mm: numa: Add pte updates, hinting and migration stats
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
6fa6c3b1 14 * Created file with time related functions from sched.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
9984de1a 30#include <linux/export.h>
1da177e4 31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
189374ae 33#include <linux/timekeeper_internal.h>
1da177e4 34#include <linux/errno.h>
1da177e4
LT
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
71abb3af 38#include <linux/math64.h>
e3d5a27d 39#include <linux/ptrace.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43
bdc80787
PA
44#include "timeconst.h"
45
6fa6c3b1 46/*
1da177e4
LT
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
58fd3aa2 62SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 63{
f20bf612 64 time_t i = get_seconds();
1da177e4
LT
65
66 if (tloc) {
20082208 67 if (put_user(i,tloc))
e3d5a27d 68 return -EFAULT;
1da177e4 69 }
e3d5a27d 70 force_successful_syscall_return();
1da177e4
LT
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
6fa6c3b1 80
58fd3aa2 81SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4
LT
82{
83 struct timespec tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday(&tv);
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
58fd3aa2
HC
101SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 struct timezone __user *, tz)
1da177e4
LT
103{
104 if (likely(tv != NULL)) {
105 struct timeval ktv;
106 do_gettimeofday(&ktv);
107 if (copy_to_user(tv, &ktv, sizeof(ktv)))
108 return -EFAULT;
109 }
110 if (unlikely(tz != NULL)) {
111 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112 return -EFAULT;
113 }
114 return 0;
115}
116
117/*
118 * Adjust the time obtained from the CMOS to be UTC time instead of
119 * local time.
6fa6c3b1 120 *
1da177e4
LT
121 * This is ugly, but preferable to the alternatives. Otherwise we
122 * would either need to write a program to do it in /etc/rc (and risk
6fa6c3b1 123 * confusion if the program gets run more than once; it would also be
1da177e4
LT
124 * hard to make the program warp the clock precisely n hours) or
125 * compile in the timezone information into the kernel. Bad, bad....
126 *
bdc80787 127 * - TYT, 1992-01-01
1da177e4
LT
128 *
129 * The best thing to do is to keep the CMOS clock in universal time (UTC)
130 * as real UNIX machines always do it. This avoids all headaches about
131 * daylight saving times and warping kernel clocks.
132 */
77933d72 133static inline void warp_clock(void)
1da177e4 134{
bd45b7a3
TG
135 struct timespec adjust;
136
137 adjust = current_kernel_time();
138 adjust.tv_sec += sys_tz.tz_minuteswest * 60;
64ce4c2f 139 do_settimeofday(&adjust);
1da177e4
LT
140}
141
142/*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
1e6d7679 153int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
1da177e4
LT
154{
155 static int firsttime = 1;
156 int error = 0;
157
951069e3 158 if (tv && !timespec_valid(tv))
718bcceb
TG
159 return -EINVAL;
160
1da177e4
LT
161 error = security_settime(tv, tz);
162 if (error)
163 return error;
164
165 if (tz) {
1da177e4 166 sys_tz = *tz;
2c622148 167 update_vsyscall_tz();
1da177e4
LT
168 if (firsttime) {
169 firsttime = 0;
170 if (!tv)
171 warp_clock();
172 }
173 }
174 if (tv)
1da177e4 175 return do_settimeofday(tv);
1da177e4
LT
176 return 0;
177}
178
58fd3aa2
HC
179SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
180 struct timezone __user *, tz)
1da177e4
LT
181{
182 struct timeval user_tv;
183 struct timespec new_ts;
184 struct timezone new_tz;
185
186 if (tv) {
187 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
188 return -EFAULT;
189 new_ts.tv_sec = user_tv.tv_sec;
190 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
191 }
192 if (tz) {
193 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
194 return -EFAULT;
195 }
196
197 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
198}
199
58fd3aa2 200SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
1da177e4
LT
201{
202 struct timex txc; /* Local copy of parameter */
203 int ret;
204
205 /* Copy the user data space into the kernel copy
206 * structure. But bear in mind that the structures
207 * may change
208 */
209 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
210 return -EFAULT;
211 ret = do_adjtimex(&txc);
212 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
213}
214
1da177e4
LT
215/**
216 * current_fs_time - Return FS time
217 * @sb: Superblock.
218 *
8ba8e95e 219 * Return the current time truncated to the time granularity supported by
1da177e4
LT
220 * the fs.
221 */
222struct timespec current_fs_time(struct super_block *sb)
223{
224 struct timespec now = current_kernel_time();
225 return timespec_trunc(now, sb->s_time_gran);
226}
227EXPORT_SYMBOL(current_fs_time);
228
753e9c5c
ED
229/*
230 * Convert jiffies to milliseconds and back.
231 *
232 * Avoid unnecessary multiplications/divisions in the
233 * two most common HZ cases:
234 */
fa9f90be 235inline unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
236{
237#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
238 return (MSEC_PER_SEC / HZ) * j;
239#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
240 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
241#else
bdc80787 242# if BITS_PER_LONG == 32
b9095fd8 243 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
bdc80787
PA
244# else
245 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
246# endif
753e9c5c
ED
247#endif
248}
249EXPORT_SYMBOL(jiffies_to_msecs);
250
fa9f90be 251inline unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c
ED
252{
253#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
254 return (USEC_PER_SEC / HZ) * j;
255#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
256 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
257#else
bdc80787 258# if BITS_PER_LONG == 32
b9095fd8 259 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
260# else
261 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
262# endif
753e9c5c
ED
263#endif
264}
265EXPORT_SYMBOL(jiffies_to_usecs);
266
1da177e4 267/**
8ba8e95e 268 * timespec_trunc - Truncate timespec to a granularity
1da177e4 269 * @t: Timespec
8ba8e95e 270 * @gran: Granularity in ns.
1da177e4 271 *
8ba8e95e 272 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
273 * Always rounds down.
274 *
275 * This function should be only used for timestamps returned by
276 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
3eb05676 277 * it doesn't handle the better resolution of the latter.
1da177e4
LT
278 */
279struct timespec timespec_trunc(struct timespec t, unsigned gran)
280{
281 /*
282 * Division is pretty slow so avoid it for common cases.
283 * Currently current_kernel_time() never returns better than
284 * jiffies resolution. Exploit that.
285 */
286 if (gran <= jiffies_to_usecs(1) * 1000) {
287 /* nothing */
288 } else if (gran == 1000000000) {
289 t.tv_nsec = 0;
290 } else {
291 t.tv_nsec -= t.tv_nsec % gran;
292 }
293 return t;
294}
295EXPORT_SYMBOL(timespec_trunc);
296
753be622
TG
297/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
298 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
299 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
300 *
301 * [For the Julian calendar (which was used in Russia before 1917,
302 * Britain & colonies before 1752, anywhere else before 1582,
303 * and is still in use by some communities) leave out the
304 * -year/100+year/400 terms, and add 10.]
305 *
306 * This algorithm was first published by Gauss (I think).
307 *
308 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
3eb05676 309 * machines where long is 32-bit! (However, as time_t is signed, we
753be622
TG
310 * will already get problems at other places on 2038-01-19 03:14:08)
311 */
312unsigned long
f4818900
IM
313mktime(const unsigned int year0, const unsigned int mon0,
314 const unsigned int day, const unsigned int hour,
315 const unsigned int min, const unsigned int sec)
753be622 316{
f4818900
IM
317 unsigned int mon = mon0, year = year0;
318
319 /* 1..12 -> 11,12,1..10 */
320 if (0 >= (int) (mon -= 2)) {
321 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
322 year -= 1;
323 }
324
325 return ((((unsigned long)
326 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
327 year*365 - 719499
328 )*24 + hour /* now have hours */
329 )*60 + min /* now have minutes */
330 )*60 + sec; /* finally seconds */
331}
332
199e7056
AM
333EXPORT_SYMBOL(mktime);
334
753be622
TG
335/**
336 * set_normalized_timespec - set timespec sec and nsec parts and normalize
337 *
338 * @ts: pointer to timespec variable to be set
339 * @sec: seconds to set
340 * @nsec: nanoseconds to set
341 *
342 * Set seconds and nanoseconds field of a timespec variable and
343 * normalize to the timespec storage format
344 *
345 * Note: The tv_nsec part is always in the range of
bdc80787 346 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
347 * For negative values only the tv_sec field is negative !
348 */
12e09337 349void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
753be622
TG
350{
351 while (nsec >= NSEC_PER_SEC) {
12e09337
TG
352 /*
353 * The following asm() prevents the compiler from
354 * optimising this loop into a modulo operation. See
355 * also __iter_div_u64_rem() in include/linux/time.h
356 */
357 asm("" : "+rm"(nsec));
753be622
TG
358 nsec -= NSEC_PER_SEC;
359 ++sec;
360 }
361 while (nsec < 0) {
12e09337 362 asm("" : "+rm"(nsec));
753be622
TG
363 nsec += NSEC_PER_SEC;
364 --sec;
365 }
366 ts->tv_sec = sec;
367 ts->tv_nsec = nsec;
368}
7c3f944e 369EXPORT_SYMBOL(set_normalized_timespec);
753be622 370
f8f46da3
TG
371/**
372 * ns_to_timespec - Convert nanoseconds to timespec
373 * @nsec: the nanoseconds value to be converted
374 *
375 * Returns the timespec representation of the nsec parameter.
376 */
df869b63 377struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
378{
379 struct timespec ts;
f8bd2258 380 s32 rem;
f8f46da3 381
88fc3897
GA
382 if (!nsec)
383 return (struct timespec) {0, 0};
384
f8bd2258
RZ
385 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
386 if (unlikely(rem < 0)) {
387 ts.tv_sec--;
388 rem += NSEC_PER_SEC;
389 }
390 ts.tv_nsec = rem;
f8f46da3
TG
391
392 return ts;
393}
85795d64 394EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
395
396/**
397 * ns_to_timeval - Convert nanoseconds to timeval
398 * @nsec: the nanoseconds value to be converted
399 *
400 * Returns the timeval representation of the nsec parameter.
401 */
df869b63 402struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
403{
404 struct timespec ts = ns_to_timespec(nsec);
405 struct timeval tv;
406
407 tv.tv_sec = ts.tv_sec;
408 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
409
410 return tv;
411}
b7aa0bf7 412EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 413
41cf5445
IM
414/*
415 * When we convert to jiffies then we interpret incoming values
416 * the following way:
417 *
418 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
419 *
420 * - 'too large' values [that would result in larger than
421 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
422 *
423 * - all other values are converted to jiffies by either multiplying
424 * the input value by a factor or dividing it with a factor
425 *
426 * We must also be careful about 32-bit overflows.
427 */
8b9365d7
IM
428unsigned long msecs_to_jiffies(const unsigned int m)
429{
41cf5445
IM
430 /*
431 * Negative value, means infinite timeout:
432 */
433 if ((int)m < 0)
8b9365d7 434 return MAX_JIFFY_OFFSET;
41cf5445 435
8b9365d7 436#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
437 /*
438 * HZ is equal to or smaller than 1000, and 1000 is a nice
439 * round multiple of HZ, divide with the factor between them,
440 * but round upwards:
441 */
8b9365d7
IM
442 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
443#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
444 /*
445 * HZ is larger than 1000, and HZ is a nice round multiple of
446 * 1000 - simply multiply with the factor between them.
447 *
448 * But first make sure the multiplication result cannot
449 * overflow:
450 */
451 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
452 return MAX_JIFFY_OFFSET;
453
8b9365d7
IM
454 return m * (HZ / MSEC_PER_SEC);
455#else
41cf5445
IM
456 /*
457 * Generic case - multiply, round and divide. But first
458 * check that if we are doing a net multiplication, that
bdc80787 459 * we wouldn't overflow:
41cf5445
IM
460 */
461 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
462 return MAX_JIFFY_OFFSET;
463
b9095fd8 464 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
bdc80787 465 >> MSEC_TO_HZ_SHR32;
8b9365d7
IM
466#endif
467}
468EXPORT_SYMBOL(msecs_to_jiffies);
469
470unsigned long usecs_to_jiffies(const unsigned int u)
471{
472 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
473 return MAX_JIFFY_OFFSET;
474#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
475 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
476#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
477 return u * (HZ / USEC_PER_SEC);
478#else
b9095fd8 479 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
bdc80787 480 >> USEC_TO_HZ_SHR32;
8b9365d7
IM
481#endif
482}
483EXPORT_SYMBOL(usecs_to_jiffies);
484
485/*
486 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
487 * that a remainder subtract here would not do the right thing as the
488 * resolution values don't fall on second boundries. I.e. the line:
489 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
490 *
491 * Rather, we just shift the bits off the right.
492 *
493 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
494 * value to a scaled second value.
495 */
496unsigned long
497timespec_to_jiffies(const struct timespec *value)
498{
499 unsigned long sec = value->tv_sec;
500 long nsec = value->tv_nsec + TICK_NSEC - 1;
501
502 if (sec >= MAX_SEC_IN_JIFFIES){
503 sec = MAX_SEC_IN_JIFFIES;
504 nsec = 0;
505 }
506 return (((u64)sec * SEC_CONVERSION) +
507 (((u64)nsec * NSEC_CONVERSION) >>
508 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
509
510}
511EXPORT_SYMBOL(timespec_to_jiffies);
512
513void
514jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
515{
516 /*
517 * Convert jiffies to nanoseconds and separate with
518 * one divide.
519 */
f8bd2258
RZ
520 u32 rem;
521 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
522 NSEC_PER_SEC, &rem);
523 value->tv_nsec = rem;
8b9365d7
IM
524}
525EXPORT_SYMBOL(jiffies_to_timespec);
526
527/* Same for "timeval"
528 *
529 * Well, almost. The problem here is that the real system resolution is
530 * in nanoseconds and the value being converted is in micro seconds.
531 * Also for some machines (those that use HZ = 1024, in-particular),
532 * there is a LARGE error in the tick size in microseconds.
533
534 * The solution we use is to do the rounding AFTER we convert the
535 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
536 * Instruction wise, this should cost only an additional add with carry
537 * instruction above the way it was done above.
538 */
539unsigned long
540timeval_to_jiffies(const struct timeval *value)
541{
542 unsigned long sec = value->tv_sec;
543 long usec = value->tv_usec;
544
545 if (sec >= MAX_SEC_IN_JIFFIES){
546 sec = MAX_SEC_IN_JIFFIES;
547 usec = 0;
548 }
549 return (((u64)sec * SEC_CONVERSION) +
550 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
551 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
552}
456a09dc 553EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
554
555void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
556{
557 /*
558 * Convert jiffies to nanoseconds and separate with
559 * one divide.
560 */
f8bd2258 561 u32 rem;
8b9365d7 562
f8bd2258
RZ
563 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
564 NSEC_PER_SEC, &rem);
565 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 566}
456a09dc 567EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
568
569/*
570 * Convert jiffies/jiffies_64 to clock_t and back.
571 */
cbbc719f 572clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
573{
574#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
575# if HZ < USER_HZ
576 return x * (USER_HZ / HZ);
577# else
8b9365d7 578 return x / (HZ / USER_HZ);
6ffc787a 579# endif
8b9365d7 580#else
71abb3af 581 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
582#endif
583}
584EXPORT_SYMBOL(jiffies_to_clock_t);
585
586unsigned long clock_t_to_jiffies(unsigned long x)
587{
588#if (HZ % USER_HZ)==0
589 if (x >= ~0UL / (HZ / USER_HZ))
590 return ~0UL;
591 return x * (HZ / USER_HZ);
592#else
8b9365d7
IM
593 /* Don't worry about loss of precision here .. */
594 if (x >= ~0UL / HZ * USER_HZ)
595 return ~0UL;
596
597 /* .. but do try to contain it here */
71abb3af 598 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
599#endif
600}
601EXPORT_SYMBOL(clock_t_to_jiffies);
602
603u64 jiffies_64_to_clock_t(u64 x)
604{
605#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 606# if HZ < USER_HZ
71abb3af 607 x = div_u64(x * USER_HZ, HZ);
ec03d707 608# elif HZ > USER_HZ
71abb3af 609 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
610# else
611 /* Nothing to do */
6ffc787a 612# endif
8b9365d7
IM
613#else
614 /*
615 * There are better ways that don't overflow early,
616 * but even this doesn't overflow in hundreds of years
617 * in 64 bits, so..
618 */
71abb3af 619 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
620#endif
621 return x;
622}
8b9365d7
IM
623EXPORT_SYMBOL(jiffies_64_to_clock_t);
624
625u64 nsec_to_clock_t(u64 x)
626{
627#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 628 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 629#elif (USER_HZ % 512) == 0
71abb3af 630 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
631#else
632 /*
633 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
634 * overflow after 64.99 years.
635 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
636 */
71abb3af 637 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 638#endif
8b9365d7
IM
639}
640
b7b20df9 641/**
a1dabb6b 642 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
643 *
644 * @n: nsecs in u64
645 *
646 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
647 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
648 * for scheduler, not for use in device drivers to calculate timeout value.
649 *
650 * note:
651 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
652 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
653 */
a1dabb6b 654u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
655{
656#if (NSEC_PER_SEC % HZ) == 0
657 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
658 return div_u64(n, NSEC_PER_SEC / HZ);
659#elif (HZ % 512) == 0
660 /* overflow after 292 years if HZ = 1024 */
661 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
662#else
663 /*
664 * Generic case - optimized for cases where HZ is a multiple of 3.
665 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
666 */
667 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
668#endif
669}
670
a1dabb6b
VP
671/**
672 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
673 *
674 * @n: nsecs in u64
675 *
676 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
677 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
678 * for scheduler, not for use in device drivers to calculate timeout value.
679 *
680 * note:
681 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
682 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
683 */
684unsigned long nsecs_to_jiffies(u64 n)
685{
686 return (unsigned long)nsecs_to_jiffies64(n);
687}
688
df0cc053
TG
689/*
690 * Add two timespec values and do a safety check for overflow.
691 * It's assumed that both values are valid (>= 0)
692 */
693struct timespec timespec_add_safe(const struct timespec lhs,
694 const struct timespec rhs)
695{
696 struct timespec res;
697
698 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
699 lhs.tv_nsec + rhs.tv_nsec);
700
701 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
702 res.tv_sec = TIME_T_MAX;
703
704 return res;
705}