sched: cleanup: refactor normalize_rt_tasks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085 27 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
bf0f6f24 31 *
d274a4ce
IM
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 34 */
2bd8e6d4
IM
35const_debug unsigned int sysctl_sched_latency = 20000000ULL;
36
37/*
38 * After fork, child runs first. (default) If set to 0 then
39 * parent will (try to) run first.
40 */
41const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
42
43/*
44 * Minimal preemption granularity for CPU-bound tasks:
45 * (default: 2 msec, units: nanoseconds)
46 */
5f6d858e 47const_debug unsigned int sysctl_sched_nr_latency = 20;
bf0f6f24 48
1799e35d
IM
49/*
50 * sys_sched_yield() compat mode
51 *
52 * This option switches the agressive yield implementation of the
53 * old scheduler back on.
54 */
55unsigned int __read_mostly sysctl_sched_compat_yield;
56
bf0f6f24
IM
57/*
58 * SCHED_BATCH wake-up granularity.
155bb293 59 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
60 *
61 * This option delays the preemption effects of decoupled workloads
62 * and reduces their over-scheduling. Synchronous workloads will still
63 * have immediate wakeup/sleep latencies.
64 */
155bb293 65const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
66
67/*
68 * SCHED_OTHER wake-up granularity.
155bb293 69 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
70 *
71 * This option delays the preemption effects of decoupled workloads
72 * and reduces their over-scheduling. Synchronous workloads will still
73 * have immediate wakeup/sleep latencies.
74 */
155bb293 75const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 76
bf0f6f24
IM
77/**************************************************************
78 * CFS operations on generic schedulable entities:
79 */
80
62160e3f 81#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 82
62160e3f 83/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
84static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
85{
62160e3f 86 return cfs_rq->rq;
bf0f6f24
IM
87}
88
62160e3f
IM
89/* An entity is a task if it doesn't "own" a runqueue */
90#define entity_is_task(se) (!se->my_q)
bf0f6f24 91
62160e3f 92#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 93
62160e3f
IM
94static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
95{
96 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
97}
98
99#define entity_is_task(se) 1
100
bf0f6f24
IM
101#endif /* CONFIG_FAIR_GROUP_SCHED */
102
103static inline struct task_struct *task_of(struct sched_entity *se)
104{
105 return container_of(se, struct task_struct, se);
106}
107
108
109/**************************************************************
110 * Scheduling class tree data structure manipulation methods:
111 */
112
0702e3eb 113static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 114{
368059a9
PZ
115 s64 delta = (s64)(vruntime - min_vruntime);
116 if (delta > 0)
02e0431a
PZ
117 min_vruntime = vruntime;
118
119 return min_vruntime;
120}
121
0702e3eb 122static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
123{
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta < 0)
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129}
130
0702e3eb 131static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 132{
30cfdcfc 133 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
134}
135
bf0f6f24
IM
136/*
137 * Enqueue an entity into the rb-tree:
138 */
0702e3eb 139static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
140{
141 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
142 struct rb_node *parent = NULL;
143 struct sched_entity *entry;
9014623c 144 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
145 int leftmost = 1;
146
147 /*
148 * Find the right place in the rbtree:
149 */
150 while (*link) {
151 parent = *link;
152 entry = rb_entry(parent, struct sched_entity, run_node);
153 /*
154 * We dont care about collisions. Nodes with
155 * the same key stay together.
156 */
9014623c 157 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
158 link = &parent->rb_left;
159 } else {
160 link = &parent->rb_right;
161 leftmost = 0;
162 }
163 }
164
165 /*
166 * Maintain a cache of leftmost tree entries (it is frequently
167 * used):
168 */
169 if (leftmost)
57cb499d 170 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
171
172 rb_link_node(&se->run_node, parent, link);
173 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
174}
175
0702e3eb 176static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
177{
178 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 179 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 180
bf0f6f24 181 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
182}
183
184static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
185{
186 return cfs_rq->rb_leftmost;
187}
188
189static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
190{
191 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
192}
193
aeb73b04
PZ
194static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
195{
196 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
197 struct sched_entity *se = NULL;
198 struct rb_node *parent;
199
200 while (*link) {
201 parent = *link;
202 se = rb_entry(parent, struct sched_entity, run_node);
203 link = &parent->rb_right;
204 }
205
206 return se;
207}
208
bf0f6f24
IM
209/**************************************************************
210 * Scheduling class statistics methods:
211 */
212
647e7cac
IM
213
214/*
215 * The idea is to set a period in which each task runs once.
216 *
217 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
218 * this period because otherwise the slices get too small.
219 *
220 * p = (nr <= nl) ? l : l*nr/nl
221 */
4d78e7b6
PZ
222static u64 __sched_period(unsigned long nr_running)
223{
224 u64 period = sysctl_sched_latency;
5f6d858e 225 unsigned long nr_latency = sysctl_sched_nr_latency;
4d78e7b6
PZ
226
227 if (unlikely(nr_running > nr_latency)) {
228 period *= nr_running;
229 do_div(period, nr_latency);
230 }
231
232 return period;
233}
234
647e7cac
IM
235/*
236 * We calculate the wall-time slice from the period by taking a part
237 * proportional to the weight.
238 *
239 * s = p*w/rw
240 */
6d0f0ebd 241static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 242{
647e7cac 243 u64 slice = __sched_period(cfs_rq->nr_running);
21805085 244
647e7cac
IM
245 slice *= se->load.weight;
246 do_div(slice, cfs_rq->load.weight);
21805085 247
647e7cac 248 return slice;
bf0f6f24
IM
249}
250
647e7cac
IM
251/*
252 * We calculate the vruntime slice.
253 *
254 * vs = s/w = p/rw
255 */
256static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 257{
647e7cac 258 u64 vslice = __sched_period(nr_running);
67e9fb2a 259
647e7cac 260 do_div(vslice, rq_weight);
67e9fb2a 261
647e7cac
IM
262 return vslice;
263}
5f6d858e 264
647e7cac
IM
265static u64 sched_vslice(struct cfs_rq *cfs_rq)
266{
267 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
268}
269
270static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
271{
272 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
273 cfs_rq->nr_running + 1);
67e9fb2a
PZ
274}
275
bf0f6f24
IM
276/*
277 * Update the current task's runtime statistics. Skip current tasks that
278 * are not in our scheduling class.
279 */
280static inline void
8ebc91d9
IM
281__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
282 unsigned long delta_exec)
bf0f6f24 283{
bbdba7c0 284 unsigned long delta_exec_weighted;
b0ffd246 285 u64 vruntime;
bf0f6f24 286
8179ca23 287 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
288
289 curr->sum_exec_runtime += delta_exec;
7a62eabc 290 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
291 delta_exec_weighted = delta_exec;
292 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
293 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
294 &curr->load);
295 }
296 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
297
298 /*
299 * maintain cfs_rq->min_vruntime to be a monotonic increasing
300 * value tracking the leftmost vruntime in the tree.
301 */
302 if (first_fair(cfs_rq)) {
b0ffd246
PZ
303 vruntime = min_vruntime(curr->vruntime,
304 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 305 } else
b0ffd246 306 vruntime = curr->vruntime;
02e0431a
PZ
307
308 cfs_rq->min_vruntime =
b0ffd246 309 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
310}
311
b7cc0896 312static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 313{
429d43bc 314 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 315 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
316 unsigned long delta_exec;
317
318 if (unlikely(!curr))
319 return;
320
321 /*
322 * Get the amount of time the current task was running
323 * since the last time we changed load (this cannot
324 * overflow on 32 bits):
325 */
8ebc91d9 326 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 327
8ebc91d9
IM
328 __update_curr(cfs_rq, curr, delta_exec);
329 curr->exec_start = now;
bf0f6f24
IM
330}
331
332static inline void
5870db5b 333update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 334{
d281918d 335 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
336}
337
bf0f6f24
IM
338/*
339 * Task is being enqueued - update stats:
340 */
d2417e5a 341static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 342{
bf0f6f24
IM
343 /*
344 * Are we enqueueing a waiting task? (for current tasks
345 * a dequeue/enqueue event is a NOP)
346 */
429d43bc 347 if (se != cfs_rq->curr)
5870db5b 348 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
349}
350
bf0f6f24 351static void
9ef0a961 352update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 353{
bbdba7c0
IM
354 schedstat_set(se->wait_max, max(se->wait_max,
355 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 356 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
357}
358
359static inline void
19b6a2e3 360update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 361{
bf0f6f24
IM
362 /*
363 * Mark the end of the wait period if dequeueing a
364 * waiting task:
365 */
429d43bc 366 if (se != cfs_rq->curr)
9ef0a961 367 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
368}
369
370/*
371 * We are picking a new current task - update its stats:
372 */
373static inline void
79303e9e 374update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
375{
376 /*
377 * We are starting a new run period:
378 */
d281918d 379 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
380}
381
382/*
383 * We are descheduling a task - update its stats:
384 */
385static inline void
c7e9b5b2 386update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
387{
388 se->exec_start = 0;
389}
390
391/**************************************************
392 * Scheduling class queueing methods:
393 */
394
30cfdcfc
DA
395static void
396account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
397{
398 update_load_add(&cfs_rq->load, se->load.weight);
399 cfs_rq->nr_running++;
400 se->on_rq = 1;
401}
402
403static void
404account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
405{
406 update_load_sub(&cfs_rq->load, se->load.weight);
407 cfs_rq->nr_running--;
408 se->on_rq = 0;
409}
410
2396af69 411static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 412{
bf0f6f24
IM
413#ifdef CONFIG_SCHEDSTATS
414 if (se->sleep_start) {
d281918d 415 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
416
417 if ((s64)delta < 0)
418 delta = 0;
419
420 if (unlikely(delta > se->sleep_max))
421 se->sleep_max = delta;
422
423 se->sleep_start = 0;
424 se->sum_sleep_runtime += delta;
425 }
426 if (se->block_start) {
d281918d 427 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
428
429 if ((s64)delta < 0)
430 delta = 0;
431
432 if (unlikely(delta > se->block_max))
433 se->block_max = delta;
434
435 se->block_start = 0;
436 se->sum_sleep_runtime += delta;
30084fbd
IM
437
438 /*
439 * Blocking time is in units of nanosecs, so shift by 20 to
440 * get a milliseconds-range estimation of the amount of
441 * time that the task spent sleeping:
442 */
443 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
444 struct task_struct *tsk = task_of(se);
445
30084fbd
IM
446 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
447 delta >> 20);
448 }
bf0f6f24
IM
449 }
450#endif
451}
452
ddc97297
PZ
453static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
454{
455#ifdef CONFIG_SCHED_DEBUG
456 s64 d = se->vruntime - cfs_rq->min_vruntime;
457
458 if (d < 0)
459 d = -d;
460
461 if (d > 3*sysctl_sched_latency)
462 schedstat_inc(cfs_rq, nr_spread_over);
463#endif
464}
465
aeb73b04
PZ
466static void
467place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
468{
67e9fb2a 469 u64 vruntime;
aeb73b04 470
67e9fb2a 471 vruntime = cfs_rq->min_vruntime;
94dfb5e7 472
06877c33 473 if (sched_feat(TREE_AVG)) {
94dfb5e7
PZ
474 struct sched_entity *last = __pick_last_entity(cfs_rq);
475 if (last) {
67e9fb2a
PZ
476 vruntime += last->vruntime;
477 vruntime >>= 1;
94dfb5e7 478 }
67e9fb2a 479 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 480 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7
PZ
481
482 if (initial && sched_feat(START_DEBIT))
647e7cac 483 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 484
8465e792 485 if (!initial) {
e62dd02e
DA
486 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
487 task_of(se)->policy != SCHED_BATCH)
94359f05
IM
488 vruntime -= sysctl_sched_latency;
489
b8487b92 490 vruntime = max_t(s64, vruntime, se->vruntime);
aeb73b04
PZ
491 }
492
67e9fb2a
PZ
493 se->vruntime = vruntime;
494
aeb73b04
PZ
495}
496
bf0f6f24 497static void
83b699ed 498enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
499{
500 /*
a2a2d680 501 * Update run-time statistics of the 'current'.
bf0f6f24 502 */
b7cc0896 503 update_curr(cfs_rq);
bf0f6f24 504
e9acbff6 505 if (wakeup) {
aeb73b04 506 place_entity(cfs_rq, se, 0);
2396af69 507 enqueue_sleeper(cfs_rq, se);
e9acbff6 508 }
bf0f6f24 509
d2417e5a 510 update_stats_enqueue(cfs_rq, se);
ddc97297 511 check_spread(cfs_rq, se);
83b699ed
SV
512 if (se != cfs_rq->curr)
513 __enqueue_entity(cfs_rq, se);
30cfdcfc 514 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
515}
516
517static void
525c2716 518dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 519{
a2a2d680
DA
520 /*
521 * Update run-time statistics of the 'current'.
522 */
523 update_curr(cfs_rq);
524
19b6a2e3 525 update_stats_dequeue(cfs_rq, se);
db36cc7d 526 if (sleep) {
95938a35 527 se->peer_preempt = 0;
67e9fb2a 528#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
529 if (entity_is_task(se)) {
530 struct task_struct *tsk = task_of(se);
531
532 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 533 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 534 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 535 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 536 }
db36cc7d 537#endif
67e9fb2a
PZ
538 }
539
83b699ed 540 if (se != cfs_rq->curr)
30cfdcfc
DA
541 __dequeue_entity(cfs_rq, se);
542 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
543}
544
545/*
546 * Preempt the current task with a newly woken task if needed:
547 */
7c92e54f 548static void
2e09bf55 549check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 550{
11697830
PZ
551 unsigned long ideal_runtime, delta_exec;
552
6d0f0ebd 553 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 554 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
95938a35
MG
555 if (delta_exec > ideal_runtime ||
556 (sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
bf0f6f24 557 resched_task(rq_of(cfs_rq)->curr);
95938a35 558 curr->peer_preempt = 0;
bf0f6f24
IM
559}
560
83b699ed 561static void
8494f412 562set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 563{
83b699ed
SV
564 /* 'current' is not kept within the tree. */
565 if (se->on_rq) {
566 /*
567 * Any task has to be enqueued before it get to execute on
568 * a CPU. So account for the time it spent waiting on the
569 * runqueue.
570 */
571 update_stats_wait_end(cfs_rq, se);
572 __dequeue_entity(cfs_rq, se);
573 }
574
79303e9e 575 update_stats_curr_start(cfs_rq, se);
429d43bc 576 cfs_rq->curr = se;
eba1ed4b
IM
577#ifdef CONFIG_SCHEDSTATS
578 /*
579 * Track our maximum slice length, if the CPU's load is at
580 * least twice that of our own weight (i.e. dont track it
581 * when there are only lesser-weight tasks around):
582 */
495eca49 583 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
584 se->slice_max = max(se->slice_max,
585 se->sum_exec_runtime - se->prev_sum_exec_runtime);
586 }
587#endif
4a55b450 588 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
589}
590
9948f4b2 591static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 592{
08ec3df5 593 struct sched_entity *se = NULL;
bf0f6f24 594
08ec3df5
DA
595 if (first_fair(cfs_rq)) {
596 se = __pick_next_entity(cfs_rq);
597 set_next_entity(cfs_rq, se);
598 }
bf0f6f24
IM
599
600 return se;
601}
602
ab6cde26 603static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
604{
605 /*
606 * If still on the runqueue then deactivate_task()
607 * was not called and update_curr() has to be done:
608 */
609 if (prev->on_rq)
b7cc0896 610 update_curr(cfs_rq);
bf0f6f24 611
c7e9b5b2 612 update_stats_curr_end(cfs_rq, prev);
bf0f6f24 613
ddc97297 614 check_spread(cfs_rq, prev);
30cfdcfc 615 if (prev->on_rq) {
5870db5b 616 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
617 /* Put 'current' back into the tree. */
618 __enqueue_entity(cfs_rq, prev);
619 }
429d43bc 620 cfs_rq->curr = NULL;
bf0f6f24
IM
621}
622
623static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
624{
bf0f6f24 625 /*
30cfdcfc 626 * Update run-time statistics of the 'current'.
bf0f6f24 627 */
30cfdcfc 628 update_curr(cfs_rq);
bf0f6f24 629
ce6c1311 630 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 631 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
632}
633
634/**************************************************
635 * CFS operations on tasks:
636 */
637
638#ifdef CONFIG_FAIR_GROUP_SCHED
639
640/* Walk up scheduling entities hierarchy */
641#define for_each_sched_entity(se) \
642 for (; se; se = se->parent)
643
644static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
645{
646 return p->se.cfs_rq;
647}
648
649/* runqueue on which this entity is (to be) queued */
650static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
651{
652 return se->cfs_rq;
653}
654
655/* runqueue "owned" by this group */
656static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
657{
658 return grp->my_q;
659}
660
661/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
662 * another cpu ('this_cpu')
663 */
664static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
665{
29f59db3 666 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
667}
668
669/* Iterate thr' all leaf cfs_rq's on a runqueue */
670#define for_each_leaf_cfs_rq(rq, cfs_rq) \
671 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
672
fad095a7
SV
673/* Do the two (enqueued) entities belong to the same group ? */
674static inline int
675is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 676{
fad095a7 677 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
678 return 1;
679
680 return 0;
681}
682
fad095a7
SV
683static inline struct sched_entity *parent_entity(struct sched_entity *se)
684{
685 return se->parent;
686}
687
bf0f6f24
IM
688#else /* CONFIG_FAIR_GROUP_SCHED */
689
690#define for_each_sched_entity(se) \
691 for (; se; se = NULL)
692
693static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
694{
695 return &task_rq(p)->cfs;
696}
697
698static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
699{
700 struct task_struct *p = task_of(se);
701 struct rq *rq = task_rq(p);
702
703 return &rq->cfs;
704}
705
706/* runqueue "owned" by this group */
707static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
708{
709 return NULL;
710}
711
712static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
713{
714 return &cpu_rq(this_cpu)->cfs;
715}
716
717#define for_each_leaf_cfs_rq(rq, cfs_rq) \
718 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
719
fad095a7
SV
720static inline int
721is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
722{
723 return 1;
724}
725
fad095a7
SV
726static inline struct sched_entity *parent_entity(struct sched_entity *se)
727{
728 return NULL;
729}
730
bf0f6f24
IM
731#endif /* CONFIG_FAIR_GROUP_SCHED */
732
733/*
734 * The enqueue_task method is called before nr_running is
735 * increased. Here we update the fair scheduling stats and
736 * then put the task into the rbtree:
737 */
fd390f6a 738static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
739{
740 struct cfs_rq *cfs_rq;
741 struct sched_entity *se = &p->se;
742
743 for_each_sched_entity(se) {
744 if (se->on_rq)
745 break;
746 cfs_rq = cfs_rq_of(se);
83b699ed 747 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 748 wakeup = 1;
bf0f6f24
IM
749 }
750}
751
752/*
753 * The dequeue_task method is called before nr_running is
754 * decreased. We remove the task from the rbtree and
755 * update the fair scheduling stats:
756 */
f02231e5 757static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
758{
759 struct cfs_rq *cfs_rq;
760 struct sched_entity *se = &p->se;
761
762 for_each_sched_entity(se) {
763 cfs_rq = cfs_rq_of(se);
525c2716 764 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
765 /* Don't dequeue parent if it has other entities besides us */
766 if (cfs_rq->load.weight)
767 break;
b9fa3df3 768 sleep = 1;
bf0f6f24
IM
769 }
770}
771
772/*
1799e35d
IM
773 * sched_yield() support is very simple - we dequeue and enqueue.
774 *
775 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 776 */
4530d7ab 777static void yield_task_fair(struct rq *rq)
bf0f6f24 778{
72ea22f8 779 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
4530d7ab 780 struct sched_entity *rightmost, *se = &rq->curr->se;
bf0f6f24
IM
781
782 /*
1799e35d
IM
783 * Are we the only task in the tree?
784 */
785 if (unlikely(cfs_rq->nr_running == 1))
786 return;
787
788 if (likely(!sysctl_sched_compat_yield)) {
789 __update_rq_clock(rq);
790 /*
a2a2d680 791 * Update run-time statistics of the 'current'.
1799e35d 792 */
2b1e315d 793 update_curr(cfs_rq);
1799e35d
IM
794
795 return;
796 }
797 /*
798 * Find the rightmost entry in the rbtree:
bf0f6f24 799 */
2b1e315d 800 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
801 /*
802 * Already in the rightmost position?
803 */
2b1e315d 804 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
805 return;
806
807 /*
808 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
809 * Upon rescheduling, sched_class::put_prev_task() will place
810 * 'current' within the tree based on its new key value.
1799e35d 811 */
30cfdcfc 812 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
813}
814
815/*
816 * Preempt the current task with a newly woken task if needed:
817 */
2e09bf55 818static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
819{
820 struct task_struct *curr = rq->curr;
fad095a7 821 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 822 struct sched_entity *se = &curr->se, *pse = &p->se;
810e95cc 823 s64 delta, gran;
bf0f6f24
IM
824
825 if (unlikely(rt_prio(p->prio))) {
a8e504d2 826 update_rq_clock(rq);
b7cc0896 827 update_curr(cfs_rq);
bf0f6f24
IM
828 resched_task(curr);
829 return;
830 }
831
ce6c1311
PZ
832 if (sched_feat(WAKEUP_PREEMPT)) {
833 while (!is_same_group(se, pse)) {
834 se = parent_entity(se);
835 pse = parent_entity(pse);
836 }
8651a86c 837
ce6c1311
PZ
838 delta = se->vruntime - pse->vruntime;
839 gran = sysctl_sched_wakeup_granularity;
840 if (unlikely(se->load.weight != NICE_0_LOAD))
841 gran = calc_delta_fair(gran, &se->load);
8651a86c 842
95938a35
MG
843 if (delta > gran) {
844 int now = !sched_feat(PREEMPT_RESTRICT);
845
846 if (now || p->prio < curr->prio || !se->peer_preempt++)
847 resched_task(curr);
848 }
ce6c1311 849 }
bf0f6f24
IM
850}
851
fb8d4724 852static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
853{
854 struct cfs_rq *cfs_rq = &rq->cfs;
855 struct sched_entity *se;
856
857 if (unlikely(!cfs_rq->nr_running))
858 return NULL;
859
860 do {
9948f4b2 861 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
862 cfs_rq = group_cfs_rq(se);
863 } while (cfs_rq);
864
865 return task_of(se);
866}
867
868/*
869 * Account for a descheduled task:
870 */
31ee529c 871static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
872{
873 struct sched_entity *se = &prev->se;
874 struct cfs_rq *cfs_rq;
875
876 for_each_sched_entity(se) {
877 cfs_rq = cfs_rq_of(se);
ab6cde26 878 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
879 }
880}
881
882/**************************************************
883 * Fair scheduling class load-balancing methods:
884 */
885
886/*
887 * Load-balancing iterator. Note: while the runqueue stays locked
888 * during the whole iteration, the current task might be
889 * dequeued so the iterator has to be dequeue-safe. Here we
890 * achieve that by always pre-iterating before returning
891 * the current task:
892 */
a9957449 893static struct task_struct *
bf0f6f24
IM
894__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
895{
896 struct task_struct *p;
897
898 if (!curr)
899 return NULL;
900
901 p = rb_entry(curr, struct task_struct, se.run_node);
902 cfs_rq->rb_load_balance_curr = rb_next(curr);
903
904 return p;
905}
906
907static struct task_struct *load_balance_start_fair(void *arg)
908{
909 struct cfs_rq *cfs_rq = arg;
910
911 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
912}
913
914static struct task_struct *load_balance_next_fair(void *arg)
915{
916 struct cfs_rq *cfs_rq = arg;
917
918 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
919}
920
a4ac01c3 921#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
922static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
923{
924 struct sched_entity *curr;
925 struct task_struct *p;
926
927 if (!cfs_rq->nr_running)
928 return MAX_PRIO;
929
9b5b7751
SV
930 curr = cfs_rq->curr;
931 if (!curr)
932 curr = __pick_next_entity(cfs_rq);
933
bf0f6f24
IM
934 p = task_of(curr);
935
936 return p->prio;
937}
a4ac01c3 938#endif
bf0f6f24 939
43010659 940static unsigned long
bf0f6f24 941load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
942 unsigned long max_nr_move, unsigned long max_load_move,
943 struct sched_domain *sd, enum cpu_idle_type idle,
944 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
945{
946 struct cfs_rq *busy_cfs_rq;
947 unsigned long load_moved, total_nr_moved = 0, nr_moved;
948 long rem_load_move = max_load_move;
949 struct rq_iterator cfs_rq_iterator;
950
951 cfs_rq_iterator.start = load_balance_start_fair;
952 cfs_rq_iterator.next = load_balance_next_fair;
953
954 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 955#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 956 struct cfs_rq *this_cfs_rq;
e56f31aa 957 long imbalance;
bf0f6f24 958 unsigned long maxload;
bf0f6f24
IM
959
960 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
961
e56f31aa 962 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
963 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
964 if (imbalance <= 0)
965 continue;
966
967 /* Don't pull more than imbalance/2 */
968 imbalance /= 2;
969 maxload = min(rem_load_move, imbalance);
970
a4ac01c3
PW
971 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
972#else
e56f31aa 973# define maxload rem_load_move
a4ac01c3 974#endif
bf0f6f24
IM
975 /* pass busy_cfs_rq argument into
976 * load_balance_[start|next]_fair iterators
977 */
978 cfs_rq_iterator.arg = busy_cfs_rq;
979 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
980 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 981 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
982
983 total_nr_moved += nr_moved;
984 max_nr_move -= nr_moved;
985 rem_load_move -= load_moved;
986
987 if (max_nr_move <= 0 || rem_load_move <= 0)
988 break;
989 }
990
43010659 991 return max_load_move - rem_load_move;
bf0f6f24
IM
992}
993
994/*
995 * scheduler tick hitting a task of our scheduling class:
996 */
997static void task_tick_fair(struct rq *rq, struct task_struct *curr)
998{
999 struct cfs_rq *cfs_rq;
1000 struct sched_entity *se = &curr->se;
1001
1002 for_each_sched_entity(se) {
1003 cfs_rq = cfs_rq_of(se);
1004 entity_tick(cfs_rq, se);
1005 }
1006}
1007
4d78e7b6
PZ
1008#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1009
bf0f6f24
IM
1010/*
1011 * Share the fairness runtime between parent and child, thus the
1012 * total amount of pressure for CPU stays equal - new tasks
1013 * get a chance to run but frequent forkers are not allowed to
1014 * monopolize the CPU. Note: the parent runqueue is locked,
1015 * the child is not running yet.
1016 */
ee0827d8 1017static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1018{
1019 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1020 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1021 int this_cpu = smp_processor_id();
bf0f6f24
IM
1022
1023 sched_info_queued(p);
1024
7109c442 1025 update_curr(cfs_rq);
aeb73b04 1026 place_entity(cfs_rq, se, 1);
4d78e7b6 1027
00bf7bfc 1028 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
4d78e7b6 1029 curr->vruntime < se->vruntime) {
87fefa38 1030 /*
edcb60a3
IM
1031 * Upon rescheduling, sched_class::put_prev_task() will place
1032 * 'current' within the tree based on its new key value.
1033 */
4d78e7b6 1034 swap(curr->vruntime, se->vruntime);
4d78e7b6 1035 }
bf0f6f24 1036
e9acbff6 1037 update_stats_enqueue(cfs_rq, se);
ddc97297
PZ
1038 check_spread(cfs_rq, se);
1039 check_spread(cfs_rq, curr);
bf0f6f24 1040 __enqueue_entity(cfs_rq, se);
30cfdcfc 1041 account_entity_enqueue(cfs_rq, se);
95938a35 1042 se->peer_preempt = 0;
bb61c210 1043 resched_task(rq->curr);
bf0f6f24
IM
1044}
1045
83b699ed
SV
1046/* Account for a task changing its policy or group.
1047 *
1048 * This routine is mostly called to set cfs_rq->curr field when a task
1049 * migrates between groups/classes.
1050 */
1051static void set_curr_task_fair(struct rq *rq)
1052{
1053 struct sched_entity *se = &rq->curr->se;
1054
1055 for_each_sched_entity(se)
1056 set_next_entity(cfs_rq_of(se), se);
1057}
1058
bf0f6f24
IM
1059/*
1060 * All the scheduling class methods:
1061 */
5522d5d5
IM
1062static const struct sched_class fair_sched_class = {
1063 .next = &idle_sched_class,
bf0f6f24
IM
1064 .enqueue_task = enqueue_task_fair,
1065 .dequeue_task = dequeue_task_fair,
1066 .yield_task = yield_task_fair,
1067
2e09bf55 1068 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1069
1070 .pick_next_task = pick_next_task_fair,
1071 .put_prev_task = put_prev_task_fair,
1072
1073 .load_balance = load_balance_fair,
1074
83b699ed 1075 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1076 .task_tick = task_tick_fair,
1077 .task_new = task_new_fair,
1078};
1079
1080#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1081static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1082{
bf0f6f24
IM
1083 struct cfs_rq *cfs_rq;
1084
75c28ace
SV
1085#ifdef CONFIG_FAIR_GROUP_SCHED
1086 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1087#endif
c3b64f1e 1088 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1089 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1090}
1091#endif