[PATCH] pid: use struct pid for talking about process groups in exitc
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / signal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
1da177e4
LT
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/smp_lock.h>
16#include <linux/init.h>
17#include <linux/sched.h>
18#include <linux/fs.h>
19#include <linux/tty.h>
20#include <linux/binfmts.h>
21#include <linux/security.h>
22#include <linux/syscalls.h>
23#include <linux/ptrace.h>
7ed20e1a 24#include <linux/signal.h>
c59ede7b 25#include <linux/capability.h>
7dfb7103 26#include <linux/freezer.h>
84d73786
SB
27#include <linux/pid_namespace.h>
28#include <linux/nsproxy.h>
29
1da177e4
LT
30#include <asm/param.h>
31#include <asm/uaccess.h>
32#include <asm/unistd.h>
33#include <asm/siginfo.h>
e1396065 34#include "audit.h" /* audit_signal_info() */
1da177e4
LT
35
36/*
37 * SLAB caches for signal bits.
38 */
39
e18b890b 40static struct kmem_cache *sigqueue_cachep;
1da177e4
LT
41
42/*
43 * In POSIX a signal is sent either to a specific thread (Linux task)
44 * or to the process as a whole (Linux thread group). How the signal
45 * is sent determines whether it's to one thread or the whole group,
46 * which determines which signal mask(s) are involved in blocking it
47 * from being delivered until later. When the signal is delivered,
48 * either it's caught or ignored by a user handler or it has a default
49 * effect that applies to the whole thread group (POSIX process).
50 *
51 * The possible effects an unblocked signal set to SIG_DFL can have are:
52 * ignore - Nothing Happens
53 * terminate - kill the process, i.e. all threads in the group,
54 * similar to exit_group. The group leader (only) reports
55 * WIFSIGNALED status to its parent.
56 * coredump - write a core dump file describing all threads using
57 * the same mm and then kill all those threads
58 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
59 *
60 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
61 * Other signals when not blocked and set to SIG_DFL behaves as follows.
62 * The job control signals also have other special effects.
63 *
64 * +--------------------+------------------+
65 * | POSIX signal | default action |
66 * +--------------------+------------------+
67 * | SIGHUP | terminate |
68 * | SIGINT | terminate |
69 * | SIGQUIT | coredump |
70 * | SIGILL | coredump |
71 * | SIGTRAP | coredump |
72 * | SIGABRT/SIGIOT | coredump |
73 * | SIGBUS | coredump |
74 * | SIGFPE | coredump |
75 * | SIGKILL | terminate(+) |
76 * | SIGUSR1 | terminate |
77 * | SIGSEGV | coredump |
78 * | SIGUSR2 | terminate |
79 * | SIGPIPE | terminate |
80 * | SIGALRM | terminate |
81 * | SIGTERM | terminate |
82 * | SIGCHLD | ignore |
83 * | SIGCONT | ignore(*) |
84 * | SIGSTOP | stop(*)(+) |
85 * | SIGTSTP | stop(*) |
86 * | SIGTTIN | stop(*) |
87 * | SIGTTOU | stop(*) |
88 * | SIGURG | ignore |
89 * | SIGXCPU | coredump |
90 * | SIGXFSZ | coredump |
91 * | SIGVTALRM | terminate |
92 * | SIGPROF | terminate |
93 * | SIGPOLL/SIGIO | terminate |
94 * | SIGSYS/SIGUNUSED | coredump |
95 * | SIGSTKFLT | terminate |
96 * | SIGWINCH | ignore |
97 * | SIGPWR | terminate |
98 * | SIGRTMIN-SIGRTMAX | terminate |
99 * +--------------------+------------------+
100 * | non-POSIX signal | default action |
101 * +--------------------+------------------+
102 * | SIGEMT | coredump |
103 * +--------------------+------------------+
104 *
105 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
106 * (*) Special job control effects:
107 * When SIGCONT is sent, it resumes the process (all threads in the group)
108 * from TASK_STOPPED state and also clears any pending/queued stop signals
109 * (any of those marked with "stop(*)"). This happens regardless of blocking,
110 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
111 * any pending/queued SIGCONT signals; this happens regardless of blocking,
112 * catching, or ignored the stop signal, though (except for SIGSTOP) the
113 * default action of stopping the process may happen later or never.
114 */
115
116#ifdef SIGEMT
117#define M_SIGEMT M(SIGEMT)
118#else
119#define M_SIGEMT 0
120#endif
121
122#if SIGRTMIN > BITS_PER_LONG
123#define M(sig) (1ULL << ((sig)-1))
124#else
125#define M(sig) (1UL << ((sig)-1))
126#endif
127#define T(sig, mask) (M(sig) & (mask))
128
129#define SIG_KERNEL_ONLY_MASK (\
130 M(SIGKILL) | M(SIGSTOP) )
131
132#define SIG_KERNEL_STOP_MASK (\
133 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
134
135#define SIG_KERNEL_COREDUMP_MASK (\
136 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
137 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
138 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
139
140#define SIG_KERNEL_IGNORE_MASK (\
141 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
142
143#define sig_kernel_only(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
145#define sig_kernel_coredump(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
147#define sig_kernel_ignore(sig) \
148 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
149#define sig_kernel_stop(sig) \
150 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
151
6108ccd3 152#define sig_needs_tasklist(sig) ((sig) == SIGCONT)
a9e88e84 153
1da177e4
LT
154#define sig_user_defined(t, signr) \
155 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
156 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
157
158#define sig_fatal(t, signr) \
159 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
160 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
161
162static int sig_ignored(struct task_struct *t, int sig)
163{
164 void __user * handler;
165
166 /*
167 * Tracers always want to know about signals..
168 */
169 if (t->ptrace & PT_PTRACED)
170 return 0;
171
172 /*
173 * Blocked signals are never ignored, since the
174 * signal handler may change by the time it is
175 * unblocked.
176 */
177 if (sigismember(&t->blocked, sig))
178 return 0;
179
180 /* Is it explicitly or implicitly ignored? */
181 handler = t->sighand->action[sig-1].sa.sa_handler;
182 return handler == SIG_IGN ||
183 (handler == SIG_DFL && sig_kernel_ignore(sig));
184}
185
186/*
187 * Re-calculate pending state from the set of locally pending
188 * signals, globally pending signals, and blocked signals.
189 */
190static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
191{
192 unsigned long ready;
193 long i;
194
195 switch (_NSIG_WORDS) {
196 default:
197 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
198 ready |= signal->sig[i] &~ blocked->sig[i];
199 break;
200
201 case 4: ready = signal->sig[3] &~ blocked->sig[3];
202 ready |= signal->sig[2] &~ blocked->sig[2];
203 ready |= signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
205 break;
206
207 case 2: ready = signal->sig[1] &~ blocked->sig[1];
208 ready |= signal->sig[0] &~ blocked->sig[0];
209 break;
210
211 case 1: ready = signal->sig[0] &~ blocked->sig[0];
212 }
213 return ready != 0;
214}
215
216#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
217
218fastcall void recalc_sigpending_tsk(struct task_struct *t)
219{
220 if (t->signal->group_stop_count > 0 ||
3e1d1d28 221 (freezing(t)) ||
1da177e4
LT
222 PENDING(&t->pending, &t->blocked) ||
223 PENDING(&t->signal->shared_pending, &t->blocked))
224 set_tsk_thread_flag(t, TIF_SIGPENDING);
225 else
226 clear_tsk_thread_flag(t, TIF_SIGPENDING);
227}
228
229void recalc_sigpending(void)
230{
231 recalc_sigpending_tsk(current);
232}
233
234/* Given the mask, find the first available signal that should be serviced. */
235
236static int
237next_signal(struct sigpending *pending, sigset_t *mask)
238{
239 unsigned long i, *s, *m, x;
240 int sig = 0;
241
242 s = pending->signal.sig;
243 m = mask->sig;
244 switch (_NSIG_WORDS) {
245 default:
246 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
247 if ((x = *s &~ *m) != 0) {
248 sig = ffz(~x) + i*_NSIG_BPW + 1;
249 break;
250 }
251 break;
252
253 case 2: if ((x = s[0] &~ m[0]) != 0)
254 sig = 1;
255 else if ((x = s[1] &~ m[1]) != 0)
256 sig = _NSIG_BPW + 1;
257 else
258 break;
259 sig += ffz(~x);
260 break;
261
262 case 1: if ((x = *s &~ *m) != 0)
263 sig = ffz(~x) + 1;
264 break;
265 }
266
267 return sig;
268}
269
dd0fc66f 270static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
1da177e4
LT
271 int override_rlimit)
272{
273 struct sigqueue *q = NULL;
10b1fbdb 274 struct user_struct *user;
1da177e4 275
10b1fbdb
LT
276 /*
277 * In order to avoid problems with "switch_user()", we want to make
278 * sure that the compiler doesn't re-load "t->user"
279 */
280 user = t->user;
281 barrier();
282 atomic_inc(&user->sigpending);
1da177e4 283 if (override_rlimit ||
10b1fbdb 284 atomic_read(&user->sigpending) <=
1da177e4
LT
285 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
286 q = kmem_cache_alloc(sigqueue_cachep, flags);
287 if (unlikely(q == NULL)) {
10b1fbdb 288 atomic_dec(&user->sigpending);
1da177e4
LT
289 } else {
290 INIT_LIST_HEAD(&q->list);
291 q->flags = 0;
10b1fbdb 292 q->user = get_uid(user);
1da177e4
LT
293 }
294 return(q);
295}
296
514a01b8 297static void __sigqueue_free(struct sigqueue *q)
1da177e4
LT
298{
299 if (q->flags & SIGQUEUE_PREALLOC)
300 return;
301 atomic_dec(&q->user->sigpending);
302 free_uid(q->user);
303 kmem_cache_free(sigqueue_cachep, q);
304}
305
6a14c5c9 306void flush_sigqueue(struct sigpending *queue)
1da177e4
LT
307{
308 struct sigqueue *q;
309
310 sigemptyset(&queue->signal);
311 while (!list_empty(&queue->list)) {
312 q = list_entry(queue->list.next, struct sigqueue , list);
313 list_del_init(&q->list);
314 __sigqueue_free(q);
315 }
316}
317
318/*
319 * Flush all pending signals for a task.
320 */
c81addc9 321void flush_signals(struct task_struct *t)
1da177e4
LT
322{
323 unsigned long flags;
324
325 spin_lock_irqsave(&t->sighand->siglock, flags);
326 clear_tsk_thread_flag(t,TIF_SIGPENDING);
327 flush_sigqueue(&t->pending);
328 flush_sigqueue(&t->signal->shared_pending);
329 spin_unlock_irqrestore(&t->sighand->siglock, flags);
330}
331
1da177e4
LT
332/*
333 * Flush all handlers for a task.
334 */
335
336void
337flush_signal_handlers(struct task_struct *t, int force_default)
338{
339 int i;
340 struct k_sigaction *ka = &t->sighand->action[0];
341 for (i = _NSIG ; i != 0 ; i--) {
342 if (force_default || ka->sa.sa_handler != SIG_IGN)
343 ka->sa.sa_handler = SIG_DFL;
344 ka->sa.sa_flags = 0;
345 sigemptyset(&ka->sa.sa_mask);
346 ka++;
347 }
348}
349
350
351/* Notify the system that a driver wants to block all signals for this
352 * process, and wants to be notified if any signals at all were to be
353 * sent/acted upon. If the notifier routine returns non-zero, then the
354 * signal will be acted upon after all. If the notifier routine returns 0,
355 * then then signal will be blocked. Only one block per process is
356 * allowed. priv is a pointer to private data that the notifier routine
357 * can use to determine if the signal should be blocked or not. */
358
359void
360block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
361{
362 unsigned long flags;
363
364 spin_lock_irqsave(&current->sighand->siglock, flags);
365 current->notifier_mask = mask;
366 current->notifier_data = priv;
367 current->notifier = notifier;
368 spin_unlock_irqrestore(&current->sighand->siglock, flags);
369}
370
371/* Notify the system that blocking has ended. */
372
373void
374unblock_all_signals(void)
375{
376 unsigned long flags;
377
378 spin_lock_irqsave(&current->sighand->siglock, flags);
379 current->notifier = NULL;
380 current->notifier_data = NULL;
381 recalc_sigpending();
382 spin_unlock_irqrestore(&current->sighand->siglock, flags);
383}
384
858119e1 385static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
1da177e4
LT
386{
387 struct sigqueue *q, *first = NULL;
388 int still_pending = 0;
389
390 if (unlikely(!sigismember(&list->signal, sig)))
391 return 0;
392
393 /*
394 * Collect the siginfo appropriate to this signal. Check if
395 * there is another siginfo for the same signal.
396 */
397 list_for_each_entry(q, &list->list, list) {
398 if (q->info.si_signo == sig) {
399 if (first) {
400 still_pending = 1;
401 break;
402 }
403 first = q;
404 }
405 }
406 if (first) {
407 list_del_init(&first->list);
408 copy_siginfo(info, &first->info);
409 __sigqueue_free(first);
410 if (!still_pending)
411 sigdelset(&list->signal, sig);
412 } else {
413
414 /* Ok, it wasn't in the queue. This must be
415 a fast-pathed signal or we must have been
416 out of queue space. So zero out the info.
417 */
418 sigdelset(&list->signal, sig);
419 info->si_signo = sig;
420 info->si_errno = 0;
421 info->si_code = 0;
422 info->si_pid = 0;
423 info->si_uid = 0;
424 }
425 return 1;
426}
427
428static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
429 siginfo_t *info)
430{
27d91e07 431 int sig = next_signal(pending, mask);
1da177e4 432
1da177e4
LT
433 if (sig) {
434 if (current->notifier) {
435 if (sigismember(current->notifier_mask, sig)) {
436 if (!(current->notifier)(current->notifier_data)) {
437 clear_thread_flag(TIF_SIGPENDING);
438 return 0;
439 }
440 }
441 }
442
443 if (!collect_signal(sig, pending, info))
444 sig = 0;
1da177e4 445 }
1da177e4
LT
446
447 return sig;
448}
449
450/*
451 * Dequeue a signal and return the element to the caller, which is
452 * expected to free it.
453 *
454 * All callers have to hold the siglock.
455 */
456int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
457{
458 int signr = __dequeue_signal(&tsk->pending, mask, info);
459 if (!signr)
460 signr = __dequeue_signal(&tsk->signal->shared_pending,
461 mask, info);
27d91e07 462 recalc_sigpending_tsk(tsk);
1da177e4
LT
463 if (signr && unlikely(sig_kernel_stop(signr))) {
464 /*
465 * Set a marker that we have dequeued a stop signal. Our
466 * caller might release the siglock and then the pending
467 * stop signal it is about to process is no longer in the
468 * pending bitmasks, but must still be cleared by a SIGCONT
469 * (and overruled by a SIGKILL). So those cases clear this
470 * shared flag after we've set it. Note that this flag may
471 * remain set after the signal we return is ignored or
472 * handled. That doesn't matter because its only purpose
473 * is to alert stop-signal processing code when another
474 * processor has come along and cleared the flag.
475 */
788e05a6
ON
476 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
477 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
1da177e4
LT
478 }
479 if ( signr &&
480 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
481 info->si_sys_private){
482 /*
483 * Release the siglock to ensure proper locking order
484 * of timer locks outside of siglocks. Note, we leave
485 * irqs disabled here, since the posix-timers code is
486 * about to disable them again anyway.
487 */
488 spin_unlock(&tsk->sighand->siglock);
489 do_schedule_next_timer(info);
490 spin_lock(&tsk->sighand->siglock);
491 }
492 return signr;
493}
494
495/*
496 * Tell a process that it has a new active signal..
497 *
498 * NOTE! we rely on the previous spin_lock to
499 * lock interrupts for us! We can only be called with
500 * "siglock" held, and the local interrupt must
501 * have been disabled when that got acquired!
502 *
503 * No need to set need_resched since signal event passing
504 * goes through ->blocked
505 */
506void signal_wake_up(struct task_struct *t, int resume)
507{
508 unsigned int mask;
509
510 set_tsk_thread_flag(t, TIF_SIGPENDING);
511
512 /*
513 * For SIGKILL, we want to wake it up in the stopped/traced case.
514 * We don't check t->state here because there is a race with it
515 * executing another processor and just now entering stopped state.
516 * By using wake_up_state, we ensure the process will wake up and
517 * handle its death signal.
518 */
519 mask = TASK_INTERRUPTIBLE;
520 if (resume)
521 mask |= TASK_STOPPED | TASK_TRACED;
522 if (!wake_up_state(t, mask))
523 kick_process(t);
524}
525
71fabd5e
GA
526/*
527 * Remove signals in mask from the pending set and queue.
528 * Returns 1 if any signals were found.
529 *
530 * All callers must be holding the siglock.
531 *
532 * This version takes a sigset mask and looks at all signals,
533 * not just those in the first mask word.
534 */
535static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
536{
537 struct sigqueue *q, *n;
538 sigset_t m;
539
540 sigandsets(&m, mask, &s->signal);
541 if (sigisemptyset(&m))
542 return 0;
543
544 signandsets(&s->signal, &s->signal, mask);
545 list_for_each_entry_safe(q, n, &s->list, list) {
546 if (sigismember(mask, q->info.si_signo)) {
547 list_del_init(&q->list);
548 __sigqueue_free(q);
549 }
550 }
551 return 1;
552}
1da177e4
LT
553/*
554 * Remove signals in mask from the pending set and queue.
555 * Returns 1 if any signals were found.
556 *
557 * All callers must be holding the siglock.
558 */
559static int rm_from_queue(unsigned long mask, struct sigpending *s)
560{
561 struct sigqueue *q, *n;
562
563 if (!sigtestsetmask(&s->signal, mask))
564 return 0;
565
566 sigdelsetmask(&s->signal, mask);
567 list_for_each_entry_safe(q, n, &s->list, list) {
568 if (q->info.si_signo < SIGRTMIN &&
569 (mask & sigmask(q->info.si_signo))) {
570 list_del_init(&q->list);
571 __sigqueue_free(q);
572 }
573 }
574 return 1;
575}
576
577/*
578 * Bad permissions for sending the signal
579 */
580static int check_kill_permission(int sig, struct siginfo *info,
581 struct task_struct *t)
582{
583 int error = -EINVAL;
7ed20e1a 584 if (!valid_signal(sig))
1da177e4
LT
585 return error;
586 error = -EPERM;
621d3121 587 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1da177e4 588 && ((sig != SIGCONT) ||
937949d9 589 (process_session(current) != process_session(t)))
1da177e4
LT
590 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
591 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
592 && !capable(CAP_KILL))
593 return error;
c2f0c7c3 594
8f95dc58 595 error = security_task_kill(t, info, sig, 0);
c2f0c7c3
SG
596 if (!error)
597 audit_signal_info(sig, t); /* Let audit system see the signal */
598 return error;
1da177e4
LT
599}
600
601/* forward decl */
a1d5e21e 602static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
1da177e4
LT
603
604/*
605 * Handle magic process-wide effects of stop/continue signals.
606 * Unlike the signal actions, these happen immediately at signal-generation
607 * time regardless of blocking, ignoring, or handling. This does the
608 * actual continuing for SIGCONT, but not the actual stopping for stop
609 * signals. The process stop is done as a signal action for SIG_DFL.
610 */
611static void handle_stop_signal(int sig, struct task_struct *p)
612{
613 struct task_struct *t;
614
dd12f48d 615 if (p->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
616 /*
617 * The process is in the middle of dying already.
618 */
619 return;
620
621 if (sig_kernel_stop(sig)) {
622 /*
623 * This is a stop signal. Remove SIGCONT from all queues.
624 */
625 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
626 t = p;
627 do {
628 rm_from_queue(sigmask(SIGCONT), &t->pending);
629 t = next_thread(t);
630 } while (t != p);
631 } else if (sig == SIGCONT) {
632 /*
633 * Remove all stop signals from all queues,
634 * and wake all threads.
635 */
636 if (unlikely(p->signal->group_stop_count > 0)) {
637 /*
638 * There was a group stop in progress. We'll
639 * pretend it finished before we got here. We are
640 * obliged to report it to the parent: if the
641 * SIGSTOP happened "after" this SIGCONT, then it
642 * would have cleared this pending SIGCONT. If it
643 * happened "before" this SIGCONT, then the parent
644 * got the SIGCHLD about the stop finishing before
645 * the continue happened. We do the notification
646 * now, and it's as if the stop had finished and
647 * the SIGCHLD was pending on entry to this kill.
648 */
649 p->signal->group_stop_count = 0;
650 p->signal->flags = SIGNAL_STOP_CONTINUED;
651 spin_unlock(&p->sighand->siglock);
a1d5e21e 652 do_notify_parent_cldstop(p, CLD_STOPPED);
1da177e4
LT
653 spin_lock(&p->sighand->siglock);
654 }
655 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
656 t = p;
657 do {
658 unsigned int state;
659 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
660
661 /*
662 * If there is a handler for SIGCONT, we must make
663 * sure that no thread returns to user mode before
664 * we post the signal, in case it was the only
665 * thread eligible to run the signal handler--then
666 * it must not do anything between resuming and
667 * running the handler. With the TIF_SIGPENDING
668 * flag set, the thread will pause and acquire the
669 * siglock that we hold now and until we've queued
670 * the pending signal.
671 *
672 * Wake up the stopped thread _after_ setting
673 * TIF_SIGPENDING
674 */
675 state = TASK_STOPPED;
676 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
677 set_tsk_thread_flag(t, TIF_SIGPENDING);
678 state |= TASK_INTERRUPTIBLE;
679 }
680 wake_up_state(t, state);
681
682 t = next_thread(t);
683 } while (t != p);
684
685 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
686 /*
687 * We were in fact stopped, and are now continued.
688 * Notify the parent with CLD_CONTINUED.
689 */
690 p->signal->flags = SIGNAL_STOP_CONTINUED;
691 p->signal->group_exit_code = 0;
692 spin_unlock(&p->sighand->siglock);
a1d5e21e 693 do_notify_parent_cldstop(p, CLD_CONTINUED);
1da177e4
LT
694 spin_lock(&p->sighand->siglock);
695 } else {
696 /*
697 * We are not stopped, but there could be a stop
698 * signal in the middle of being processed after
699 * being removed from the queue. Clear that too.
700 */
701 p->signal->flags = 0;
702 }
703 } else if (sig == SIGKILL) {
704 /*
705 * Make sure that any pending stop signal already dequeued
706 * is undone by the wakeup for SIGKILL.
707 */
708 p->signal->flags = 0;
709 }
710}
711
712static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
713 struct sigpending *signals)
714{
715 struct sigqueue * q = NULL;
716 int ret = 0;
717
718 /*
719 * fast-pathed signals for kernel-internal things like SIGSTOP
720 * or SIGKILL.
721 */
b67a1b9e 722 if (info == SEND_SIG_FORCED)
1da177e4
LT
723 goto out_set;
724
725 /* Real-time signals must be queued if sent by sigqueue, or
726 some other real-time mechanism. It is implementation
727 defined whether kill() does so. We attempt to do so, on
728 the principle of least surprise, but since kill is not
729 allowed to fail with EAGAIN when low on memory we just
730 make sure at least one signal gets delivered and don't
731 pass on the info struct. */
732
733 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
621d3121 734 (is_si_special(info) ||
1da177e4
LT
735 info->si_code >= 0)));
736 if (q) {
737 list_add_tail(&q->list, &signals->list);
738 switch ((unsigned long) info) {
b67a1b9e 739 case (unsigned long) SEND_SIG_NOINFO:
1da177e4
LT
740 q->info.si_signo = sig;
741 q->info.si_errno = 0;
742 q->info.si_code = SI_USER;
743 q->info.si_pid = current->pid;
744 q->info.si_uid = current->uid;
745 break;
b67a1b9e 746 case (unsigned long) SEND_SIG_PRIV:
1da177e4
LT
747 q->info.si_signo = sig;
748 q->info.si_errno = 0;
749 q->info.si_code = SI_KERNEL;
750 q->info.si_pid = 0;
751 q->info.si_uid = 0;
752 break;
753 default:
754 copy_siginfo(&q->info, info);
755 break;
756 }
621d3121
ON
757 } else if (!is_si_special(info)) {
758 if (sig >= SIGRTMIN && info->si_code != SI_USER)
1da177e4
LT
759 /*
760 * Queue overflow, abort. We may abort if the signal was rt
761 * and sent by user using something other than kill().
762 */
763 return -EAGAIN;
1da177e4
LT
764 }
765
766out_set:
767 sigaddset(&signals->signal, sig);
768 return ret;
769}
770
771#define LEGACY_QUEUE(sigptr, sig) \
772 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
773
774
775static int
776specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
777{
778 int ret = 0;
779
fda8bd78 780 BUG_ON(!irqs_disabled());
1da177e4
LT
781 assert_spin_locked(&t->sighand->siglock);
782
1da177e4
LT
783 /* Short-circuit ignored signals. */
784 if (sig_ignored(t, sig))
785 goto out;
786
787 /* Support queueing exactly one non-rt signal, so that we
788 can get more detailed information about the cause of
789 the signal. */
790 if (LEGACY_QUEUE(&t->pending, sig))
791 goto out;
792
793 ret = send_signal(sig, info, t, &t->pending);
794 if (!ret && !sigismember(&t->blocked, sig))
795 signal_wake_up(t, sig == SIGKILL);
796out:
797 return ret;
798}
799
800/*
801 * Force a signal that the process can't ignore: if necessary
802 * we unblock the signal and change any SIG_IGN to SIG_DFL.
ae74c3b6
LT
803 *
804 * Note: If we unblock the signal, we always reset it to SIG_DFL,
805 * since we do not want to have a signal handler that was blocked
806 * be invoked when user space had explicitly blocked it.
807 *
808 * We don't want to have recursive SIGSEGV's etc, for example.
1da177e4 809 */
1da177e4
LT
810int
811force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
812{
813 unsigned long int flags;
ae74c3b6
LT
814 int ret, blocked, ignored;
815 struct k_sigaction *action;
1da177e4
LT
816
817 spin_lock_irqsave(&t->sighand->siglock, flags);
ae74c3b6
LT
818 action = &t->sighand->action[sig-1];
819 ignored = action->sa.sa_handler == SIG_IGN;
820 blocked = sigismember(&t->blocked, sig);
821 if (blocked || ignored) {
822 action->sa.sa_handler = SIG_DFL;
823 if (blocked) {
824 sigdelset(&t->blocked, sig);
825 recalc_sigpending_tsk(t);
826 }
1da177e4
LT
827 }
828 ret = specific_send_sig_info(sig, info, t);
829 spin_unlock_irqrestore(&t->sighand->siglock, flags);
830
831 return ret;
832}
833
834void
835force_sig_specific(int sig, struct task_struct *t)
836{
b0423a0d 837 force_sig_info(sig, SEND_SIG_FORCED, t);
1da177e4
LT
838}
839
840/*
841 * Test if P wants to take SIG. After we've checked all threads with this,
842 * it's equivalent to finding no threads not blocking SIG. Any threads not
843 * blocking SIG were ruled out because they are not running and already
844 * have pending signals. Such threads will dequeue from the shared queue
845 * as soon as they're available, so putting the signal on the shared queue
846 * will be equivalent to sending it to one such thread.
847 */
188a1eaf
LT
848static inline int wants_signal(int sig, struct task_struct *p)
849{
850 if (sigismember(&p->blocked, sig))
851 return 0;
852 if (p->flags & PF_EXITING)
853 return 0;
854 if (sig == SIGKILL)
855 return 1;
856 if (p->state & (TASK_STOPPED | TASK_TRACED))
857 return 0;
858 return task_curr(p) || !signal_pending(p);
859}
1da177e4
LT
860
861static void
862__group_complete_signal(int sig, struct task_struct *p)
863{
1da177e4
LT
864 struct task_struct *t;
865
1da177e4
LT
866 /*
867 * Now find a thread we can wake up to take the signal off the queue.
868 *
869 * If the main thread wants the signal, it gets first crack.
870 * Probably the least surprising to the average bear.
871 */
188a1eaf 872 if (wants_signal(sig, p))
1da177e4
LT
873 t = p;
874 else if (thread_group_empty(p))
875 /*
876 * There is just one thread and it does not need to be woken.
877 * It will dequeue unblocked signals before it runs again.
878 */
879 return;
880 else {
881 /*
882 * Otherwise try to find a suitable thread.
883 */
884 t = p->signal->curr_target;
885 if (t == NULL)
886 /* restart balancing at this thread */
887 t = p->signal->curr_target = p;
1da177e4 888
188a1eaf 889 while (!wants_signal(sig, t)) {
1da177e4
LT
890 t = next_thread(t);
891 if (t == p->signal->curr_target)
892 /*
893 * No thread needs to be woken.
894 * Any eligible threads will see
895 * the signal in the queue soon.
896 */
897 return;
898 }
899 p->signal->curr_target = t;
900 }
901
902 /*
903 * Found a killable thread. If the signal will be fatal,
904 * then start taking the whole group down immediately.
905 */
906 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
907 !sigismember(&t->real_blocked, sig) &&
908 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
909 /*
910 * This signal will be fatal to the whole group.
911 */
912 if (!sig_kernel_coredump(sig)) {
913 /*
914 * Start a group exit and wake everybody up.
915 * This way we don't have other threads
916 * running and doing things after a slower
917 * thread has the fatal signal pending.
918 */
919 p->signal->flags = SIGNAL_GROUP_EXIT;
920 p->signal->group_exit_code = sig;
921 p->signal->group_stop_count = 0;
922 t = p;
923 do {
924 sigaddset(&t->pending.signal, SIGKILL);
925 signal_wake_up(t, 1);
926 t = next_thread(t);
927 } while (t != p);
928 return;
929 }
930
931 /*
932 * There will be a core dump. We make all threads other
933 * than the chosen one go into a group stop so that nothing
934 * happens until it gets scheduled, takes the signal off
935 * the shared queue, and does the core dump. This is a
936 * little more complicated than strictly necessary, but it
937 * keeps the signal state that winds up in the core dump
938 * unchanged from the death state, e.g. which thread had
939 * the core-dump signal unblocked.
940 */
941 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
942 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
943 p->signal->group_stop_count = 0;
944 p->signal->group_exit_task = t;
945 t = p;
946 do {
947 p->signal->group_stop_count++;
948 signal_wake_up(t, 0);
949 t = next_thread(t);
950 } while (t != p);
951 wake_up_process(p->signal->group_exit_task);
952 return;
953 }
954
955 /*
956 * The signal is already in the shared-pending queue.
957 * Tell the chosen thread to wake up and dequeue it.
958 */
959 signal_wake_up(t, sig == SIGKILL);
960 return;
961}
962
963int
964__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
965{
966 int ret = 0;
967
968 assert_spin_locked(&p->sighand->siglock);
969 handle_stop_signal(sig, p);
970
1da177e4
LT
971 /* Short-circuit ignored signals. */
972 if (sig_ignored(p, sig))
973 return ret;
974
975 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
976 /* This is a non-RT signal and we already have one queued. */
977 return ret;
978
979 /*
980 * Put this signal on the shared-pending queue, or fail with EAGAIN.
981 * We always use the shared queue for process-wide signals,
982 * to avoid several races.
983 */
984 ret = send_signal(sig, info, p, &p->signal->shared_pending);
985 if (unlikely(ret))
986 return ret;
987
988 __group_complete_signal(sig, p);
989 return 0;
990}
991
992/*
993 * Nuke all other threads in the group.
994 */
995void zap_other_threads(struct task_struct *p)
996{
997 struct task_struct *t;
998
999 p->signal->flags = SIGNAL_GROUP_EXIT;
1000 p->signal->group_stop_count = 0;
1001
1002 if (thread_group_empty(p))
1003 return;
1004
1005 for (t = next_thread(p); t != p; t = next_thread(t)) {
1006 /*
1007 * Don't bother with already dead threads
1008 */
1009 if (t->exit_state)
1010 continue;
1011
1012 /*
1013 * We don't want to notify the parent, since we are
1014 * killed as part of a thread group due to another
1015 * thread doing an execve() or similar. So set the
1016 * exit signal to -1 to allow immediate reaping of
1017 * the process. But don't detach the thread group
1018 * leader.
1019 */
1020 if (t != p->group_leader)
1021 t->exit_signal = -1;
1022
30e0fca6 1023 /* SIGKILL will be handled before any pending SIGSTOP */
1da177e4 1024 sigaddset(&t->pending.signal, SIGKILL);
1da177e4
LT
1025 signal_wake_up(t, 1);
1026 }
1027}
1028
1029/*
e56d0903 1030 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1da177e4 1031 */
f63ee72e
ON
1032struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1033{
1034 struct sighand_struct *sighand;
1035
1036 for (;;) {
1037 sighand = rcu_dereference(tsk->sighand);
1038 if (unlikely(sighand == NULL))
1039 break;
1040
1041 spin_lock_irqsave(&sighand->siglock, *flags);
1042 if (likely(sighand == tsk->sighand))
1043 break;
1044 spin_unlock_irqrestore(&sighand->siglock, *flags);
1045 }
1046
1047 return sighand;
1048}
1049
1da177e4
LT
1050int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1051{
1052 unsigned long flags;
1053 int ret;
1054
1055 ret = check_kill_permission(sig, info, p);
f63ee72e
ON
1056
1057 if (!ret && sig) {
1058 ret = -ESRCH;
1059 if (lock_task_sighand(p, &flags)) {
1060 ret = __group_send_sig_info(sig, info, p);
1061 unlock_task_sighand(p, &flags);
2d89c929 1062 }
1da177e4
LT
1063 }
1064
1065 return ret;
1066}
1067
1068/*
c4b92fc1 1069 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1da177e4
LT
1070 * control characters do (^C, ^Z etc)
1071 */
1072
c4b92fc1 1073int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1da177e4
LT
1074{
1075 struct task_struct *p = NULL;
1076 int retval, success;
1077
1da177e4
LT
1078 success = 0;
1079 retval = -ESRCH;
c4b92fc1 1080 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
1081 int err = group_send_sig_info(sig, info, p);
1082 success |= !err;
1083 retval = err;
c4b92fc1 1084 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
1085 return success ? 0 : retval;
1086}
1087
c4b92fc1
EB
1088int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1089{
1090 int retval;
1091
1092 read_lock(&tasklist_lock);
1093 retval = __kill_pgrp_info(sig, info, pgrp);
1094 read_unlock(&tasklist_lock);
1095
1096 return retval;
1097}
1098
1099int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1100{
1101 if (pgrp <= 0)
1102 return -EINVAL;
1103
1104 return __kill_pgrp_info(sig, info, find_pid(pgrp));
1105}
1106
1da177e4
LT
1107int
1108kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1109{
1110 int retval;
1111
1112 read_lock(&tasklist_lock);
1113 retval = __kill_pg_info(sig, info, pgrp);
1114 read_unlock(&tasklist_lock);
1115
1116 return retval;
1117}
1118
c4b92fc1 1119int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1da177e4
LT
1120{
1121 int error;
1122 struct task_struct *p;
1123
e56d0903 1124 rcu_read_lock();
0c12b517 1125 if (unlikely(sig_needs_tasklist(sig)))
e56d0903 1126 read_lock(&tasklist_lock);
0c12b517 1127
c4b92fc1 1128 p = pid_task(pid, PIDTYPE_PID);
1da177e4
LT
1129 error = -ESRCH;
1130 if (p)
1131 error = group_send_sig_info(sig, info, p);
0c12b517
ON
1132
1133 if (unlikely(sig_needs_tasklist(sig)))
e56d0903
IM
1134 read_unlock(&tasklist_lock);
1135 rcu_read_unlock();
1da177e4
LT
1136 return error;
1137}
1138
d3228a88 1139static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
c4b92fc1
EB
1140{
1141 int error;
1142 rcu_read_lock();
1143 error = kill_pid_info(sig, info, find_pid(pid));
1144 rcu_read_unlock();
1145 return error;
1146}
1147
2425c08b
EB
1148/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1149int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
8f95dc58 1150 uid_t uid, uid_t euid, u32 secid)
46113830
HW
1151{
1152 int ret = -EINVAL;
1153 struct task_struct *p;
1154
1155 if (!valid_signal(sig))
1156 return ret;
1157
1158 read_lock(&tasklist_lock);
2425c08b 1159 p = pid_task(pid, PIDTYPE_PID);
46113830
HW
1160 if (!p) {
1161 ret = -ESRCH;
1162 goto out_unlock;
1163 }
0811af28 1164 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
46113830
HW
1165 && (euid != p->suid) && (euid != p->uid)
1166 && (uid != p->suid) && (uid != p->uid)) {
1167 ret = -EPERM;
1168 goto out_unlock;
1169 }
8f95dc58
DQ
1170 ret = security_task_kill(p, info, sig, secid);
1171 if (ret)
1172 goto out_unlock;
46113830
HW
1173 if (sig && p->sighand) {
1174 unsigned long flags;
1175 spin_lock_irqsave(&p->sighand->siglock, flags);
1176 ret = __group_send_sig_info(sig, info, p);
1177 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1178 }
1179out_unlock:
1180 read_unlock(&tasklist_lock);
1181 return ret;
1182}
2425c08b 1183EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1da177e4
LT
1184
1185/*
1186 * kill_something_info() interprets pid in interesting ways just like kill(2).
1187 *
1188 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1189 * is probably wrong. Should make it like BSD or SYSV.
1190 */
1191
1192static int kill_something_info(int sig, struct siginfo *info, int pid)
1193{
8d42db18
EB
1194 int ret;
1195 rcu_read_lock();
1da177e4 1196 if (!pid) {
8d42db18 1197 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1da177e4
LT
1198 } else if (pid == -1) {
1199 int retval = 0, count = 0;
1200 struct task_struct * p;
1201
1202 read_lock(&tasklist_lock);
1203 for_each_process(p) {
1204 if (p->pid > 1 && p->tgid != current->tgid) {
1205 int err = group_send_sig_info(sig, info, p);
1206 ++count;
1207 if (err != -EPERM)
1208 retval = err;
1209 }
1210 }
1211 read_unlock(&tasklist_lock);
8d42db18 1212 ret = count ? retval : -ESRCH;
1da177e4 1213 } else if (pid < 0) {
8d42db18 1214 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1da177e4 1215 } else {
8d42db18 1216 ret = kill_pid_info(sig, info, find_pid(pid));
1da177e4 1217 }
8d42db18
EB
1218 rcu_read_unlock();
1219 return ret;
1da177e4
LT
1220}
1221
1222/*
1223 * These are for backward compatibility with the rest of the kernel source.
1224 */
1225
1226/*
1227 * These two are the most common entry points. They send a signal
1228 * just to the specific thread.
1229 */
1230int
1231send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1232{
1233 int ret;
1234 unsigned long flags;
1235
1236 /*
1237 * Make sure legacy kernel users don't send in bad values
1238 * (normal paths check this in check_kill_permission).
1239 */
7ed20e1a 1240 if (!valid_signal(sig))
1da177e4
LT
1241 return -EINVAL;
1242
1243 /*
1244 * We need the tasklist lock even for the specific
1245 * thread case (when we don't need to follow the group
1246 * lists) in order to avoid races with "p->sighand"
1247 * going away or changing from under us.
1248 */
1249 read_lock(&tasklist_lock);
1250 spin_lock_irqsave(&p->sighand->siglock, flags);
1251 ret = specific_send_sig_info(sig, info, p);
1252 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1253 read_unlock(&tasklist_lock);
1254 return ret;
1255}
1256
b67a1b9e
ON
1257#define __si_special(priv) \
1258 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1259
1da177e4
LT
1260int
1261send_sig(int sig, struct task_struct *p, int priv)
1262{
b67a1b9e 1263 return send_sig_info(sig, __si_special(priv), p);
1da177e4
LT
1264}
1265
1266/*
1267 * This is the entry point for "process-wide" signals.
1268 * They will go to an appropriate thread in the thread group.
1269 */
1270int
1271send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1272{
1273 int ret;
1274 read_lock(&tasklist_lock);
1275 ret = group_send_sig_info(sig, info, p);
1276 read_unlock(&tasklist_lock);
1277 return ret;
1278}
1279
1280void
1281force_sig(int sig, struct task_struct *p)
1282{
b67a1b9e 1283 force_sig_info(sig, SEND_SIG_PRIV, p);
1da177e4
LT
1284}
1285
1286/*
1287 * When things go south during signal handling, we
1288 * will force a SIGSEGV. And if the signal that caused
1289 * the problem was already a SIGSEGV, we'll want to
1290 * make sure we don't even try to deliver the signal..
1291 */
1292int
1293force_sigsegv(int sig, struct task_struct *p)
1294{
1295 if (sig == SIGSEGV) {
1296 unsigned long flags;
1297 spin_lock_irqsave(&p->sighand->siglock, flags);
1298 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1299 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1300 }
1301 force_sig(SIGSEGV, p);
1302 return 0;
1303}
1304
c4b92fc1
EB
1305int kill_pgrp(struct pid *pid, int sig, int priv)
1306{
1307 return kill_pgrp_info(sig, __si_special(priv), pid);
1308}
1309EXPORT_SYMBOL(kill_pgrp);
1310
1311int kill_pid(struct pid *pid, int sig, int priv)
1312{
1313 return kill_pid_info(sig, __si_special(priv), pid);
1314}
1315EXPORT_SYMBOL(kill_pid);
1316
1da177e4
LT
1317int
1318kill_pg(pid_t pgrp, int sig, int priv)
1319{
b67a1b9e 1320 return kill_pg_info(sig, __si_special(priv), pgrp);
1da177e4
LT
1321}
1322
1323int
1324kill_proc(pid_t pid, int sig, int priv)
1325{
b67a1b9e 1326 return kill_proc_info(sig, __si_special(priv), pid);
1da177e4
LT
1327}
1328
1329/*
1330 * These functions support sending signals using preallocated sigqueue
1331 * structures. This is needed "because realtime applications cannot
1332 * afford to lose notifications of asynchronous events, like timer
1333 * expirations or I/O completions". In the case of Posix Timers
1334 * we allocate the sigqueue structure from the timer_create. If this
1335 * allocation fails we are able to report the failure to the application
1336 * with an EAGAIN error.
1337 */
1338
1339struct sigqueue *sigqueue_alloc(void)
1340{
1341 struct sigqueue *q;
1342
1343 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1344 q->flags |= SIGQUEUE_PREALLOC;
1345 return(q);
1346}
1347
1348void sigqueue_free(struct sigqueue *q)
1349{
1350 unsigned long flags;
1351 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1352 /*
1353 * If the signal is still pending remove it from the
1354 * pending queue.
1355 */
1356 if (unlikely(!list_empty(&q->list))) {
19a4fcb5
ON
1357 spinlock_t *lock = &current->sighand->siglock;
1358 read_lock(&tasklist_lock);
1359 spin_lock_irqsave(lock, flags);
1da177e4
LT
1360 if (!list_empty(&q->list))
1361 list_del_init(&q->list);
19a4fcb5 1362 spin_unlock_irqrestore(lock, flags);
1da177e4
LT
1363 read_unlock(&tasklist_lock);
1364 }
1365 q->flags &= ~SIGQUEUE_PREALLOC;
1366 __sigqueue_free(q);
1367}
1368
54767908 1369int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1da177e4
LT
1370{
1371 unsigned long flags;
1372 int ret = 0;
1373
1da177e4 1374 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e56d0903
IM
1375
1376 /*
1377 * The rcu based delayed sighand destroy makes it possible to
1378 * run this without tasklist lock held. The task struct itself
1379 * cannot go away as create_timer did get_task_struct().
1380 *
1381 * We return -1, when the task is marked exiting, so
1382 * posix_timer_event can redirect it to the group leader
1383 */
1384 rcu_read_lock();
e752dd6c 1385
54767908 1386 if (!likely(lock_task_sighand(p, &flags))) {
e752dd6c
ON
1387 ret = -1;
1388 goto out_err;
1389 }
1390
1da177e4
LT
1391 if (unlikely(!list_empty(&q->list))) {
1392 /*
1393 * If an SI_TIMER entry is already queue just increment
1394 * the overrun count.
1395 */
54767908 1396 BUG_ON(q->info.si_code != SI_TIMER);
1da177e4
LT
1397 q->info.si_overrun++;
1398 goto out;
e752dd6c 1399 }
1da177e4
LT
1400 /* Short-circuit ignored signals. */
1401 if (sig_ignored(p, sig)) {
1402 ret = 1;
1403 goto out;
1404 }
1405
1da177e4
LT
1406 list_add_tail(&q->list, &p->pending.list);
1407 sigaddset(&p->pending.signal, sig);
1408 if (!sigismember(&p->blocked, sig))
1409 signal_wake_up(p, sig == SIGKILL);
1410
1411out:
54767908 1412 unlock_task_sighand(p, &flags);
e752dd6c 1413out_err:
e56d0903 1414 rcu_read_unlock();
e752dd6c
ON
1415
1416 return ret;
1da177e4
LT
1417}
1418
1419int
1420send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1421{
1422 unsigned long flags;
1423 int ret = 0;
1424
1425 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e56d0903 1426
1da177e4 1427 read_lock(&tasklist_lock);
e56d0903 1428 /* Since it_lock is held, p->sighand cannot be NULL. */
1da177e4
LT
1429 spin_lock_irqsave(&p->sighand->siglock, flags);
1430 handle_stop_signal(sig, p);
1431
1432 /* Short-circuit ignored signals. */
1433 if (sig_ignored(p, sig)) {
1434 ret = 1;
1435 goto out;
1436 }
1437
1438 if (unlikely(!list_empty(&q->list))) {
1439 /*
1440 * If an SI_TIMER entry is already queue just increment
1441 * the overrun count. Other uses should not try to
1442 * send the signal multiple times.
1443 */
fda8bd78 1444 BUG_ON(q->info.si_code != SI_TIMER);
1da177e4
LT
1445 q->info.si_overrun++;
1446 goto out;
1447 }
1448
1449 /*
1450 * Put this signal on the shared-pending queue.
1451 * We always use the shared queue for process-wide signals,
1452 * to avoid several races.
1453 */
1da177e4
LT
1454 list_add_tail(&q->list, &p->signal->shared_pending.list);
1455 sigaddset(&p->signal->shared_pending.signal, sig);
1456
1457 __group_complete_signal(sig, p);
1458out:
1459 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1460 read_unlock(&tasklist_lock);
e56d0903 1461 return ret;
1da177e4
LT
1462}
1463
1464/*
1465 * Wake up any threads in the parent blocked in wait* syscalls.
1466 */
1467static inline void __wake_up_parent(struct task_struct *p,
1468 struct task_struct *parent)
1469{
1470 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1471}
1472
1473/*
1474 * Let a parent know about the death of a child.
1475 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1476 */
1477
1478void do_notify_parent(struct task_struct *tsk, int sig)
1479{
1480 struct siginfo info;
1481 unsigned long flags;
1482 struct sighand_struct *psig;
1483
1484 BUG_ON(sig == -1);
1485
1486 /* do_notify_parent_cldstop should have been called instead. */
1487 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1488
1489 BUG_ON(!tsk->ptrace &&
1490 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1491
1492 info.si_signo = sig;
1493 info.si_errno = 0;
1494 info.si_pid = tsk->pid;
1495 info.si_uid = tsk->uid;
1496
1497 /* FIXME: find out whether or not this is supposed to be c*time. */
1498 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1499 tsk->signal->utime));
1500 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1501 tsk->signal->stime));
1502
1503 info.si_status = tsk->exit_code & 0x7f;
1504 if (tsk->exit_code & 0x80)
1505 info.si_code = CLD_DUMPED;
1506 else if (tsk->exit_code & 0x7f)
1507 info.si_code = CLD_KILLED;
1508 else {
1509 info.si_code = CLD_EXITED;
1510 info.si_status = tsk->exit_code >> 8;
1511 }
1512
1513 psig = tsk->parent->sighand;
1514 spin_lock_irqsave(&psig->siglock, flags);
7ed0175a 1515 if (!tsk->ptrace && sig == SIGCHLD &&
1da177e4
LT
1516 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1517 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1518 /*
1519 * We are exiting and our parent doesn't care. POSIX.1
1520 * defines special semantics for setting SIGCHLD to SIG_IGN
1521 * or setting the SA_NOCLDWAIT flag: we should be reaped
1522 * automatically and not left for our parent's wait4 call.
1523 * Rather than having the parent do it as a magic kind of
1524 * signal handler, we just set this to tell do_exit that we
1525 * can be cleaned up without becoming a zombie. Note that
1526 * we still call __wake_up_parent in this case, because a
1527 * blocked sys_wait4 might now return -ECHILD.
1528 *
1529 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1530 * is implementation-defined: we do (if you don't want
1531 * it, just use SIG_IGN instead).
1532 */
1533 tsk->exit_signal = -1;
1534 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1535 sig = 0;
1536 }
7ed20e1a 1537 if (valid_signal(sig) && sig > 0)
1da177e4
LT
1538 __group_send_sig_info(sig, &info, tsk->parent);
1539 __wake_up_parent(tsk, tsk->parent);
1540 spin_unlock_irqrestore(&psig->siglock, flags);
1541}
1542
a1d5e21e 1543static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1da177e4
LT
1544{
1545 struct siginfo info;
1546 unsigned long flags;
bc505a47 1547 struct task_struct *parent;
1da177e4
LT
1548 struct sighand_struct *sighand;
1549
a1d5e21e 1550 if (tsk->ptrace & PT_PTRACED)
bc505a47
ON
1551 parent = tsk->parent;
1552 else {
1553 tsk = tsk->group_leader;
1554 parent = tsk->real_parent;
1555 }
1556
1da177e4
LT
1557 info.si_signo = SIGCHLD;
1558 info.si_errno = 0;
1559 info.si_pid = tsk->pid;
1560 info.si_uid = tsk->uid;
1561
1562 /* FIXME: find out whether or not this is supposed to be c*time. */
1563 info.si_utime = cputime_to_jiffies(tsk->utime);
1564 info.si_stime = cputime_to_jiffies(tsk->stime);
1565
1566 info.si_code = why;
1567 switch (why) {
1568 case CLD_CONTINUED:
1569 info.si_status = SIGCONT;
1570 break;
1571 case CLD_STOPPED:
1572 info.si_status = tsk->signal->group_exit_code & 0x7f;
1573 break;
1574 case CLD_TRAPPED:
1575 info.si_status = tsk->exit_code & 0x7f;
1576 break;
1577 default:
1578 BUG();
1579 }
1580
1581 sighand = parent->sighand;
1582 spin_lock_irqsave(&sighand->siglock, flags);
1583 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1584 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1585 __group_send_sig_info(SIGCHLD, &info, parent);
1586 /*
1587 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1588 */
1589 __wake_up_parent(tsk, parent);
1590 spin_unlock_irqrestore(&sighand->siglock, flags);
1591}
1592
d5f70c00
ON
1593static inline int may_ptrace_stop(void)
1594{
1595 if (!likely(current->ptrace & PT_PTRACED))
1596 return 0;
1597
1598 if (unlikely(current->parent == current->real_parent &&
1599 (current->ptrace & PT_ATTACHED)))
1600 return 0;
1601
1602 if (unlikely(current->signal == current->parent->signal) &&
1603 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1604 return 0;
1605
1606 /*
1607 * Are we in the middle of do_coredump?
1608 * If so and our tracer is also part of the coredump stopping
1609 * is a deadlock situation, and pointless because our tracer
1610 * is dead so don't allow us to stop.
1611 * If SIGKILL was already sent before the caller unlocked
1612 * ->siglock we must see ->core_waiters != 0. Otherwise it
1613 * is safe to enter schedule().
1614 */
1615 if (unlikely(current->mm->core_waiters) &&
1616 unlikely(current->mm == current->parent->mm))
1617 return 0;
1618
1619 return 1;
1620}
1621
1da177e4
LT
1622/*
1623 * This must be called with current->sighand->siglock held.
1624 *
1625 * This should be the path for all ptrace stops.
1626 * We always set current->last_siginfo while stopped here.
1627 * That makes it a way to test a stopped process for
1628 * being ptrace-stopped vs being job-control-stopped.
1629 *
1630 * If we actually decide not to stop at all because the tracer is gone,
1631 * we leave nostop_code in current->exit_code.
1632 */
1633static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1634{
1635 /*
1636 * If there is a group stop in progress,
1637 * we must participate in the bookkeeping.
1638 */
1639 if (current->signal->group_stop_count > 0)
1640 --current->signal->group_stop_count;
1641
1642 current->last_siginfo = info;
1643 current->exit_code = exit_code;
1644
1645 /* Let the debugger run. */
1646 set_current_state(TASK_TRACED);
1647 spin_unlock_irq(&current->sighand->siglock);
85b6bce3 1648 try_to_freeze();
1da177e4 1649 read_lock(&tasklist_lock);
d5f70c00 1650 if (may_ptrace_stop()) {
a1d5e21e 1651 do_notify_parent_cldstop(current, CLD_TRAPPED);
1da177e4
LT
1652 read_unlock(&tasklist_lock);
1653 schedule();
1654 } else {
1655 /*
1656 * By the time we got the lock, our tracer went away.
1657 * Don't stop here.
1658 */
1659 read_unlock(&tasklist_lock);
1660 set_current_state(TASK_RUNNING);
1661 current->exit_code = nostop_code;
1662 }
1663
1664 /*
1665 * We are back. Now reacquire the siglock before touching
1666 * last_siginfo, so that we are sure to have synchronized with
1667 * any signal-sending on another CPU that wants to examine it.
1668 */
1669 spin_lock_irq(&current->sighand->siglock);
1670 current->last_siginfo = NULL;
1671
1672 /*
1673 * Queued signals ignored us while we were stopped for tracing.
1674 * So check for any that we should take before resuming user mode.
1675 */
1676 recalc_sigpending();
1677}
1678
1679void ptrace_notify(int exit_code)
1680{
1681 siginfo_t info;
1682
1683 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1684
1685 memset(&info, 0, sizeof info);
1686 info.si_signo = SIGTRAP;
1687 info.si_code = exit_code;
1688 info.si_pid = current->pid;
1689 info.si_uid = current->uid;
1690
1691 /* Let the debugger run. */
1692 spin_lock_irq(&current->sighand->siglock);
1693 ptrace_stop(exit_code, 0, &info);
1694 spin_unlock_irq(&current->sighand->siglock);
1695}
1696
1da177e4
LT
1697static void
1698finish_stop(int stop_count)
1699{
1700 /*
1701 * If there are no other threads in the group, or if there is
1702 * a group stop in progress and we are the last to stop,
1703 * report to the parent. When ptraced, every thread reports itself.
1704 */
a1d5e21e
ON
1705 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1706 read_lock(&tasklist_lock);
1707 do_notify_parent_cldstop(current, CLD_STOPPED);
1708 read_unlock(&tasklist_lock);
1709 }
bc505a47 1710
3df494a3
RW
1711 do {
1712 schedule();
1713 } while (try_to_freeze());
1da177e4
LT
1714 /*
1715 * Now we don't run again until continued.
1716 */
1717 current->exit_code = 0;
1718}
1719
1720/*
1721 * This performs the stopping for SIGSTOP and other stop signals.
1722 * We have to stop all threads in the thread group.
1723 * Returns nonzero if we've actually stopped and released the siglock.
1724 * Returns zero if we didn't stop and still hold the siglock.
1725 */
a122b341 1726static int do_signal_stop(int signr)
1da177e4
LT
1727{
1728 struct signal_struct *sig = current->signal;
dac27f4a 1729 int stop_count;
1da177e4
LT
1730
1731 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1732 return 0;
1733
1734 if (sig->group_stop_count > 0) {
1735 /*
1736 * There is a group stop in progress. We don't need to
1737 * start another one.
1738 */
1da177e4 1739 stop_count = --sig->group_stop_count;
dac27f4a 1740 } else {
1da177e4
LT
1741 /*
1742 * There is no group stop already in progress.
a122b341 1743 * We must initiate one now.
1da177e4
LT
1744 */
1745 struct task_struct *t;
1746
a122b341 1747 sig->group_exit_code = signr;
1da177e4 1748
a122b341
ON
1749 stop_count = 0;
1750 for (t = next_thread(current); t != current; t = next_thread(t))
1da177e4 1751 /*
a122b341
ON
1752 * Setting state to TASK_STOPPED for a group
1753 * stop is always done with the siglock held,
1754 * so this check has no races.
1da177e4 1755 */
a122b341
ON
1756 if (!t->exit_state &&
1757 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1758 stop_count++;
1759 signal_wake_up(t, 0);
1760 }
1761 sig->group_stop_count = stop_count;
1da177e4
LT
1762 }
1763
dac27f4a
ON
1764 if (stop_count == 0)
1765 sig->flags = SIGNAL_STOP_STOPPED;
1766 current->exit_code = sig->group_exit_code;
1767 __set_current_state(TASK_STOPPED);
1768
1769 spin_unlock_irq(&current->sighand->siglock);
1da177e4
LT
1770 finish_stop(stop_count);
1771 return 1;
1772}
1773
1774/*
1775 * Do appropriate magic when group_stop_count > 0.
1776 * We return nonzero if we stopped, after releasing the siglock.
1777 * We return zero if we still hold the siglock and should look
1778 * for another signal without checking group_stop_count again.
1779 */
858119e1 1780static int handle_group_stop(void)
1da177e4
LT
1781{
1782 int stop_count;
1783
1784 if (current->signal->group_exit_task == current) {
1785 /*
1786 * Group stop is so we can do a core dump,
1787 * We are the initiating thread, so get on with it.
1788 */
1789 current->signal->group_exit_task = NULL;
1790 return 0;
1791 }
1792
1793 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1794 /*
1795 * Group stop is so another thread can do a core dump,
1796 * or else we are racing against a death signal.
1797 * Just punt the stop so we can get the next signal.
1798 */
1799 return 0;
1800
1801 /*
1802 * There is a group stop in progress. We stop
1803 * without any associated signal being in our queue.
1804 */
1805 stop_count = --current->signal->group_stop_count;
1806 if (stop_count == 0)
1807 current->signal->flags = SIGNAL_STOP_STOPPED;
1808 current->exit_code = current->signal->group_exit_code;
1809 set_current_state(TASK_STOPPED);
1810 spin_unlock_irq(&current->sighand->siglock);
1811 finish_stop(stop_count);
1812 return 1;
1813}
1814
1815int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1816 struct pt_regs *regs, void *cookie)
1817{
1818 sigset_t *mask = &current->blocked;
1819 int signr = 0;
1820
fc558a74
RW
1821 try_to_freeze();
1822
1da177e4
LT
1823relock:
1824 spin_lock_irq(&current->sighand->siglock);
1825 for (;;) {
1826 struct k_sigaction *ka;
1827
1828 if (unlikely(current->signal->group_stop_count > 0) &&
1829 handle_group_stop())
1830 goto relock;
1831
1832 signr = dequeue_signal(current, mask, info);
1833
1834 if (!signr)
1835 break; /* will return 0 */
1836
1837 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1838 ptrace_signal_deliver(regs, cookie);
1839
1840 /* Let the debugger run. */
1841 ptrace_stop(signr, signr, info);
1842
e57a5059 1843 /* We're back. Did the debugger cancel the sig? */
1da177e4 1844 signr = current->exit_code;
e57a5059 1845 if (signr == 0)
1da177e4
LT
1846 continue;
1847
1848 current->exit_code = 0;
1849
1850 /* Update the siginfo structure if the signal has
1851 changed. If the debugger wanted something
1852 specific in the siginfo structure then it should
1853 have updated *info via PTRACE_SETSIGINFO. */
1854 if (signr != info->si_signo) {
1855 info->si_signo = signr;
1856 info->si_errno = 0;
1857 info->si_code = SI_USER;
1858 info->si_pid = current->parent->pid;
1859 info->si_uid = current->parent->uid;
1860 }
1861
1862 /* If the (new) signal is now blocked, requeue it. */
1863 if (sigismember(&current->blocked, signr)) {
1864 specific_send_sig_info(signr, info, current);
1865 continue;
1866 }
1867 }
1868
1869 ka = &current->sighand->action[signr-1];
1870 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1871 continue;
1872 if (ka->sa.sa_handler != SIG_DFL) {
1873 /* Run the handler. */
1874 *return_ka = *ka;
1875
1876 if (ka->sa.sa_flags & SA_ONESHOT)
1877 ka->sa.sa_handler = SIG_DFL;
1878
1879 break; /* will return non-zero "signr" value */
1880 }
1881
1882 /*
1883 * Now we are doing the default action for this signal.
1884 */
1885 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1886 continue;
1887
84d73786
SB
1888 /*
1889 * Init of a pid space gets no signals it doesn't want from
1890 * within that pid space. It can of course get signals from
1891 * its parent pid space.
1892 */
1893 if (current == child_reaper(current))
1da177e4
LT
1894 continue;
1895
1896 if (sig_kernel_stop(signr)) {
1897 /*
1898 * The default action is to stop all threads in
1899 * the thread group. The job control signals
1900 * do nothing in an orphaned pgrp, but SIGSTOP
1901 * always works. Note that siglock needs to be
1902 * dropped during the call to is_orphaned_pgrp()
1903 * because of lock ordering with tasklist_lock.
1904 * This allows an intervening SIGCONT to be posted.
1905 * We need to check for that and bail out if necessary.
1906 */
1907 if (signr != SIGSTOP) {
1908 spin_unlock_irq(&current->sighand->siglock);
1909
1910 /* signals can be posted during this window */
1911
1912 if (is_orphaned_pgrp(process_group(current)))
1913 goto relock;
1914
1915 spin_lock_irq(&current->sighand->siglock);
1916 }
1917
1918 if (likely(do_signal_stop(signr))) {
1919 /* It released the siglock. */
1920 goto relock;
1921 }
1922
1923 /*
1924 * We didn't actually stop, due to a race
1925 * with SIGCONT or something like that.
1926 */
1927 continue;
1928 }
1929
1930 spin_unlock_irq(&current->sighand->siglock);
1931
1932 /*
1933 * Anything else is fatal, maybe with a core dump.
1934 */
1935 current->flags |= PF_SIGNALED;
1936 if (sig_kernel_coredump(signr)) {
1937 /*
1938 * If it was able to dump core, this kills all
1939 * other threads in the group and synchronizes with
1940 * their demise. If we lost the race with another
1941 * thread getting here, it set group_exit_code
1942 * first and our do_group_exit call below will use
1943 * that value and ignore the one we pass it.
1944 */
1945 do_coredump((long)signr, signr, regs);
1946 }
1947
1948 /*
1949 * Death signals, no core dump.
1950 */
1951 do_group_exit(signr);
1952 /* NOTREACHED */
1953 }
1954 spin_unlock_irq(&current->sighand->siglock);
1955 return signr;
1956}
1957
1da177e4
LT
1958EXPORT_SYMBOL(recalc_sigpending);
1959EXPORT_SYMBOL_GPL(dequeue_signal);
1960EXPORT_SYMBOL(flush_signals);
1961EXPORT_SYMBOL(force_sig);
1962EXPORT_SYMBOL(kill_pg);
1963EXPORT_SYMBOL(kill_proc);
1964EXPORT_SYMBOL(ptrace_notify);
1965EXPORT_SYMBOL(send_sig);
1966EXPORT_SYMBOL(send_sig_info);
1967EXPORT_SYMBOL(sigprocmask);
1968EXPORT_SYMBOL(block_all_signals);
1969EXPORT_SYMBOL(unblock_all_signals);
1970
1971
1972/*
1973 * System call entry points.
1974 */
1975
1976asmlinkage long sys_restart_syscall(void)
1977{
1978 struct restart_block *restart = &current_thread_info()->restart_block;
1979 return restart->fn(restart);
1980}
1981
1982long do_no_restart_syscall(struct restart_block *param)
1983{
1984 return -EINTR;
1985}
1986
1987/*
1988 * We don't need to get the kernel lock - this is all local to this
1989 * particular thread.. (and that's good, because this is _heavily_
1990 * used by various programs)
1991 */
1992
1993/*
1994 * This is also useful for kernel threads that want to temporarily
1995 * (or permanently) block certain signals.
1996 *
1997 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1998 * interface happily blocks "unblockable" signals like SIGKILL
1999 * and friends.
2000 */
2001int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2002{
2003 int error;
1da177e4
LT
2004
2005 spin_lock_irq(&current->sighand->siglock);
a26fd335
ON
2006 if (oldset)
2007 *oldset = current->blocked;
2008
1da177e4
LT
2009 error = 0;
2010 switch (how) {
2011 case SIG_BLOCK:
2012 sigorsets(&current->blocked, &current->blocked, set);
2013 break;
2014 case SIG_UNBLOCK:
2015 signandsets(&current->blocked, &current->blocked, set);
2016 break;
2017 case SIG_SETMASK:
2018 current->blocked = *set;
2019 break;
2020 default:
2021 error = -EINVAL;
2022 }
2023 recalc_sigpending();
2024 spin_unlock_irq(&current->sighand->siglock);
a26fd335 2025
1da177e4
LT
2026 return error;
2027}
2028
2029asmlinkage long
2030sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2031{
2032 int error = -EINVAL;
2033 sigset_t old_set, new_set;
2034
2035 /* XXX: Don't preclude handling different sized sigset_t's. */
2036 if (sigsetsize != sizeof(sigset_t))
2037 goto out;
2038
2039 if (set) {
2040 error = -EFAULT;
2041 if (copy_from_user(&new_set, set, sizeof(*set)))
2042 goto out;
2043 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2044
2045 error = sigprocmask(how, &new_set, &old_set);
2046 if (error)
2047 goto out;
2048 if (oset)
2049 goto set_old;
2050 } else if (oset) {
2051 spin_lock_irq(&current->sighand->siglock);
2052 old_set = current->blocked;
2053 spin_unlock_irq(&current->sighand->siglock);
2054
2055 set_old:
2056 error = -EFAULT;
2057 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2058 goto out;
2059 }
2060 error = 0;
2061out:
2062 return error;
2063}
2064
2065long do_sigpending(void __user *set, unsigned long sigsetsize)
2066{
2067 long error = -EINVAL;
2068 sigset_t pending;
2069
2070 if (sigsetsize > sizeof(sigset_t))
2071 goto out;
2072
2073 spin_lock_irq(&current->sighand->siglock);
2074 sigorsets(&pending, &current->pending.signal,
2075 &current->signal->shared_pending.signal);
2076 spin_unlock_irq(&current->sighand->siglock);
2077
2078 /* Outside the lock because only this thread touches it. */
2079 sigandsets(&pending, &current->blocked, &pending);
2080
2081 error = -EFAULT;
2082 if (!copy_to_user(set, &pending, sigsetsize))
2083 error = 0;
2084
2085out:
2086 return error;
2087}
2088
2089asmlinkage long
2090sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2091{
2092 return do_sigpending(set, sigsetsize);
2093}
2094
2095#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2096
2097int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2098{
2099 int err;
2100
2101 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2102 return -EFAULT;
2103 if (from->si_code < 0)
2104 return __copy_to_user(to, from, sizeof(siginfo_t))
2105 ? -EFAULT : 0;
2106 /*
2107 * If you change siginfo_t structure, please be sure
2108 * this code is fixed accordingly.
2109 * It should never copy any pad contained in the structure
2110 * to avoid security leaks, but must copy the generic
2111 * 3 ints plus the relevant union member.
2112 */
2113 err = __put_user(from->si_signo, &to->si_signo);
2114 err |= __put_user(from->si_errno, &to->si_errno);
2115 err |= __put_user((short)from->si_code, &to->si_code);
2116 switch (from->si_code & __SI_MASK) {
2117 case __SI_KILL:
2118 err |= __put_user(from->si_pid, &to->si_pid);
2119 err |= __put_user(from->si_uid, &to->si_uid);
2120 break;
2121 case __SI_TIMER:
2122 err |= __put_user(from->si_tid, &to->si_tid);
2123 err |= __put_user(from->si_overrun, &to->si_overrun);
2124 err |= __put_user(from->si_ptr, &to->si_ptr);
2125 break;
2126 case __SI_POLL:
2127 err |= __put_user(from->si_band, &to->si_band);
2128 err |= __put_user(from->si_fd, &to->si_fd);
2129 break;
2130 case __SI_FAULT:
2131 err |= __put_user(from->si_addr, &to->si_addr);
2132#ifdef __ARCH_SI_TRAPNO
2133 err |= __put_user(from->si_trapno, &to->si_trapno);
2134#endif
2135 break;
2136 case __SI_CHLD:
2137 err |= __put_user(from->si_pid, &to->si_pid);
2138 err |= __put_user(from->si_uid, &to->si_uid);
2139 err |= __put_user(from->si_status, &to->si_status);
2140 err |= __put_user(from->si_utime, &to->si_utime);
2141 err |= __put_user(from->si_stime, &to->si_stime);
2142 break;
2143 case __SI_RT: /* This is not generated by the kernel as of now. */
2144 case __SI_MESGQ: /* But this is */
2145 err |= __put_user(from->si_pid, &to->si_pid);
2146 err |= __put_user(from->si_uid, &to->si_uid);
2147 err |= __put_user(from->si_ptr, &to->si_ptr);
2148 break;
2149 default: /* this is just in case for now ... */
2150 err |= __put_user(from->si_pid, &to->si_pid);
2151 err |= __put_user(from->si_uid, &to->si_uid);
2152 break;
2153 }
2154 return err;
2155}
2156
2157#endif
2158
2159asmlinkage long
2160sys_rt_sigtimedwait(const sigset_t __user *uthese,
2161 siginfo_t __user *uinfo,
2162 const struct timespec __user *uts,
2163 size_t sigsetsize)
2164{
2165 int ret, sig;
2166 sigset_t these;
2167 struct timespec ts;
2168 siginfo_t info;
2169 long timeout = 0;
2170
2171 /* XXX: Don't preclude handling different sized sigset_t's. */
2172 if (sigsetsize != sizeof(sigset_t))
2173 return -EINVAL;
2174
2175 if (copy_from_user(&these, uthese, sizeof(these)))
2176 return -EFAULT;
2177
2178 /*
2179 * Invert the set of allowed signals to get those we
2180 * want to block.
2181 */
2182 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2183 signotset(&these);
2184
2185 if (uts) {
2186 if (copy_from_user(&ts, uts, sizeof(ts)))
2187 return -EFAULT;
2188 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2189 || ts.tv_sec < 0)
2190 return -EINVAL;
2191 }
2192
2193 spin_lock_irq(&current->sighand->siglock);
2194 sig = dequeue_signal(current, &these, &info);
2195 if (!sig) {
2196 timeout = MAX_SCHEDULE_TIMEOUT;
2197 if (uts)
2198 timeout = (timespec_to_jiffies(&ts)
2199 + (ts.tv_sec || ts.tv_nsec));
2200
2201 if (timeout) {
2202 /* None ready -- temporarily unblock those we're
2203 * interested while we are sleeping in so that we'll
2204 * be awakened when they arrive. */
2205 current->real_blocked = current->blocked;
2206 sigandsets(&current->blocked, &current->blocked, &these);
2207 recalc_sigpending();
2208 spin_unlock_irq(&current->sighand->siglock);
2209
75bcc8c5 2210 timeout = schedule_timeout_interruptible(timeout);
1da177e4 2211
1da177e4
LT
2212 spin_lock_irq(&current->sighand->siglock);
2213 sig = dequeue_signal(current, &these, &info);
2214 current->blocked = current->real_blocked;
2215 siginitset(&current->real_blocked, 0);
2216 recalc_sigpending();
2217 }
2218 }
2219 spin_unlock_irq(&current->sighand->siglock);
2220
2221 if (sig) {
2222 ret = sig;
2223 if (uinfo) {
2224 if (copy_siginfo_to_user(uinfo, &info))
2225 ret = -EFAULT;
2226 }
2227 } else {
2228 ret = -EAGAIN;
2229 if (timeout)
2230 ret = -EINTR;
2231 }
2232
2233 return ret;
2234}
2235
2236asmlinkage long
2237sys_kill(int pid, int sig)
2238{
2239 struct siginfo info;
2240
2241 info.si_signo = sig;
2242 info.si_errno = 0;
2243 info.si_code = SI_USER;
2244 info.si_pid = current->tgid;
2245 info.si_uid = current->uid;
2246
2247 return kill_something_info(sig, &info, pid);
2248}
2249
6dd69f10 2250static int do_tkill(int tgid, int pid, int sig)
1da177e4 2251{
1da177e4 2252 int error;
6dd69f10 2253 struct siginfo info;
1da177e4
LT
2254 struct task_struct *p;
2255
6dd69f10 2256 error = -ESRCH;
1da177e4
LT
2257 info.si_signo = sig;
2258 info.si_errno = 0;
2259 info.si_code = SI_TKILL;
2260 info.si_pid = current->tgid;
2261 info.si_uid = current->uid;
2262
2263 read_lock(&tasklist_lock);
2264 p = find_task_by_pid(pid);
6dd69f10 2265 if (p && (tgid <= 0 || p->tgid == tgid)) {
1da177e4
LT
2266 error = check_kill_permission(sig, &info, p);
2267 /*
2268 * The null signal is a permissions and process existence
2269 * probe. No signal is actually delivered.
2270 */
2271 if (!error && sig && p->sighand) {
2272 spin_lock_irq(&p->sighand->siglock);
2273 handle_stop_signal(sig, p);
2274 error = specific_send_sig_info(sig, &info, p);
2275 spin_unlock_irq(&p->sighand->siglock);
2276 }
2277 }
2278 read_unlock(&tasklist_lock);
6dd69f10 2279
1da177e4
LT
2280 return error;
2281}
2282
6dd69f10
VL
2283/**
2284 * sys_tgkill - send signal to one specific thread
2285 * @tgid: the thread group ID of the thread
2286 * @pid: the PID of the thread
2287 * @sig: signal to be sent
2288 *
72fd4a35 2289 * This syscall also checks the @tgid and returns -ESRCH even if the PID
6dd69f10
VL
2290 * exists but it's not belonging to the target process anymore. This
2291 * method solves the problem of threads exiting and PIDs getting reused.
2292 */
2293asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2294{
2295 /* This is only valid for single tasks */
2296 if (pid <= 0 || tgid <= 0)
2297 return -EINVAL;
2298
2299 return do_tkill(tgid, pid, sig);
2300}
2301
1da177e4
LT
2302/*
2303 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2304 */
2305asmlinkage long
2306sys_tkill(int pid, int sig)
2307{
1da177e4
LT
2308 /* This is only valid for single tasks */
2309 if (pid <= 0)
2310 return -EINVAL;
2311
6dd69f10 2312 return do_tkill(0, pid, sig);
1da177e4
LT
2313}
2314
2315asmlinkage long
2316sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2317{
2318 siginfo_t info;
2319
2320 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2321 return -EFAULT;
2322
2323 /* Not even root can pretend to send signals from the kernel.
2324 Nor can they impersonate a kill(), which adds source info. */
2325 if (info.si_code >= 0)
2326 return -EPERM;
2327 info.si_signo = sig;
2328
2329 /* POSIX.1b doesn't mention process groups. */
2330 return kill_proc_info(sig, &info, pid);
2331}
2332
88531f72 2333int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
1da177e4
LT
2334{
2335 struct k_sigaction *k;
71fabd5e 2336 sigset_t mask;
1da177e4 2337
7ed20e1a 2338 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
1da177e4
LT
2339 return -EINVAL;
2340
2341 k = &current->sighand->action[sig-1];
2342
2343 spin_lock_irq(&current->sighand->siglock);
2344 if (signal_pending(current)) {
2345 /*
2346 * If there might be a fatal signal pending on multiple
2347 * threads, make sure we take it before changing the action.
2348 */
2349 spin_unlock_irq(&current->sighand->siglock);
2350 return -ERESTARTNOINTR;
2351 }
2352
2353 if (oact)
2354 *oact = *k;
2355
2356 if (act) {
9ac95f2f
ON
2357 sigdelsetmask(&act->sa.sa_mask,
2358 sigmask(SIGKILL) | sigmask(SIGSTOP));
88531f72 2359 *k = *act;
1da177e4
LT
2360 /*
2361 * POSIX 3.3.1.3:
2362 * "Setting a signal action to SIG_IGN for a signal that is
2363 * pending shall cause the pending signal to be discarded,
2364 * whether or not it is blocked."
2365 *
2366 * "Setting a signal action to SIG_DFL for a signal that is
2367 * pending and whose default action is to ignore the signal
2368 * (for example, SIGCHLD), shall cause the pending signal to
2369 * be discarded, whether or not it is blocked"
2370 */
2371 if (act->sa.sa_handler == SIG_IGN ||
88531f72 2372 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
1da177e4 2373 struct task_struct *t = current;
71fabd5e
GA
2374 sigemptyset(&mask);
2375 sigaddset(&mask, sig);
2376 rm_from_queue_full(&mask, &t->signal->shared_pending);
1da177e4 2377 do {
71fabd5e 2378 rm_from_queue_full(&mask, &t->pending);
1da177e4
LT
2379 recalc_sigpending_tsk(t);
2380 t = next_thread(t);
2381 } while (t != current);
1da177e4 2382 }
1da177e4
LT
2383 }
2384
2385 spin_unlock_irq(&current->sighand->siglock);
2386 return 0;
2387}
2388
2389int
2390do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2391{
2392 stack_t oss;
2393 int error;
2394
2395 if (uoss) {
2396 oss.ss_sp = (void __user *) current->sas_ss_sp;
2397 oss.ss_size = current->sas_ss_size;
2398 oss.ss_flags = sas_ss_flags(sp);
2399 }
2400
2401 if (uss) {
2402 void __user *ss_sp;
2403 size_t ss_size;
2404 int ss_flags;
2405
2406 error = -EFAULT;
2407 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2408 || __get_user(ss_sp, &uss->ss_sp)
2409 || __get_user(ss_flags, &uss->ss_flags)
2410 || __get_user(ss_size, &uss->ss_size))
2411 goto out;
2412
2413 error = -EPERM;
2414 if (on_sig_stack(sp))
2415 goto out;
2416
2417 error = -EINVAL;
2418 /*
2419 *
2420 * Note - this code used to test ss_flags incorrectly
2421 * old code may have been written using ss_flags==0
2422 * to mean ss_flags==SS_ONSTACK (as this was the only
2423 * way that worked) - this fix preserves that older
2424 * mechanism
2425 */
2426 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2427 goto out;
2428
2429 if (ss_flags == SS_DISABLE) {
2430 ss_size = 0;
2431 ss_sp = NULL;
2432 } else {
2433 error = -ENOMEM;
2434 if (ss_size < MINSIGSTKSZ)
2435 goto out;
2436 }
2437
2438 current->sas_ss_sp = (unsigned long) ss_sp;
2439 current->sas_ss_size = ss_size;
2440 }
2441
2442 if (uoss) {
2443 error = -EFAULT;
2444 if (copy_to_user(uoss, &oss, sizeof(oss)))
2445 goto out;
2446 }
2447
2448 error = 0;
2449out:
2450 return error;
2451}
2452
2453#ifdef __ARCH_WANT_SYS_SIGPENDING
2454
2455asmlinkage long
2456sys_sigpending(old_sigset_t __user *set)
2457{
2458 return do_sigpending(set, sizeof(*set));
2459}
2460
2461#endif
2462
2463#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2464/* Some platforms have their own version with special arguments others
2465 support only sys_rt_sigprocmask. */
2466
2467asmlinkage long
2468sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2469{
2470 int error;
2471 old_sigset_t old_set, new_set;
2472
2473 if (set) {
2474 error = -EFAULT;
2475 if (copy_from_user(&new_set, set, sizeof(*set)))
2476 goto out;
2477 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2478
2479 spin_lock_irq(&current->sighand->siglock);
2480 old_set = current->blocked.sig[0];
2481
2482 error = 0;
2483 switch (how) {
2484 default:
2485 error = -EINVAL;
2486 break;
2487 case SIG_BLOCK:
2488 sigaddsetmask(&current->blocked, new_set);
2489 break;
2490 case SIG_UNBLOCK:
2491 sigdelsetmask(&current->blocked, new_set);
2492 break;
2493 case SIG_SETMASK:
2494 current->blocked.sig[0] = new_set;
2495 break;
2496 }
2497
2498 recalc_sigpending();
2499 spin_unlock_irq(&current->sighand->siglock);
2500 if (error)
2501 goto out;
2502 if (oset)
2503 goto set_old;
2504 } else if (oset) {
2505 old_set = current->blocked.sig[0];
2506 set_old:
2507 error = -EFAULT;
2508 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2509 goto out;
2510 }
2511 error = 0;
2512out:
2513 return error;
2514}
2515#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2516
2517#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2518asmlinkage long
2519sys_rt_sigaction(int sig,
2520 const struct sigaction __user *act,
2521 struct sigaction __user *oact,
2522 size_t sigsetsize)
2523{
2524 struct k_sigaction new_sa, old_sa;
2525 int ret = -EINVAL;
2526
2527 /* XXX: Don't preclude handling different sized sigset_t's. */
2528 if (sigsetsize != sizeof(sigset_t))
2529 goto out;
2530
2531 if (act) {
2532 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2533 return -EFAULT;
2534 }
2535
2536 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2537
2538 if (!ret && oact) {
2539 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2540 return -EFAULT;
2541 }
2542out:
2543 return ret;
2544}
2545#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2546
2547#ifdef __ARCH_WANT_SYS_SGETMASK
2548
2549/*
2550 * For backwards compatibility. Functionality superseded by sigprocmask.
2551 */
2552asmlinkage long
2553sys_sgetmask(void)
2554{
2555 /* SMP safe */
2556 return current->blocked.sig[0];
2557}
2558
2559asmlinkage long
2560sys_ssetmask(int newmask)
2561{
2562 int old;
2563
2564 spin_lock_irq(&current->sighand->siglock);
2565 old = current->blocked.sig[0];
2566
2567 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2568 sigmask(SIGSTOP)));
2569 recalc_sigpending();
2570 spin_unlock_irq(&current->sighand->siglock);
2571
2572 return old;
2573}
2574#endif /* __ARCH_WANT_SGETMASK */
2575
2576#ifdef __ARCH_WANT_SYS_SIGNAL
2577/*
2578 * For backwards compatibility. Functionality superseded by sigaction.
2579 */
2580asmlinkage unsigned long
2581sys_signal(int sig, __sighandler_t handler)
2582{
2583 struct k_sigaction new_sa, old_sa;
2584 int ret;
2585
2586 new_sa.sa.sa_handler = handler;
2587 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
c70d3d70 2588 sigemptyset(&new_sa.sa.sa_mask);
1da177e4
LT
2589
2590 ret = do_sigaction(sig, &new_sa, &old_sa);
2591
2592 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2593}
2594#endif /* __ARCH_WANT_SYS_SIGNAL */
2595
2596#ifdef __ARCH_WANT_SYS_PAUSE
2597
2598asmlinkage long
2599sys_pause(void)
2600{
2601 current->state = TASK_INTERRUPTIBLE;
2602 schedule();
2603 return -ERESTARTNOHAND;
2604}
2605
2606#endif
2607
150256d8
DW
2608#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2609asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2610{
2611 sigset_t newset;
2612
2613 /* XXX: Don't preclude handling different sized sigset_t's. */
2614 if (sigsetsize != sizeof(sigset_t))
2615 return -EINVAL;
2616
2617 if (copy_from_user(&newset, unewset, sizeof(newset)))
2618 return -EFAULT;
2619 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2620
2621 spin_lock_irq(&current->sighand->siglock);
2622 current->saved_sigmask = current->blocked;
2623 current->blocked = newset;
2624 recalc_sigpending();
2625 spin_unlock_irq(&current->sighand->siglock);
2626
2627 current->state = TASK_INTERRUPTIBLE;
2628 schedule();
2629 set_thread_flag(TIF_RESTORE_SIGMASK);
2630 return -ERESTARTNOHAND;
2631}
2632#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2633
f269fdd1
DH
2634__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2635{
2636 return NULL;
2637}
2638
1da177e4
LT
2639void __init signals_init(void)
2640{
2641 sigqueue_cachep =
2642 kmem_cache_create("sigqueue",
2643 sizeof(struct sigqueue),
2644 __alignof__(struct sigqueue),
2645 SLAB_PANIC, NULL, NULL);
2646}