 518EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 519
41cf5445
IM
520/*
521 * When we convert to jiffies then we interpret incoming values
522 * the following way:
523 *
524 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
525 *
526 * - 'too large' values [that would result in larger than
527 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
528 *
529 * - all other values are converted to jiffies by either multiplying
530 * the input value by a factor or dividing it with a factor
531 *
532 * We must also be careful about 32-bit overflows.
533 */
8b9365d7
IM
534unsigned long msecs_to_jiffies(const unsigned int m)
535{
41cf5445
IM
536 /*
537 * Negative value, means infinite timeout:
538 */
539 if ((int)m < 0)
8b9365d7 540 return MAX_JIFFY_OFFSET;
41cf5445 541
8b9365d7 542#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
543 /*
544 * HZ is equal to or smaller than 1000, and 1000 is a nice
545 * round multiple of HZ, divide with the factor between them,
546 * but round upwards:
547 */
8b9365d7
IM
548 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
549#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
550 /*
551 * HZ is larger than 1000, and HZ is a nice round multiple of
552 * 1000 - simply multiply with the factor between them.
553 *
554 * But first make sure the multiplication result cannot
555 * overflow:
556 */
557 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
558 return MAX_JIFFY_OFFSET;
559
8b9365d7
IM
560 return m * (HZ / MSEC_PER_SEC);
561#else
41cf5445
IM
562 /*
563 * Generic case - multiply, round and divide. But first
564 * check that if we are doing a net multiplication, that
565 * we wouldnt overflow:
566 */
567 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
568 return MAX_JIFFY_OFFSET;
569
8b9365d7
IM
570 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
571#endif
572}
573EXPORT_SYMBOL(msecs_to_jiffies);
574
575unsigned long usecs_to_jiffies(const unsigned int u)
576{
577 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
578 return MAX_JIFFY_OFFSET;
579#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
580 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
581#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
582 return u * (HZ / USEC_PER_SEC);
583#else
584 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
585#endif
586}
587EXPORT_SYMBOL(usecs_to_jiffies);
588
589/*
590 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
591 * that a remainder subtract here would not do the right thing as the
592 * resolution values don't fall on second boundries. I.e. the line:
593 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
594 *
595 * Rather, we just shift the bits off the right.
596 *
597 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
598 * value to a scaled second value.
599 */
600unsigned long
601timespec_to_jiffies(const struct timespec *value)
602{
603 unsigned long sec = value->tv_sec;
604 long nsec = value->tv_nsec + TICK_NSEC - 1;
605
606 if (sec >= MAX_SEC_IN_JIFFIES){
607 sec = MAX_SEC_IN_JIFFIES;
608 nsec = 0;
609 }
610 return (((u64)sec * SEC_CONVERSION) +
611 (((u64)nsec * NSEC_CONVERSION) >>
612 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
613
614}
615EXPORT_SYMBOL(timespec_to_jiffies);
616
617void
618jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
619{
620 /*
621 * Convert jiffies to nanoseconds and separate with
622 * one divide.
623 */
624 u64 nsec = (u64)jiffies * TICK_NSEC;
625 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
626}
627EXPORT_SYMBOL(jiffies_to_timespec);
628
629/* Same for "timeval"
630 *
631 * Well, almost. The problem here is that the real system resolution is
632 * in nanoseconds and the value being converted is in micro seconds.
633 * Also for some machines (those that use HZ = 1024, in-particular),
634 * there is a LARGE error in the tick size in microseconds.
635
636 * The solution we use is to do the rounding AFTER we convert the
637 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
638 * Instruction wise, this should cost only an additional add with carry
639 * instruction above the way it was done above.
640 */
641unsigned long
642timeval_to_jiffies(const struct timeval *value)
643{
644 unsigned long sec = value->tv_sec;
645 long usec = value->tv_usec;
646
647 if (sec >= MAX_SEC_IN_JIFFIES){
648 sec = MAX_SEC_IN_JIFFIES;
649 usec = 0;
650 }
651 return (((u64)sec * SEC_CONVERSION) +
652 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
653 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
654}
456a09dc 655EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
656
657void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
658{
659 /*
660 * Convert jiffies to nanoseconds and separate with
661 * one divide.
662 */
663 u64 nsec = (u64)jiffies * TICK_NSEC;
664 long tv_usec;
665
666 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
667 tv_usec /= NSEC_PER_USEC;
668 value->tv_usec = tv_usec;
669}
456a09dc 670EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
671
672/*
673 * Convert jiffies/jiffies_64 to clock_t and back.
674 */
675clock_t jiffies_to_clock_t(long x)
676{
677#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
678 return x / (HZ / USER_HZ);
679#else
680 u64 tmp = (u64)x * TICK_NSEC;
681 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
682 return (long)tmp;
683#endif
684}
685EXPORT_SYMBOL(jiffies_to_clock_t);
686
687unsigned long clock_t_to_jiffies(unsigned long x)
688{
689#if (HZ % USER_HZ)==0
690 if (x >= ~0UL / (HZ / USER_HZ))
691 return ~0UL;
692 return x * (HZ / USER_HZ);
693#else
694 u64 jif;
695
696 /* Don't worry about loss of precision here .. */
697 if (x >= ~0UL / HZ * USER_HZ)
698 return ~0UL;
699
700 /* .. but do try to contain it here */
701 jif = x * (u64) HZ;
702 do_div(jif, USER_HZ);
703 return jif;
704#endif
705}
706EXPORT_SYMBOL(clock_t_to_jiffies);
707
708u64 jiffies_64_to_clock_t(u64 x)
709{
710#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
711 do_div(x, HZ / USER_HZ);
712#else
713 /*
714 * There are better ways that don't overflow early,
715 * but even this doesn't overflow in hundreds of years
716 * in 64 bits, so..
717 */
718 x *= TICK_NSEC;
719 do_div(x, (NSEC_PER_SEC / USER_HZ));
720#endif
721 return x;
722}
723
724EXPORT_SYMBOL(jiffies_64_to_clock_t);
725
726u64 nsec_to_clock_t(u64 x)
727{
728#if (NSEC_PER_SEC % USER_HZ) == 0
729 do_div(x, (NSEC_PER_SEC / USER_HZ));
730#elif (USER_HZ % 512) == 0
731 x *= USER_HZ/512;
732 do_div(x, (NSEC_PER_SEC / 512));
733#else
734 /*
735 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
736 * overflow after 64.99 years.
737 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
738 */
739 x *= 9;
740 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
741 USER_HZ));
742#endif
743 return x;
744}
745
1da177e4
LT
746#if (BITS_PER_LONG < 64)
747u64 get_jiffies_64(void)
748{
749 unsigned long seq;
750 u64 ret;
751
752 do {
753 seq = read_seqbegin(&xtime_lock);
754 ret = jiffies_64;
755 } while (read_seqretry(&xtime_lock, seq));
756 return ret;
757}
758
759EXPORT_SYMBOL(get_jiffies_64);
760#endif
761
762EXPORT_SYMBOL(jiffies);