sched: remove duplicate code from sched_fair.c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_BATCH wake-up granularity.
722aab0c 66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
19978ca6 72unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
73
74/*
75 * SCHED_OTHER wake-up granularity.
722aab0c 76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
19978ca6 82unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 83
da84d961
IM
84const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
bf0f6f24
IM
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
62160e3f 90#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 91
62160e3f 92/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
62160e3f 95 return cfs_rq->rq;
bf0f6f24
IM
96}
97
62160e3f
IM
98/* An entity is a task if it doesn't "own" a runqueue */
99#define entity_is_task(se) (!se->my_q)
bf0f6f24 100
62160e3f 101#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 102
62160e3f
IM
103static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104{
105 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
106}
107
108#define entity_is_task(se) 1
109
bf0f6f24
IM
110#endif /* CONFIG_FAIR_GROUP_SCHED */
111
112static inline struct task_struct *task_of(struct sched_entity *se)
113{
114 return container_of(se, struct task_struct, se);
115}
116
117
118/**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
0702e3eb 122static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 123{
368059a9
PZ
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
02e0431a
PZ
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129}
130
0702e3eb 131static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
132{
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138}
139
0702e3eb 140static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 141{
30cfdcfc 142 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
143}
144
bf0f6f24
IM
145/*
146 * Enqueue an entity into the rb-tree:
147 */
0702e3eb 148static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
149{
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
9014623c 153 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
9014623c 166 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
178 if (leftmost)
57cb499d 179 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
180
181 rb_link_node(&se->run_node, parent, link);
182 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
183}
184
0702e3eb 185static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
186{
187 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 188 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 189
bf0f6f24 190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
191}
192
193static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
194{
195 return cfs_rq->rb_leftmost;
196}
197
198static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
199{
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201}
202
aeb73b04
PZ
203static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
204{
70eee74b
BS
205 struct rb_node *last;
206 struct sched_entity *se;
aeb73b04 207
70eee74b
BS
208 last = rb_last(&cfs_rq->tasks_timeline);
209 if (!last)
210 return NULL;
211 se = rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
212 return se;
213}
214
bf0f6f24
IM
215/**************************************************************
216 * Scheduling class statistics methods:
217 */
218
b2be5e96
PZ
219#ifdef CONFIG_SCHED_DEBUG
220int sched_nr_latency_handler(struct ctl_table *table, int write,
221 struct file *filp, void __user *buffer, size_t *lenp,
222 loff_t *ppos)
223{
224 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
225
226 if (ret || !write)
227 return ret;
228
229 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
230 sysctl_sched_min_granularity);
231
232 return 0;
233}
234#endif
647e7cac
IM
235
236/*
237 * The idea is to set a period in which each task runs once.
238 *
239 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
240 * this period because otherwise the slices get too small.
241 *
242 * p = (nr <= nl) ? l : l*nr/nl
243 */
4d78e7b6
PZ
244static u64 __sched_period(unsigned long nr_running)
245{
246 u64 period = sysctl_sched_latency;
b2be5e96 247 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
248
249 if (unlikely(nr_running > nr_latency)) {
4bf0b771 250 period = sysctl_sched_min_granularity;
4d78e7b6 251 period *= nr_running;
4d78e7b6
PZ
252 }
253
254 return period;
255}
256
647e7cac
IM
257/*
258 * We calculate the wall-time slice from the period by taking a part
259 * proportional to the weight.
260 *
261 * s = p*w/rw
262 */
6d0f0ebd 263static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 264{
647e7cac 265 u64 slice = __sched_period(cfs_rq->nr_running);
21805085 266
647e7cac
IM
267 slice *= se->load.weight;
268 do_div(slice, cfs_rq->load.weight);
21805085 269
647e7cac 270 return slice;
bf0f6f24
IM
271}
272
647e7cac
IM
273/*
274 * We calculate the vruntime slice.
275 *
276 * vs = s/w = p/rw
277 */
278static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 279{
647e7cac 280 u64 vslice = __sched_period(nr_running);
67e9fb2a 281
10b77724 282 vslice *= NICE_0_LOAD;
647e7cac 283 do_div(vslice, rq_weight);
67e9fb2a 284
647e7cac
IM
285 return vslice;
286}
5f6d858e 287
647e7cac
IM
288static u64 sched_vslice(struct cfs_rq *cfs_rq)
289{
290 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
291}
292
293static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
294{
295 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
296 cfs_rq->nr_running + 1);
67e9fb2a
PZ
297}
298
bf0f6f24
IM
299/*
300 * Update the current task's runtime statistics. Skip current tasks that
301 * are not in our scheduling class.
302 */
303static inline void
8ebc91d9
IM
304__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
305 unsigned long delta_exec)
bf0f6f24 306{
bbdba7c0 307 unsigned long delta_exec_weighted;
b0ffd246 308 u64 vruntime;
bf0f6f24 309
8179ca23 310 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
311
312 curr->sum_exec_runtime += delta_exec;
7a62eabc 313 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
314 delta_exec_weighted = delta_exec;
315 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
316 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
317 &curr->load);
318 }
319 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
320
321 /*
322 * maintain cfs_rq->min_vruntime to be a monotonic increasing
323 * value tracking the leftmost vruntime in the tree.
324 */
325 if (first_fair(cfs_rq)) {
b0ffd246
PZ
326 vruntime = min_vruntime(curr->vruntime,
327 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 328 } else
b0ffd246 329 vruntime = curr->vruntime;
02e0431a
PZ
330
331 cfs_rq->min_vruntime =
b0ffd246 332 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
333}
334
b7cc0896 335static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 336{
429d43bc 337 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 338 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
339 unsigned long delta_exec;
340
341 if (unlikely(!curr))
342 return;
343
344 /*
345 * Get the amount of time the current task was running
346 * since the last time we changed load (this cannot
347 * overflow on 32 bits):
348 */
8ebc91d9 349 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 350
8ebc91d9
IM
351 __update_curr(cfs_rq, curr, delta_exec);
352 curr->exec_start = now;
d842de87
SV
353
354 if (entity_is_task(curr)) {
355 struct task_struct *curtask = task_of(curr);
356
357 cpuacct_charge(curtask, delta_exec);
358 }
bf0f6f24
IM
359}
360
361static inline void
5870db5b 362update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 363{
d281918d 364 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
365}
366
bf0f6f24
IM
367/*
368 * Task is being enqueued - update stats:
369 */
d2417e5a 370static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 371{
bf0f6f24
IM
372 /*
373 * Are we enqueueing a waiting task? (for current tasks
374 * a dequeue/enqueue event is a NOP)
375 */
429d43bc 376 if (se != cfs_rq->curr)
5870db5b 377 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
378}
379
bf0f6f24 380static void
9ef0a961 381update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 382{
bbdba7c0
IM
383 schedstat_set(se->wait_max, max(se->wait_max,
384 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
385 schedstat_set(se->wait_count, se->wait_count + 1);
386 schedstat_set(se->wait_sum, se->wait_sum +
387 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 388 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
389}
390
391static inline void
19b6a2e3 392update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 393{
bf0f6f24
IM
394 /*
395 * Mark the end of the wait period if dequeueing a
396 * waiting task:
397 */
429d43bc 398 if (se != cfs_rq->curr)
9ef0a961 399 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
400}
401
402/*
403 * We are picking a new current task - update its stats:
404 */
405static inline void
79303e9e 406update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
407{
408 /*
409 * We are starting a new run period:
410 */
d281918d 411 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
412}
413
bf0f6f24
IM
414/**************************************************
415 * Scheduling class queueing methods:
416 */
417
30cfdcfc
DA
418static void
419account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
420{
421 update_load_add(&cfs_rq->load, se->load.weight);
422 cfs_rq->nr_running++;
423 se->on_rq = 1;
424}
425
426static void
427account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
428{
429 update_load_sub(&cfs_rq->load, se->load.weight);
430 cfs_rq->nr_running--;
431 se->on_rq = 0;
432}
433
2396af69 434static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 435{
bf0f6f24
IM
436#ifdef CONFIG_SCHEDSTATS
437 if (se->sleep_start) {
d281918d 438 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 439 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
440
441 if ((s64)delta < 0)
442 delta = 0;
443
444 if (unlikely(delta > se->sleep_max))
445 se->sleep_max = delta;
446
447 se->sleep_start = 0;
448 se->sum_sleep_runtime += delta;
9745512c
AV
449
450 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
451 }
452 if (se->block_start) {
d281918d 453 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 454 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
455
456 if ((s64)delta < 0)
457 delta = 0;
458
459 if (unlikely(delta > se->block_max))
460 se->block_max = delta;
461
462 se->block_start = 0;
463 se->sum_sleep_runtime += delta;
30084fbd
IM
464
465 /*
466 * Blocking time is in units of nanosecs, so shift by 20 to
467 * get a milliseconds-range estimation of the amount of
468 * time that the task spent sleeping:
469 */
470 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 471
30084fbd
IM
472 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
473 delta >> 20);
474 }
9745512c 475 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
476 }
477#endif
478}
479
ddc97297
PZ
480static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
481{
482#ifdef CONFIG_SCHED_DEBUG
483 s64 d = se->vruntime - cfs_rq->min_vruntime;
484
485 if (d < 0)
486 d = -d;
487
488 if (d > 3*sysctl_sched_latency)
489 schedstat_inc(cfs_rq, nr_spread_over);
490#endif
491}
492
aeb73b04
PZ
493static void
494place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
495{
67e9fb2a 496 u64 vruntime;
aeb73b04 497
67e9fb2a 498 vruntime = cfs_rq->min_vruntime;
94dfb5e7 499
06877c33 500 if (sched_feat(TREE_AVG)) {
94dfb5e7
PZ
501 struct sched_entity *last = __pick_last_entity(cfs_rq);
502 if (last) {
67e9fb2a
PZ
503 vruntime += last->vruntime;
504 vruntime >>= 1;
94dfb5e7 505 }
67e9fb2a 506 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 507 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7 508
2cb8600e
PZ
509 /*
510 * The 'current' period is already promised to the current tasks,
511 * however the extra weight of the new task will slow them down a
512 * little, place the new task so that it fits in the slot that
513 * stays open at the end.
514 */
94dfb5e7 515 if (initial && sched_feat(START_DEBIT))
647e7cac 516 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 517
8465e792 518 if (!initial) {
2cb8600e 519 /* sleeps upto a single latency don't count. */
296825cb 520 if (sched_feat(NEW_FAIR_SLEEPERS))
94359f05
IM
521 vruntime -= sysctl_sched_latency;
522
2cb8600e
PZ
523 /* ensure we never gain time by being placed backwards. */
524 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
525 }
526
67e9fb2a 527 se->vruntime = vruntime;
aeb73b04
PZ
528}
529
bf0f6f24 530static void
83b699ed 531enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
532{
533 /*
a2a2d680 534 * Update run-time statistics of the 'current'.
bf0f6f24 535 */
b7cc0896 536 update_curr(cfs_rq);
bf0f6f24 537
e9acbff6 538 if (wakeup) {
aeb73b04 539 place_entity(cfs_rq, se, 0);
2396af69 540 enqueue_sleeper(cfs_rq, se);
e9acbff6 541 }
bf0f6f24 542
d2417e5a 543 update_stats_enqueue(cfs_rq, se);
ddc97297 544 check_spread(cfs_rq, se);
83b699ed
SV
545 if (se != cfs_rq->curr)
546 __enqueue_entity(cfs_rq, se);
30cfdcfc 547 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
548}
549
550static void
525c2716 551dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 552{
a2a2d680
DA
553 /*
554 * Update run-time statistics of the 'current'.
555 */
556 update_curr(cfs_rq);
557
19b6a2e3 558 update_stats_dequeue(cfs_rq, se);
db36cc7d 559 if (sleep) {
67e9fb2a 560#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
561 if (entity_is_task(se)) {
562 struct task_struct *tsk = task_of(se);
563
564 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 565 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 566 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 567 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 568 }
db36cc7d 569#endif
67e9fb2a
PZ
570 }
571
83b699ed 572 if (se != cfs_rq->curr)
30cfdcfc
DA
573 __dequeue_entity(cfs_rq, se);
574 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
575}
576
577/*
578 * Preempt the current task with a newly woken task if needed:
579 */
7c92e54f 580static void
2e09bf55 581check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 582{
11697830
PZ
583 unsigned long ideal_runtime, delta_exec;
584
6d0f0ebd 585 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 586 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 587 if (delta_exec > ideal_runtime)
bf0f6f24
IM
588 resched_task(rq_of(cfs_rq)->curr);
589}
590
83b699ed 591static void
8494f412 592set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 593{
83b699ed
SV
594 /* 'current' is not kept within the tree. */
595 if (se->on_rq) {
596 /*
597 * Any task has to be enqueued before it get to execute on
598 * a CPU. So account for the time it spent waiting on the
599 * runqueue.
600 */
601 update_stats_wait_end(cfs_rq, se);
602 __dequeue_entity(cfs_rq, se);
603 }
604
79303e9e 605 update_stats_curr_start(cfs_rq, se);
429d43bc 606 cfs_rq->curr = se;
eba1ed4b
IM
607#ifdef CONFIG_SCHEDSTATS
608 /*
609 * Track our maximum slice length, if the CPU's load is at
610 * least twice that of our own weight (i.e. dont track it
611 * when there are only lesser-weight tasks around):
612 */
495eca49 613 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
614 se->slice_max = max(se->slice_max,
615 se->sum_exec_runtime - se->prev_sum_exec_runtime);
616 }
617#endif
4a55b450 618 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
619}
620
9948f4b2 621static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 622{
08ec3df5 623 struct sched_entity *se = NULL;
bf0f6f24 624
08ec3df5
DA
625 if (first_fair(cfs_rq)) {
626 se = __pick_next_entity(cfs_rq);
627 set_next_entity(cfs_rq, se);
628 }
bf0f6f24
IM
629
630 return se;
631}
632
ab6cde26 633static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
634{
635 /*
636 * If still on the runqueue then deactivate_task()
637 * was not called and update_curr() has to be done:
638 */
639 if (prev->on_rq)
b7cc0896 640 update_curr(cfs_rq);
bf0f6f24 641
ddc97297 642 check_spread(cfs_rq, prev);
30cfdcfc 643 if (prev->on_rq) {
5870db5b 644 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
645 /* Put 'current' back into the tree. */
646 __enqueue_entity(cfs_rq, prev);
647 }
429d43bc 648 cfs_rq->curr = NULL;
bf0f6f24
IM
649}
650
8f4d37ec
PZ
651static void
652entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 653{
bf0f6f24 654 /*
30cfdcfc 655 * Update run-time statistics of the 'current'.
bf0f6f24 656 */
30cfdcfc 657 update_curr(cfs_rq);
bf0f6f24 658
8f4d37ec
PZ
659#ifdef CONFIG_SCHED_HRTICK
660 /*
661 * queued ticks are scheduled to match the slice, so don't bother
662 * validating it and just reschedule.
663 */
664 if (queued)
665 return resched_task(rq_of(cfs_rq)->curr);
666 /*
667 * don't let the period tick interfere with the hrtick preemption
668 */
669 if (!sched_feat(DOUBLE_TICK) &&
670 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
671 return;
672#endif
673
ce6c1311 674 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 675 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
676}
677
678/**************************************************
679 * CFS operations on tasks:
680 */
681
682#ifdef CONFIG_FAIR_GROUP_SCHED
683
684/* Walk up scheduling entities hierarchy */
685#define for_each_sched_entity(se) \
686 for (; se; se = se->parent)
687
688static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
689{
690 return p->se.cfs_rq;
691}
692
693/* runqueue on which this entity is (to be) queued */
694static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
695{
696 return se->cfs_rq;
697}
698
699/* runqueue "owned" by this group */
700static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
701{
702 return grp->my_q;
703}
704
705/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
706 * another cpu ('this_cpu')
707 */
708static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
709{
29f59db3 710 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
711}
712
713/* Iterate thr' all leaf cfs_rq's on a runqueue */
714#define for_each_leaf_cfs_rq(rq, cfs_rq) \
ec2c507f 715 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
bf0f6f24 716
fad095a7
SV
717/* Do the two (enqueued) entities belong to the same group ? */
718static inline int
719is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 720{
fad095a7 721 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
722 return 1;
723
724 return 0;
725}
726
fad095a7
SV
727static inline struct sched_entity *parent_entity(struct sched_entity *se)
728{
729 return se->parent;
730}
731
6b2d7700
SV
732#define GROUP_IMBALANCE_PCT 20
733
bf0f6f24
IM
734#else /* CONFIG_FAIR_GROUP_SCHED */
735
736#define for_each_sched_entity(se) \
737 for (; se; se = NULL)
738
739static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
740{
741 return &task_rq(p)->cfs;
742}
743
744static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
745{
746 struct task_struct *p = task_of(se);
747 struct rq *rq = task_rq(p);
748
749 return &rq->cfs;
750}
751
752/* runqueue "owned" by this group */
753static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
754{
755 return NULL;
756}
757
758static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
759{
760 return &cpu_rq(this_cpu)->cfs;
761}
762
763#define for_each_leaf_cfs_rq(rq, cfs_rq) \
764 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
765
fad095a7
SV
766static inline int
767is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
768{
769 return 1;
770}
771
fad095a7
SV
772static inline struct sched_entity *parent_entity(struct sched_entity *se)
773{
774 return NULL;
775}
776
bf0f6f24
IM
777#endif /* CONFIG_FAIR_GROUP_SCHED */
778
8f4d37ec
PZ
779#ifdef CONFIG_SCHED_HRTICK
780static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
781{
782 int requeue = rq->curr == p;
783 struct sched_entity *se = &p->se;
784 struct cfs_rq *cfs_rq = cfs_rq_of(se);
785
786 WARN_ON(task_rq(p) != rq);
787
788 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
789 u64 slice = sched_slice(cfs_rq, se);
790 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
791 s64 delta = slice - ran;
792
793 if (delta < 0) {
794 if (rq->curr == p)
795 resched_task(p);
796 return;
797 }
798
799 /*
800 * Don't schedule slices shorter than 10000ns, that just
801 * doesn't make sense. Rely on vruntime for fairness.
802 */
803 if (!requeue)
804 delta = max(10000LL, delta);
805
806 hrtick_start(rq, delta, requeue);
807 }
808}
809#else
810static inline void
811hrtick_start_fair(struct rq *rq, struct task_struct *p)
812{
813}
814#endif
815
bf0f6f24
IM
816/*
817 * The enqueue_task method is called before nr_running is
818 * increased. Here we update the fair scheduling stats and
819 * then put the task into the rbtree:
820 */
fd390f6a 821static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
822{
823 struct cfs_rq *cfs_rq;
58e2d4ca
SV
824 struct sched_entity *se = &p->se,
825 *topse = NULL; /* Highest schedulable entity */
826 int incload = 1;
bf0f6f24
IM
827
828 for_each_sched_entity(se) {
58e2d4ca
SV
829 topse = se;
830 if (se->on_rq) {
831 incload = 0;
bf0f6f24 832 break;
58e2d4ca 833 }
bf0f6f24 834 cfs_rq = cfs_rq_of(se);
83b699ed 835 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 836 wakeup = 1;
bf0f6f24 837 }
58e2d4ca
SV
838 /* Increment cpu load if we just enqueued the first task of a group on
839 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
840 * at the highest grouping level.
841 */
842 if (incload)
843 inc_cpu_load(rq, topse->load.weight);
8f4d37ec
PZ
844
845 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
846}
847
848/*
849 * The dequeue_task method is called before nr_running is
850 * decreased. We remove the task from the rbtree and
851 * update the fair scheduling stats:
852 */
f02231e5 853static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
854{
855 struct cfs_rq *cfs_rq;
58e2d4ca
SV
856 struct sched_entity *se = &p->se,
857 *topse = NULL; /* Highest schedulable entity */
858 int decload = 1;
bf0f6f24
IM
859
860 for_each_sched_entity(se) {
58e2d4ca 861 topse = se;
bf0f6f24 862 cfs_rq = cfs_rq_of(se);
525c2716 863 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 864 /* Don't dequeue parent if it has other entities besides us */
58e2d4ca
SV
865 if (cfs_rq->load.weight) {
866 if (parent_entity(se))
867 decload = 0;
bf0f6f24 868 break;
58e2d4ca 869 }
b9fa3df3 870 sleep = 1;
bf0f6f24 871 }
58e2d4ca
SV
872 /* Decrement cpu load if we just dequeued the last task of a group on
873 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
874 * at the highest grouping level.
875 */
876 if (decload)
877 dec_cpu_load(rq, topse->load.weight);
8f4d37ec
PZ
878
879 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
880}
881
882/*
1799e35d
IM
883 * sched_yield() support is very simple - we dequeue and enqueue.
884 *
885 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 886 */
4530d7ab 887static void yield_task_fair(struct rq *rq)
bf0f6f24 888{
db292ca3
IM
889 struct task_struct *curr = rq->curr;
890 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
891 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
892
893 /*
1799e35d
IM
894 * Are we the only task in the tree?
895 */
896 if (unlikely(cfs_rq->nr_running == 1))
897 return;
898
db292ca3 899 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1799e35d
IM
900 __update_rq_clock(rq);
901 /*
a2a2d680 902 * Update run-time statistics of the 'current'.
1799e35d 903 */
2b1e315d 904 update_curr(cfs_rq);
1799e35d
IM
905
906 return;
907 }
908 /*
909 * Find the rightmost entry in the rbtree:
bf0f6f24 910 */
2b1e315d 911 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
912 /*
913 * Already in the rightmost position?
914 */
2b1e315d 915 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
916 return;
917
918 /*
919 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
920 * Upon rescheduling, sched_class::put_prev_task() will place
921 * 'current' within the tree based on its new key value.
1799e35d 922 */
30cfdcfc 923 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
924}
925
e7693a36
GH
926/*
927 * wake_idle() will wake a task on an idle cpu if task->cpu is
928 * not idle and an idle cpu is available. The span of cpus to
929 * search starts with cpus closest then further out as needed,
930 * so we always favor a closer, idle cpu.
931 *
932 * Returns the CPU we should wake onto.
933 */
934#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
935static int wake_idle(int cpu, struct task_struct *p)
936{
937 cpumask_t tmp;
938 struct sched_domain *sd;
939 int i;
940
941 /*
942 * If it is idle, then it is the best cpu to run this task.
943 *
944 * This cpu is also the best, if it has more than one task already.
945 * Siblings must be also busy(in most cases) as they didn't already
946 * pickup the extra load from this cpu and hence we need not check
947 * sibling runqueue info. This will avoid the checks and cache miss
948 * penalities associated with that.
949 */
950 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
951 return cpu;
952
953 for_each_domain(cpu, sd) {
954 if (sd->flags & SD_WAKE_IDLE) {
955 cpus_and(tmp, sd->span, p->cpus_allowed);
956 for_each_cpu_mask(i, tmp) {
957 if (idle_cpu(i)) {
958 if (i != task_cpu(p)) {
959 schedstat_inc(p,
960 se.nr_wakeups_idle);
961 }
962 return i;
963 }
964 }
965 } else {
966 break;
967 }
968 }
969 return cpu;
970}
971#else
972static inline int wake_idle(int cpu, struct task_struct *p)
973{
974 return cpu;
975}
976#endif
977
978#ifdef CONFIG_SMP
979static int select_task_rq_fair(struct task_struct *p, int sync)
980{
981 int cpu, this_cpu;
982 struct rq *rq;
983 struct sched_domain *sd, *this_sd = NULL;
984 int new_cpu;
985
986 cpu = task_cpu(p);
987 rq = task_rq(p);
988 this_cpu = smp_processor_id();
989 new_cpu = cpu;
990
9ec3b77e
DA
991 if (cpu == this_cpu)
992 goto out_set_cpu;
993
e7693a36
GH
994 for_each_domain(this_cpu, sd) {
995 if (cpu_isset(cpu, sd->span)) {
996 this_sd = sd;
997 break;
998 }
999 }
1000
1001 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1002 goto out_set_cpu;
1003
1004 /*
1005 * Check for affine wakeup and passive balancing possibilities.
1006 */
1007 if (this_sd) {
1008 int idx = this_sd->wake_idx;
1009 unsigned int imbalance;
1010 unsigned long load, this_load;
1011
1012 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1013
1014 load = source_load(cpu, idx);
1015 this_load = target_load(this_cpu, idx);
1016
1017 new_cpu = this_cpu; /* Wake to this CPU if we can */
1018
1019 if (this_sd->flags & SD_WAKE_AFFINE) {
1020 unsigned long tl = this_load;
1021 unsigned long tl_per_task;
1022
1023 /*
1024 * Attract cache-cold tasks on sync wakeups:
1025 */
1026 if (sync && !task_hot(p, rq->clock, this_sd))
1027 goto out_set_cpu;
1028
1029 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1030 tl_per_task = cpu_avg_load_per_task(this_cpu);
1031
1032 /*
1033 * If sync wakeup then subtract the (maximum possible)
1034 * effect of the currently running task from the load
1035 * of the current CPU:
1036 */
1037 if (sync)
1038 tl -= current->se.load.weight;
1039
1040 if ((tl <= load &&
1041 tl + target_load(cpu, idx) <= tl_per_task) ||
1042 100*(tl + p->se.load.weight) <= imbalance*load) {
1043 /*
1044 * This domain has SD_WAKE_AFFINE and
1045 * p is cache cold in this domain, and
1046 * there is no bad imbalance.
1047 */
1048 schedstat_inc(this_sd, ttwu_move_affine);
1049 schedstat_inc(p, se.nr_wakeups_affine);
1050 goto out_set_cpu;
1051 }
1052 }
1053
1054 /*
1055 * Start passive balancing when half the imbalance_pct
1056 * limit is reached.
1057 */
1058 if (this_sd->flags & SD_WAKE_BALANCE) {
1059 if (imbalance*this_load <= 100*load) {
1060 schedstat_inc(this_sd, ttwu_move_balance);
1061 schedstat_inc(p, se.nr_wakeups_passive);
1062 goto out_set_cpu;
1063 }
1064 }
1065 }
1066
1067 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1068out_set_cpu:
1069 return wake_idle(new_cpu, p);
1070}
1071#endif /* CONFIG_SMP */
1072
1073
bf0f6f24
IM
1074/*
1075 * Preempt the current task with a newly woken task if needed:
1076 */
2e09bf55 1077static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1078{
1079 struct task_struct *curr = rq->curr;
fad095a7 1080 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1081 struct sched_entity *se = &curr->se, *pse = &p->se;
502d26b5 1082 unsigned long gran;
bf0f6f24
IM
1083
1084 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1085 update_rq_clock(rq);
b7cc0896 1086 update_curr(cfs_rq);
bf0f6f24
IM
1087 resched_task(curr);
1088 return;
1089 }
91c234b4
IM
1090 /*
1091 * Batch tasks do not preempt (their preemption is driven by
1092 * the tick):
1093 */
1094 if (unlikely(p->policy == SCHED_BATCH))
1095 return;
bf0f6f24 1096
77d9cc44
IM
1097 if (!sched_feat(WAKEUP_PREEMPT))
1098 return;
8651a86c 1099
77d9cc44
IM
1100 while (!is_same_group(se, pse)) {
1101 se = parent_entity(se);
1102 pse = parent_entity(pse);
ce6c1311 1103 }
77d9cc44 1104
77d9cc44 1105 gran = sysctl_sched_wakeup_granularity;
ef9884e6
PZ
1106 /*
1107 * More easily preempt - nice tasks, while not making
1108 * it harder for + nice tasks.
1109 */
1110 if (unlikely(se->load.weight > NICE_0_LOAD))
77d9cc44
IM
1111 gran = calc_delta_fair(gran, &se->load);
1112
502d26b5 1113 if (pse->vruntime + gran < se->vruntime)
77d9cc44 1114 resched_task(curr);
bf0f6f24
IM
1115}
1116
fb8d4724 1117static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1118{
8f4d37ec 1119 struct task_struct *p;
bf0f6f24
IM
1120 struct cfs_rq *cfs_rq = &rq->cfs;
1121 struct sched_entity *se;
1122
1123 if (unlikely(!cfs_rq->nr_running))
1124 return NULL;
1125
1126 do {
9948f4b2 1127 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1128 cfs_rq = group_cfs_rq(se);
1129 } while (cfs_rq);
1130
8f4d37ec
PZ
1131 p = task_of(se);
1132 hrtick_start_fair(rq, p);
1133
1134 return p;
bf0f6f24
IM
1135}
1136
1137/*
1138 * Account for a descheduled task:
1139 */
31ee529c 1140static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1141{
1142 struct sched_entity *se = &prev->se;
1143 struct cfs_rq *cfs_rq;
1144
1145 for_each_sched_entity(se) {
1146 cfs_rq = cfs_rq_of(se);
ab6cde26 1147 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1148 }
1149}
1150
681f3e68 1151#ifdef CONFIG_SMP
bf0f6f24
IM
1152/**************************************************
1153 * Fair scheduling class load-balancing methods:
1154 */
1155
1156/*
1157 * Load-balancing iterator. Note: while the runqueue stays locked
1158 * during the whole iteration, the current task might be
1159 * dequeued so the iterator has to be dequeue-safe. Here we
1160 * achieve that by always pre-iterating before returning
1161 * the current task:
1162 */
a9957449 1163static struct task_struct *
bf0f6f24
IM
1164__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1165{
1166 struct task_struct *p;
1167
1168 if (!curr)
1169 return NULL;
1170
1171 p = rb_entry(curr, struct task_struct, se.run_node);
1172 cfs_rq->rb_load_balance_curr = rb_next(curr);
1173
1174 return p;
1175}
1176
1177static struct task_struct *load_balance_start_fair(void *arg)
1178{
1179 struct cfs_rq *cfs_rq = arg;
1180
1181 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1182}
1183
1184static struct task_struct *load_balance_next_fair(void *arg)
1185{
1186 struct cfs_rq *cfs_rq = arg;
1187
1188 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1189}
1190
43010659 1191static unsigned long
bf0f6f24 1192load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1193 unsigned long max_load_move,
a4ac01c3
PW
1194 struct sched_domain *sd, enum cpu_idle_type idle,
1195 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1196{
1197 struct cfs_rq *busy_cfs_rq;
bf0f6f24
IM
1198 long rem_load_move = max_load_move;
1199 struct rq_iterator cfs_rq_iterator;
6b2d7700 1200 unsigned long load_moved;
bf0f6f24
IM
1201
1202 cfs_rq_iterator.start = load_balance_start_fair;
1203 cfs_rq_iterator.next = load_balance_next_fair;
1204
1205 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1206#ifdef CONFIG_FAIR_GROUP_SCHED
6b2d7700
SV
1207 struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
1208 unsigned long maxload, task_load, group_weight;
1209 unsigned long thisload, per_task_load;
1210 struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
bf0f6f24 1211
6b2d7700
SV
1212 task_load = busy_cfs_rq->load.weight;
1213 group_weight = se->load.weight;
bf0f6f24 1214
6b2d7700
SV
1215 /*
1216 * 'group_weight' is contributed by tasks of total weight
1217 * 'task_load'. To move 'rem_load_move' worth of weight only,
1218 * we need to move a maximum task load of:
1219 *
1220 * maxload = (remload / group_weight) * task_load;
1221 */
1222 maxload = (rem_load_move * task_load) / group_weight;
1223
1224 if (!maxload || !task_load)
bf0f6f24
IM
1225 continue;
1226
6b2d7700
SV
1227 per_task_load = task_load / busy_cfs_rq->nr_running;
1228 /*
1229 * balance_tasks will try to forcibly move atleast one task if
1230 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1231 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1232 */
1233 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
1234 continue;
bf0f6f24 1235
6b2d7700
SV
1236 /* Disable priority-based load balance */
1237 *this_best_prio = 0;
1238 thisload = this_cfs_rq->load.weight;
a4ac01c3 1239#else
e56f31aa 1240# define maxload rem_load_move
a4ac01c3 1241#endif
e1d1484f
PW
1242 /*
1243 * pass busy_cfs_rq argument into
bf0f6f24
IM
1244 * load_balance_[start|next]_fair iterators
1245 */
1246 cfs_rq_iterator.arg = busy_cfs_rq;
6b2d7700 1247 load_moved = balance_tasks(this_rq, this_cpu, busiest,
e1d1484f
PW
1248 maxload, sd, idle, all_pinned,
1249 this_best_prio,
1250 &cfs_rq_iterator);
bf0f6f24 1251
6b2d7700
SV
1252#ifdef CONFIG_FAIR_GROUP_SCHED
1253 /*
1254 * load_moved holds the task load that was moved. The
1255 * effective (group) weight moved would be:
1256 * load_moved_eff = load_moved/task_load * group_weight;
1257 */
1258 load_moved = (group_weight * load_moved) / task_load;
1259
1260 /* Adjust shares on both cpus to reflect load_moved */
1261 group_weight -= load_moved;
1262 set_se_shares(se, group_weight);
1263
1264 se = busy_cfs_rq->tg->se[this_cpu];
1265 if (!thisload)
1266 group_weight = load_moved;
1267 else
1268 group_weight = se->load.weight + load_moved;
1269 set_se_shares(se, group_weight);
1270#endif
1271
1272 rem_load_move -= load_moved;
1273
e1d1484f 1274 if (rem_load_move <= 0)
bf0f6f24
IM
1275 break;
1276 }
1277
43010659 1278 return max_load_move - rem_load_move;
bf0f6f24
IM
1279}
1280
e1d1484f
PW
1281static int
1282move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1283 struct sched_domain *sd, enum cpu_idle_type idle)
1284{
1285 struct cfs_rq *busy_cfs_rq;
1286 struct rq_iterator cfs_rq_iterator;
1287
1288 cfs_rq_iterator.start = load_balance_start_fair;
1289 cfs_rq_iterator.next = load_balance_next_fair;
1290
1291 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1292 /*
1293 * pass busy_cfs_rq argument into
1294 * load_balance_[start|next]_fair iterators
1295 */
1296 cfs_rq_iterator.arg = busy_cfs_rq;
1297 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1298 &cfs_rq_iterator))
1299 return 1;
1300 }
1301
1302 return 0;
1303}
681f3e68 1304#endif
e1d1484f 1305
bf0f6f24
IM
1306/*
1307 * scheduler tick hitting a task of our scheduling class:
1308 */
8f4d37ec 1309static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1310{
1311 struct cfs_rq *cfs_rq;
1312 struct sched_entity *se = &curr->se;
1313
1314 for_each_sched_entity(se) {
1315 cfs_rq = cfs_rq_of(se);
8f4d37ec 1316 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1317 }
1318}
1319
8eb172d9 1320#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1321
bf0f6f24
IM
1322/*
1323 * Share the fairness runtime between parent and child, thus the
1324 * total amount of pressure for CPU stays equal - new tasks
1325 * get a chance to run but frequent forkers are not allowed to
1326 * monopolize the CPU. Note: the parent runqueue is locked,
1327 * the child is not running yet.
1328 */
ee0827d8 1329static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1330{
1331 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1332 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1333 int this_cpu = smp_processor_id();
bf0f6f24
IM
1334
1335 sched_info_queued(p);
1336
7109c442 1337 update_curr(cfs_rq);
aeb73b04 1338 place_entity(cfs_rq, se, 1);
4d78e7b6 1339
3c90e6e9 1340 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1341 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1342 curr && curr->vruntime < se->vruntime) {
87fefa38 1343 /*
edcb60a3
IM
1344 * Upon rescheduling, sched_class::put_prev_task() will place
1345 * 'current' within the tree based on its new key value.
1346 */
4d78e7b6 1347 swap(curr->vruntime, se->vruntime);
4d78e7b6 1348 }
bf0f6f24 1349
b9dca1e0 1350 enqueue_task_fair(rq, p, 0);
bb61c210 1351 resched_task(rq->curr);
bf0f6f24
IM
1352}
1353
cb469845
SR
1354/*
1355 * Priority of the task has changed. Check to see if we preempt
1356 * the current task.
1357 */
1358static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1359 int oldprio, int running)
1360{
1361 /*
1362 * Reschedule if we are currently running on this runqueue and
1363 * our priority decreased, or if we are not currently running on
1364 * this runqueue and our priority is higher than the current's
1365 */
1366 if (running) {
1367 if (p->prio > oldprio)
1368 resched_task(rq->curr);
1369 } else
1370 check_preempt_curr(rq, p);
1371}
1372
1373/*
1374 * We switched to the sched_fair class.
1375 */
1376static void switched_to_fair(struct rq *rq, struct task_struct *p,
1377 int running)
1378{
1379 /*
1380 * We were most likely switched from sched_rt, so
1381 * kick off the schedule if running, otherwise just see
1382 * if we can still preempt the current task.
1383 */
1384 if (running)
1385 resched_task(rq->curr);
1386 else
1387 check_preempt_curr(rq, p);
1388}
1389
83b699ed
SV
1390/* Account for a task changing its policy or group.
1391 *
1392 * This routine is mostly called to set cfs_rq->curr field when a task
1393 * migrates between groups/classes.
1394 */
1395static void set_curr_task_fair(struct rq *rq)
1396{
1397 struct sched_entity *se = &rq->curr->se;
1398
1399 for_each_sched_entity(se)
1400 set_next_entity(cfs_rq_of(se), se);
1401}
1402
bf0f6f24
IM
1403/*
1404 * All the scheduling class methods:
1405 */
5522d5d5
IM
1406static const struct sched_class fair_sched_class = {
1407 .next = &idle_sched_class,
bf0f6f24
IM
1408 .enqueue_task = enqueue_task_fair,
1409 .dequeue_task = dequeue_task_fair,
1410 .yield_task = yield_task_fair,
e7693a36
GH
1411#ifdef CONFIG_SMP
1412 .select_task_rq = select_task_rq_fair,
1413#endif /* CONFIG_SMP */
bf0f6f24 1414
2e09bf55 1415 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1416
1417 .pick_next_task = pick_next_task_fair,
1418 .put_prev_task = put_prev_task_fair,
1419
681f3e68 1420#ifdef CONFIG_SMP
bf0f6f24 1421 .load_balance = load_balance_fair,
e1d1484f 1422 .move_one_task = move_one_task_fair,
681f3e68 1423#endif
bf0f6f24 1424
83b699ed 1425 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1426 .task_tick = task_tick_fair,
1427 .task_new = task_new_fair,
cb469845
SR
1428
1429 .prio_changed = prio_changed_fair,
1430 .switched_to = switched_to_fair,
bf0f6f24
IM
1431};
1432
1433#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1434static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1435{
bf0f6f24
IM
1436 struct cfs_rq *cfs_rq;
1437
75c28ace
SV
1438#ifdef CONFIG_FAIR_GROUP_SCHED
1439 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1440#endif
5973e5b9 1441 rcu_read_lock();
c3b64f1e 1442 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1443 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1444 rcu_read_unlock();
bf0f6f24
IM
1445}
1446#endif