Merge tag 'md/4.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
38b8d208 17#include <linux/nmi.h>
d43c36dc 18#include <linux/sched.h>
4f17722c 19#include <linux/sched/loadavg.h>
e1a85b2c 20#include <linux/syscore_ops.h>
8524070b 21#include <linux/clocksource.h>
22#include <linux/jiffies.h>
23#include <linux/time.h>
24#include <linux/tick.h>
75c5158f 25#include <linux/stop_machine.h>
e0b306fe 26#include <linux/pvclock_gtod.h>
52f5684c 27#include <linux/compiler.h>
8524070b 28
eb93e4d9 29#include "tick-internal.h"
aa6f9c59 30#include "ntp_internal.h"
5c83545f 31#include "timekeeping_internal.h"
155ec602 32
04397fe9
DV
33#define TK_CLEAR_NTP (1 << 0)
34#define TK_MIRROR (1 << 1)
780427f0 35#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 36
3fdb14fd
TG
37/*
38 * The most important data for readout fits into a single 64 byte
39 * cache line.
40 */
41static struct {
42 seqcount_t seq;
43 struct timekeeper timekeeper;
44} tk_core ____cacheline_aligned;
45
9a7a71b1 46static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 47static struct timekeeper shadow_timekeeper;
155ec602 48
4396e058
TG
49/**
50 * struct tk_fast - NMI safe timekeeper
51 * @seq: Sequence counter for protecting updates. The lowest bit
52 * is the index for the tk_read_base array
53 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * @seq.
55 *
56 * See @update_fast_timekeeper() below.
57 */
58struct tk_fast {
59 seqcount_t seq;
60 struct tk_read_base base[2];
61};
62
63static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 64static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 65
8fcce546
JS
66/* flag for if timekeeping is suspended */
67int __read_mostly timekeeping_suspended;
68
1e75fa8b
JS
69static inline void tk_normalize_xtime(struct timekeeper *tk)
70{
876e7881
PZ
71 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
73 tk->xtime_sec++;
74 }
75}
76
c905fae4
TG
77static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78{
79 struct timespec64 ts;
80
81 ts.tv_sec = tk->xtime_sec;
876e7881 82 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
83 return ts;
84}
85
7d489d15 86static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
87{
88 tk->xtime_sec = ts->tv_sec;
876e7881 89 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
90}
91
7d489d15 92static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
93{
94 tk->xtime_sec += ts->tv_sec;
876e7881 95 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 96 tk_normalize_xtime(tk);
1e75fa8b 97}
8fcce546 98
7d489d15 99static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 100{
7d489d15 101 struct timespec64 tmp;
6d0ef903
JS
102
103 /*
104 * Verify consistency of: offset_real = -wall_to_monotonic
105 * before modifying anything
106 */
7d489d15 107 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 108 -tk->wall_to_monotonic.tv_nsec);
2456e855 109 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
6d0ef903 110 tk->wall_to_monotonic = wtm;
7d489d15
JS
111 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 113 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
114}
115
47da70d3 116static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 117{
47da70d3 118 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
119}
120
3c17ad19 121#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 122#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 123
a5a1d1c2 124static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
125{
126
a5a1d1c2 127 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
876e7881 128 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
129
130 if (offset > max_cycles) {
a558cd02 131 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 132 offset, name, max_cycles);
a558cd02 133 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
134 } else {
135 if (offset > (max_cycles >> 1)) {
fc4fa6e1 136 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
3c17ad19
JS
137 offset, name, max_cycles >> 1);
138 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
139 }
140 }
4ca22c26 141
57d05a93
JS
142 if (tk->underflow_seen) {
143 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
144 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
145 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
146 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 147 tk->last_warning = jiffies;
4ca22c26 148 }
57d05a93 149 tk->underflow_seen = 0;
4ca22c26
JS
150 }
151
57d05a93
JS
152 if (tk->overflow_seen) {
153 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
154 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
155 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
156 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 157 tk->last_warning = jiffies;
4ca22c26 158 }
57d05a93 159 tk->overflow_seen = 0;
4ca22c26 160 }
3c17ad19 161}
a558cd02 162
a5a1d1c2 163static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
a558cd02 164{
57d05a93 165 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 166 u64 now, last, mask, max, delta;
4ca22c26 167 unsigned int seq;
a558cd02 168
4ca22c26
JS
169 /*
170 * Since we're called holding a seqlock, the data may shift
171 * under us while we're doing the calculation. This can cause
172 * false positives, since we'd note a problem but throw the
173 * results away. So nest another seqlock here to atomically
174 * grab the points we are checking with.
175 */
176 do {
177 seq = read_seqcount_begin(&tk_core.seq);
178 now = tkr->read(tkr->clock);
179 last = tkr->cycle_last;
180 mask = tkr->mask;
181 max = tkr->clock->max_cycles;
182 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 183
4ca22c26 184 delta = clocksource_delta(now, last, mask);
a558cd02 185
057b87e3
JS
186 /*
187 * Try to catch underflows by checking if we are seeing small
188 * mask-relative negative values.
189 */
4ca22c26 190 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 191 tk->underflow_seen = 1;
057b87e3 192 delta = 0;
4ca22c26 193 }
057b87e3 194
a558cd02 195 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 196 if (unlikely(delta > max)) {
57d05a93 197 tk->overflow_seen = 1;
a558cd02 198 delta = tkr->clock->max_cycles;
4ca22c26 199 }
a558cd02
JS
200
201 return delta;
202}
3c17ad19 203#else
a5a1d1c2 204static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
3c17ad19
JS
205{
206}
a5a1d1c2 207static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
a558cd02 208{
a5a1d1c2 209 u64 cycle_now, delta;
a558cd02
JS
210
211 /* read clocksource */
212 cycle_now = tkr->read(tkr->clock);
213
214 /* calculate the delta since the last update_wall_time */
215 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
216
217 return delta;
218}
3c17ad19
JS
219#endif
220
155ec602 221/**
d26e4fe0 222 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 223 *
d26e4fe0 224 * @tk: The target timekeeper to setup.
155ec602
MS
225 * @clock: Pointer to clocksource.
226 *
227 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
228 * pair and interval request.
229 *
230 * Unless you're the timekeeping code, you should not be using this!
231 */
f726a697 232static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602 233{
a5a1d1c2 234 u64 interval;
a386b5af 235 u64 tmp, ntpinterval;
1e75fa8b 236 struct clocksource *old_clock;
155ec602 237
2c756feb 238 ++tk->cs_was_changed_seq;
876e7881
PZ
239 old_clock = tk->tkr_mono.clock;
240 tk->tkr_mono.clock = clock;
241 tk->tkr_mono.read = clock->read;
242 tk->tkr_mono.mask = clock->mask;
243 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 244
4a4ad80d
PZ
245 tk->tkr_raw.clock = clock;
246 tk->tkr_raw.read = clock->read;
247 tk->tkr_raw.mask = clock->mask;
248 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
249
155ec602
MS
250 /* Do the ns -> cycle conversion first, using original mult */
251 tmp = NTP_INTERVAL_LENGTH;
252 tmp <<= clock->shift;
a386b5af 253 ntpinterval = tmp;
0a544198
MS
254 tmp += clock->mult/2;
255 do_div(tmp, clock->mult);
155ec602
MS
256 if (tmp == 0)
257 tmp = 1;
258
a5a1d1c2 259 interval = (u64) tmp;
f726a697 260 tk->cycle_interval = interval;
155ec602
MS
261
262 /* Go back from cycles -> shifted ns */
cbd99e3b 263 tk->xtime_interval = interval * clock->mult;
f726a697 264 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
cbd99e3b 265 tk->raw_interval = (interval * clock->mult) >> clock->shift;
155ec602 266
1e75fa8b
JS
267 /* if changing clocks, convert xtime_nsec shift units */
268 if (old_clock) {
269 int shift_change = clock->shift - old_clock->shift;
270 if (shift_change < 0)
876e7881 271 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 272 else
876e7881 273 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 274 }
4a4ad80d
PZ
275 tk->tkr_raw.xtime_nsec = 0;
276
876e7881 277 tk->tkr_mono.shift = clock->shift;
4a4ad80d 278 tk->tkr_raw.shift = clock->shift;
155ec602 279
f726a697
JS
280 tk->ntp_error = 0;
281 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 282 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
283
284 /*
285 * The timekeeper keeps its own mult values for the currently
286 * active clocksource. These value will be adjusted via NTP
287 * to counteract clock drifting.
288 */
876e7881 289 tk->tkr_mono.mult = clock->mult;
4a4ad80d 290 tk->tkr_raw.mult = clock->mult;
dc491596 291 tk->ntp_err_mult = 0;
155ec602 292}
8524070b 293
2ba2a305 294/* Timekeeper helper functions. */
7b1f6207
SW
295
296#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
297static u32 default_arch_gettimeoffset(void) { return 0; }
298u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 299#else
e06fde37 300static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
301#endif
302
a5a1d1c2 303static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
6bd58f09 304{
9c164572 305 u64 nsec;
6bd58f09
CH
306
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
309
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
312}
313
acc89612 314static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 315{
a5a1d1c2 316 u64 delta;
2ba2a305 317
a558cd02 318 delta = timekeeping_get_delta(tkr);
6bd58f09
CH
319 return timekeeping_delta_to_ns(tkr, delta);
320}
2ba2a305 321
a5a1d1c2 322static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
6bd58f09 323{
a5a1d1c2 324 u64 delta;
f2a5a085 325
6bd58f09
CH
326 /* calculate the delta since the last update_wall_time */
327 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
328 return timekeeping_delta_to_ns(tkr, delta);
2ba2a305
MS
329}
330
4396e058
TG
331/**
332 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 333 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
334 *
335 * We want to use this from any context including NMI and tracing /
336 * instrumenting the timekeeping code itself.
337 *
6695b92a 338 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
339 *
340 * So if a NMI hits the update of base[0] then it will use base[1]
341 * which is still consistent. In the worst case this can result is a
342 * slightly wrong timestamp (a few nanoseconds). See
343 * @ktime_get_mono_fast_ns.
344 */
4498e746 345static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 346{
4498e746 347 struct tk_read_base *base = tkf->base;
4396e058
TG
348
349 /* Force readers off to base[1] */
4498e746 350 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
351
352 /* Update base[0] */
affe3e85 353 memcpy(base, tkr, sizeof(*base));
4396e058
TG
354
355 /* Force readers back to base[0] */
4498e746 356 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
357
358 /* Update base[1] */
359 memcpy(base + 1, base, sizeof(*base));
360}
361
362/**
363 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
364 *
365 * This timestamp is not guaranteed to be monotonic across an update.
366 * The timestamp is calculated by:
367 *
368 * now = base_mono + clock_delta * slope
369 *
370 * So if the update lowers the slope, readers who are forced to the
371 * not yet updated second array are still using the old steeper slope.
372 *
373 * tmono
374 * ^
375 * | o n
376 * | o n
377 * | u
378 * | o
379 * |o
380 * |12345678---> reader order
381 *
382 * o = old slope
383 * u = update
384 * n = new slope
385 *
386 * So reader 6 will observe time going backwards versus reader 5.
387 *
388 * While other CPUs are likely to be able observe that, the only way
389 * for a CPU local observation is when an NMI hits in the middle of
390 * the update. Timestamps taken from that NMI context might be ahead
391 * of the following timestamps. Callers need to be aware of that and
392 * deal with it.
393 */
4498e746 394static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
395{
396 struct tk_read_base *tkr;
397 unsigned int seq;
398 u64 now;
399
400 do {
7fc26327 401 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 402 tkr = tkf->base + (seq & 0x01);
27727df2
JS
403 now = ktime_to_ns(tkr->base);
404
58bfea95
JS
405 now += timekeeping_delta_to_ns(tkr,
406 clocksource_delta(
407 tkr->read(tkr->clock),
408 tkr->cycle_last,
409 tkr->mask));
4498e746 410 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 411
4396e058
TG
412 return now;
413}
4498e746
PZ
414
415u64 ktime_get_mono_fast_ns(void)
416{
417 return __ktime_get_fast_ns(&tk_fast_mono);
418}
4396e058
TG
419EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
420
f09cb9a1
PZ
421u64 ktime_get_raw_fast_ns(void)
422{
423 return __ktime_get_fast_ns(&tk_fast_raw);
424}
425EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
426
948a5312
JF
427/**
428 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
429 *
430 * To keep it NMI safe since we're accessing from tracing, we're not using a
431 * separate timekeeper with updates to monotonic clock and boot offset
432 * protected with seqlocks. This has the following minor side effects:
433 *
434 * (1) Its possible that a timestamp be taken after the boot offset is updated
435 * but before the timekeeper is updated. If this happens, the new boot offset
436 * is added to the old timekeeping making the clock appear to update slightly
437 * earlier:
438 * CPU 0 CPU 1
439 * timekeeping_inject_sleeptime64()
440 * __timekeeping_inject_sleeptime(tk, delta);
441 * timestamp();
442 * timekeeping_update(tk, TK_CLEAR_NTP...);
443 *
444 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
445 * partially updated. Since the tk->offs_boot update is a rare event, this
446 * should be a rare occurrence which postprocessing should be able to handle.
447 */
448u64 notrace ktime_get_boot_fast_ns(void)
449{
450 struct timekeeper *tk = &tk_core.timekeeper;
451
452 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
453}
454EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
455
060407ae 456/* Suspend-time cycles value for halted fast timekeeper. */
a5a1d1c2 457static u64 cycles_at_suspend;
060407ae 458
a5a1d1c2 459static u64 dummy_clock_read(struct clocksource *cs)
060407ae
RW
460{
461 return cycles_at_suspend;
462}
463
464/**
465 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
466 * @tk: Timekeeper to snapshot.
467 *
468 * It generally is unsafe to access the clocksource after timekeeping has been
469 * suspended, so take a snapshot of the readout base of @tk and use it as the
470 * fast timekeeper's readout base while suspended. It will return the same
471 * number of cycles every time until timekeeping is resumed at which time the
472 * proper readout base for the fast timekeeper will be restored automatically.
473 */
474static void halt_fast_timekeeper(struct timekeeper *tk)
475{
476 static struct tk_read_base tkr_dummy;
876e7881 477 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
478
479 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
480 cycles_at_suspend = tkr->read(tkr->clock);
481 tkr_dummy.read = dummy_clock_read;
4498e746 482 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
483
484 tkr = &tk->tkr_raw;
485 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
486 tkr_dummy.read = dummy_clock_read;
487 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
488}
489
c905fae4
TG
490#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
491
492static inline void update_vsyscall(struct timekeeper *tk)
493{
0680eb1f 494 struct timespec xt, wm;
c905fae4 495
e2dff1ec 496 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 497 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
498 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
499 tk->tkr_mono.cycle_last);
c905fae4
TG
500}
501
502static inline void old_vsyscall_fixup(struct timekeeper *tk)
503{
504 s64 remainder;
505
506 /*
507 * Store only full nanoseconds into xtime_nsec after rounding
508 * it up and add the remainder to the error difference.
509 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
510 * by truncating the remainder in vsyscalls. However, it causes
511 * additional work to be done in timekeeping_adjust(). Once
512 * the vsyscall implementations are converted to use xtime_nsec
513 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
514 * users are removed, this can be killed.
515 */
876e7881 516 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
0209b937
TG
517 if (remainder != 0) {
518 tk->tkr_mono.xtime_nsec -= remainder;
519 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
520 tk->ntp_error += remainder << tk->ntp_error_shift;
521 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
522 }
c905fae4
TG
523}
524#else
525#define old_vsyscall_fixup(tk)
526#endif
527
e0b306fe
MT
528static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
529
780427f0 530static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 531{
780427f0 532 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
533}
534
535/**
536 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
537 */
538int pvclock_gtod_register_notifier(struct notifier_block *nb)
539{
3fdb14fd 540 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
541 unsigned long flags;
542 int ret;
543
9a7a71b1 544 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 545 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 546 update_pvclock_gtod(tk, true);
9a7a71b1 547 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
548
549 return ret;
550}
551EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
552
553/**
554 * pvclock_gtod_unregister_notifier - unregister a pvclock
555 * timedata update listener
e0b306fe
MT
556 */
557int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
558{
e0b306fe
MT
559 unsigned long flags;
560 int ret;
561
9a7a71b1 562 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 563 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 564 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
565
566 return ret;
567}
568EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
569
833f32d7
JS
570/*
571 * tk_update_leap_state - helper to update the next_leap_ktime
572 */
573static inline void tk_update_leap_state(struct timekeeper *tk)
574{
575 tk->next_leap_ktime = ntp_get_next_leap();
2456e855 576 if (tk->next_leap_ktime != KTIME_MAX)
833f32d7
JS
577 /* Convert to monotonic time */
578 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
579}
580
7c032df5
TG
581/*
582 * Update the ktime_t based scalar nsec members of the timekeeper
583 */
584static inline void tk_update_ktime_data(struct timekeeper *tk)
585{
9e3680b1
HS
586 u64 seconds;
587 u32 nsec;
7c032df5
TG
588
589 /*
590 * The xtime based monotonic readout is:
591 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
592 * The ktime based monotonic readout is:
593 * nsec = base_mono + now();
594 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
595 */
9e3680b1
HS
596 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
597 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 598 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
599
600 /* Update the monotonic raw base */
4a4ad80d 601 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
602
603 /*
604 * The sum of the nanoseconds portions of xtime and
605 * wall_to_monotonic can be greater/equal one second. Take
606 * this into account before updating tk->ktime_sec.
607 */
876e7881 608 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
609 if (nsec >= NSEC_PER_SEC)
610 seconds++;
611 tk->ktime_sec = seconds;
7c032df5
TG
612}
613
9a7a71b1 614/* must hold timekeeper_lock */
04397fe9 615static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 616{
04397fe9 617 if (action & TK_CLEAR_NTP) {
f726a697 618 tk->ntp_error = 0;
cc06268c
TG
619 ntp_clear();
620 }
48cdc135 621
833f32d7 622 tk_update_leap_state(tk);
7c032df5
TG
623 tk_update_ktime_data(tk);
624
9bf2419f
TG
625 update_vsyscall(tk);
626 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
627
4498e746 628 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 629 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
630
631 if (action & TK_CLOCK_WAS_SET)
632 tk->clock_was_set_seq++;
d1518326
JS
633 /*
634 * The mirroring of the data to the shadow-timekeeper needs
635 * to happen last here to ensure we don't over-write the
636 * timekeeper structure on the next update with stale data
637 */
638 if (action & TK_MIRROR)
639 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
640 sizeof(tk_core.timekeeper));
cc06268c
TG
641}
642
8524070b 643/**
155ec602 644 * timekeeping_forward_now - update clock to the current time
8524070b 645 *
9a055117
RZ
646 * Forward the current clock to update its state since the last call to
647 * update_wall_time(). This is useful before significant clock changes,
648 * as it avoids having to deal with this time offset explicitly.
8524070b 649 */
f726a697 650static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 651{
876e7881 652 struct clocksource *clock = tk->tkr_mono.clock;
a5a1d1c2 653 u64 cycle_now, delta;
acc89612 654 u64 nsec;
8524070b 655
876e7881
PZ
656 cycle_now = tk->tkr_mono.read(clock);
657 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
658 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 659 tk->tkr_raw.cycle_last = cycle_now;
8524070b 660
876e7881 661 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 662
7b1f6207 663 /* If arch requires, add in get_arch_timeoffset() */
876e7881 664 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 665
f726a697 666 tk_normalize_xtime(tk);
2d42244a 667
4a4ad80d 668 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 669 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 670}
671
672/**
d6d29896 673 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 674 * @ts: pointer to the timespec to be set
675 *
1e817fb6
KC
676 * Updates the time of day in the timespec.
677 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 678 */
d6d29896 679int __getnstimeofday64(struct timespec64 *ts)
8524070b 680{
3fdb14fd 681 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 682 unsigned long seq;
acc89612 683 u64 nsecs;
8524070b 684
685 do {
3fdb14fd 686 seq = read_seqcount_begin(&tk_core.seq);
8524070b 687
4e250fdd 688 ts->tv_sec = tk->xtime_sec;
876e7881 689 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 690
3fdb14fd 691 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 692
ec145bab 693 ts->tv_nsec = 0;
d6d29896 694 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
695
696 /*
697 * Do not bail out early, in case there were callers still using
698 * the value, even in the face of the WARN_ON.
699 */
700 if (unlikely(timekeeping_suspended))
701 return -EAGAIN;
702 return 0;
703}
d6d29896 704EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
705
706/**
d6d29896 707 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 708 * @ts: pointer to the timespec64 to be set
1e817fb6 709 *
5322e4c2 710 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 711 */
d6d29896 712void getnstimeofday64(struct timespec64 *ts)
1e817fb6 713{
d6d29896 714 WARN_ON(__getnstimeofday64(ts));
8524070b 715}
d6d29896 716EXPORT_SYMBOL(getnstimeofday64);
8524070b 717
951ed4d3
MS
718ktime_t ktime_get(void)
719{
3fdb14fd 720 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 721 unsigned int seq;
a016a5bd 722 ktime_t base;
acc89612 723 u64 nsecs;
951ed4d3
MS
724
725 WARN_ON(timekeeping_suspended);
726
727 do {
3fdb14fd 728 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
729 base = tk->tkr_mono.base;
730 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 731
3fdb14fd 732 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 733
a016a5bd 734 return ktime_add_ns(base, nsecs);
951ed4d3
MS
735}
736EXPORT_SYMBOL_GPL(ktime_get);
737
6374f912
HG
738u32 ktime_get_resolution_ns(void)
739{
740 struct timekeeper *tk = &tk_core.timekeeper;
741 unsigned int seq;
742 u32 nsecs;
743
744 WARN_ON(timekeeping_suspended);
745
746 do {
747 seq = read_seqcount_begin(&tk_core.seq);
748 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
749 } while (read_seqcount_retry(&tk_core.seq, seq));
750
751 return nsecs;
752}
753EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
754
0077dc60
TG
755static ktime_t *offsets[TK_OFFS_MAX] = {
756 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
757 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
758 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
759};
760
761ktime_t ktime_get_with_offset(enum tk_offsets offs)
762{
763 struct timekeeper *tk = &tk_core.timekeeper;
764 unsigned int seq;
765 ktime_t base, *offset = offsets[offs];
acc89612 766 u64 nsecs;
0077dc60
TG
767
768 WARN_ON(timekeeping_suspended);
769
770 do {
771 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
772 base = ktime_add(tk->tkr_mono.base, *offset);
773 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
774
775 } while (read_seqcount_retry(&tk_core.seq, seq));
776
777 return ktime_add_ns(base, nsecs);
778
779}
780EXPORT_SYMBOL_GPL(ktime_get_with_offset);
781
9a6b5197
TG
782/**
783 * ktime_mono_to_any() - convert mononotic time to any other time
784 * @tmono: time to convert.
785 * @offs: which offset to use
786 */
787ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
788{
789 ktime_t *offset = offsets[offs];
790 unsigned long seq;
791 ktime_t tconv;
792
793 do {
794 seq = read_seqcount_begin(&tk_core.seq);
795 tconv = ktime_add(tmono, *offset);
796 } while (read_seqcount_retry(&tk_core.seq, seq));
797
798 return tconv;
799}
800EXPORT_SYMBOL_GPL(ktime_mono_to_any);
801
f519b1a2
TG
802/**
803 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
804 */
805ktime_t ktime_get_raw(void)
806{
807 struct timekeeper *tk = &tk_core.timekeeper;
808 unsigned int seq;
809 ktime_t base;
acc89612 810 u64 nsecs;
f519b1a2
TG
811
812 do {
813 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
814 base = tk->tkr_raw.base;
815 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
816
817 } while (read_seqcount_retry(&tk_core.seq, seq));
818
819 return ktime_add_ns(base, nsecs);
820}
821EXPORT_SYMBOL_GPL(ktime_get_raw);
822
951ed4d3 823/**
d6d29896 824 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
825 * @ts: pointer to timespec variable
826 *
827 * The function calculates the monotonic clock from the realtime
828 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 829 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 830 */
d6d29896 831void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 832{
3fdb14fd 833 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 834 struct timespec64 tomono;
951ed4d3 835 unsigned int seq;
acc89612 836 u64 nsec;
951ed4d3
MS
837
838 WARN_ON(timekeeping_suspended);
839
840 do {
3fdb14fd 841 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 842 ts->tv_sec = tk->xtime_sec;
876e7881 843 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 844 tomono = tk->wall_to_monotonic;
951ed4d3 845
3fdb14fd 846 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 847
d6d29896
TG
848 ts->tv_sec += tomono.tv_sec;
849 ts->tv_nsec = 0;
850 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 851}
d6d29896 852EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 853
9e3680b1
HS
854/**
855 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
856 *
857 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
858 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
859 * works on both 32 and 64 bit systems. On 32 bit systems the readout
860 * covers ~136 years of uptime which should be enough to prevent
861 * premature wrap arounds.
862 */
863time64_t ktime_get_seconds(void)
864{
865 struct timekeeper *tk = &tk_core.timekeeper;
866
867 WARN_ON(timekeeping_suspended);
868 return tk->ktime_sec;
869}
870EXPORT_SYMBOL_GPL(ktime_get_seconds);
871
dbe7aa62
HS
872/**
873 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
874 *
875 * Returns the wall clock seconds since 1970. This replaces the
876 * get_seconds() interface which is not y2038 safe on 32bit systems.
877 *
878 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
879 * 32bit systems the access must be protected with the sequence
880 * counter to provide "atomic" access to the 64bit tk->xtime_sec
881 * value.
882 */
883time64_t ktime_get_real_seconds(void)
884{
885 struct timekeeper *tk = &tk_core.timekeeper;
886 time64_t seconds;
887 unsigned int seq;
888
889 if (IS_ENABLED(CONFIG_64BIT))
890 return tk->xtime_sec;
891
892 do {
893 seq = read_seqcount_begin(&tk_core.seq);
894 seconds = tk->xtime_sec;
895
896 } while (read_seqcount_retry(&tk_core.seq, seq));
897
898 return seconds;
899}
900EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
901
dee36654
D
902/**
903 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
904 * but without the sequence counter protect. This internal function
905 * is called just when timekeeping lock is already held.
906 */
907time64_t __ktime_get_real_seconds(void)
908{
909 struct timekeeper *tk = &tk_core.timekeeper;
910
911 return tk->xtime_sec;
912}
913
9da0f49c
CH
914/**
915 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
916 * @systime_snapshot: pointer to struct receiving the system time snapshot
917 */
918void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
919{
920 struct timekeeper *tk = &tk_core.timekeeper;
921 unsigned long seq;
922 ktime_t base_raw;
923 ktime_t base_real;
acc89612
TG
924 u64 nsec_raw;
925 u64 nsec_real;
a5a1d1c2 926 u64 now;
9da0f49c 927
ba26621e
CH
928 WARN_ON_ONCE(timekeeping_suspended);
929
9da0f49c
CH
930 do {
931 seq = read_seqcount_begin(&tk_core.seq);
932
933 now = tk->tkr_mono.read(tk->tkr_mono.clock);
2c756feb
CH
934 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
935 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
9da0f49c
CH
936 base_real = ktime_add(tk->tkr_mono.base,
937 tk_core.timekeeper.offs_real);
938 base_raw = tk->tkr_raw.base;
939 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
940 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
941 } while (read_seqcount_retry(&tk_core.seq, seq));
942
943 systime_snapshot->cycles = now;
944 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
945 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
946}
947EXPORT_SYMBOL_GPL(ktime_get_snapshot);
dee36654 948
2c756feb
CH
949/* Scale base by mult/div checking for overflow */
950static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
951{
952 u64 tmp, rem;
953
954 tmp = div64_u64_rem(*base, div, &rem);
955
956 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
957 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
958 return -EOVERFLOW;
959 tmp *= mult;
960 rem *= mult;
961
962 do_div(rem, div);
963 *base = tmp + rem;
964 return 0;
965}
966
967/**
968 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
969 * @history: Snapshot representing start of history
970 * @partial_history_cycles: Cycle offset into history (fractional part)
971 * @total_history_cycles: Total history length in cycles
972 * @discontinuity: True indicates clock was set on history period
973 * @ts: Cross timestamp that should be adjusted using
974 * partial/total ratio
975 *
976 * Helper function used by get_device_system_crosststamp() to correct the
977 * crosstimestamp corresponding to the start of the current interval to the
978 * system counter value (timestamp point) provided by the driver. The
979 * total_history_* quantities are the total history starting at the provided
980 * reference point and ending at the start of the current interval. The cycle
981 * count between the driver timestamp point and the start of the current
982 * interval is partial_history_cycles.
983 */
984static int adjust_historical_crosststamp(struct system_time_snapshot *history,
a5a1d1c2
TG
985 u64 partial_history_cycles,
986 u64 total_history_cycles,
2c756feb
CH
987 bool discontinuity,
988 struct system_device_crosststamp *ts)
989{
990 struct timekeeper *tk = &tk_core.timekeeper;
991 u64 corr_raw, corr_real;
992 bool interp_forward;
993 int ret;
994
995 if (total_history_cycles == 0 || partial_history_cycles == 0)
996 return 0;
997
998 /* Interpolate shortest distance from beginning or end of history */
5fc63f95 999 interp_forward = partial_history_cycles > total_history_cycles / 2;
2c756feb
CH
1000 partial_history_cycles = interp_forward ?
1001 total_history_cycles - partial_history_cycles :
1002 partial_history_cycles;
1003
1004 /*
1005 * Scale the monotonic raw time delta by:
1006 * partial_history_cycles / total_history_cycles
1007 */
1008 corr_raw = (u64)ktime_to_ns(
1009 ktime_sub(ts->sys_monoraw, history->raw));
1010 ret = scale64_check_overflow(partial_history_cycles,
1011 total_history_cycles, &corr_raw);
1012 if (ret)
1013 return ret;
1014
1015 /*
1016 * If there is a discontinuity in the history, scale monotonic raw
1017 * correction by:
1018 * mult(real)/mult(raw) yielding the realtime correction
1019 * Otherwise, calculate the realtime correction similar to monotonic
1020 * raw calculation
1021 */
1022 if (discontinuity) {
1023 corr_real = mul_u64_u32_div
1024 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1025 } else {
1026 corr_real = (u64)ktime_to_ns(
1027 ktime_sub(ts->sys_realtime, history->real));
1028 ret = scale64_check_overflow(partial_history_cycles,
1029 total_history_cycles, &corr_real);
1030 if (ret)
1031 return ret;
1032 }
1033
1034 /* Fixup monotonic raw and real time time values */
1035 if (interp_forward) {
1036 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1037 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1038 } else {
1039 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1040 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1041 }
1042
1043 return 0;
1044}
1045
1046/*
1047 * cycle_between - true if test occurs chronologically between before and after
1048 */
a5a1d1c2 1049static bool cycle_between(u64 before, u64 test, u64 after)
2c756feb
CH
1050{
1051 if (test > before && test < after)
1052 return true;
1053 if (test < before && before > after)
1054 return true;
1055 return false;
1056}
1057
8006c245
CH
1058/**
1059 * get_device_system_crosststamp - Synchronously capture system/device timestamp
2c756feb 1060 * @get_time_fn: Callback to get simultaneous device time and
8006c245 1061 * system counter from the device driver
2c756feb
CH
1062 * @ctx: Context passed to get_time_fn()
1063 * @history_begin: Historical reference point used to interpolate system
1064 * time when counter provided by the driver is before the current interval
8006c245
CH
1065 * @xtstamp: Receives simultaneously captured system and device time
1066 *
1067 * Reads a timestamp from a device and correlates it to system time
1068 */
1069int get_device_system_crosststamp(int (*get_time_fn)
1070 (ktime_t *device_time,
1071 struct system_counterval_t *sys_counterval,
1072 void *ctx),
1073 void *ctx,
2c756feb 1074 struct system_time_snapshot *history_begin,
8006c245
CH
1075 struct system_device_crosststamp *xtstamp)
1076{
1077 struct system_counterval_t system_counterval;
1078 struct timekeeper *tk = &tk_core.timekeeper;
a5a1d1c2 1079 u64 cycles, now, interval_start;
6436257b 1080 unsigned int clock_was_set_seq = 0;
8006c245 1081 ktime_t base_real, base_raw;
acc89612 1082 u64 nsec_real, nsec_raw;
2c756feb 1083 u8 cs_was_changed_seq;
8006c245 1084 unsigned long seq;
2c756feb 1085 bool do_interp;
8006c245
CH
1086 int ret;
1087
1088 do {
1089 seq = read_seqcount_begin(&tk_core.seq);
1090 /*
1091 * Try to synchronously capture device time and a system
1092 * counter value calling back into the device driver
1093 */
1094 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1095 if (ret)
1096 return ret;
1097
1098 /*
1099 * Verify that the clocksource associated with the captured
1100 * system counter value is the same as the currently installed
1101 * timekeeper clocksource
1102 */
1103 if (tk->tkr_mono.clock != system_counterval.cs)
1104 return -ENODEV;
2c756feb
CH
1105 cycles = system_counterval.cycles;
1106
1107 /*
1108 * Check whether the system counter value provided by the
1109 * device driver is on the current timekeeping interval.
1110 */
1111 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1112 interval_start = tk->tkr_mono.cycle_last;
1113 if (!cycle_between(interval_start, cycles, now)) {
1114 clock_was_set_seq = tk->clock_was_set_seq;
1115 cs_was_changed_seq = tk->cs_was_changed_seq;
1116 cycles = interval_start;
1117 do_interp = true;
1118 } else {
1119 do_interp = false;
1120 }
8006c245
CH
1121
1122 base_real = ktime_add(tk->tkr_mono.base,
1123 tk_core.timekeeper.offs_real);
1124 base_raw = tk->tkr_raw.base;
1125
1126 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1127 system_counterval.cycles);
1128 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1129 system_counterval.cycles);
1130 } while (read_seqcount_retry(&tk_core.seq, seq));
1131
1132 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1133 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
2c756feb
CH
1134
1135 /*
1136 * Interpolate if necessary, adjusting back from the start of the
1137 * current interval
1138 */
1139 if (do_interp) {
a5a1d1c2 1140 u64 partial_history_cycles, total_history_cycles;
2c756feb
CH
1141 bool discontinuity;
1142
1143 /*
1144 * Check that the counter value occurs after the provided
1145 * history reference and that the history doesn't cross a
1146 * clocksource change
1147 */
1148 if (!history_begin ||
1149 !cycle_between(history_begin->cycles,
1150 system_counterval.cycles, cycles) ||
1151 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1152 return -EINVAL;
1153 partial_history_cycles = cycles - system_counterval.cycles;
1154 total_history_cycles = cycles - history_begin->cycles;
1155 discontinuity =
1156 history_begin->clock_was_set_seq != clock_was_set_seq;
1157
1158 ret = adjust_historical_crosststamp(history_begin,
1159 partial_history_cycles,
1160 total_history_cycles,
1161 discontinuity, xtstamp);
1162 if (ret)
1163 return ret;
1164 }
1165
8006c245
CH
1166 return 0;
1167}
1168EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1169
8524070b 1170/**
1171 * do_gettimeofday - Returns the time of day in a timeval
1172 * @tv: pointer to the timeval to be set
1173 *
efd9ac86 1174 * NOTE: Users should be converted to using getnstimeofday()
8524070b 1175 */
1176void do_gettimeofday(struct timeval *tv)
1177{
d6d29896 1178 struct timespec64 now;
8524070b 1179
d6d29896 1180 getnstimeofday64(&now);
8524070b 1181 tv->tv_sec = now.tv_sec;
1182 tv->tv_usec = now.tv_nsec/1000;
1183}
8524070b 1184EXPORT_SYMBOL(do_gettimeofday);
d239f49d 1185
8524070b 1186/**
21f7eca5 1187 * do_settimeofday64 - Sets the time of day.
1188 * @ts: pointer to the timespec64 variable containing the new time
8524070b 1189 *
1190 * Sets the time of day to the new time and update NTP and notify hrtimers
1191 */
21f7eca5 1192int do_settimeofday64(const struct timespec64 *ts)
8524070b 1193{
3fdb14fd 1194 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 1195 struct timespec64 ts_delta, xt;
92c1d3ed 1196 unsigned long flags;
e1d7ba87 1197 int ret = 0;
8524070b 1198
21f7eca5 1199 if (!timespec64_valid_strict(ts))
8524070b 1200 return -EINVAL;
1201
9a7a71b1 1202 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1203 write_seqcount_begin(&tk_core.seq);
8524070b 1204
4e250fdd 1205 timekeeping_forward_now(tk);
9a055117 1206
4e250fdd 1207 xt = tk_xtime(tk);
21f7eca5 1208 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1209 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 1210
e1d7ba87
WY
1211 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1212 ret = -EINVAL;
1213 goto out;
1214 }
1215
7d489d15 1216 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 1217
21f7eca5 1218 tk_set_xtime(tk, ts);
e1d7ba87 1219out:
780427f0 1220 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 1221
3fdb14fd 1222 write_seqcount_end(&tk_core.seq);
9a7a71b1 1223 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1224
1225 /* signal hrtimers about time change */
1226 clock_was_set();
1227
e1d7ba87 1228 return ret;
8524070b 1229}
21f7eca5 1230EXPORT_SYMBOL(do_settimeofday64);
8524070b 1231
c528f7c6
JS
1232/**
1233 * timekeeping_inject_offset - Adds or subtracts from the current time.
1234 * @tv: pointer to the timespec variable containing the offset
1235 *
1236 * Adds or subtracts an offset value from the current time.
1237 */
1238int timekeeping_inject_offset(struct timespec *ts)
1239{
3fdb14fd 1240 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1241 unsigned long flags;
7d489d15 1242 struct timespec64 ts64, tmp;
4e8b1452 1243 int ret = 0;
c528f7c6 1244
37cf4dc3 1245 if (!timespec_inject_offset_valid(ts))
c528f7c6
JS
1246 return -EINVAL;
1247
7d489d15
JS
1248 ts64 = timespec_to_timespec64(*ts);
1249
9a7a71b1 1250 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1251 write_seqcount_begin(&tk_core.seq);
c528f7c6 1252
4e250fdd 1253 timekeeping_forward_now(tk);
c528f7c6 1254
4e8b1452 1255 /* Make sure the proposed value is valid */
7d489d15 1256 tmp = timespec64_add(tk_xtime(tk), ts64);
e1d7ba87
WY
1257 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1258 !timespec64_valid_strict(&tmp)) {
4e8b1452
JS
1259 ret = -EINVAL;
1260 goto error;
1261 }
1e75fa8b 1262
7d489d15
JS
1263 tk_xtime_add(tk, &ts64);
1264 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 1265
4e8b1452 1266error: /* even if we error out, we forwarded the time, so call update */
780427f0 1267 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 1268
3fdb14fd 1269 write_seqcount_end(&tk_core.seq);
9a7a71b1 1270 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1271
1272 /* signal hrtimers about time change */
1273 clock_was_set();
1274
4e8b1452 1275 return ret;
c528f7c6
JS
1276}
1277EXPORT_SYMBOL(timekeeping_inject_offset);
1278
cc244dda 1279/**
40d9f827 1280 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
cc244dda
JS
1281 *
1282 */
dd5d70e8 1283static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1284{
1285 tk->tai_offset = tai_offset;
04005f60 1286 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1287}
1288
8524070b 1289/**
1290 * change_clocksource - Swaps clocksources if a new one is available
1291 *
1292 * Accumulates current time interval and initializes new clocksource
1293 */
75c5158f 1294static int change_clocksource(void *data)
8524070b 1295{
3fdb14fd 1296 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1297 struct clocksource *new, *old;
f695cf94 1298 unsigned long flags;
8524070b 1299
75c5158f 1300 new = (struct clocksource *) data;
8524070b 1301
9a7a71b1 1302 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1303 write_seqcount_begin(&tk_core.seq);
f695cf94 1304
4e250fdd 1305 timekeeping_forward_now(tk);
09ac369c
TG
1306 /*
1307 * If the cs is in module, get a module reference. Succeeds
1308 * for built-in code (owner == NULL) as well.
1309 */
1310 if (try_module_get(new->owner)) {
1311 if (!new->enable || new->enable(new) == 0) {
876e7881 1312 old = tk->tkr_mono.clock;
09ac369c
TG
1313 tk_setup_internals(tk, new);
1314 if (old->disable)
1315 old->disable(old);
1316 module_put(old->owner);
1317 } else {
1318 module_put(new->owner);
1319 }
75c5158f 1320 }
780427f0 1321 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1322
3fdb14fd 1323 write_seqcount_end(&tk_core.seq);
9a7a71b1 1324 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1325
75c5158f
MS
1326 return 0;
1327}
8524070b 1328
75c5158f
MS
1329/**
1330 * timekeeping_notify - Install a new clock source
1331 * @clock: pointer to the clock source
1332 *
1333 * This function is called from clocksource.c after a new, better clock
1334 * source has been registered. The caller holds the clocksource_mutex.
1335 */
ba919d1c 1336int timekeeping_notify(struct clocksource *clock)
75c5158f 1337{
3fdb14fd 1338 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1339
876e7881 1340 if (tk->tkr_mono.clock == clock)
ba919d1c 1341 return 0;
75c5158f 1342 stop_machine(change_clocksource, clock, NULL);
8524070b 1343 tick_clock_notify();
876e7881 1344 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1345}
75c5158f 1346
2d42244a 1347/**
cdba2ec5
JS
1348 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1349 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1350 *
1351 * Returns the raw monotonic time (completely un-modified by ntp)
1352 */
cdba2ec5 1353void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1354{
3fdb14fd 1355 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1356 struct timespec64 ts64;
2d42244a 1357 unsigned long seq;
acc89612 1358 u64 nsecs;
2d42244a
JS
1359
1360 do {
3fdb14fd 1361 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1362 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1363 ts64 = tk->raw_time;
2d42244a 1364
3fdb14fd 1365 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1366
7d489d15 1367 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1368 *ts = ts64;
2d42244a 1369}
cdba2ec5
JS
1370EXPORT_SYMBOL(getrawmonotonic64);
1371
2d42244a 1372
8524070b 1373/**
cf4fc6cb 1374 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1375 */
cf4fc6cb 1376int timekeeping_valid_for_hres(void)
8524070b 1377{
3fdb14fd 1378 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1379 unsigned long seq;
1380 int ret;
1381
1382 do {
3fdb14fd 1383 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1384
876e7881 1385 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1386
3fdb14fd 1387 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1388
1389 return ret;
1390}
1391
98962465
JH
1392/**
1393 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1394 */
1395u64 timekeeping_max_deferment(void)
1396{
3fdb14fd 1397 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1398 unsigned long seq;
1399 u64 ret;
42e71e81 1400
70471f2f 1401 do {
3fdb14fd 1402 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1403
876e7881 1404 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1405
3fdb14fd 1406 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1407
1408 return ret;
98962465
JH
1409}
1410
8524070b 1411/**
d4f587c6 1412 * read_persistent_clock - Return time from the persistent clock.
8524070b 1413 *
1414 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1415 * Reads the time from the battery backed persistent clock.
1416 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1417 *
1418 * XXX - Do be sure to remove it once all arches implement it.
1419 */
52f5684c 1420void __weak read_persistent_clock(struct timespec *ts)
8524070b 1421{
d4f587c6
MS
1422 ts->tv_sec = 0;
1423 ts->tv_nsec = 0;
8524070b 1424}
1425
2ee96632
XP
1426void __weak read_persistent_clock64(struct timespec64 *ts64)
1427{
1428 struct timespec ts;
1429
1430 read_persistent_clock(&ts);
1431 *ts64 = timespec_to_timespec64(ts);
1432}
1433
23970e38 1434/**
e83d0a41 1435 * read_boot_clock64 - Return time of the system start.
23970e38
MS
1436 *
1437 * Weak dummy function for arches that do not yet support it.
1438 * Function to read the exact time the system has been started.
e83d0a41 1439 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
23970e38
MS
1440 *
1441 * XXX - Do be sure to remove it once all arches implement it.
1442 */
e83d0a41 1443void __weak read_boot_clock64(struct timespec64 *ts)
23970e38
MS
1444{
1445 ts->tv_sec = 0;
1446 ts->tv_nsec = 0;
1447}
1448
0fa88cb4
XP
1449/* Flag for if timekeeping_resume() has injected sleeptime */
1450static bool sleeptime_injected;
1451
1452/* Flag for if there is a persistent clock on this platform */
1453static bool persistent_clock_exists;
1454
8524070b 1455/*
1456 * timekeeping_init - Initializes the clocksource and common timekeeping values
1457 */
1458void __init timekeeping_init(void)
1459{
3fdb14fd 1460 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1461 struct clocksource *clock;
8524070b 1462 unsigned long flags;
7d489d15 1463 struct timespec64 now, boot, tmp;
31ade306 1464
2ee96632 1465 read_persistent_clock64(&now);
7d489d15 1466 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1467 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1468 " Check your CMOS/BIOS settings.\n");
1469 now.tv_sec = 0;
1470 now.tv_nsec = 0;
31ade306 1471 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1472 persistent_clock_exists = true;
4e8b1452 1473
9a806ddb 1474 read_boot_clock64(&boot);
7d489d15 1475 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1476 pr_warn("WARNING: Boot clock returned invalid value!\n"
1477 " Check your CMOS/BIOS settings.\n");
1478 boot.tv_sec = 0;
1479 boot.tv_nsec = 0;
1480 }
8524070b 1481
9a7a71b1 1482 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1483 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1484 ntp_init();
1485
f1b82746 1486 clock = clocksource_default_clock();
a0f7d48b
MS
1487 if (clock->enable)
1488 clock->enable(clock);
4e250fdd 1489 tk_setup_internals(tk, clock);
8524070b 1490
4e250fdd
JS
1491 tk_set_xtime(tk, &now);
1492 tk->raw_time.tv_sec = 0;
1493 tk->raw_time.tv_nsec = 0;
1e75fa8b 1494 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1495 boot = tk_xtime(tk);
1e75fa8b 1496
7d489d15 1497 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1498 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1499
56fd16ca 1500 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
48cdc135 1501
3fdb14fd 1502 write_seqcount_end(&tk_core.seq);
9a7a71b1 1503 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1504}
1505
264bb3f7 1506/* time in seconds when suspend began for persistent clock */
7d489d15 1507static struct timespec64 timekeeping_suspend_time;
8524070b 1508
304529b1
JS
1509/**
1510 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1511 * @delta: pointer to a timespec delta value
1512 *
1513 * Takes a timespec offset measuring a suspend interval and properly
1514 * adds the sleep offset to the timekeeping variables.
1515 */
f726a697 1516static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1517 struct timespec64 *delta)
304529b1 1518{
7d489d15 1519 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1520 printk_deferred(KERN_WARNING
1521 "__timekeeping_inject_sleeptime: Invalid "
1522 "sleep delta value!\n");
cb5de2f8
JS
1523 return;
1524 }
f726a697 1525 tk_xtime_add(tk, delta);
7d489d15 1526 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1527 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1528 tk_debug_account_sleep_time(delta);
304529b1
JS
1529}
1530
7f298139 1531#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1532/**
1533 * We have three kinds of time sources to use for sleep time
1534 * injection, the preference order is:
1535 * 1) non-stop clocksource
1536 * 2) persistent clock (ie: RTC accessible when irqs are off)
1537 * 3) RTC
1538 *
1539 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1540 * If system has neither 1) nor 2), 3) will be used finally.
1541 *
1542 *
1543 * If timekeeping has injected sleeptime via either 1) or 2),
1544 * 3) becomes needless, so in this case we don't need to call
1545 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1546 * means.
1547 */
1548bool timekeeping_rtc_skipresume(void)
1549{
1550 return sleeptime_injected;
1551}
1552
1553/**
1554 * 1) can be determined whether to use or not only when doing
1555 * timekeeping_resume() which is invoked after rtc_suspend(),
1556 * so we can't skip rtc_suspend() surely if system has 1).
1557 *
1558 * But if system has 2), 2) will definitely be used, so in this
1559 * case we don't need to call rtc_suspend(), and this is what
1560 * timekeeping_rtc_skipsuspend() means.
1561 */
1562bool timekeeping_rtc_skipsuspend(void)
1563{
1564 return persistent_clock_exists;
1565}
1566
304529b1 1567/**
04d90890 1568 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1569 * @delta: pointer to a timespec64 delta value
304529b1 1570 *
2ee96632 1571 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1572 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1573 * and also don't have an effective nonstop clocksource.
304529b1
JS
1574 *
1575 * This function should only be called by rtc_resume(), and allows
1576 * a suspend offset to be injected into the timekeeping values.
1577 */
04d90890 1578void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1579{
3fdb14fd 1580 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1581 unsigned long flags;
304529b1 1582
9a7a71b1 1583 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1584 write_seqcount_begin(&tk_core.seq);
70471f2f 1585
4e250fdd 1586 timekeeping_forward_now(tk);
304529b1 1587
04d90890 1588 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1589
780427f0 1590 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1591
3fdb14fd 1592 write_seqcount_end(&tk_core.seq);
9a7a71b1 1593 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1594
1595 /* signal hrtimers about time change */
1596 clock_was_set();
1597}
7f298139 1598#endif
304529b1 1599
8524070b 1600/**
1601 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1602 */
124cf911 1603void timekeeping_resume(void)
8524070b 1604{
3fdb14fd 1605 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1606 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1607 unsigned long flags;
7d489d15 1608 struct timespec64 ts_new, ts_delta;
a5a1d1c2 1609 u64 cycle_now;
d4f587c6 1610
0fa88cb4 1611 sleeptime_injected = false;
2ee96632 1612 read_persistent_clock64(&ts_new);
8524070b 1613
adc78e6b 1614 clockevents_resume();
d10ff3fb
TG
1615 clocksource_resume();
1616
9a7a71b1 1617 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1618 write_seqcount_begin(&tk_core.seq);
8524070b 1619
e445cf1c
FT
1620 /*
1621 * After system resumes, we need to calculate the suspended time and
1622 * compensate it for the OS time. There are 3 sources that could be
1623 * used: Nonstop clocksource during suspend, persistent clock and rtc
1624 * device.
1625 *
1626 * One specific platform may have 1 or 2 or all of them, and the
1627 * preference will be:
1628 * suspend-nonstop clocksource -> persistent clock -> rtc
1629 * The less preferred source will only be tried if there is no better
1630 * usable source. The rtc part is handled separately in rtc core code.
1631 */
876e7881 1632 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1633 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1634 cycle_now > tk->tkr_mono.cycle_last) {
c029a2be 1635 u64 nsec, cyc_delta;
e445cf1c 1636
c029a2be
TG
1637 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1638 tk->tkr_mono.mask);
1639 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
7d489d15 1640 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1641 sleeptime_injected = true;
7d489d15
JS
1642 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1643 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1644 sleeptime_injected = true;
8524070b 1645 }
e445cf1c 1646
0fa88cb4 1647 if (sleeptime_injected)
e445cf1c
FT
1648 __timekeeping_inject_sleeptime(tk, &ts_delta);
1649
1650 /* Re-base the last cycle value */
876e7881 1651 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1652 tk->tkr_raw.cycle_last = cycle_now;
1653
4e250fdd 1654 tk->ntp_error = 0;
8524070b 1655 timekeeping_suspended = 0;
780427f0 1656 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1657 write_seqcount_end(&tk_core.seq);
9a7a71b1 1658 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1659
1660 touch_softlockup_watchdog();
1661
4ffee521 1662 tick_resume();
b12a03ce 1663 hrtimers_resume();
8524070b 1664}
1665
124cf911 1666int timekeeping_suspend(void)
8524070b 1667{
3fdb14fd 1668 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1669 unsigned long flags;
7d489d15
JS
1670 struct timespec64 delta, delta_delta;
1671 static struct timespec64 old_delta;
8524070b 1672
2ee96632 1673 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1674
0d6bd995
ZM
1675 /*
1676 * On some systems the persistent_clock can not be detected at
1677 * timekeeping_init by its return value, so if we see a valid
1678 * value returned, update the persistent_clock_exists flag.
1679 */
1680 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1681 persistent_clock_exists = true;
0d6bd995 1682
9a7a71b1 1683 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1684 write_seqcount_begin(&tk_core.seq);
4e250fdd 1685 timekeeping_forward_now(tk);
8524070b 1686 timekeeping_suspended = 1;
cb33217b 1687
0fa88cb4 1688 if (persistent_clock_exists) {
cb33217b 1689 /*
264bb3f7
XP
1690 * To avoid drift caused by repeated suspend/resumes,
1691 * which each can add ~1 second drift error,
1692 * try to compensate so the difference in system time
1693 * and persistent_clock time stays close to constant.
cb33217b 1694 */
264bb3f7
XP
1695 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1696 delta_delta = timespec64_sub(delta, old_delta);
1697 if (abs(delta_delta.tv_sec) >= 2) {
1698 /*
1699 * if delta_delta is too large, assume time correction
1700 * has occurred and set old_delta to the current delta.
1701 */
1702 old_delta = delta;
1703 } else {
1704 /* Otherwise try to adjust old_system to compensate */
1705 timekeeping_suspend_time =
1706 timespec64_add(timekeeping_suspend_time, delta_delta);
1707 }
cb33217b 1708 }
330a1617
JS
1709
1710 timekeeping_update(tk, TK_MIRROR);
060407ae 1711 halt_fast_timekeeper(tk);
3fdb14fd 1712 write_seqcount_end(&tk_core.seq);
9a7a71b1 1713 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1714
4ffee521 1715 tick_suspend();
c54a42b1 1716 clocksource_suspend();
adc78e6b 1717 clockevents_suspend();
8524070b 1718
1719 return 0;
1720}
1721
1722/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1723static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1724 .resume = timekeeping_resume,
1725 .suspend = timekeeping_suspend,
8524070b 1726};
1727
e1a85b2c 1728static int __init timekeeping_init_ops(void)
8524070b 1729{
e1a85b2c
RW
1730 register_syscore_ops(&timekeeping_syscore_ops);
1731 return 0;
8524070b 1732}
e1a85b2c 1733device_initcall(timekeeping_init_ops);
8524070b 1734
1735/*
dc491596 1736 * Apply a multiplier adjustment to the timekeeper
8524070b 1737 */
dc491596
JS
1738static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1739 s64 offset,
1740 bool negative,
1741 int adj_scale)
8524070b 1742{
dc491596
JS
1743 s64 interval = tk->cycle_interval;
1744 s32 mult_adj = 1;
8524070b 1745
dc491596
JS
1746 if (negative) {
1747 mult_adj = -mult_adj;
1748 interval = -interval;
1749 offset = -offset;
1d17d174 1750 }
dc491596
JS
1751 mult_adj <<= adj_scale;
1752 interval <<= adj_scale;
1753 offset <<= adj_scale;
8524070b 1754
c2bc1111
JS
1755 /*
1756 * So the following can be confusing.
1757 *
dc491596 1758 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1759 *
dc491596 1760 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1761 * have been appropriately scaled so the math is the same.
1762 *
1763 * The basic idea here is that we're increasing the multiplier
1764 * by one, this causes the xtime_interval to be incremented by
1765 * one cycle_interval. This is because:
1766 * xtime_interval = cycle_interval * mult
1767 * So if mult is being incremented by one:
1768 * xtime_interval = cycle_interval * (mult + 1)
1769 * Its the same as:
1770 * xtime_interval = (cycle_interval * mult) + cycle_interval
1771 * Which can be shortened to:
1772 * xtime_interval += cycle_interval
1773 *
1774 * So offset stores the non-accumulated cycles. Thus the current
1775 * time (in shifted nanoseconds) is:
1776 * now = (offset * adj) + xtime_nsec
1777 * Now, even though we're adjusting the clock frequency, we have
1778 * to keep time consistent. In other words, we can't jump back
1779 * in time, and we also want to avoid jumping forward in time.
1780 *
1781 * So given the same offset value, we need the time to be the same
1782 * both before and after the freq adjustment.
1783 * now = (offset * adj_1) + xtime_nsec_1
1784 * now = (offset * adj_2) + xtime_nsec_2
1785 * So:
1786 * (offset * adj_1) + xtime_nsec_1 =
1787 * (offset * adj_2) + xtime_nsec_2
1788 * And we know:
1789 * adj_2 = adj_1 + 1
1790 * So:
1791 * (offset * adj_1) + xtime_nsec_1 =
1792 * (offset * (adj_1+1)) + xtime_nsec_2
1793 * (offset * adj_1) + xtime_nsec_1 =
1794 * (offset * adj_1) + offset + xtime_nsec_2
1795 * Canceling the sides:
1796 * xtime_nsec_1 = offset + xtime_nsec_2
1797 * Which gives us:
1798 * xtime_nsec_2 = xtime_nsec_1 - offset
1799 * Which simplfies to:
1800 * xtime_nsec -= offset
1801 *
1802 * XXX - TODO: Doc ntp_error calculation.
1803 */
876e7881 1804 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1805 /* NTP adjustment caused clocksource mult overflow */
1806 WARN_ON_ONCE(1);
1807 return;
1808 }
1809
876e7881 1810 tk->tkr_mono.mult += mult_adj;
f726a697 1811 tk->xtime_interval += interval;
876e7881 1812 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1813 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1814}
1815
1816/*
1817 * Calculate the multiplier adjustment needed to match the frequency
1818 * specified by NTP
1819 */
1820static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1821 s64 offset)
1822{
1823 s64 interval = tk->cycle_interval;
1824 s64 xinterval = tk->xtime_interval;
ec02b076
JS
1825 u32 base = tk->tkr_mono.clock->mult;
1826 u32 max = tk->tkr_mono.clock->maxadj;
1827 u32 cur_adj = tk->tkr_mono.mult;
dc491596
JS
1828 s64 tick_error;
1829 bool negative;
ec02b076 1830 u32 adj_scale;
dc491596
JS
1831
1832 /* Remove any current error adj from freq calculation */
1833 if (tk->ntp_err_mult)
1834 xinterval -= tk->cycle_interval;
1835
375f45b5
JS
1836 tk->ntp_tick = ntp_tick_length();
1837
dc491596
JS
1838 /* Calculate current error per tick */
1839 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1840 tick_error -= (xinterval + tk->xtime_remainder);
1841
1842 /* Don't worry about correcting it if its small */
1843 if (likely((tick_error >= 0) && (tick_error <= interval)))
1844 return;
1845
1846 /* preserve the direction of correction */
1847 negative = (tick_error < 0);
1848
ec02b076
JS
1849 /* If any adjustment would pass the max, just return */
1850 if (negative && (cur_adj - 1) <= (base - max))
1851 return;
1852 if (!negative && (cur_adj + 1) >= (base + max))
1853 return;
1854 /*
1855 * Sort out the magnitude of the correction, but
1856 * avoid making so large a correction that we go
1857 * over the max adjustment.
1858 */
1859 adj_scale = 0;
79211c8e 1860 tick_error = abs(tick_error);
ec02b076
JS
1861 while (tick_error > interval) {
1862 u32 adj = 1 << (adj_scale + 1);
1863
1864 /* Check if adjustment gets us within 1 unit from the max */
1865 if (negative && (cur_adj - adj) <= (base - max))
1866 break;
1867 if (!negative && (cur_adj + adj) >= (base + max))
1868 break;
1869
1870 adj_scale++;
dc491596 1871 tick_error >>= 1;
ec02b076 1872 }
dc491596
JS
1873
1874 /* scale the corrections */
ec02b076 1875 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
dc491596
JS
1876}
1877
1878/*
1879 * Adjust the timekeeper's multiplier to the correct frequency
1880 * and also to reduce the accumulated error value.
1881 */
1882static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1883{
1884 /* Correct for the current frequency error */
1885 timekeeping_freqadjust(tk, offset);
1886
1887 /* Next make a small adjustment to fix any cumulative error */
1888 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1889 tk->ntp_err_mult = 1;
1890 timekeeping_apply_adjustment(tk, offset, 0, 0);
1891 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1892 /* Undo any existing error adjustment */
1893 timekeeping_apply_adjustment(tk, offset, 1, 0);
1894 tk->ntp_err_mult = 0;
1895 }
1896
876e7881
PZ
1897 if (unlikely(tk->tkr_mono.clock->maxadj &&
1898 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1899 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1900 printk_once(KERN_WARNING
1901 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1902 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1903 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1904 }
2a8c0883
JS
1905
1906 /*
1907 * It may be possible that when we entered this function, xtime_nsec
1908 * was very small. Further, if we're slightly speeding the clocksource
1909 * in the code above, its possible the required corrective factor to
1910 * xtime_nsec could cause it to underflow.
1911 *
1912 * Now, since we already accumulated the second, cannot simply roll
1913 * the accumulated second back, since the NTP subsystem has been
1914 * notified via second_overflow. So instead we push xtime_nsec forward
1915 * by the amount we underflowed, and add that amount into the error.
1916 *
1917 * We'll correct this error next time through this function, when
1918 * xtime_nsec is not as small.
1919 */
876e7881
PZ
1920 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1921 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1922 tk->tkr_mono.xtime_nsec = 0;
f726a697 1923 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1924 }
8524070b 1925}
1926
1f4f9487
JS
1927/**
1928 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1929 *
571af55a 1930 * Helper function that accumulates the nsecs greater than a second
1f4f9487
JS
1931 * from the xtime_nsec field to the xtime_secs field.
1932 * It also calls into the NTP code to handle leapsecond processing.
1933 *
1934 */
780427f0 1935static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1936{
876e7881 1937 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1938 unsigned int clock_set = 0;
1f4f9487 1939
876e7881 1940 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1941 int leap;
1942
876e7881 1943 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1944 tk->xtime_sec++;
1945
1946 /* Figure out if its a leap sec and apply if needed */
1947 leap = second_overflow(tk->xtime_sec);
6d0ef903 1948 if (unlikely(leap)) {
7d489d15 1949 struct timespec64 ts;
6d0ef903
JS
1950
1951 tk->xtime_sec += leap;
1f4f9487 1952
6d0ef903
JS
1953 ts.tv_sec = leap;
1954 ts.tv_nsec = 0;
1955 tk_set_wall_to_mono(tk,
7d489d15 1956 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1957
cc244dda
JS
1958 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1959
5258d3f2 1960 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1961 }
1f4f9487 1962 }
5258d3f2 1963 return clock_set;
1f4f9487
JS
1964}
1965
a092ff0f 1966/**
1967 * logarithmic_accumulation - shifted accumulation of cycles
1968 *
1969 * This functions accumulates a shifted interval of cycles into
1970 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1971 * loop.
1972 *
1973 * Returns the unconsumed cycles.
1974 */
a5a1d1c2
TG
1975static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1976 u32 shift, unsigned int *clock_set)
a092ff0f 1977{
a5a1d1c2 1978 u64 interval = tk->cycle_interval << shift;
deda2e81 1979 u64 raw_nsecs;
a092ff0f 1980
571af55a 1981 /* If the offset is smaller than a shifted interval, do nothing */
23a9537a 1982 if (offset < interval)
a092ff0f 1983 return offset;
1984
1985 /* Accumulate one shifted interval */
23a9537a 1986 offset -= interval;
876e7881 1987 tk->tkr_mono.cycle_last += interval;
4a4ad80d 1988 tk->tkr_raw.cycle_last += interval;
a092ff0f 1989
876e7881 1990 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 1991 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 1992
deda2e81 1993 /* Accumulate raw time */
5b3900cd 1994 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 1995 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
1996 if (raw_nsecs >= NSEC_PER_SEC) {
1997 u64 raw_secs = raw_nsecs;
1998 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 1999 tk->raw_time.tv_sec += raw_secs;
a092ff0f 2000 }
f726a697 2001 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 2002
2003 /* Accumulate error between NTP and clock interval */
375f45b5 2004 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
2005 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2006 (tk->ntp_error_shift + shift);
a092ff0f 2007
2008 return offset;
2009}
2010
8524070b 2011/**
2012 * update_wall_time - Uses the current clocksource to increment the wall time
2013 *
8524070b 2014 */
47a1b796 2015void update_wall_time(void)
8524070b 2016{
3fdb14fd 2017 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 2018 struct timekeeper *tk = &shadow_timekeeper;
a5a1d1c2 2019 u64 offset;
a092ff0f 2020 int shift = 0, maxshift;
5258d3f2 2021 unsigned int clock_set = 0;
70471f2f
JS
2022 unsigned long flags;
2023
9a7a71b1 2024 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 2025
2026 /* Make sure we're fully resumed: */
2027 if (unlikely(timekeeping_suspended))
70471f2f 2028 goto out;
8524070b 2029
592913ec 2030#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 2031 offset = real_tk->cycle_interval;
592913ec 2032#else
876e7881
PZ
2033 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2034 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 2035#endif
8524070b 2036
bf2ac312 2037 /* Check if there's really nothing to do */
48cdc135 2038 if (offset < real_tk->cycle_interval)
bf2ac312
JS
2039 goto out;
2040
3c17ad19
JS
2041 /* Do some additional sanity checking */
2042 timekeeping_check_update(real_tk, offset);
2043
a092ff0f 2044 /*
2045 * With NO_HZ we may have to accumulate many cycle_intervals
2046 * (think "ticks") worth of time at once. To do this efficiently,
2047 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 2048 * that is smaller than the offset. We then accumulate that
a092ff0f 2049 * chunk in one go, and then try to consume the next smaller
2050 * doubled multiple.
8524070b 2051 */
4e250fdd 2052 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 2053 shift = max(0, shift);
88b28adf 2054 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 2055 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 2056 shift = min(shift, maxshift);
4e250fdd 2057 while (offset >= tk->cycle_interval) {
5258d3f2
JS
2058 offset = logarithmic_accumulation(tk, offset, shift,
2059 &clock_set);
4e250fdd 2060 if (offset < tk->cycle_interval<<shift)
830ec045 2061 shift--;
8524070b 2062 }
2063
2064 /* correct the clock when NTP error is too big */
4e250fdd 2065 timekeeping_adjust(tk, offset);
8524070b 2066
6a867a39 2067 /*
92bb1fcf
JS
2068 * XXX This can be killed once everyone converts
2069 * to the new update_vsyscall.
2070 */
2071 old_vsyscall_fixup(tk);
8524070b 2072
6a867a39
JS
2073 /*
2074 * Finally, make sure that after the rounding
1e75fa8b 2075 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 2076 */
5258d3f2 2077 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 2078
3fdb14fd 2079 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
2080 /*
2081 * Update the real timekeeper.
2082 *
2083 * We could avoid this memcpy by switching pointers, but that
2084 * requires changes to all other timekeeper usage sites as
2085 * well, i.e. move the timekeeper pointer getter into the
2086 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 2087 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
2088 * updating.
2089 */
906c5557 2090 timekeeping_update(tk, clock_set);
48cdc135 2091 memcpy(real_tk, tk, sizeof(*tk));
906c5557 2092 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 2093 write_seqcount_end(&tk_core.seq);
ca4523cd 2094out:
9a7a71b1 2095 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 2096 if (clock_set)
cab5e127
JS
2097 /* Have to call _delayed version, since in irq context*/
2098 clock_was_set_delayed();
8524070b 2099}
7c3f1a57
TJ
2100
2101/**
d08c0cdd
JS
2102 * getboottime64 - Return the real time of system boot.
2103 * @ts: pointer to the timespec64 to be set
7c3f1a57 2104 *
d08c0cdd 2105 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
2106 *
2107 * This is based on the wall_to_monotonic offset and the total suspend
2108 * time. Calls to settimeofday will affect the value returned (which
2109 * basically means that however wrong your real time clock is at boot time,
2110 * you get the right time here).
2111 */
d08c0cdd 2112void getboottime64(struct timespec64 *ts)
7c3f1a57 2113{
3fdb14fd 2114 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
2115 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2116
d08c0cdd 2117 *ts = ktime_to_timespec64(t);
7c3f1a57 2118}
d08c0cdd 2119EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 2120
17c38b74 2121unsigned long get_seconds(void)
2122{
3fdb14fd 2123 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
2124
2125 return tk->xtime_sec;
17c38b74 2126}
2127EXPORT_SYMBOL(get_seconds);
2128
da15cfda 2129struct timespec __current_kernel_time(void)
2130{
3fdb14fd 2131 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 2132
7d489d15 2133 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 2134}
17c38b74 2135
8758a240 2136struct timespec64 current_kernel_time64(void)
2c6b47de 2137{
3fdb14fd 2138 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2139 struct timespec64 now;
2c6b47de 2140 unsigned long seq;
2141
2142 do {
3fdb14fd 2143 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2144
4e250fdd 2145 now = tk_xtime(tk);
3fdb14fd 2146 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 2147
8758a240 2148 return now;
2c6b47de 2149}
8758a240 2150EXPORT_SYMBOL(current_kernel_time64);
da15cfda 2151
334334b5 2152struct timespec64 get_monotonic_coarse64(void)
da15cfda 2153{
3fdb14fd 2154 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2155 struct timespec64 now, mono;
da15cfda 2156 unsigned long seq;
2157
2158 do {
3fdb14fd 2159 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2160
4e250fdd
JS
2161 now = tk_xtime(tk);
2162 mono = tk->wall_to_monotonic;
3fdb14fd 2163 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 2164
7d489d15 2165 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 2166 now.tv_nsec + mono.tv_nsec);
7d489d15 2167
334334b5 2168 return now;
da15cfda 2169}
eaaa7ec7 2170EXPORT_SYMBOL(get_monotonic_coarse64);
871cf1e5
TH
2171
2172/*
d6ad4187 2173 * Must hold jiffies_lock
871cf1e5
TH
2174 */
2175void do_timer(unsigned long ticks)
2176{
2177 jiffies_64 += ticks;
871cf1e5
TH
2178 calc_global_load(ticks);
2179}
48cf76f7 2180
f6c06abf 2181/**
76f41088 2182 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 2183 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf
TG
2184 * @offs_real: pointer to storage for monotonic -> realtime offset
2185 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 2186 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 2187 *
868a3e91
TG
2188 * Returns current monotonic time and updates the offsets if the
2189 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2190 * different.
2191 *
b7bc50e4 2192 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 2193 */
868a3e91
TG
2194ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2195 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 2196{
3fdb14fd 2197 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 2198 unsigned int seq;
a37c0aad
TG
2199 ktime_t base;
2200 u64 nsecs;
f6c06abf
TG
2201
2202 do {
3fdb14fd 2203 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 2204
876e7881
PZ
2205 base = tk->tkr_mono.base;
2206 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
2207 base = ktime_add_ns(base, nsecs);
2208
868a3e91
TG
2209 if (*cwsseq != tk->clock_was_set_seq) {
2210 *cwsseq = tk->clock_was_set_seq;
2211 *offs_real = tk->offs_real;
2212 *offs_boot = tk->offs_boot;
2213 *offs_tai = tk->offs_tai;
2214 }
833f32d7
JS
2215
2216 /* Handle leapsecond insertion adjustments */
2456e855 2217 if (unlikely(base >= tk->next_leap_ktime))
833f32d7
JS
2218 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2219
3fdb14fd 2220 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 2221
833f32d7 2222 return base;
f6c06abf 2223}
f6c06abf 2224
aa6f9c59
JS
2225/**
2226 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2227 */
2228int do_adjtimex(struct timex *txc)
2229{
3fdb14fd 2230 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 2231 unsigned long flags;
7d489d15 2232 struct timespec64 ts;
4e8f8b34 2233 s32 orig_tai, tai;
e4085693
JS
2234 int ret;
2235
2236 /* Validate the data before disabling interrupts */
2237 ret = ntp_validate_timex(txc);
2238 if (ret)
2239 return ret;
2240
cef90377
JS
2241 if (txc->modes & ADJ_SETOFFSET) {
2242 struct timespec delta;
2243 delta.tv_sec = txc->time.tv_sec;
2244 delta.tv_nsec = txc->time.tv_usec;
2245 if (!(txc->modes & ADJ_NANO))
2246 delta.tv_nsec *= 1000;
2247 ret = timekeeping_inject_offset(&delta);
2248 if (ret)
2249 return ret;
2250 }
2251
d6d29896 2252 getnstimeofday64(&ts);
87ace39b 2253
06c017fd 2254 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2255 write_seqcount_begin(&tk_core.seq);
06c017fd 2256
4e8f8b34 2257 orig_tai = tai = tk->tai_offset;
87ace39b 2258 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2259
4e8f8b34
JS
2260 if (tai != orig_tai) {
2261 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2262 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2263 }
833f32d7
JS
2264 tk_update_leap_state(tk);
2265
3fdb14fd 2266 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2267 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2268
6fdda9a9
JS
2269 if (tai != orig_tai)
2270 clock_was_set();
2271
7bd36014
JS
2272 ntp_notify_cmos_timer();
2273
87ace39b
JS
2274 return ret;
2275}
aa6f9c59
JS
2276
2277#ifdef CONFIG_NTP_PPS
2278/**
2279 * hardpps() - Accessor function to NTP __hardpps function
2280 */
7ec88e4b 2281void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
aa6f9c59 2282{
06c017fd
JS
2283 unsigned long flags;
2284
2285 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2286 write_seqcount_begin(&tk_core.seq);
06c017fd 2287
aa6f9c59 2288 __hardpps(phase_ts, raw_ts);
06c017fd 2289
3fdb14fd 2290 write_seqcount_end(&tk_core.seq);
06c017fd 2291 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2292}
2293EXPORT_SYMBOL(hardpps);
2294#endif
2295
f0af911a
TH
2296/**
2297 * xtime_update() - advances the timekeeping infrastructure
2298 * @ticks: number of ticks, that have elapsed since the last call.
2299 *
2300 * Must be called with interrupts disabled.
2301 */
2302void xtime_update(unsigned long ticks)
2303{
d6ad4187 2304 write_seqlock(&jiffies_lock);
f0af911a 2305 do_timer(ticks);
d6ad4187 2306 write_sequnlock(&jiffies_lock);
47a1b796 2307 update_wall_time();
f0af911a 2308}