defconfig: exynos9610: Re-add dropped Wi-Fi AP options lost
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / time / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
0a0fca9d 14 * Created file with time related functions from sched/core.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
9984de1a 30#include <linux/export.h>
88c4318d 31#include <linux/kernel.h>
1da177e4 32#include <linux/timex.h>
c59ede7b 33#include <linux/capability.h>
189374ae 34#include <linux/timekeeper_internal.h>
1da177e4 35#include <linux/errno.h>
1da177e4
LT
36#include <linux/syscalls.h>
37#include <linux/security.h>
38#include <linux/fs.h>
71abb3af 39#include <linux/math64.h>
e3d5a27d 40#include <linux/ptrace.h>
1da177e4 41
7c0f6ba6 42#include <linux/uaccess.h>
3a4d44b6 43#include <linux/compat.h>
1da177e4
LT
44#include <asm/unistd.h>
45
0a227985 46#include <generated/timeconst.h>
8b094cd0 47#include "timekeeping.h"
bdc80787 48
6fa6c3b1 49/*
1da177e4
LT
50 * The timezone where the local system is located. Used as a default by some
51 * programs who obtain this value by using gettimeofday.
52 */
53struct timezone sys_tz;
54
55EXPORT_SYMBOL(sys_tz);
56
57#ifdef __ARCH_WANT_SYS_TIME
58
59/*
60 * sys_time() can be implemented in user-level using
61 * sys_gettimeofday(). Is this for backwards compatibility? If so,
62 * why not move it into the appropriate arch directory (for those
63 * architectures that need it).
64 */
58fd3aa2 65SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 66{
f20bf612 67 time_t i = get_seconds();
1da177e4
LT
68
69 if (tloc) {
20082208 70 if (put_user(i,tloc))
e3d5a27d 71 return -EFAULT;
1da177e4 72 }
e3d5a27d 73 force_successful_syscall_return();
1da177e4
LT
74 return i;
75}
76
77/*
78 * sys_stime() can be implemented in user-level using
79 * sys_settimeofday(). Is this for backwards compatibility? If so,
80 * why not move it into the appropriate arch directory (for those
81 * architectures that need it).
82 */
6fa6c3b1 83
58fd3aa2 84SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4
LT
85{
86 struct timespec tv;
87 int err;
88
89 if (get_user(tv.tv_sec, tptr))
90 return -EFAULT;
91
92 tv.tv_nsec = 0;
93
94 err = security_settime(&tv, NULL);
95 if (err)
96 return err;
97
98 do_settimeofday(&tv);
99 return 0;
100}
101
102#endif /* __ARCH_WANT_SYS_TIME */
103
b180db2c
AV
104#ifdef CONFIG_COMPAT
105#ifdef __ARCH_WANT_COMPAT_SYS_TIME
106
107/* compat_time_t is a 32 bit "long" and needs to get converted. */
108COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
109{
110 struct timeval tv;
111 compat_time_t i;
112
113 do_gettimeofday(&tv);
114 i = tv.tv_sec;
115
116 if (tloc) {
117 if (put_user(i,tloc))
118 return -EFAULT;
119 }
120 force_successful_syscall_return();
121 return i;
122}
123
124COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
125{
126 struct timespec tv;
127 int err;
128
129 if (get_user(tv.tv_sec, tptr))
130 return -EFAULT;
131
132 tv.tv_nsec = 0;
133
134 err = security_settime(&tv, NULL);
135 if (err)
136 return err;
137
138 do_settimeofday(&tv);
139 return 0;
140}
141
142#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
143#endif
144
58fd3aa2
HC
145SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
146 struct timezone __user *, tz)
1da177e4
LT
147{
148 if (likely(tv != NULL)) {
149 struct timeval ktv;
150 do_gettimeofday(&ktv);
151 if (copy_to_user(tv, &ktv, sizeof(ktv)))
152 return -EFAULT;
153 }
154 if (unlikely(tz != NULL)) {
155 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
156 return -EFAULT;
157 }
158 return 0;
159}
160
84e345e4
PB
161/*
162 * Indicates if there is an offset between the system clock and the hardware
163 * clock/persistent clock/rtc.
164 */
165int persistent_clock_is_local;
166
1da177e4
LT
167/*
168 * Adjust the time obtained from the CMOS to be UTC time instead of
169 * local time.
6fa6c3b1 170 *
1da177e4
LT
171 * This is ugly, but preferable to the alternatives. Otherwise we
172 * would either need to write a program to do it in /etc/rc (and risk
6fa6c3b1 173 * confusion if the program gets run more than once; it would also be
1da177e4
LT
174 * hard to make the program warp the clock precisely n hours) or
175 * compile in the timezone information into the kernel. Bad, bad....
176 *
bdc80787 177 * - TYT, 1992-01-01
1da177e4
LT
178 *
179 * The best thing to do is to keep the CMOS clock in universal time (UTC)
180 * as real UNIX machines always do it. This avoids all headaches about
181 * daylight saving times and warping kernel clocks.
182 */
77933d72 183static inline void warp_clock(void)
1da177e4 184{
c30bd099
DZ
185 if (sys_tz.tz_minuteswest != 0) {
186 struct timespec adjust;
bd45b7a3 187
84e345e4 188 persistent_clock_is_local = 1;
7859e404
JS
189 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
190 adjust.tv_nsec = 0;
191 timekeeping_inject_offset(&adjust);
c30bd099 192 }
1da177e4
LT
193}
194
195/*
196 * In case for some reason the CMOS clock has not already been running
197 * in UTC, but in some local time: The first time we set the timezone,
198 * we will warp the clock so that it is ticking UTC time instead of
199 * local time. Presumably, if someone is setting the timezone then we
200 * are running in an environment where the programs understand about
201 * timezones. This should be done at boot time in the /etc/rc script,
202 * as soon as possible, so that the clock can be set right. Otherwise,
203 * various programs will get confused when the clock gets warped.
204 */
205
86d34732 206int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
1da177e4
LT
207{
208 static int firsttime = 1;
209 int error = 0;
210
86d34732 211 if (tv && !timespec64_valid(tv))
718bcceb
TG
212 return -EINVAL;
213
86d34732 214 error = security_settime64(tv, tz);
1da177e4
LT
215 if (error)
216 return error;
217
218 if (tz) {
6f7d7984
SL
219 /* Verify we're witin the +-15 hrs range */
220 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
221 return -EINVAL;
222
1da177e4 223 sys_tz = *tz;
2c622148 224 update_vsyscall_tz();
1da177e4
LT
225 if (firsttime) {
226 firsttime = 0;
227 if (!tv)
228 warp_clock();
229 }
230 }
231 if (tv)
86d34732 232 return do_settimeofday64(tv);
1da177e4
LT
233 return 0;
234}
235
58fd3aa2
HC
236SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
237 struct timezone __user *, tz)
1da177e4 238{
2ac00f17 239 struct timespec64 new_ts;
1da177e4 240 struct timeval user_tv;
1da177e4
LT
241 struct timezone new_tz;
242
243 if (tv) {
244 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
245 return -EFAULT;
6ada1fc0
SL
246
247 if (!timeval_valid(&user_tv))
248 return -EINVAL;
249
1da177e4
LT
250 new_ts.tv_sec = user_tv.tv_sec;
251 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
252 }
253 if (tz) {
254 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
255 return -EFAULT;
256 }
257
2ac00f17 258 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
1da177e4
LT
259}
260
2b2d0285
AV
261#ifdef CONFIG_COMPAT
262COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
263 struct timezone __user *, tz)
264{
265 if (tv) {
266 struct timeval ktv;
267
268 do_gettimeofday(&ktv);
269 if (compat_put_timeval(&ktv, tv))
270 return -EFAULT;
271 }
272 if (tz) {
273 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
274 return -EFAULT;
275 }
276
277 return 0;
278}
279
280COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
281 struct timezone __user *, tz)
282{
283 struct timespec64 new_ts;
284 struct timeval user_tv;
285 struct timezone new_tz;
286
287 if (tv) {
288 if (compat_get_timeval(&user_tv, tv))
289 return -EFAULT;
290 new_ts.tv_sec = user_tv.tv_sec;
291 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
292 }
293 if (tz) {
294 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
295 return -EFAULT;
296 }
297
298 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
299}
300#endif
301
58fd3aa2 302SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
1da177e4
LT
303{
304 struct timex txc; /* Local copy of parameter */
305 int ret;
306
307 /* Copy the user data space into the kernel copy
308 * structure. But bear in mind that the structures
309 * may change
310 */
3a4d44b6 311 if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
1da177e4
LT
312 return -EFAULT;
313 ret = do_adjtimex(&txc);
314 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
315}
316
3a4d44b6
AV
317#ifdef CONFIG_COMPAT
318
319COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
320{
321 struct timex txc;
322 int err, ret;
323
324 err = compat_get_timex(&txc, utp);
325 if (err)
326 return err;
327
328 ret = do_adjtimex(&txc);
329
330 err = compat_put_timex(utp, &txc);
331 if (err)
332 return err;
333
334 return ret;
335}
336#endif
337
753e9c5c
ED
338/*
339 * Convert jiffies to milliseconds and back.
340 *
341 * Avoid unnecessary multiplications/divisions in the
342 * two most common HZ cases:
343 */
af3b5628 344unsigned int jiffies_to_msecs(const unsigned long j)
753e9c5c
ED
345{
346#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
347 return (MSEC_PER_SEC / HZ) * j;
348#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
349 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
350#else
bdc80787 351# if BITS_PER_LONG == 32
88c4318d
GU
352 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
353 HZ_TO_MSEC_SHR32;
bdc80787 354# else
88c4318d 355 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
bdc80787 356# endif
753e9c5c
ED
357#endif
358}
359EXPORT_SYMBOL(jiffies_to_msecs);
360
af3b5628 361unsigned int jiffies_to_usecs(const unsigned long j)
753e9c5c 362{
e0758676
FW
363 /*
364 * Hz usually doesn't go much further MSEC_PER_SEC.
365 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
366 */
367 BUILD_BUG_ON(HZ > USEC_PER_SEC);
368
369#if !(USEC_PER_SEC % HZ)
753e9c5c 370 return (USEC_PER_SEC / HZ) * j;
753e9c5c 371#else
bdc80787 372# if BITS_PER_LONG == 32
b9095fd8 373 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
374# else
375 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
376# endif
753e9c5c
ED
377#endif
378}
379EXPORT_SYMBOL(jiffies_to_usecs);
380
1da177e4 381/**
8ba8e95e 382 * timespec_trunc - Truncate timespec to a granularity
1da177e4 383 * @t: Timespec
8ba8e95e 384 * @gran: Granularity in ns.
1da177e4 385 *
de4a95fa
KB
386 * Truncate a timespec to a granularity. Always rounds down. gran must
387 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
1da177e4
LT
388 */
389struct timespec timespec_trunc(struct timespec t, unsigned gran)
390{
de4a95fa
KB
391 /* Avoid division in the common cases 1 ns and 1 s. */
392 if (gran == 1) {
1da177e4 393 /* nothing */
de4a95fa 394 } else if (gran == NSEC_PER_SEC) {
1da177e4 395 t.tv_nsec = 0;
de4a95fa 396 } else if (gran > 1 && gran < NSEC_PER_SEC) {
1da177e4 397 t.tv_nsec -= t.tv_nsec % gran;
de4a95fa
KB
398 } else {
399 WARN(1, "illegal file time granularity: %u", gran);
1da177e4
LT
400 }
401 return t;
402}
403EXPORT_SYMBOL(timespec_trunc);
404
90b6ce9c 405/*
406 * mktime64 - Converts date to seconds.
407 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
753be622
TG
408 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
409 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
410 *
411 * [For the Julian calendar (which was used in Russia before 1917,
412 * Britain & colonies before 1752, anywhere else before 1582,
413 * and is still in use by some communities) leave out the
414 * -year/100+year/400 terms, and add 10.]
415 *
416 * This algorithm was first published by Gauss (I think).
ede5147d
DH
417 *
418 * A leap second can be indicated by calling this function with sec as
419 * 60 (allowable under ISO 8601). The leap second is treated the same
420 * as the following second since they don't exist in UNIX time.
421 *
422 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
423 * tomorrow - (allowable under ISO 8601) is supported.
753be622 424 */
90b6ce9c 425time64_t mktime64(const unsigned int year0, const unsigned int mon0,
426 const unsigned int day, const unsigned int hour,
427 const unsigned int min, const unsigned int sec)
753be622 428{
f4818900
IM
429 unsigned int mon = mon0, year = year0;
430
431 /* 1..12 -> 11,12,1..10 */
432 if (0 >= (int) (mon -= 2)) {
433 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
434 year -= 1;
435 }
436
90b6ce9c 437 return ((((time64_t)
753be622
TG
438 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
439 year*365 - 719499
ede5147d 440 )*24 + hour /* now have hours - midnight tomorrow handled here */
753be622
TG
441 )*60 + min /* now have minutes */
442 )*60 + sec; /* finally seconds */
443}
90b6ce9c 444EXPORT_SYMBOL(mktime64);
199e7056 445
753be622
TG
446/**
447 * set_normalized_timespec - set timespec sec and nsec parts and normalize
448 *
449 * @ts: pointer to timespec variable to be set
450 * @sec: seconds to set
451 * @nsec: nanoseconds to set
452 *
453 * Set seconds and nanoseconds field of a timespec variable and
454 * normalize to the timespec storage format
455 *
456 * Note: The tv_nsec part is always in the range of
bdc80787 457 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
458 * For negative values only the tv_sec field is negative !
459 */
12e09337 460void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
753be622
TG
461{
462 while (nsec >= NSEC_PER_SEC) {
12e09337
TG
463 /*
464 * The following asm() prevents the compiler from
465 * optimising this loop into a modulo operation. See
466 * also __iter_div_u64_rem() in include/linux/time.h
467 */
468 asm("" : "+rm"(nsec));
753be622
TG
469 nsec -= NSEC_PER_SEC;
470 ++sec;
471 }
472 while (nsec < 0) {
12e09337 473 asm("" : "+rm"(nsec));
753be622
TG
474 nsec += NSEC_PER_SEC;
475 --sec;
476 }
477 ts->tv_sec = sec;
478 ts->tv_nsec = nsec;
479}
7c3f944e 480EXPORT_SYMBOL(set_normalized_timespec);
753be622 481
f8f46da3
TG
482/**
483 * ns_to_timespec - Convert nanoseconds to timespec
484 * @nsec: the nanoseconds value to be converted
485 *
486 * Returns the timespec representation of the nsec parameter.
487 */
df869b63 488struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
489{
490 struct timespec ts;
f8bd2258 491 s32 rem;
f8f46da3 492
88fc3897
GA
493 if (!nsec)
494 return (struct timespec) {0, 0};
495
f8bd2258
RZ
496 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
497 if (unlikely(rem < 0)) {
498 ts.tv_sec--;
499 rem += NSEC_PER_SEC;
500 }
501 ts.tv_nsec = rem;
f8f46da3
TG
502
503 return ts;
504}
85795d64 505EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
506
507/**
508 * ns_to_timeval - Convert nanoseconds to timeval
509 * @nsec: the nanoseconds value to be converted
510 *
511 * Returns the timeval representation of the nsec parameter.
512 */
df869b63 513struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
514{
515 struct timespec ts = ns_to_timespec(nsec);
516 struct timeval tv;
517
518 tv.tv_sec = ts.tv_sec;
519 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
520
521 return tv;
522}
b7aa0bf7 523EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 524
49cd6f86
JS
525#if BITS_PER_LONG == 32
526/**
527 * set_normalized_timespec - set timespec sec and nsec parts and normalize
528 *
529 * @ts: pointer to timespec variable to be set
530 * @sec: seconds to set
531 * @nsec: nanoseconds to set
532 *
533 * Set seconds and nanoseconds field of a timespec variable and
534 * normalize to the timespec storage format
535 *
536 * Note: The tv_nsec part is always in the range of
537 * 0 <= tv_nsec < NSEC_PER_SEC
538 * For negative values only the tv_sec field is negative !
539 */
540void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
541{
542 while (nsec >= NSEC_PER_SEC) {
543 /*
544 * The following asm() prevents the compiler from
545 * optimising this loop into a modulo operation. See
546 * also __iter_div_u64_rem() in include/linux/time.h
547 */
548 asm("" : "+rm"(nsec));
549 nsec -= NSEC_PER_SEC;
550 ++sec;
551 }
552 while (nsec < 0) {
553 asm("" : "+rm"(nsec));
554 nsec += NSEC_PER_SEC;
555 --sec;
556 }
557 ts->tv_sec = sec;
558 ts->tv_nsec = nsec;
559}
560EXPORT_SYMBOL(set_normalized_timespec64);
561
562/**
563 * ns_to_timespec64 - Convert nanoseconds to timespec64
564 * @nsec: the nanoseconds value to be converted
565 *
566 * Returns the timespec64 representation of the nsec parameter.
567 */
568struct timespec64 ns_to_timespec64(const s64 nsec)
569{
570 struct timespec64 ts;
571 s32 rem;
572
573 if (!nsec)
574 return (struct timespec64) {0, 0};
575
576 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
577 if (unlikely(rem < 0)) {
578 ts.tv_sec--;
579 rem += NSEC_PER_SEC;
580 }
581 ts.tv_nsec = rem;
582
583 return ts;
584}
585EXPORT_SYMBOL(ns_to_timespec64);
586#endif
ca42aaf0
NMG
587/**
588 * msecs_to_jiffies: - convert milliseconds to jiffies
589 * @m: time in milliseconds
590 *
591 * conversion is done as follows:
41cf5445
IM
592 *
593 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
594 *
595 * - 'too large' values [that would result in larger than
596 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
597 *
598 * - all other values are converted to jiffies by either multiplying
ca42aaf0
NMG
599 * the input value by a factor or dividing it with a factor and
600 * handling any 32-bit overflows.
601 * for the details see __msecs_to_jiffies()
41cf5445 602 *
ca42aaf0
NMG
603 * msecs_to_jiffies() checks for the passed in value being a constant
604 * via __builtin_constant_p() allowing gcc to eliminate most of the
605 * code, __msecs_to_jiffies() is called if the value passed does not
606 * allow constant folding and the actual conversion must be done at
607 * runtime.
608 * the _msecs_to_jiffies helpers are the HZ dependent conversion
609 * routines found in include/linux/jiffies.h
41cf5445 610 */
ca42aaf0 611unsigned long __msecs_to_jiffies(const unsigned int m)
8b9365d7 612{
41cf5445
IM
613 /*
614 * Negative value, means infinite timeout:
615 */
616 if ((int)m < 0)
8b9365d7 617 return MAX_JIFFY_OFFSET;
ca42aaf0 618 return _msecs_to_jiffies(m);
8b9365d7 619}
ca42aaf0 620EXPORT_SYMBOL(__msecs_to_jiffies);
8b9365d7 621
ae60d6a0 622unsigned long __usecs_to_jiffies(const unsigned int u)
8b9365d7
IM
623{
624 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
625 return MAX_JIFFY_OFFSET;
ae60d6a0 626 return _usecs_to_jiffies(u);
8b9365d7 627}
ae60d6a0 628EXPORT_SYMBOL(__usecs_to_jiffies);
8b9365d7
IM
629
630/*
631 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
632 * that a remainder subtract here would not do the right thing as the
633 * resolution values don't fall on second boundries. I.e. the line:
634 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
d78c9300
AH
635 * Note that due to the small error in the multiplier here, this
636 * rounding is incorrect for sufficiently large values of tv_nsec, but
637 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
638 * OK.
8b9365d7
IM
639 *
640 * Rather, we just shift the bits off the right.
641 *
642 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
643 * value to a scaled second value.
644 */
d78c9300 645static unsigned long
9ca30850 646__timespec64_to_jiffies(u64 sec, long nsec)
8b9365d7 647{
d78c9300 648 nsec = nsec + TICK_NSEC - 1;
8b9365d7
IM
649
650 if (sec >= MAX_SEC_IN_JIFFIES){
651 sec = MAX_SEC_IN_JIFFIES;
652 nsec = 0;
653 }
9ca30850 654 return ((sec * SEC_CONVERSION) +
8b9365d7
IM
655 (((u64)nsec * NSEC_CONVERSION) >>
656 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
657
658}
d78c9300 659
9ca30850
BW
660static unsigned long
661__timespec_to_jiffies(unsigned long sec, long nsec)
d78c9300 662{
9ca30850 663 return __timespec64_to_jiffies((u64)sec, nsec);
d78c9300
AH
664}
665
9ca30850
BW
666unsigned long
667timespec64_to_jiffies(const struct timespec64 *value)
668{
669 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
670}
671EXPORT_SYMBOL(timespec64_to_jiffies);
8b9365d7
IM
672
673void
9ca30850 674jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
8b9365d7
IM
675{
676 /*
677 * Convert jiffies to nanoseconds and separate with
678 * one divide.
679 */
f8bd2258
RZ
680 u32 rem;
681 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
682 NSEC_PER_SEC, &rem);
683 value->tv_nsec = rem;
8b9365d7 684}
9ca30850 685EXPORT_SYMBOL(jiffies_to_timespec64);
8b9365d7 686
d78c9300
AH
687/*
688 * We could use a similar algorithm to timespec_to_jiffies (with a
689 * different multiplier for usec instead of nsec). But this has a
690 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
691 * usec value, since it's not necessarily integral.
692 *
693 * We could instead round in the intermediate scaled representation
694 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
695 * perilous: the scaling introduces a small positive error, which
696 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
697 * units to the intermediate before shifting) leads to accidental
698 * overflow and overestimates.
8b9365d7 699 *
d78c9300
AH
700 * At the cost of one additional multiplication by a constant, just
701 * use the timespec implementation.
8b9365d7
IM
702 */
703unsigned long
704timeval_to_jiffies(const struct timeval *value)
705{
d78c9300
AH
706 return __timespec_to_jiffies(value->tv_sec,
707 value->tv_usec * NSEC_PER_USEC);
8b9365d7 708}
456a09dc 709EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
710
711void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
712{
713 /*
714 * Convert jiffies to nanoseconds and separate with
715 * one divide.
716 */
f8bd2258 717 u32 rem;
8b9365d7 718
f8bd2258
RZ
719 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
720 NSEC_PER_SEC, &rem);
721 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 722}
456a09dc 723EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
724
725/*
726 * Convert jiffies/jiffies_64 to clock_t and back.
727 */
cbbc719f 728clock_t jiffies_to_clock_t(unsigned long x)
8b9365d7
IM
729{
730#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
731# if HZ < USER_HZ
732 return x * (USER_HZ / HZ);
733# else
8b9365d7 734 return x / (HZ / USER_HZ);
6ffc787a 735# endif
8b9365d7 736#else
71abb3af 737 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
738#endif
739}
740EXPORT_SYMBOL(jiffies_to_clock_t);
741
742unsigned long clock_t_to_jiffies(unsigned long x)
743{
744#if (HZ % USER_HZ)==0
745 if (x >= ~0UL / (HZ / USER_HZ))
746 return ~0UL;
747 return x * (HZ / USER_HZ);
748#else
8b9365d7
IM
749 /* Don't worry about loss of precision here .. */
750 if (x >= ~0UL / HZ * USER_HZ)
751 return ~0UL;
752
753 /* .. but do try to contain it here */
71abb3af 754 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
755#endif
756}
757EXPORT_SYMBOL(clock_t_to_jiffies);
758
759u64 jiffies_64_to_clock_t(u64 x)
760{
761#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 762# if HZ < USER_HZ
71abb3af 763 x = div_u64(x * USER_HZ, HZ);
ec03d707 764# elif HZ > USER_HZ
71abb3af 765 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
766# else
767 /* Nothing to do */
6ffc787a 768# endif
8b9365d7
IM
769#else
770 /*
771 * There are better ways that don't overflow early,
772 * but even this doesn't overflow in hundreds of years
773 * in 64 bits, so..
774 */
71abb3af 775 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
776#endif
777 return x;
778}
8b9365d7
IM
779EXPORT_SYMBOL(jiffies_64_to_clock_t);
780
781u64 nsec_to_clock_t(u64 x)
782{
783#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 784 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 785#elif (USER_HZ % 512) == 0
71abb3af 786 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
787#else
788 /*
789 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
790 * overflow after 64.99 years.
791 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
792 */
71abb3af 793 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 794#endif
8b9365d7
IM
795}
796
07e5f5e3
FW
797u64 jiffies64_to_nsecs(u64 j)
798{
799#if !(NSEC_PER_SEC % HZ)
800 return (NSEC_PER_SEC / HZ) * j;
801# else
802 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
803#endif
804}
805EXPORT_SYMBOL(jiffies64_to_nsecs);
806
b7b20df9 807/**
a1dabb6b 808 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
b7b20df9
HS
809 *
810 * @n: nsecs in u64
811 *
812 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
813 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
814 * for scheduler, not for use in device drivers to calculate timeout value.
815 *
816 * note:
817 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
818 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
819 */
a1dabb6b 820u64 nsecs_to_jiffies64(u64 n)
b7b20df9
HS
821{
822#if (NSEC_PER_SEC % HZ) == 0
823 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
824 return div_u64(n, NSEC_PER_SEC / HZ);
825#elif (HZ % 512) == 0
826 /* overflow after 292 years if HZ = 1024 */
827 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
828#else
829 /*
830 * Generic case - optimized for cases where HZ is a multiple of 3.
831 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
832 */
833 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
834#endif
835}
7bd0e226 836EXPORT_SYMBOL(nsecs_to_jiffies64);
b7b20df9 837
a1dabb6b
VP
838/**
839 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
840 *
841 * @n: nsecs in u64
842 *
843 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
844 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
845 * for scheduler, not for use in device drivers to calculate timeout value.
846 *
847 * note:
848 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
849 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
850 */
851unsigned long nsecs_to_jiffies(u64 n)
852{
853 return (unsigned long)nsecs_to_jiffies64(n);
854}
d560fed6 855EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
a1dabb6b 856
df0cc053
TG
857/*
858 * Add two timespec values and do a safety check for overflow.
859 * It's assumed that both values are valid (>= 0)
860 */
861struct timespec timespec_add_safe(const struct timespec lhs,
862 const struct timespec rhs)
863{
864 struct timespec res;
865
866 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
867 lhs.tv_nsec + rhs.tv_nsec);
868
869 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
870 res.tv_sec = TIME_T_MAX;
871
872 return res;
873}
bc2c53e5 874
bc2c53e5
DD
875/*
876 * Add two timespec64 values and do a safety check for overflow.
877 * It's assumed that both values are valid (>= 0).
878 * And, each timespec64 is in normalized form.
879 */
880struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
881 const struct timespec64 rhs)
882{
883 struct timespec64 res;
884
469e857f 885 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
bc2c53e5
DD
886 lhs.tv_nsec + rhs.tv_nsec);
887
888 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
889 res.tv_sec = TIME64_MAX;
890 res.tv_nsec = 0;
891 }
892
893 return res;
894}
f59dd9c8
DD
895
896int get_timespec64(struct timespec64 *ts,
897 const struct timespec __user *uts)
898{
899 struct timespec kts;
900 int ret;
901
902 ret = copy_from_user(&kts, uts, sizeof(kts));
903 if (ret)
904 return -EFAULT;
905
906 ts->tv_sec = kts.tv_sec;
907 ts->tv_nsec = kts.tv_nsec;
908
909 return 0;
910}
911EXPORT_SYMBOL_GPL(get_timespec64);
912
913int put_timespec64(const struct timespec64 *ts,
914 struct timespec __user *uts)
915{
916 struct timespec kts = {
917 .tv_sec = ts->tv_sec,
918 .tv_nsec = ts->tv_nsec
919 };
920 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
921}
922EXPORT_SYMBOL_GPL(put_timespec64);
d5b7ffbf
DD
923
924int get_itimerspec64(struct itimerspec64 *it,
925 const struct itimerspec __user *uit)
926{
927 int ret;
928
929 ret = get_timespec64(&it->it_interval, &uit->it_interval);
930 if (ret)
931 return ret;
932
933 ret = get_timespec64(&it->it_value, &uit->it_value);
934
935 return ret;
936}
937EXPORT_SYMBOL_GPL(get_itimerspec64);
938
939int put_itimerspec64(const struct itimerspec64 *it,
940 struct itimerspec __user *uit)
941{
942 int ret;
943
944 ret = put_timespec64(&it->it_interval, &uit->it_interval);
945 if (ret)
946 return ret;
947
948 ret = put_timespec64(&it->it_value, &uit->it_value);
949
950 return ret;
951}
952EXPORT_SYMBOL_GPL(put_itimerspec64);