sched: fix sched_clock_cpu()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
0bbd3336 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
0bbd3336 72unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
bf0f6f24
IM
76/**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
b758149c
PZ
80static inline struct task_struct *task_of(struct sched_entity *se)
81{
82 return container_of(se, struct task_struct, se);
83}
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
b758149c
PZ
96/* Walk up scheduling entities hierarchy */
97#define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101{
102 return p->se.cfs_rq;
103}
104
105/* runqueue on which this entity is (to be) queued */
106static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107{
108 return se->cfs_rq;
109}
110
111/* runqueue "owned" by this group */
112static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113{
114 return grp->my_q;
115}
116
117/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121{
122 return cfs_rq->tg->cfs_rq[this_cpu];
123}
124
125/* Iterate thr' all leaf cfs_rq's on a runqueue */
126#define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129/* Do the two (enqueued) entities belong to the same group ? */
130static inline int
131is_same_group(struct sched_entity *se, struct sched_entity *pse)
132{
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137}
138
139static inline struct sched_entity *parent_entity(struct sched_entity *se)
140{
141 return se->parent;
142}
143
62160e3f 144#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 145
62160e3f
IM
146static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147{
148 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
149}
150
151#define entity_is_task(se) 1
152
b758149c
PZ
153#define for_each_sched_entity(se) \
154 for (; se; se = NULL)
bf0f6f24 155
b758149c 156static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 157{
b758149c 158 return &task_rq(p)->cfs;
bf0f6f24
IM
159}
160
b758149c
PZ
161static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162{
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167}
168
169/* runqueue "owned" by this group */
170static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171{
172 return NULL;
173}
174
175static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176{
177 return &cpu_rq(this_cpu)->cfs;
178}
179
180#define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183static inline int
184is_same_group(struct sched_entity *se, struct sched_entity *pse)
185{
186 return 1;
187}
188
189static inline struct sched_entity *parent_entity(struct sched_entity *se)
190{
191 return NULL;
192}
193
194#endif /* CONFIG_FAIR_GROUP_SCHED */
195
bf0f6f24
IM
196
197/**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
0702e3eb 201static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 202{
368059a9
PZ
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
02e0431a
PZ
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208}
209
0702e3eb 210static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
211{
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217}
218
0702e3eb 219static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 220{
30cfdcfc 221 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
222}
223
bf0f6f24
IM
224/*
225 * Enqueue an entity into the rb-tree:
226 */
0702e3eb 227static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
228{
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
9014623c 232 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
9014623c 245 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
3fe69747 257 if (leftmost) {
57cb499d 258 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
bf0f6f24
IM
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
269}
270
0702e3eb 271static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 272{
3fe69747
PZ
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
e9acbff6 288
aa2ac252
PZ
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
bf0f6f24 292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
293}
294
295static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296{
297 return cfs_rq->rb_leftmost;
298}
299
300static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301{
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303}
304
aeb73b04
PZ
305static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306{
7eee3e67 307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 308
70eee74b
BS
309 if (!last)
310 return NULL;
7eee3e67
IM
311
312 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
313}
314
bf0f6f24
IM
315/**************************************************************
316 * Scheduling class statistics methods:
317 */
318
b2be5e96
PZ
319#ifdef CONFIG_SCHED_DEBUG
320int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323{
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333}
334#endif
647e7cac
IM
335
336/*
337 * The idea is to set a period in which each task runs once.
338 *
339 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
340 * this period because otherwise the slices get too small.
341 *
342 * p = (nr <= nl) ? l : l*nr/nl
343 */
4d78e7b6
PZ
344static u64 __sched_period(unsigned long nr_running)
345{
346 u64 period = sysctl_sched_latency;
b2be5e96 347 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
348
349 if (unlikely(nr_running > nr_latency)) {
4bf0b771 350 period = sysctl_sched_min_granularity;
4d78e7b6 351 period *= nr_running;
4d78e7b6
PZ
352 }
353
354 return period;
355}
356
647e7cac
IM
357/*
358 * We calculate the wall-time slice from the period by taking a part
359 * proportional to the weight.
360 *
361 * s = p*w/rw
362 */
6d0f0ebd 363static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 364{
f9305d4a
IM
365 u64 slice = __sched_period(cfs_rq->nr_running);
366
367 for_each_sched_entity(se) {
368 cfs_rq = cfs_rq_of(se);
369
370 slice *= se->load.weight;
371 do_div(slice, cfs_rq->load.weight);
372 }
373
374
375 return slice;
bf0f6f24
IM
376}
377
647e7cac 378/*
ac884dec 379 * We calculate the vruntime slice of a to be inserted task
647e7cac 380 *
f9305d4a 381 * vs = s/w = p/rw
647e7cac 382 */
ac884dec 383static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 384{
ac884dec 385 unsigned long nr_running = cfs_rq->nr_running;
f9305d4a
IM
386 unsigned long weight;
387 u64 vslice;
67e9fb2a 388
ac884dec
PZ
389 if (!se->on_rq)
390 nr_running++;
67e9fb2a 391
f9305d4a 392 vslice = __sched_period(nr_running);
5f6d858e 393
ac884dec 394 for_each_sched_entity(se) {
f9305d4a 395 cfs_rq = cfs_rq_of(se);
ac884dec 396
f9305d4a
IM
397 weight = cfs_rq->load.weight;
398 if (!se->on_rq)
399 weight += se->load.weight;
ac884dec 400
f9305d4a
IM
401 vslice *= NICE_0_LOAD;
402 do_div(vslice, weight);
ac884dec
PZ
403 }
404
f9305d4a 405 return vslice;
67e9fb2a
PZ
406}
407
bf0f6f24
IM
408/*
409 * Update the current task's runtime statistics. Skip current tasks that
410 * are not in our scheduling class.
411 */
412static inline void
8ebc91d9
IM
413__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
414 unsigned long delta_exec)
bf0f6f24 415{
bbdba7c0 416 unsigned long delta_exec_weighted;
bf0f6f24 417
8179ca23 418 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
419
420 curr->sum_exec_runtime += delta_exec;
7a62eabc 421 schedstat_add(cfs_rq, exec_clock, delta_exec);
f9305d4a
IM
422 delta_exec_weighted = delta_exec;
423 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
424 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
425 &curr->load);
426 }
e9acbff6 427 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
428}
429
b7cc0896 430static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 431{
429d43bc 432 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 433 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
434 unsigned long delta_exec;
435
436 if (unlikely(!curr))
437 return;
438
439 /*
440 * Get the amount of time the current task was running
441 * since the last time we changed load (this cannot
442 * overflow on 32 bits):
443 */
8ebc91d9 444 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 445
8ebc91d9
IM
446 __update_curr(cfs_rq, curr, delta_exec);
447 curr->exec_start = now;
d842de87
SV
448
449 if (entity_is_task(curr)) {
450 struct task_struct *curtask = task_of(curr);
451
452 cpuacct_charge(curtask, delta_exec);
453 }
bf0f6f24
IM
454}
455
456static inline void
5870db5b 457update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 458{
d281918d 459 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
460}
461
bf0f6f24
IM
462/*
463 * Task is being enqueued - update stats:
464 */
d2417e5a 465static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 466{
bf0f6f24
IM
467 /*
468 * Are we enqueueing a waiting task? (for current tasks
469 * a dequeue/enqueue event is a NOP)
470 */
429d43bc 471 if (se != cfs_rq->curr)
5870db5b 472 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
473}
474
bf0f6f24 475static void
9ef0a961 476update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 477{
bbdba7c0
IM
478 schedstat_set(se->wait_max, max(se->wait_max,
479 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
480 schedstat_set(se->wait_count, se->wait_count + 1);
481 schedstat_set(se->wait_sum, se->wait_sum +
482 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 483 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
484}
485
486static inline void
19b6a2e3 487update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 488{
bf0f6f24
IM
489 /*
490 * Mark the end of the wait period if dequeueing a
491 * waiting task:
492 */
429d43bc 493 if (se != cfs_rq->curr)
9ef0a961 494 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
495}
496
497/*
498 * We are picking a new current task - update its stats:
499 */
500static inline void
79303e9e 501update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
502{
503 /*
504 * We are starting a new run period:
505 */
d281918d 506 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
507}
508
bf0f6f24
IM
509/**************************************************
510 * Scheduling class queueing methods:
511 */
512
30cfdcfc
DA
513static void
514account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
515{
516 update_load_add(&cfs_rq->load, se->load.weight);
517 cfs_rq->nr_running++;
518 se->on_rq = 1;
4a55bd5e 519 list_add(&se->group_node, &cfs_rq->tasks);
30cfdcfc
DA
520}
521
522static void
523account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
524{
525 update_load_sub(&cfs_rq->load, se->load.weight);
526 cfs_rq->nr_running--;
527 se->on_rq = 0;
4a55bd5e 528 list_del_init(&se->group_node);
30cfdcfc
DA
529}
530
2396af69 531static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 532{
bf0f6f24
IM
533#ifdef CONFIG_SCHEDSTATS
534 if (se->sleep_start) {
d281918d 535 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 536 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
537
538 if ((s64)delta < 0)
539 delta = 0;
540
541 if (unlikely(delta > se->sleep_max))
542 se->sleep_max = delta;
543
544 se->sleep_start = 0;
545 se->sum_sleep_runtime += delta;
9745512c
AV
546
547 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
548 }
549 if (se->block_start) {
d281918d 550 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 551 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
552
553 if ((s64)delta < 0)
554 delta = 0;
555
556 if (unlikely(delta > se->block_max))
557 se->block_max = delta;
558
559 se->block_start = 0;
560 se->sum_sleep_runtime += delta;
30084fbd
IM
561
562 /*
563 * Blocking time is in units of nanosecs, so shift by 20 to
564 * get a milliseconds-range estimation of the amount of
565 * time that the task spent sleeping:
566 */
567 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 568
30084fbd
IM
569 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
570 delta >> 20);
571 }
9745512c 572 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
573 }
574#endif
575}
576
ddc97297
PZ
577static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
578{
579#ifdef CONFIG_SCHED_DEBUG
580 s64 d = se->vruntime - cfs_rq->min_vruntime;
581
582 if (d < 0)
583 d = -d;
584
585 if (d > 3*sysctl_sched_latency)
586 schedstat_inc(cfs_rq, nr_spread_over);
587#endif
588}
589
aeb73b04
PZ
590static void
591place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
592{
67e9fb2a 593 u64 vruntime;
aeb73b04 594
3fe69747
PZ
595 if (first_fair(cfs_rq)) {
596 vruntime = min_vruntime(cfs_rq->min_vruntime,
597 __pick_next_entity(cfs_rq)->vruntime);
598 } else
599 vruntime = cfs_rq->min_vruntime;
94dfb5e7 600
2cb8600e
PZ
601 /*
602 * The 'current' period is already promised to the current tasks,
603 * however the extra weight of the new task will slow them down a
604 * little, place the new task so that it fits in the slot that
605 * stays open at the end.
606 */
94dfb5e7 607 if (initial && sched_feat(START_DEBIT))
647e7cac 608 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 609
8465e792 610 if (!initial) {
2cb8600e 611 /* sleeps upto a single latency don't count. */
f9305d4a
IM
612 if (sched_feat(NEW_FAIR_SLEEPERS))
613 vruntime -= sysctl_sched_latency;
94359f05 614
2cb8600e
PZ
615 /* ensure we never gain time by being placed backwards. */
616 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
617 }
618
67e9fb2a 619 se->vruntime = vruntime;
aeb73b04
PZ
620}
621
bf0f6f24 622static void
83b699ed 623enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
624{
625 /*
a2a2d680 626 * Update run-time statistics of the 'current'.
bf0f6f24 627 */
b7cc0896 628 update_curr(cfs_rq);
a992241d 629 account_entity_enqueue(cfs_rq, se);
bf0f6f24 630
e9acbff6 631 if (wakeup) {
aeb73b04 632 place_entity(cfs_rq, se, 0);
2396af69 633 enqueue_sleeper(cfs_rq, se);
e9acbff6 634 }
bf0f6f24 635
d2417e5a 636 update_stats_enqueue(cfs_rq, se);
ddc97297 637 check_spread(cfs_rq, se);
83b699ed
SV
638 if (se != cfs_rq->curr)
639 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
640}
641
4ae7d5ce
IM
642static void update_avg(u64 *avg, u64 sample)
643{
644 s64 diff = sample - *avg;
645 *avg += diff >> 3;
646}
647
648static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
649{
650 if (!se->last_wakeup)
651 return;
652
653 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
654 se->last_wakeup = 0;
655}
656
bf0f6f24 657static void
525c2716 658dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 659{
a2a2d680
DA
660 /*
661 * Update run-time statistics of the 'current'.
662 */
663 update_curr(cfs_rq);
664
19b6a2e3 665 update_stats_dequeue(cfs_rq, se);
db36cc7d 666 if (sleep) {
4ae7d5ce 667 update_avg_stats(cfs_rq, se);
67e9fb2a 668#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
669 if (entity_is_task(se)) {
670 struct task_struct *tsk = task_of(se);
671
672 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 673 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 674 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 675 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 676 }
db36cc7d 677#endif
67e9fb2a
PZ
678 }
679
83b699ed 680 if (se != cfs_rq->curr)
30cfdcfc
DA
681 __dequeue_entity(cfs_rq, se);
682 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
683}
684
685/*
686 * Preempt the current task with a newly woken task if needed:
687 */
7c92e54f 688static void
2e09bf55 689check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 690{
11697830
PZ
691 unsigned long ideal_runtime, delta_exec;
692
6d0f0ebd 693 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 694 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 695 if (delta_exec > ideal_runtime)
bf0f6f24
IM
696 resched_task(rq_of(cfs_rq)->curr);
697}
698
83b699ed 699static void
8494f412 700set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 701{
83b699ed
SV
702 /* 'current' is not kept within the tree. */
703 if (se->on_rq) {
704 /*
705 * Any task has to be enqueued before it get to execute on
706 * a CPU. So account for the time it spent waiting on the
707 * runqueue.
708 */
709 update_stats_wait_end(cfs_rq, se);
710 __dequeue_entity(cfs_rq, se);
711 }
712
79303e9e 713 update_stats_curr_start(cfs_rq, se);
429d43bc 714 cfs_rq->curr = se;
eba1ed4b
IM
715#ifdef CONFIG_SCHEDSTATS
716 /*
717 * Track our maximum slice length, if the CPU's load is at
718 * least twice that of our own weight (i.e. dont track it
719 * when there are only lesser-weight tasks around):
720 */
495eca49 721 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
722 se->slice_max = max(se->slice_max,
723 se->sum_exec_runtime - se->prev_sum_exec_runtime);
724 }
725#endif
4a55b450 726 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
727}
728
0bbd3336
PZ
729static int
730wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
731
aa2ac252
PZ
732static struct sched_entity *
733pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
734{
aa2ac252
PZ
735 if (!cfs_rq->next)
736 return se;
737
0bbd3336 738 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
aa2ac252
PZ
739 return se;
740
741 return cfs_rq->next;
742}
743
9948f4b2 744static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 745{
08ec3df5 746 struct sched_entity *se = NULL;
bf0f6f24 747
08ec3df5
DA
748 if (first_fair(cfs_rq)) {
749 se = __pick_next_entity(cfs_rq);
aa2ac252 750 se = pick_next(cfs_rq, se);
08ec3df5
DA
751 set_next_entity(cfs_rq, se);
752 }
bf0f6f24
IM
753
754 return se;
755}
756
ab6cde26 757static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
758{
759 /*
760 * If still on the runqueue then deactivate_task()
761 * was not called and update_curr() has to be done:
762 */
763 if (prev->on_rq)
b7cc0896 764 update_curr(cfs_rq);
bf0f6f24 765
ddc97297 766 check_spread(cfs_rq, prev);
30cfdcfc 767 if (prev->on_rq) {
5870db5b 768 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
769 /* Put 'current' back into the tree. */
770 __enqueue_entity(cfs_rq, prev);
771 }
429d43bc 772 cfs_rq->curr = NULL;
bf0f6f24
IM
773}
774
8f4d37ec
PZ
775static void
776entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 777{
bf0f6f24 778 /*
30cfdcfc 779 * Update run-time statistics of the 'current'.
bf0f6f24 780 */
30cfdcfc 781 update_curr(cfs_rq);
bf0f6f24 782
8f4d37ec
PZ
783#ifdef CONFIG_SCHED_HRTICK
784 /*
785 * queued ticks are scheduled to match the slice, so don't bother
786 * validating it and just reschedule.
787 */
983ed7a6
HH
788 if (queued) {
789 resched_task(rq_of(cfs_rq)->curr);
790 return;
791 }
8f4d37ec
PZ
792 /*
793 * don't let the period tick interfere with the hrtick preemption
794 */
795 if (!sched_feat(DOUBLE_TICK) &&
796 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
797 return;
798#endif
799
ce6c1311 800 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 801 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
802}
803
804/**************************************************
805 * CFS operations on tasks:
806 */
807
8f4d37ec
PZ
808#ifdef CONFIG_SCHED_HRTICK
809static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
810{
811 int requeue = rq->curr == p;
812 struct sched_entity *se = &p->se;
813 struct cfs_rq *cfs_rq = cfs_rq_of(se);
814
815 WARN_ON(task_rq(p) != rq);
816
817 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
818 u64 slice = sched_slice(cfs_rq, se);
819 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
820 s64 delta = slice - ran;
821
822 if (delta < 0) {
823 if (rq->curr == p)
824 resched_task(p);
825 return;
826 }
827
828 /*
829 * Don't schedule slices shorter than 10000ns, that just
830 * doesn't make sense. Rely on vruntime for fairness.
831 */
832 if (!requeue)
833 delta = max(10000LL, delta);
834
835 hrtick_start(rq, delta, requeue);
836 }
837}
838#else
839static inline void
840hrtick_start_fair(struct rq *rq, struct task_struct *p)
841{
842}
843#endif
844
bf0f6f24
IM
845/*
846 * The enqueue_task method is called before nr_running is
847 * increased. Here we update the fair scheduling stats and
848 * then put the task into the rbtree:
849 */
fd390f6a 850static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
851{
852 struct cfs_rq *cfs_rq;
62fb1851 853 struct sched_entity *se = &p->se;
bf0f6f24
IM
854
855 for_each_sched_entity(se) {
62fb1851 856 if (se->on_rq)
bf0f6f24
IM
857 break;
858 cfs_rq = cfs_rq_of(se);
83b699ed 859 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 860 wakeup = 1;
bf0f6f24 861 }
8f4d37ec
PZ
862
863 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
864}
865
866/*
867 * The dequeue_task method is called before nr_running is
868 * decreased. We remove the task from the rbtree and
869 * update the fair scheduling stats:
870 */
f02231e5 871static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
872{
873 struct cfs_rq *cfs_rq;
62fb1851 874 struct sched_entity *se = &p->se;
bf0f6f24
IM
875
876 for_each_sched_entity(se) {
877 cfs_rq = cfs_rq_of(se);
525c2716 878 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 879 /* Don't dequeue parent if it has other entities besides us */
62fb1851 880 if (cfs_rq->load.weight)
bf0f6f24 881 break;
b9fa3df3 882 sleep = 1;
bf0f6f24 883 }
8f4d37ec
PZ
884
885 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
886}
887
888/*
1799e35d
IM
889 * sched_yield() support is very simple - we dequeue and enqueue.
890 *
891 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 892 */
4530d7ab 893static void yield_task_fair(struct rq *rq)
bf0f6f24 894{
db292ca3
IM
895 struct task_struct *curr = rq->curr;
896 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
897 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
898
899 /*
1799e35d
IM
900 * Are we the only task in the tree?
901 */
902 if (unlikely(cfs_rq->nr_running == 1))
903 return;
904
db292ca3 905 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 906 update_rq_clock(rq);
1799e35d 907 /*
a2a2d680 908 * Update run-time statistics of the 'current'.
1799e35d 909 */
2b1e315d 910 update_curr(cfs_rq);
1799e35d
IM
911
912 return;
913 }
914 /*
915 * Find the rightmost entry in the rbtree:
bf0f6f24 916 */
2b1e315d 917 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
918 /*
919 * Already in the rightmost position?
920 */
79b3feff 921 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
922 return;
923
924 /*
925 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
926 * Upon rescheduling, sched_class::put_prev_task() will place
927 * 'current' within the tree based on its new key value.
1799e35d 928 */
30cfdcfc 929 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
930}
931
e7693a36
GH
932/*
933 * wake_idle() will wake a task on an idle cpu if task->cpu is
934 * not idle and an idle cpu is available. The span of cpus to
935 * search starts with cpus closest then further out as needed,
936 * so we always favor a closer, idle cpu.
937 *
938 * Returns the CPU we should wake onto.
939 */
940#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
941static int wake_idle(int cpu, struct task_struct *p)
942{
943 cpumask_t tmp;
944 struct sched_domain *sd;
945 int i;
946
947 /*
948 * If it is idle, then it is the best cpu to run this task.
949 *
950 * This cpu is also the best, if it has more than one task already.
951 * Siblings must be also busy(in most cases) as they didn't already
952 * pickup the extra load from this cpu and hence we need not check
953 * sibling runqueue info. This will avoid the checks and cache miss
954 * penalities associated with that.
955 */
104f6454 956 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
957 return cpu;
958
959 for_each_domain(cpu, sd) {
1d3504fc
HS
960 if ((sd->flags & SD_WAKE_IDLE)
961 || ((sd->flags & SD_WAKE_IDLE_FAR)
962 && !task_hot(p, task_rq(p)->clock, sd))) {
e7693a36
GH
963 cpus_and(tmp, sd->span, p->cpus_allowed);
964 for_each_cpu_mask(i, tmp) {
965 if (idle_cpu(i)) {
966 if (i != task_cpu(p)) {
967 schedstat_inc(p,
968 se.nr_wakeups_idle);
969 }
970 return i;
971 }
972 }
973 } else {
974 break;
975 }
976 }
977 return cpu;
978}
979#else
980static inline int wake_idle(int cpu, struct task_struct *p)
981{
982 return cpu;
983}
984#endif
985
986#ifdef CONFIG_SMP
098fb9db 987
4ae7d5ce
IM
988static const struct sched_class fair_sched_class;
989
098fb9db 990static int
4ae7d5ce
IM
991wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
992 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
993 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
994 unsigned int imbalance)
995{
4ae7d5ce 996 struct task_struct *curr = this_rq->curr;
098fb9db
IM
997 unsigned long tl = this_load;
998 unsigned long tl_per_task;
999
1000 if (!(this_sd->flags & SD_WAKE_AFFINE))
1001 return 0;
1002
1003 /*
4ae7d5ce
IM
1004 * If the currently running task will sleep within
1005 * a reasonable amount of time then attract this newly
1006 * woken task:
098fb9db 1007 */
4ae7d5ce
IM
1008 if (sync && curr->sched_class == &fair_sched_class) {
1009 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1010 p->se.avg_overlap < sysctl_sched_migration_cost)
1011 return 1;
1012 }
098fb9db
IM
1013
1014 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1015 tl_per_task = cpu_avg_load_per_task(this_cpu);
1016
1017 /*
1018 * If sync wakeup then subtract the (maximum possible)
1019 * effect of the currently running task from the load
1020 * of the current CPU:
1021 */
1022 if (sync)
1023 tl -= current->se.load.weight;
1024
ac192d39 1025 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
098fb9db
IM
1026 100*(tl + p->se.load.weight) <= imbalance*load) {
1027 /*
1028 * This domain has SD_WAKE_AFFINE and
1029 * p is cache cold in this domain, and
1030 * there is no bad imbalance.
1031 */
1032 schedstat_inc(this_sd, ttwu_move_affine);
1033 schedstat_inc(p, se.nr_wakeups_affine);
1034
1035 return 1;
1036 }
1037 return 0;
1038}
1039
e7693a36
GH
1040static int select_task_rq_fair(struct task_struct *p, int sync)
1041{
e7693a36 1042 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1043 int prev_cpu, this_cpu, new_cpu;
098fb9db 1044 unsigned long load, this_load;
4ae7d5ce 1045 struct rq *rq, *this_rq;
098fb9db 1046 unsigned int imbalance;
098fb9db 1047 int idx;
e7693a36 1048
ac192d39
IM
1049 prev_cpu = task_cpu(p);
1050 rq = task_rq(p);
1051 this_cpu = smp_processor_id();
4ae7d5ce 1052 this_rq = cpu_rq(this_cpu);
ac192d39 1053 new_cpu = prev_cpu;
e7693a36 1054
ac192d39
IM
1055 /*
1056 * 'this_sd' is the first domain that both
1057 * this_cpu and prev_cpu are present in:
1058 */
e7693a36 1059 for_each_domain(this_cpu, sd) {
ac192d39 1060 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1061 this_sd = sd;
1062 break;
1063 }
1064 }
1065
1066 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1067 goto out;
e7693a36
GH
1068
1069 /*
1070 * Check for affine wakeup and passive balancing possibilities.
1071 */
098fb9db 1072 if (!this_sd)
f4827386 1073 goto out;
e7693a36 1074
098fb9db
IM
1075 idx = this_sd->wake_idx;
1076
1077 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1078
ac192d39 1079 load = source_load(prev_cpu, idx);
098fb9db
IM
1080 this_load = target_load(this_cpu, idx);
1081
4ae7d5ce
IM
1082 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1083 load, this_load, imbalance))
1084 return this_cpu;
1085
1086 if (prev_cpu == this_cpu)
f4827386 1087 goto out;
098fb9db
IM
1088
1089 /*
1090 * Start passive balancing when half the imbalance_pct
1091 * limit is reached.
1092 */
1093 if (this_sd->flags & SD_WAKE_BALANCE) {
1094 if (imbalance*this_load <= 100*load) {
1095 schedstat_inc(this_sd, ttwu_move_balance);
1096 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1097 return this_cpu;
e7693a36
GH
1098 }
1099 }
1100
f4827386 1101out:
e7693a36
GH
1102 return wake_idle(new_cpu, p);
1103}
1104#endif /* CONFIG_SMP */
1105
0bbd3336
PZ
1106static unsigned long wakeup_gran(struct sched_entity *se)
1107{
1108 unsigned long gran = sysctl_sched_wakeup_granularity;
1109
1110 /*
f9305d4a
IM
1111 * More easily preempt - nice tasks, while not making
1112 * it harder for + nice tasks.
0bbd3336 1113 */
f9305d4a
IM
1114 if (unlikely(se->load.weight > NICE_0_LOAD))
1115 gran = calc_delta_fair(gran, &se->load);
0bbd3336
PZ
1116
1117 return gran;
1118}
1119
1120/*
1121 * Should 'se' preempt 'curr'.
1122 *
1123 * |s1
1124 * |s2
1125 * |s3
1126 * g
1127 * |<--->|c
1128 *
1129 * w(c, s1) = -1
1130 * w(c, s2) = 0
1131 * w(c, s3) = 1
1132 *
1133 */
1134static int
1135wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1136{
1137 s64 gran, vdiff = curr->vruntime - se->vruntime;
1138
1139 if (vdiff < 0)
1140 return -1;
1141
1142 gran = wakeup_gran(curr);
1143 if (vdiff > gran)
1144 return 1;
1145
1146 return 0;
1147}
e7693a36 1148
354d60c2
DG
1149/* return depth at which a sched entity is present in the hierarchy */
1150static inline int depth_se(struct sched_entity *se)
1151{
1152 int depth = 0;
1153
1154 for_each_sched_entity(se)
1155 depth++;
1156
1157 return depth;
1158}
1159
bf0f6f24
IM
1160/*
1161 * Preempt the current task with a newly woken task if needed:
1162 */
2e09bf55 1163static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1164{
1165 struct task_struct *curr = rq->curr;
fad095a7 1166 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1167 struct sched_entity *se = &curr->se, *pse = &p->se;
354d60c2 1168 int se_depth, pse_depth;
bf0f6f24
IM
1169
1170 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1171 update_rq_clock(rq);
b7cc0896 1172 update_curr(cfs_rq);
bf0f6f24
IM
1173 resched_task(curr);
1174 return;
1175 }
aa2ac252 1176
4ae7d5ce
IM
1177 se->last_wakeup = se->sum_exec_runtime;
1178 if (unlikely(se == pse))
1179 return;
1180
aa2ac252
PZ
1181 cfs_rq_of(pse)->next = pse;
1182
91c234b4
IM
1183 /*
1184 * Batch tasks do not preempt (their preemption is driven by
1185 * the tick):
1186 */
1187 if (unlikely(p->policy == SCHED_BATCH))
1188 return;
bf0f6f24 1189
77d9cc44
IM
1190 if (!sched_feat(WAKEUP_PREEMPT))
1191 return;
8651a86c 1192
354d60c2
DG
1193 /*
1194 * preemption test can be made between sibling entities who are in the
1195 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1196 * both tasks until we find their ancestors who are siblings of common
1197 * parent.
1198 */
1199
1200 /* First walk up until both entities are at same depth */
1201 se_depth = depth_se(se);
1202 pse_depth = depth_se(pse);
1203
1204 while (se_depth > pse_depth) {
1205 se_depth--;
1206 se = parent_entity(se);
1207 }
1208
1209 while (pse_depth > se_depth) {
1210 pse_depth--;
1211 pse = parent_entity(pse);
1212 }
1213
77d9cc44
IM
1214 while (!is_same_group(se, pse)) {
1215 se = parent_entity(se);
1216 pse = parent_entity(pse);
ce6c1311 1217 }
77d9cc44 1218
0bbd3336 1219 if (wakeup_preempt_entity(se, pse) == 1)
77d9cc44 1220 resched_task(curr);
bf0f6f24
IM
1221}
1222
fb8d4724 1223static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1224{
8f4d37ec 1225 struct task_struct *p;
bf0f6f24
IM
1226 struct cfs_rq *cfs_rq = &rq->cfs;
1227 struct sched_entity *se;
1228
1229 if (unlikely(!cfs_rq->nr_running))
1230 return NULL;
1231
1232 do {
9948f4b2 1233 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1234 cfs_rq = group_cfs_rq(se);
1235 } while (cfs_rq);
1236
8f4d37ec
PZ
1237 p = task_of(se);
1238 hrtick_start_fair(rq, p);
1239
1240 return p;
bf0f6f24
IM
1241}
1242
1243/*
1244 * Account for a descheduled task:
1245 */
31ee529c 1246static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1247{
1248 struct sched_entity *se = &prev->se;
1249 struct cfs_rq *cfs_rq;
1250
1251 for_each_sched_entity(se) {
1252 cfs_rq = cfs_rq_of(se);
ab6cde26 1253 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1254 }
1255}
1256
681f3e68 1257#ifdef CONFIG_SMP
bf0f6f24
IM
1258/**************************************************
1259 * Fair scheduling class load-balancing methods:
1260 */
1261
1262/*
1263 * Load-balancing iterator. Note: while the runqueue stays locked
1264 * during the whole iteration, the current task might be
1265 * dequeued so the iterator has to be dequeue-safe. Here we
1266 * achieve that by always pre-iterating before returning
1267 * the current task:
1268 */
a9957449 1269static struct task_struct *
4a55bd5e 1270__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1271{
354d60c2
DG
1272 struct task_struct *p = NULL;
1273 struct sched_entity *se;
bf0f6f24 1274
4a55bd5e 1275 if (next == &cfs_rq->tasks)
bf0f6f24
IM
1276 return NULL;
1277
354d60c2
DG
1278 /* Skip over entities that are not tasks */
1279 do {
4a55bd5e
PZ
1280 se = list_entry(next, struct sched_entity, group_node);
1281 next = next->next;
1282 } while (next != &cfs_rq->tasks && !entity_is_task(se));
354d60c2 1283
4a55bd5e
PZ
1284 if (next == &cfs_rq->tasks)
1285 return NULL;
1286
1287 cfs_rq->balance_iterator = next;
354d60c2
DG
1288
1289 if (entity_is_task(se))
1290 p = task_of(se);
bf0f6f24
IM
1291
1292 return p;
1293}
1294
1295static struct task_struct *load_balance_start_fair(void *arg)
1296{
1297 struct cfs_rq *cfs_rq = arg;
1298
4a55bd5e 1299 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1300}
1301
1302static struct task_struct *load_balance_next_fair(void *arg)
1303{
1304 struct cfs_rq *cfs_rq = arg;
1305
4a55bd5e 1306 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1307}
1308
6363ca57
IM
1309#ifdef CONFIG_FAIR_GROUP_SCHED
1310static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
62fb1851 1311{
6363ca57
IM
1312 struct sched_entity *curr;
1313 struct task_struct *p;
62fb1851 1314
6363ca57
IM
1315 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1316 return MAX_PRIO;
1317
1318 curr = cfs_rq->curr;
1319 if (!curr)
1320 curr = __pick_next_entity(cfs_rq);
1321
1322 p = task_of(curr);
62fb1851 1323
6363ca57 1324 return p->prio;
62fb1851 1325}
6363ca57 1326#endif
62fb1851 1327
43010659 1328static unsigned long
bf0f6f24 1329load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1330 unsigned long max_load_move,
a4ac01c3
PW
1331 struct sched_domain *sd, enum cpu_idle_type idle,
1332 int *all_pinned, int *this_best_prio)
bf0f6f24 1333{
6363ca57 1334 struct cfs_rq *busy_cfs_rq;
bf0f6f24 1335 long rem_load_move = max_load_move;
6363ca57 1336 struct rq_iterator cfs_rq_iterator;
18d95a28 1337
6363ca57
IM
1338 cfs_rq_iterator.start = load_balance_start_fair;
1339 cfs_rq_iterator.next = load_balance_next_fair;
18d95a28 1340
6363ca57
IM
1341 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1342#ifdef CONFIG_FAIR_GROUP_SCHED
1343 struct cfs_rq *this_cfs_rq;
1344 long imbalance;
1345 unsigned long maxload;
18d95a28 1346
6363ca57 1347 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
18d95a28 1348
6363ca57
IM
1349 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1350 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1351 if (imbalance <= 0)
bf0f6f24
IM
1352 continue;
1353
6363ca57
IM
1354 /* Don't pull more than imbalance/2 */
1355 imbalance /= 2;
1356 maxload = min(rem_load_move, imbalance);
bf0f6f24 1357
6363ca57
IM
1358 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1359#else
1360# define maxload rem_load_move
1361#endif
1362 /*
1363 * pass busy_cfs_rq argument into
1364 * load_balance_[start|next]_fair iterators
1365 */
1366 cfs_rq_iterator.arg = busy_cfs_rq;
1367 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1368 maxload, sd, idle, all_pinned,
1369 this_best_prio,
1370 &cfs_rq_iterator);
bf0f6f24 1371
6363ca57 1372 if (rem_load_move <= 0)
bf0f6f24
IM
1373 break;
1374 }
1375
43010659 1376 return max_load_move - rem_load_move;
bf0f6f24
IM
1377}
1378
e1d1484f
PW
1379static int
1380move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1381 struct sched_domain *sd, enum cpu_idle_type idle)
1382{
1383 struct cfs_rq *busy_cfs_rq;
1384 struct rq_iterator cfs_rq_iterator;
1385
1386 cfs_rq_iterator.start = load_balance_start_fair;
1387 cfs_rq_iterator.next = load_balance_next_fair;
1388
1389 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1390 /*
1391 * pass busy_cfs_rq argument into
1392 * load_balance_[start|next]_fair iterators
1393 */
1394 cfs_rq_iterator.arg = busy_cfs_rq;
1395 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1396 &cfs_rq_iterator))
1397 return 1;
1398 }
1399
1400 return 0;
1401}
681f3e68 1402#endif
e1d1484f 1403
bf0f6f24
IM
1404/*
1405 * scheduler tick hitting a task of our scheduling class:
1406 */
8f4d37ec 1407static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1408{
1409 struct cfs_rq *cfs_rq;
1410 struct sched_entity *se = &curr->se;
1411
1412 for_each_sched_entity(se) {
1413 cfs_rq = cfs_rq_of(se);
8f4d37ec 1414 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1415 }
1416}
1417
8eb172d9 1418#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1419
bf0f6f24
IM
1420/*
1421 * Share the fairness runtime between parent and child, thus the
1422 * total amount of pressure for CPU stays equal - new tasks
1423 * get a chance to run but frequent forkers are not allowed to
1424 * monopolize the CPU. Note: the parent runqueue is locked,
1425 * the child is not running yet.
1426 */
ee0827d8 1427static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1428{
1429 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1430 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1431 int this_cpu = smp_processor_id();
bf0f6f24
IM
1432
1433 sched_info_queued(p);
1434
7109c442 1435 update_curr(cfs_rq);
aeb73b04 1436 place_entity(cfs_rq, se, 1);
4d78e7b6 1437
3c90e6e9 1438 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1439 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1440 curr && curr->vruntime < se->vruntime) {
87fefa38 1441 /*
edcb60a3
IM
1442 * Upon rescheduling, sched_class::put_prev_task() will place
1443 * 'current' within the tree based on its new key value.
1444 */
4d78e7b6 1445 swap(curr->vruntime, se->vruntime);
4d78e7b6 1446 }
bf0f6f24 1447
b9dca1e0 1448 enqueue_task_fair(rq, p, 0);
bb61c210 1449 resched_task(rq->curr);
bf0f6f24
IM
1450}
1451
cb469845
SR
1452/*
1453 * Priority of the task has changed. Check to see if we preempt
1454 * the current task.
1455 */
1456static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1457 int oldprio, int running)
1458{
1459 /*
1460 * Reschedule if we are currently running on this runqueue and
1461 * our priority decreased, or if we are not currently running on
1462 * this runqueue and our priority is higher than the current's
1463 */
1464 if (running) {
1465 if (p->prio > oldprio)
1466 resched_task(rq->curr);
1467 } else
1468 check_preempt_curr(rq, p);
1469}
1470
1471/*
1472 * We switched to the sched_fair class.
1473 */
1474static void switched_to_fair(struct rq *rq, struct task_struct *p,
1475 int running)
1476{
1477 /*
1478 * We were most likely switched from sched_rt, so
1479 * kick off the schedule if running, otherwise just see
1480 * if we can still preempt the current task.
1481 */
1482 if (running)
1483 resched_task(rq->curr);
1484 else
1485 check_preempt_curr(rq, p);
1486}
1487
83b699ed
SV
1488/* Account for a task changing its policy or group.
1489 *
1490 * This routine is mostly called to set cfs_rq->curr field when a task
1491 * migrates between groups/classes.
1492 */
1493static void set_curr_task_fair(struct rq *rq)
1494{
1495 struct sched_entity *se = &rq->curr->se;
1496
1497 for_each_sched_entity(se)
1498 set_next_entity(cfs_rq_of(se), se);
1499}
1500
810b3817
PZ
1501#ifdef CONFIG_FAIR_GROUP_SCHED
1502static void moved_group_fair(struct task_struct *p)
1503{
1504 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1505
1506 update_curr(cfs_rq);
1507 place_entity(cfs_rq, &p->se, 1);
1508}
1509#endif
1510
bf0f6f24
IM
1511/*
1512 * All the scheduling class methods:
1513 */
5522d5d5
IM
1514static const struct sched_class fair_sched_class = {
1515 .next = &idle_sched_class,
bf0f6f24
IM
1516 .enqueue_task = enqueue_task_fair,
1517 .dequeue_task = dequeue_task_fair,
1518 .yield_task = yield_task_fair,
e7693a36
GH
1519#ifdef CONFIG_SMP
1520 .select_task_rq = select_task_rq_fair,
1521#endif /* CONFIG_SMP */
bf0f6f24 1522
2e09bf55 1523 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1524
1525 .pick_next_task = pick_next_task_fair,
1526 .put_prev_task = put_prev_task_fair,
1527
681f3e68 1528#ifdef CONFIG_SMP
bf0f6f24 1529 .load_balance = load_balance_fair,
e1d1484f 1530 .move_one_task = move_one_task_fair,
681f3e68 1531#endif
bf0f6f24 1532
83b699ed 1533 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1534 .task_tick = task_tick_fair,
1535 .task_new = task_new_fair,
cb469845
SR
1536
1537 .prio_changed = prio_changed_fair,
1538 .switched_to = switched_to_fair,
810b3817
PZ
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
1541 .moved_group = moved_group_fair,
1542#endif
bf0f6f24
IM
1543};
1544
1545#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1546static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1547{
bf0f6f24
IM
1548 struct cfs_rq *cfs_rq;
1549
5973e5b9 1550 rcu_read_lock();
c3b64f1e 1551 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1552 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1553 rcu_read_unlock();
bf0f6f24
IM
1554}
1555#endif