sched: add sched-domain roots
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
e692ab53 57#include <linux/sysctl.h>
1da177e4
LT
58#include <linux/syscalls.h>
59#include <linux/times.h>
8f0ab514 60#include <linux/tsacct_kern.h>
c6fd91f0 61#include <linux/kprobes.h>
0ff92245 62#include <linux/delayacct.h>
5517d86b 63#include <linux/reciprocal_div.h>
dff06c15 64#include <linux/unistd.h>
f5ff8422 65#include <linux/pagemap.h>
1da177e4 66
5517d86b 67#include <asm/tlb.h>
838225b4 68#include <asm/irq_regs.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
d6322faf 77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
d6322faf
ED
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
1da177e4 103
6aa645ea
IM
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
1da177e4
LT
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
a4ec24b4 110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
111 * Timeslices get refilled after they expire.
112 */
1da177e4 113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
e05606d3
IM
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
1da177e4 148/*
6aa645ea 149 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 150 */
6aa645ea
IM
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
29f59db3
SV
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
68318b8e
SV
158#include <linux/cgroup.h>
159
29f59db3
SV
160struct cfs_rq;
161
162/* task group related information */
4cf86d77 163struct task_group {
68318b8e
SV
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
29f59db3
SV
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
6b2d7700
SV
171
172 /*
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
176 *
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
181 *
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
185 *
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
190 *
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
192 *
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
197 *
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
200 *
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
204 *
205 */
29f59db3 206 unsigned long shares;
6b2d7700 207
ae8393e5 208 struct rcu_head rcu;
29f59db3
SV
209};
210
211/* Default task group's sched entity on each cpu */
212static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213/* Default task group's cfs_rq on each cpu */
214static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
215
9b5b7751
SV
216static struct sched_entity *init_sched_entity_p[NR_CPUS];
217static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 218
ec2c507f
SV
219/* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
221 */
222static DEFINE_MUTEX(task_group_mutex);
223
a1835615
SV
224/* doms_cur_mutex serializes access to doms_cur[] array */
225static DEFINE_MUTEX(doms_cur_mutex);
226
6b2d7700
SV
227#ifdef CONFIG_SMP
228/* kernel thread that runs rebalance_shares() periodically */
229static struct task_struct *lb_monitor_task;
230static int load_balance_monitor(void *unused);
231#endif
232
233static void set_se_shares(struct sched_entity *se, unsigned long shares);
234
29f59db3 235/* Default task group.
3a252015 236 * Every task in system belong to this group at bootup.
29f59db3 237 */
4cf86d77 238struct task_group init_task_group = {
3a252015
IM
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
241};
9b5b7751 242
24e377a8 243#ifdef CONFIG_FAIR_USER_SCHED
93f992cc 244# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
24e377a8 245#else
93f992cc 246# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
247#endif
248
6b2d7700
SV
249#define MIN_GROUP_SHARES 2
250
93f992cc 251static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
252
253/* return group to which a task belongs */
4cf86d77 254static inline struct task_group *task_group(struct task_struct *p)
29f59db3 255{
4cf86d77 256 struct task_group *tg;
9b5b7751 257
24e377a8
SV
258#ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
68318b8e
SV
260#elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
24e377a8 263#else
41a2d6cf 264 tg = &init_task_group;
24e377a8 265#endif
9b5b7751 266 return tg;
29f59db3
SV
267}
268
269/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 270static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 271{
ce96b5ac
DA
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
274}
275
ec2c507f
SV
276static inline void lock_task_group_list(void)
277{
278 mutex_lock(&task_group_mutex);
279}
280
281static inline void unlock_task_group_list(void)
282{
283 mutex_unlock(&task_group_mutex);
284}
285
a1835615
SV
286static inline void lock_doms_cur(void)
287{
288 mutex_lock(&doms_cur_mutex);
289}
290
291static inline void unlock_doms_cur(void)
292{
293 mutex_unlock(&doms_cur_mutex);
294}
295
29f59db3
SV
296#else
297
ce96b5ac 298static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
299static inline void lock_task_group_list(void) { }
300static inline void unlock_task_group_list(void) { }
a1835615
SV
301static inline void lock_doms_cur(void) { }
302static inline void unlock_doms_cur(void) { }
29f59db3
SV
303
304#endif /* CONFIG_FAIR_GROUP_SCHED */
305
6aa645ea
IM
306/* CFS-related fields in a runqueue */
307struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
6aa645ea 311 u64 exec_clock;
e9acbff6 312 u64 min_vruntime;
6aa645ea
IM
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
319 */
320 struct sched_entity *curr;
ddc97297
PZ
321
322 unsigned long nr_spread_over;
323
62160e3f 324#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
326
41a2d6cf
IM
327 /*
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
331 *
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
334 */
41a2d6cf
IM
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
337#endif
338};
1da177e4 339
6aa645ea
IM
340/* Real-Time classes' related field in a runqueue: */
341struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
63489e45 345 unsigned long rt_nr_running;
73fe6aae 346 unsigned long rt_nr_migratory;
764a9d6f
SR
347 /* highest queued rt task prio */
348 int highest_prio;
a22d7fc1 349 int overloaded;
6aa645ea
IM
350};
351
57d885fe
GH
352#ifdef CONFIG_SMP
353
354/*
355 * We add the notion of a root-domain which will be used to define per-domain
356 * variables. Each exclusive cpuset essentially defines an island domain by
357 * fully partitioning the member cpus from any other cpuset. Whenever a new
358 * exclusive cpuset is created, we also create and attach a new root-domain
359 * object.
360 *
361 * By default the system creates a single root-domain with all cpus as
362 * members (mimicking the global state we have today).
363 */
364struct root_domain {
365 atomic_t refcount;
366 cpumask_t span;
367 cpumask_t online;
368};
369
370static struct root_domain def_root_domain;
371
372#endif
373
1da177e4
LT
374/*
375 * This is the main, per-CPU runqueue data structure.
376 *
377 * Locking rule: those places that want to lock multiple runqueues
378 * (such as the load balancing or the thread migration code), lock
379 * acquire operations must be ordered by ascending &runqueue.
380 */
70b97a7f 381struct rq {
d8016491
IM
382 /* runqueue lock: */
383 spinlock_t lock;
1da177e4
LT
384
385 /*
386 * nr_running and cpu_load should be in the same cacheline because
387 * remote CPUs use both these fields when doing load calculation.
388 */
389 unsigned long nr_running;
6aa645ea
IM
390 #define CPU_LOAD_IDX_MAX 5
391 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 392 unsigned char idle_at_tick;
46cb4b7c
SS
393#ifdef CONFIG_NO_HZ
394 unsigned char in_nohz_recently;
395#endif
d8016491
IM
396 /* capture load from *all* tasks on this cpu: */
397 struct load_weight load;
6aa645ea
IM
398 unsigned long nr_load_updates;
399 u64 nr_switches;
400
401 struct cfs_rq cfs;
402#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
403 /* list of leaf cfs_rq on this cpu: */
404 struct list_head leaf_cfs_rq_list;
1da177e4 405#endif
41a2d6cf 406 struct rt_rq rt;
1da177e4
LT
407
408 /*
409 * This is part of a global counter where only the total sum
410 * over all CPUs matters. A task can increase this counter on
411 * one CPU and if it got migrated afterwards it may decrease
412 * it on another CPU. Always updated under the runqueue lock:
413 */
414 unsigned long nr_uninterruptible;
415
36c8b586 416 struct task_struct *curr, *idle;
c9819f45 417 unsigned long next_balance;
1da177e4 418 struct mm_struct *prev_mm;
6aa645ea 419
6aa645ea
IM
420 u64 clock, prev_clock_raw;
421 s64 clock_max_delta;
422
423 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
424 u64 idle_clock;
425 unsigned int clock_deep_idle_events;
529c7726 426 u64 tick_timestamp;
6aa645ea 427
1da177e4
LT
428 atomic_t nr_iowait;
429
430#ifdef CONFIG_SMP
57d885fe 431 struct root_domain *rd;
1da177e4
LT
432 struct sched_domain *sd;
433
434 /* For active balancing */
435 int active_balance;
436 int push_cpu;
d8016491
IM
437 /* cpu of this runqueue: */
438 int cpu;
1da177e4 439
36c8b586 440 struct task_struct *migration_thread;
1da177e4
LT
441 struct list_head migration_queue;
442#endif
443
444#ifdef CONFIG_SCHEDSTATS
445 /* latency stats */
446 struct sched_info rq_sched_info;
447
448 /* sys_sched_yield() stats */
480b9434
KC
449 unsigned int yld_exp_empty;
450 unsigned int yld_act_empty;
451 unsigned int yld_both_empty;
452 unsigned int yld_count;
1da177e4
LT
453
454 /* schedule() stats */
480b9434
KC
455 unsigned int sched_switch;
456 unsigned int sched_count;
457 unsigned int sched_goidle;
1da177e4
LT
458
459 /* try_to_wake_up() stats */
480b9434
KC
460 unsigned int ttwu_count;
461 unsigned int ttwu_local;
b8efb561
IM
462
463 /* BKL stats */
480b9434 464 unsigned int bkl_count;
1da177e4 465#endif
fcb99371 466 struct lock_class_key rq_lock_key;
1da177e4
LT
467};
468
f34e3b61 469static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 470
dd41f596
IM
471static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
472{
473 rq->curr->sched_class->check_preempt_curr(rq, p);
474}
475
0a2966b4
CL
476static inline int cpu_of(struct rq *rq)
477{
478#ifdef CONFIG_SMP
479 return rq->cpu;
480#else
481 return 0;
482#endif
483}
484
20d315d4 485/*
b04a0f4c
IM
486 * Update the per-runqueue clock, as finegrained as the platform can give
487 * us, but without assuming monotonicity, etc.:
20d315d4 488 */
b04a0f4c 489static void __update_rq_clock(struct rq *rq)
20d315d4
IM
490{
491 u64 prev_raw = rq->prev_clock_raw;
492 u64 now = sched_clock();
493 s64 delta = now - prev_raw;
494 u64 clock = rq->clock;
495
b04a0f4c
IM
496#ifdef CONFIG_SCHED_DEBUG
497 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
498#endif
20d315d4
IM
499 /*
500 * Protect against sched_clock() occasionally going backwards:
501 */
502 if (unlikely(delta < 0)) {
503 clock++;
504 rq->clock_warps++;
505 } else {
506 /*
507 * Catch too large forward jumps too:
508 */
529c7726
IM
509 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
510 if (clock < rq->tick_timestamp + TICK_NSEC)
511 clock = rq->tick_timestamp + TICK_NSEC;
512 else
513 clock++;
20d315d4
IM
514 rq->clock_overflows++;
515 } else {
516 if (unlikely(delta > rq->clock_max_delta))
517 rq->clock_max_delta = delta;
518 clock += delta;
519 }
520 }
521
522 rq->prev_clock_raw = now;
523 rq->clock = clock;
b04a0f4c 524}
20d315d4 525
b04a0f4c
IM
526static void update_rq_clock(struct rq *rq)
527{
528 if (likely(smp_processor_id() == cpu_of(rq)))
529 __update_rq_clock(rq);
20d315d4
IM
530}
531
674311d5
NP
532/*
533 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 534 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
535 *
536 * The domain tree of any CPU may only be accessed from within
537 * preempt-disabled sections.
538 */
48f24c4d
IM
539#define for_each_domain(cpu, __sd) \
540 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
541
542#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
543#define this_rq() (&__get_cpu_var(runqueues))
544#define task_rq(p) cpu_rq(task_cpu(p))
545#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
546
bf5c91ba
IM
547/*
548 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
549 */
550#ifdef CONFIG_SCHED_DEBUG
551# define const_debug __read_mostly
552#else
553# define const_debug static const
554#endif
555
556/*
557 * Debugging: various feature bits
558 */
559enum {
bbdba7c0 560 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
561 SCHED_FEAT_WAKEUP_PREEMPT = 2,
562 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
563 SCHED_FEAT_TREE_AVG = 8,
564 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
565};
566
567const_debug unsigned int sysctl_sched_features =
8401f775 568 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 569 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
570 SCHED_FEAT_START_DEBIT * 1 |
571 SCHED_FEAT_TREE_AVG * 0 |
9612633a 572 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
573
574#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
575
b82d9fdd
PZ
576/*
577 * Number of tasks to iterate in a single balance run.
578 * Limited because this is done with IRQs disabled.
579 */
580const_debug unsigned int sysctl_sched_nr_migrate = 32;
581
e436d800
IM
582/*
583 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
584 * clock constructed from sched_clock():
585 */
586unsigned long long cpu_clock(int cpu)
587{
e436d800
IM
588 unsigned long long now;
589 unsigned long flags;
b04a0f4c 590 struct rq *rq;
e436d800 591
2cd4d0ea 592 local_irq_save(flags);
b04a0f4c 593 rq = cpu_rq(cpu);
8ced5f69
IM
594 /*
595 * Only call sched_clock() if the scheduler has already been
596 * initialized (some code might call cpu_clock() very early):
597 */
598 if (rq->idle)
599 update_rq_clock(rq);
b04a0f4c 600 now = rq->clock;
2cd4d0ea 601 local_irq_restore(flags);
e436d800
IM
602
603 return now;
604}
a58f6f25 605EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 606
1da177e4 607#ifndef prepare_arch_switch
4866cde0
NP
608# define prepare_arch_switch(next) do { } while (0)
609#endif
610#ifndef finish_arch_switch
611# define finish_arch_switch(prev) do { } while (0)
612#endif
613
051a1d1a
DA
614static inline int task_current(struct rq *rq, struct task_struct *p)
615{
616 return rq->curr == p;
617}
618
4866cde0 619#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 620static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 621{
051a1d1a 622 return task_current(rq, p);
4866cde0
NP
623}
624
70b97a7f 625static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
626{
627}
628
70b97a7f 629static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 630{
da04c035
IM
631#ifdef CONFIG_DEBUG_SPINLOCK
632 /* this is a valid case when another task releases the spinlock */
633 rq->lock.owner = current;
634#endif
8a25d5de
IM
635 /*
636 * If we are tracking spinlock dependencies then we have to
637 * fix up the runqueue lock - which gets 'carried over' from
638 * prev into current:
639 */
640 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
641
4866cde0
NP
642 spin_unlock_irq(&rq->lock);
643}
644
645#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 646static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
647{
648#ifdef CONFIG_SMP
649 return p->oncpu;
650#else
051a1d1a 651 return task_current(rq, p);
4866cde0
NP
652#endif
653}
654
70b97a7f 655static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
656{
657#ifdef CONFIG_SMP
658 /*
659 * We can optimise this out completely for !SMP, because the
660 * SMP rebalancing from interrupt is the only thing that cares
661 * here.
662 */
663 next->oncpu = 1;
664#endif
665#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
666 spin_unlock_irq(&rq->lock);
667#else
668 spin_unlock(&rq->lock);
669#endif
670}
671
70b97a7f 672static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
673{
674#ifdef CONFIG_SMP
675 /*
676 * After ->oncpu is cleared, the task can be moved to a different CPU.
677 * We must ensure this doesn't happen until the switch is completely
678 * finished.
679 */
680 smp_wmb();
681 prev->oncpu = 0;
682#endif
683#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
684 local_irq_enable();
1da177e4 685#endif
4866cde0
NP
686}
687#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 688
b29739f9
IM
689/*
690 * __task_rq_lock - lock the runqueue a given task resides on.
691 * Must be called interrupts disabled.
692 */
70b97a7f 693static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
694 __acquires(rq->lock)
695{
3a5c359a
AK
696 for (;;) {
697 struct rq *rq = task_rq(p);
698 spin_lock(&rq->lock);
699 if (likely(rq == task_rq(p)))
700 return rq;
b29739f9 701 spin_unlock(&rq->lock);
b29739f9 702 }
b29739f9
IM
703}
704
1da177e4
LT
705/*
706 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 707 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
708 * explicitly disabling preemption.
709 */
70b97a7f 710static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
711 __acquires(rq->lock)
712{
70b97a7f 713 struct rq *rq;
1da177e4 714
3a5c359a
AK
715 for (;;) {
716 local_irq_save(*flags);
717 rq = task_rq(p);
718 spin_lock(&rq->lock);
719 if (likely(rq == task_rq(p)))
720 return rq;
1da177e4 721 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 722 }
1da177e4
LT
723}
724
a9957449 725static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
726 __releases(rq->lock)
727{
728 spin_unlock(&rq->lock);
729}
730
70b97a7f 731static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
732 __releases(rq->lock)
733{
734 spin_unlock_irqrestore(&rq->lock, *flags);
735}
736
1da177e4 737/*
cc2a73b5 738 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 739 */
a9957449 740static struct rq *this_rq_lock(void)
1da177e4
LT
741 __acquires(rq->lock)
742{
70b97a7f 743 struct rq *rq;
1da177e4
LT
744
745 local_irq_disable();
746 rq = this_rq();
747 spin_lock(&rq->lock);
748
749 return rq;
750}
751
1b9f19c2 752/*
2aa44d05 753 * We are going deep-idle (irqs are disabled):
1b9f19c2 754 */
2aa44d05 755void sched_clock_idle_sleep_event(void)
1b9f19c2 756{
2aa44d05
IM
757 struct rq *rq = cpu_rq(smp_processor_id());
758
759 spin_lock(&rq->lock);
760 __update_rq_clock(rq);
761 spin_unlock(&rq->lock);
762 rq->clock_deep_idle_events++;
763}
764EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
765
766/*
767 * We just idled delta nanoseconds (called with irqs disabled):
768 */
769void sched_clock_idle_wakeup_event(u64 delta_ns)
770{
771 struct rq *rq = cpu_rq(smp_processor_id());
772 u64 now = sched_clock();
1b9f19c2 773
2bacec8c 774 touch_softlockup_watchdog();
2aa44d05
IM
775 rq->idle_clock += delta_ns;
776 /*
777 * Override the previous timestamp and ignore all
778 * sched_clock() deltas that occured while we idled,
779 * and use the PM-provided delta_ns to advance the
780 * rq clock:
781 */
782 spin_lock(&rq->lock);
783 rq->prev_clock_raw = now;
784 rq->clock += delta_ns;
785 spin_unlock(&rq->lock);
1b9f19c2 786}
2aa44d05 787EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 788
c24d20db
IM
789/*
790 * resched_task - mark a task 'to be rescheduled now'.
791 *
792 * On UP this means the setting of the need_resched flag, on SMP it
793 * might also involve a cross-CPU call to trigger the scheduler on
794 * the target CPU.
795 */
796#ifdef CONFIG_SMP
797
798#ifndef tsk_is_polling
799#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
800#endif
801
802static void resched_task(struct task_struct *p)
803{
804 int cpu;
805
806 assert_spin_locked(&task_rq(p)->lock);
807
808 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
809 return;
810
811 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
812
813 cpu = task_cpu(p);
814 if (cpu == smp_processor_id())
815 return;
816
817 /* NEED_RESCHED must be visible before we test polling */
818 smp_mb();
819 if (!tsk_is_polling(p))
820 smp_send_reschedule(cpu);
821}
822
823static void resched_cpu(int cpu)
824{
825 struct rq *rq = cpu_rq(cpu);
826 unsigned long flags;
827
828 if (!spin_trylock_irqsave(&rq->lock, flags))
829 return;
830 resched_task(cpu_curr(cpu));
831 spin_unlock_irqrestore(&rq->lock, flags);
832}
833#else
834static inline void resched_task(struct task_struct *p)
835{
836 assert_spin_locked(&task_rq(p)->lock);
837 set_tsk_need_resched(p);
838}
839#endif
840
45bf76df
IM
841#if BITS_PER_LONG == 32
842# define WMULT_CONST (~0UL)
843#else
844# define WMULT_CONST (1UL << 32)
845#endif
846
847#define WMULT_SHIFT 32
848
194081eb
IM
849/*
850 * Shift right and round:
851 */
cf2ab469 852#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 853
cb1c4fc9 854static unsigned long
45bf76df
IM
855calc_delta_mine(unsigned long delta_exec, unsigned long weight,
856 struct load_weight *lw)
857{
858 u64 tmp;
859
860 if (unlikely(!lw->inv_weight))
194081eb 861 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
862
863 tmp = (u64)delta_exec * weight;
864 /*
865 * Check whether we'd overflow the 64-bit multiplication:
866 */
194081eb 867 if (unlikely(tmp > WMULT_CONST))
cf2ab469 868 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
869 WMULT_SHIFT/2);
870 else
cf2ab469 871 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 872
ecf691da 873 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
874}
875
876static inline unsigned long
877calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
878{
879 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
880}
881
1091985b 882static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
883{
884 lw->weight += inc;
45bf76df
IM
885}
886
1091985b 887static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
888{
889 lw->weight -= dec;
45bf76df
IM
890}
891
2dd73a4f
PW
892/*
893 * To aid in avoiding the subversion of "niceness" due to uneven distribution
894 * of tasks with abnormal "nice" values across CPUs the contribution that
895 * each task makes to its run queue's load is weighted according to its
41a2d6cf 896 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
897 * scaled version of the new time slice allocation that they receive on time
898 * slice expiry etc.
899 */
900
dd41f596
IM
901#define WEIGHT_IDLEPRIO 2
902#define WMULT_IDLEPRIO (1 << 31)
903
904/*
905 * Nice levels are multiplicative, with a gentle 10% change for every
906 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
907 * nice 1, it will get ~10% less CPU time than another CPU-bound task
908 * that remained on nice 0.
909 *
910 * The "10% effect" is relative and cumulative: from _any_ nice level,
911 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
912 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
913 * If a task goes up by ~10% and another task goes down by ~10% then
914 * the relative distance between them is ~25%.)
dd41f596
IM
915 */
916static const int prio_to_weight[40] = {
254753dc
IM
917 /* -20 */ 88761, 71755, 56483, 46273, 36291,
918 /* -15 */ 29154, 23254, 18705, 14949, 11916,
919 /* -10 */ 9548, 7620, 6100, 4904, 3906,
920 /* -5 */ 3121, 2501, 1991, 1586, 1277,
921 /* 0 */ 1024, 820, 655, 526, 423,
922 /* 5 */ 335, 272, 215, 172, 137,
923 /* 10 */ 110, 87, 70, 56, 45,
924 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
925};
926
5714d2de
IM
927/*
928 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
929 *
930 * In cases where the weight does not change often, we can use the
931 * precalculated inverse to speed up arithmetics by turning divisions
932 * into multiplications:
933 */
dd41f596 934static const u32 prio_to_wmult[40] = {
254753dc
IM
935 /* -20 */ 48388, 59856, 76040, 92818, 118348,
936 /* -15 */ 147320, 184698, 229616, 287308, 360437,
937 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
938 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
939 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
940 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
941 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
942 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 943};
2dd73a4f 944
dd41f596
IM
945static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
946
947/*
948 * runqueue iterator, to support SMP load-balancing between different
949 * scheduling classes, without having to expose their internal data
950 * structures to the load-balancing proper:
951 */
952struct rq_iterator {
953 void *arg;
954 struct task_struct *(*start)(void *);
955 struct task_struct *(*next)(void *);
956};
957
e1d1484f
PW
958#ifdef CONFIG_SMP
959static unsigned long
960balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
961 unsigned long max_load_move, struct sched_domain *sd,
962 enum cpu_idle_type idle, int *all_pinned,
963 int *this_best_prio, struct rq_iterator *iterator);
964
965static int
966iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
967 struct sched_domain *sd, enum cpu_idle_type idle,
968 struct rq_iterator *iterator);
e1d1484f 969#endif
dd41f596 970
d842de87
SV
971#ifdef CONFIG_CGROUP_CPUACCT
972static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
973#else
974static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
975#endif
976
58e2d4ca
SV
977static inline void inc_cpu_load(struct rq *rq, unsigned long load)
978{
979 update_load_add(&rq->load, load);
980}
981
982static inline void dec_cpu_load(struct rq *rq, unsigned long load)
983{
984 update_load_sub(&rq->load, load);
985}
986
e7693a36
GH
987#ifdef CONFIG_SMP
988static unsigned long source_load(int cpu, int type);
989static unsigned long target_load(int cpu, int type);
990static unsigned long cpu_avg_load_per_task(int cpu);
991static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
992#endif /* CONFIG_SMP */
993
dd41f596 994#include "sched_stats.h"
dd41f596 995#include "sched_idletask.c"
5522d5d5
IM
996#include "sched_fair.c"
997#include "sched_rt.c"
dd41f596
IM
998#ifdef CONFIG_SCHED_DEBUG
999# include "sched_debug.c"
1000#endif
1001
1002#define sched_class_highest (&rt_sched_class)
1003
e5fa2237 1004static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1005{
1006 rq->nr_running++;
9c217245
IM
1007}
1008
db53181e 1009static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1010{
1011 rq->nr_running--;
9c217245
IM
1012}
1013
45bf76df
IM
1014static void set_load_weight(struct task_struct *p)
1015{
1016 if (task_has_rt_policy(p)) {
dd41f596
IM
1017 p->se.load.weight = prio_to_weight[0] * 2;
1018 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1019 return;
1020 }
45bf76df 1021
dd41f596
IM
1022 /*
1023 * SCHED_IDLE tasks get minimal weight:
1024 */
1025 if (p->policy == SCHED_IDLE) {
1026 p->se.load.weight = WEIGHT_IDLEPRIO;
1027 p->se.load.inv_weight = WMULT_IDLEPRIO;
1028 return;
1029 }
71f8bd46 1030
dd41f596
IM
1031 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1032 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1033}
1034
8159f87e 1035static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1036{
dd41f596 1037 sched_info_queued(p);
fd390f6a 1038 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1039 p->se.on_rq = 1;
71f8bd46
IM
1040}
1041
69be72c1 1042static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1043{
f02231e5 1044 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1045 p->se.on_rq = 0;
71f8bd46
IM
1046}
1047
14531189 1048/*
dd41f596 1049 * __normal_prio - return the priority that is based on the static prio
14531189 1050 */
14531189
IM
1051static inline int __normal_prio(struct task_struct *p)
1052{
dd41f596 1053 return p->static_prio;
14531189
IM
1054}
1055
b29739f9
IM
1056/*
1057 * Calculate the expected normal priority: i.e. priority
1058 * without taking RT-inheritance into account. Might be
1059 * boosted by interactivity modifiers. Changes upon fork,
1060 * setprio syscalls, and whenever the interactivity
1061 * estimator recalculates.
1062 */
36c8b586 1063static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1064{
1065 int prio;
1066
e05606d3 1067 if (task_has_rt_policy(p))
b29739f9
IM
1068 prio = MAX_RT_PRIO-1 - p->rt_priority;
1069 else
1070 prio = __normal_prio(p);
1071 return prio;
1072}
1073
1074/*
1075 * Calculate the current priority, i.e. the priority
1076 * taken into account by the scheduler. This value might
1077 * be boosted by RT tasks, or might be boosted by
1078 * interactivity modifiers. Will be RT if the task got
1079 * RT-boosted. If not then it returns p->normal_prio.
1080 */
36c8b586 1081static int effective_prio(struct task_struct *p)
b29739f9
IM
1082{
1083 p->normal_prio = normal_prio(p);
1084 /*
1085 * If we are RT tasks or we were boosted to RT priority,
1086 * keep the priority unchanged. Otherwise, update priority
1087 * to the normal priority:
1088 */
1089 if (!rt_prio(p->prio))
1090 return p->normal_prio;
1091 return p->prio;
1092}
1093
1da177e4 1094/*
dd41f596 1095 * activate_task - move a task to the runqueue.
1da177e4 1096 */
dd41f596 1097static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1098{
dd41f596
IM
1099 if (p->state == TASK_UNINTERRUPTIBLE)
1100 rq->nr_uninterruptible--;
1da177e4 1101
8159f87e 1102 enqueue_task(rq, p, wakeup);
e5fa2237 1103 inc_nr_running(p, rq);
1da177e4
LT
1104}
1105
1da177e4
LT
1106/*
1107 * deactivate_task - remove a task from the runqueue.
1108 */
2e1cb74a 1109static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1110{
dd41f596
IM
1111 if (p->state == TASK_UNINTERRUPTIBLE)
1112 rq->nr_uninterruptible++;
1113
69be72c1 1114 dequeue_task(rq, p, sleep);
db53181e 1115 dec_nr_running(p, rq);
1da177e4
LT
1116}
1117
1da177e4
LT
1118/**
1119 * task_curr - is this task currently executing on a CPU?
1120 * @p: the task in question.
1121 */
36c8b586 1122inline int task_curr(const struct task_struct *p)
1da177e4
LT
1123{
1124 return cpu_curr(task_cpu(p)) == p;
1125}
1126
2dd73a4f
PW
1127/* Used instead of source_load when we know the type == 0 */
1128unsigned long weighted_cpuload(const int cpu)
1129{
495eca49 1130 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1131}
1132
1133static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1134{
ce96b5ac 1135 set_task_cfs_rq(p, cpu);
dd41f596 1136#ifdef CONFIG_SMP
ce96b5ac
DA
1137 /*
1138 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1139 * successfuly executed on another CPU. We must ensure that updates of
1140 * per-task data have been completed by this moment.
1141 */
1142 smp_wmb();
dd41f596 1143 task_thread_info(p)->cpu = cpu;
dd41f596 1144#endif
2dd73a4f
PW
1145}
1146
1da177e4 1147#ifdef CONFIG_SMP
c65cc870 1148
cc367732
IM
1149/*
1150 * Is this task likely cache-hot:
1151 */
e7693a36 1152static int
cc367732
IM
1153task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1154{
1155 s64 delta;
1156
1157 if (p->sched_class != &fair_sched_class)
1158 return 0;
1159
6bc1665b
IM
1160 if (sysctl_sched_migration_cost == -1)
1161 return 1;
1162 if (sysctl_sched_migration_cost == 0)
1163 return 0;
1164
cc367732
IM
1165 delta = now - p->se.exec_start;
1166
1167 return delta < (s64)sysctl_sched_migration_cost;
1168}
1169
1170
dd41f596 1171void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1172{
dd41f596
IM
1173 int old_cpu = task_cpu(p);
1174 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1175 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1176 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1177 u64 clock_offset;
dd41f596
IM
1178
1179 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1180
1181#ifdef CONFIG_SCHEDSTATS
1182 if (p->se.wait_start)
1183 p->se.wait_start -= clock_offset;
dd41f596
IM
1184 if (p->se.sleep_start)
1185 p->se.sleep_start -= clock_offset;
1186 if (p->se.block_start)
1187 p->se.block_start -= clock_offset;
cc367732
IM
1188 if (old_cpu != new_cpu) {
1189 schedstat_inc(p, se.nr_migrations);
1190 if (task_hot(p, old_rq->clock, NULL))
1191 schedstat_inc(p, se.nr_forced2_migrations);
1192 }
6cfb0d5d 1193#endif
2830cf8c
SV
1194 p->se.vruntime -= old_cfsrq->min_vruntime -
1195 new_cfsrq->min_vruntime;
dd41f596
IM
1196
1197 __set_task_cpu(p, new_cpu);
c65cc870
IM
1198}
1199
70b97a7f 1200struct migration_req {
1da177e4 1201 struct list_head list;
1da177e4 1202
36c8b586 1203 struct task_struct *task;
1da177e4
LT
1204 int dest_cpu;
1205
1da177e4 1206 struct completion done;
70b97a7f 1207};
1da177e4
LT
1208
1209/*
1210 * The task's runqueue lock must be held.
1211 * Returns true if you have to wait for migration thread.
1212 */
36c8b586 1213static int
70b97a7f 1214migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1215{
70b97a7f 1216 struct rq *rq = task_rq(p);
1da177e4
LT
1217
1218 /*
1219 * If the task is not on a runqueue (and not running), then
1220 * it is sufficient to simply update the task's cpu field.
1221 */
dd41f596 1222 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1223 set_task_cpu(p, dest_cpu);
1224 return 0;
1225 }
1226
1227 init_completion(&req->done);
1da177e4
LT
1228 req->task = p;
1229 req->dest_cpu = dest_cpu;
1230 list_add(&req->list, &rq->migration_queue);
48f24c4d 1231
1da177e4
LT
1232 return 1;
1233}
1234
1235/*
1236 * wait_task_inactive - wait for a thread to unschedule.
1237 *
1238 * The caller must ensure that the task *will* unschedule sometime soon,
1239 * else this function might spin for a *long* time. This function can't
1240 * be called with interrupts off, or it may introduce deadlock with
1241 * smp_call_function() if an IPI is sent by the same process we are
1242 * waiting to become inactive.
1243 */
36c8b586 1244void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1245{
1246 unsigned long flags;
dd41f596 1247 int running, on_rq;
70b97a7f 1248 struct rq *rq;
1da177e4 1249
3a5c359a
AK
1250 for (;;) {
1251 /*
1252 * We do the initial early heuristics without holding
1253 * any task-queue locks at all. We'll only try to get
1254 * the runqueue lock when things look like they will
1255 * work out!
1256 */
1257 rq = task_rq(p);
fa490cfd 1258
3a5c359a
AK
1259 /*
1260 * If the task is actively running on another CPU
1261 * still, just relax and busy-wait without holding
1262 * any locks.
1263 *
1264 * NOTE! Since we don't hold any locks, it's not
1265 * even sure that "rq" stays as the right runqueue!
1266 * But we don't care, since "task_running()" will
1267 * return false if the runqueue has changed and p
1268 * is actually now running somewhere else!
1269 */
1270 while (task_running(rq, p))
1271 cpu_relax();
fa490cfd 1272
3a5c359a
AK
1273 /*
1274 * Ok, time to look more closely! We need the rq
1275 * lock now, to be *sure*. If we're wrong, we'll
1276 * just go back and repeat.
1277 */
1278 rq = task_rq_lock(p, &flags);
1279 running = task_running(rq, p);
1280 on_rq = p->se.on_rq;
1281 task_rq_unlock(rq, &flags);
fa490cfd 1282
3a5c359a
AK
1283 /*
1284 * Was it really running after all now that we
1285 * checked with the proper locks actually held?
1286 *
1287 * Oops. Go back and try again..
1288 */
1289 if (unlikely(running)) {
1290 cpu_relax();
1291 continue;
1292 }
fa490cfd 1293
3a5c359a
AK
1294 /*
1295 * It's not enough that it's not actively running,
1296 * it must be off the runqueue _entirely_, and not
1297 * preempted!
1298 *
1299 * So if it wa still runnable (but just not actively
1300 * running right now), it's preempted, and we should
1301 * yield - it could be a while.
1302 */
1303 if (unlikely(on_rq)) {
1304 schedule_timeout_uninterruptible(1);
1305 continue;
1306 }
fa490cfd 1307
3a5c359a
AK
1308 /*
1309 * Ahh, all good. It wasn't running, and it wasn't
1310 * runnable, which means that it will never become
1311 * running in the future either. We're all done!
1312 */
1313 break;
1314 }
1da177e4
LT
1315}
1316
1317/***
1318 * kick_process - kick a running thread to enter/exit the kernel
1319 * @p: the to-be-kicked thread
1320 *
1321 * Cause a process which is running on another CPU to enter
1322 * kernel-mode, without any delay. (to get signals handled.)
1323 *
1324 * NOTE: this function doesnt have to take the runqueue lock,
1325 * because all it wants to ensure is that the remote task enters
1326 * the kernel. If the IPI races and the task has been migrated
1327 * to another CPU then no harm is done and the purpose has been
1328 * achieved as well.
1329 */
36c8b586 1330void kick_process(struct task_struct *p)
1da177e4
LT
1331{
1332 int cpu;
1333
1334 preempt_disable();
1335 cpu = task_cpu(p);
1336 if ((cpu != smp_processor_id()) && task_curr(p))
1337 smp_send_reschedule(cpu);
1338 preempt_enable();
1339}
1340
1341/*
2dd73a4f
PW
1342 * Return a low guess at the load of a migration-source cpu weighted
1343 * according to the scheduling class and "nice" value.
1da177e4
LT
1344 *
1345 * We want to under-estimate the load of migration sources, to
1346 * balance conservatively.
1347 */
a9957449 1348static unsigned long source_load(int cpu, int type)
1da177e4 1349{
70b97a7f 1350 struct rq *rq = cpu_rq(cpu);
dd41f596 1351 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1352
3b0bd9bc 1353 if (type == 0)
dd41f596 1354 return total;
b910472d 1355
dd41f596 1356 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1357}
1358
1359/*
2dd73a4f
PW
1360 * Return a high guess at the load of a migration-target cpu weighted
1361 * according to the scheduling class and "nice" value.
1da177e4 1362 */
a9957449 1363static unsigned long target_load(int cpu, int type)
1da177e4 1364{
70b97a7f 1365 struct rq *rq = cpu_rq(cpu);
dd41f596 1366 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1367
7897986b 1368 if (type == 0)
dd41f596 1369 return total;
3b0bd9bc 1370
dd41f596 1371 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1372}
1373
1374/*
1375 * Return the average load per task on the cpu's run queue
1376 */
e7693a36 1377static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1378{
70b97a7f 1379 struct rq *rq = cpu_rq(cpu);
dd41f596 1380 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1381 unsigned long n = rq->nr_running;
1382
dd41f596 1383 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1384}
1385
147cbb4b
NP
1386/*
1387 * find_idlest_group finds and returns the least busy CPU group within the
1388 * domain.
1389 */
1390static struct sched_group *
1391find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1392{
1393 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1394 unsigned long min_load = ULONG_MAX, this_load = 0;
1395 int load_idx = sd->forkexec_idx;
1396 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1397
1398 do {
1399 unsigned long load, avg_load;
1400 int local_group;
1401 int i;
1402
da5a5522
BD
1403 /* Skip over this group if it has no CPUs allowed */
1404 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1405 continue;
da5a5522 1406
147cbb4b 1407 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1408
1409 /* Tally up the load of all CPUs in the group */
1410 avg_load = 0;
1411
1412 for_each_cpu_mask(i, group->cpumask) {
1413 /* Bias balancing toward cpus of our domain */
1414 if (local_group)
1415 load = source_load(i, load_idx);
1416 else
1417 load = target_load(i, load_idx);
1418
1419 avg_load += load;
1420 }
1421
1422 /* Adjust by relative CPU power of the group */
5517d86b
ED
1423 avg_load = sg_div_cpu_power(group,
1424 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1425
1426 if (local_group) {
1427 this_load = avg_load;
1428 this = group;
1429 } else if (avg_load < min_load) {
1430 min_load = avg_load;
1431 idlest = group;
1432 }
3a5c359a 1433 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1434
1435 if (!idlest || 100*this_load < imbalance*min_load)
1436 return NULL;
1437 return idlest;
1438}
1439
1440/*
0feaece9 1441 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1442 */
95cdf3b7
IM
1443static int
1444find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1445{
da5a5522 1446 cpumask_t tmp;
147cbb4b
NP
1447 unsigned long load, min_load = ULONG_MAX;
1448 int idlest = -1;
1449 int i;
1450
da5a5522
BD
1451 /* Traverse only the allowed CPUs */
1452 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1453
1454 for_each_cpu_mask(i, tmp) {
2dd73a4f 1455 load = weighted_cpuload(i);
147cbb4b
NP
1456
1457 if (load < min_load || (load == min_load && i == this_cpu)) {
1458 min_load = load;
1459 idlest = i;
1460 }
1461 }
1462
1463 return idlest;
1464}
1465
476d139c
NP
1466/*
1467 * sched_balance_self: balance the current task (running on cpu) in domains
1468 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1469 * SD_BALANCE_EXEC.
1470 *
1471 * Balance, ie. select the least loaded group.
1472 *
1473 * Returns the target CPU number, or the same CPU if no balancing is needed.
1474 *
1475 * preempt must be disabled.
1476 */
1477static int sched_balance_self(int cpu, int flag)
1478{
1479 struct task_struct *t = current;
1480 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1481
c96d145e 1482 for_each_domain(cpu, tmp) {
9761eea8
IM
1483 /*
1484 * If power savings logic is enabled for a domain, stop there.
1485 */
5c45bf27
SS
1486 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1487 break;
476d139c
NP
1488 if (tmp->flags & flag)
1489 sd = tmp;
c96d145e 1490 }
476d139c
NP
1491
1492 while (sd) {
1493 cpumask_t span;
1494 struct sched_group *group;
1a848870
SS
1495 int new_cpu, weight;
1496
1497 if (!(sd->flags & flag)) {
1498 sd = sd->child;
1499 continue;
1500 }
476d139c
NP
1501
1502 span = sd->span;
1503 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1504 if (!group) {
1505 sd = sd->child;
1506 continue;
1507 }
476d139c 1508
da5a5522 1509 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1510 if (new_cpu == -1 || new_cpu == cpu) {
1511 /* Now try balancing at a lower domain level of cpu */
1512 sd = sd->child;
1513 continue;
1514 }
476d139c 1515
1a848870 1516 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1517 cpu = new_cpu;
476d139c
NP
1518 sd = NULL;
1519 weight = cpus_weight(span);
1520 for_each_domain(cpu, tmp) {
1521 if (weight <= cpus_weight(tmp->span))
1522 break;
1523 if (tmp->flags & flag)
1524 sd = tmp;
1525 }
1526 /* while loop will break here if sd == NULL */
1527 }
1528
1529 return cpu;
1530}
1531
1532#endif /* CONFIG_SMP */
1da177e4 1533
1da177e4
LT
1534/***
1535 * try_to_wake_up - wake up a thread
1536 * @p: the to-be-woken-up thread
1537 * @state: the mask of task states that can be woken
1538 * @sync: do a synchronous wakeup?
1539 *
1540 * Put it on the run-queue if it's not already there. The "current"
1541 * thread is always on the run-queue (except when the actual
1542 * re-schedule is in progress), and as such you're allowed to do
1543 * the simpler "current->state = TASK_RUNNING" to mark yourself
1544 * runnable without the overhead of this.
1545 *
1546 * returns failure only if the task is already active.
1547 */
36c8b586 1548static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1549{
cc367732 1550 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1551 unsigned long flags;
1552 long old_state;
70b97a7f 1553 struct rq *rq;
1da177e4 1554#ifdef CONFIG_SMP
1da177e4
LT
1555 int new_cpu;
1556#endif
1557
1558 rq = task_rq_lock(p, &flags);
1559 old_state = p->state;
1560 if (!(old_state & state))
1561 goto out;
1562
dd41f596 1563 if (p->se.on_rq)
1da177e4
LT
1564 goto out_running;
1565
1566 cpu = task_cpu(p);
cc367732 1567 orig_cpu = cpu;
1da177e4
LT
1568 this_cpu = smp_processor_id();
1569
1570#ifdef CONFIG_SMP
1571 if (unlikely(task_running(rq, p)))
1572 goto out_activate;
1573
e7693a36 1574 new_cpu = p->sched_class->select_task_rq(p, sync);
1da177e4
LT
1575 if (new_cpu != cpu) {
1576 set_task_cpu(p, new_cpu);
1577 task_rq_unlock(rq, &flags);
1578 /* might preempt at this point */
1579 rq = task_rq_lock(p, &flags);
1580 old_state = p->state;
1581 if (!(old_state & state))
1582 goto out;
dd41f596 1583 if (p->se.on_rq)
1da177e4
LT
1584 goto out_running;
1585
1586 this_cpu = smp_processor_id();
1587 cpu = task_cpu(p);
1588 }
1589
e7693a36
GH
1590#ifdef CONFIG_SCHEDSTATS
1591 schedstat_inc(rq, ttwu_count);
1592 if (cpu == this_cpu)
1593 schedstat_inc(rq, ttwu_local);
1594 else {
1595 struct sched_domain *sd;
1596 for_each_domain(this_cpu, sd) {
1597 if (cpu_isset(cpu, sd->span)) {
1598 schedstat_inc(sd, ttwu_wake_remote);
1599 break;
1600 }
1601 }
1602 }
1603
1604#endif
1605
1606
1da177e4
LT
1607out_activate:
1608#endif /* CONFIG_SMP */
cc367732
IM
1609 schedstat_inc(p, se.nr_wakeups);
1610 if (sync)
1611 schedstat_inc(p, se.nr_wakeups_sync);
1612 if (orig_cpu != cpu)
1613 schedstat_inc(p, se.nr_wakeups_migrate);
1614 if (cpu == this_cpu)
1615 schedstat_inc(p, se.nr_wakeups_local);
1616 else
1617 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1618 update_rq_clock(rq);
dd41f596 1619 activate_task(rq, p, 1);
9c63d9c0 1620 check_preempt_curr(rq, p);
1da177e4
LT
1621 success = 1;
1622
1623out_running:
1624 p->state = TASK_RUNNING;
4642dafd 1625 wakeup_balance_rt(rq, p);
1da177e4
LT
1626out:
1627 task_rq_unlock(rq, &flags);
1628
1629 return success;
1630}
1631
36c8b586 1632int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1633{
1634 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1635 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1636}
1da177e4
LT
1637EXPORT_SYMBOL(wake_up_process);
1638
36c8b586 1639int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1640{
1641 return try_to_wake_up(p, state, 0);
1642}
1643
1da177e4
LT
1644/*
1645 * Perform scheduler related setup for a newly forked process p.
1646 * p is forked by current.
dd41f596
IM
1647 *
1648 * __sched_fork() is basic setup used by init_idle() too:
1649 */
1650static void __sched_fork(struct task_struct *p)
1651{
dd41f596
IM
1652 p->se.exec_start = 0;
1653 p->se.sum_exec_runtime = 0;
f6cf891c 1654 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1655
1656#ifdef CONFIG_SCHEDSTATS
1657 p->se.wait_start = 0;
dd41f596
IM
1658 p->se.sum_sleep_runtime = 0;
1659 p->se.sleep_start = 0;
dd41f596
IM
1660 p->se.block_start = 0;
1661 p->se.sleep_max = 0;
1662 p->se.block_max = 0;
1663 p->se.exec_max = 0;
eba1ed4b 1664 p->se.slice_max = 0;
dd41f596 1665 p->se.wait_max = 0;
6cfb0d5d 1666#endif
476d139c 1667
dd41f596
IM
1668 INIT_LIST_HEAD(&p->run_list);
1669 p->se.on_rq = 0;
476d139c 1670
e107be36
AK
1671#ifdef CONFIG_PREEMPT_NOTIFIERS
1672 INIT_HLIST_HEAD(&p->preempt_notifiers);
1673#endif
1674
1da177e4
LT
1675 /*
1676 * We mark the process as running here, but have not actually
1677 * inserted it onto the runqueue yet. This guarantees that
1678 * nobody will actually run it, and a signal or other external
1679 * event cannot wake it up and insert it on the runqueue either.
1680 */
1681 p->state = TASK_RUNNING;
dd41f596
IM
1682}
1683
1684/*
1685 * fork()/clone()-time setup:
1686 */
1687void sched_fork(struct task_struct *p, int clone_flags)
1688{
1689 int cpu = get_cpu();
1690
1691 __sched_fork(p);
1692
1693#ifdef CONFIG_SMP
1694 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1695#endif
02e4bac2 1696 set_task_cpu(p, cpu);
b29739f9
IM
1697
1698 /*
1699 * Make sure we do not leak PI boosting priority to the child:
1700 */
1701 p->prio = current->normal_prio;
2ddbf952
HS
1702 if (!rt_prio(p->prio))
1703 p->sched_class = &fair_sched_class;
b29739f9 1704
52f17b6c 1705#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1706 if (likely(sched_info_on()))
52f17b6c 1707 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1708#endif
d6077cb8 1709#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1710 p->oncpu = 0;
1711#endif
1da177e4 1712#ifdef CONFIG_PREEMPT
4866cde0 1713 /* Want to start with kernel preemption disabled. */
a1261f54 1714 task_thread_info(p)->preempt_count = 1;
1da177e4 1715#endif
476d139c 1716 put_cpu();
1da177e4
LT
1717}
1718
1719/*
1720 * wake_up_new_task - wake up a newly created task for the first time.
1721 *
1722 * This function will do some initial scheduler statistics housekeeping
1723 * that must be done for every newly created context, then puts the task
1724 * on the runqueue and wakes it.
1725 */
36c8b586 1726void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1727{
1728 unsigned long flags;
dd41f596 1729 struct rq *rq;
1da177e4
LT
1730
1731 rq = task_rq_lock(p, &flags);
147cbb4b 1732 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1733 update_rq_clock(rq);
1da177e4
LT
1734
1735 p->prio = effective_prio(p);
1736
b9dca1e0 1737 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1738 activate_task(rq, p, 0);
1da177e4 1739 } else {
1da177e4 1740 /*
dd41f596
IM
1741 * Let the scheduling class do new task startup
1742 * management (if any):
1da177e4 1743 */
ee0827d8 1744 p->sched_class->task_new(rq, p);
e5fa2237 1745 inc_nr_running(p, rq);
1da177e4 1746 }
dd41f596 1747 check_preempt_curr(rq, p);
0d1311a5 1748 wakeup_balance_rt(rq, p);
dd41f596 1749 task_rq_unlock(rq, &flags);
1da177e4
LT
1750}
1751
e107be36
AK
1752#ifdef CONFIG_PREEMPT_NOTIFIERS
1753
1754/**
421cee29
RD
1755 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1756 * @notifier: notifier struct to register
e107be36
AK
1757 */
1758void preempt_notifier_register(struct preempt_notifier *notifier)
1759{
1760 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1761}
1762EXPORT_SYMBOL_GPL(preempt_notifier_register);
1763
1764/**
1765 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1766 * @notifier: notifier struct to unregister
e107be36
AK
1767 *
1768 * This is safe to call from within a preemption notifier.
1769 */
1770void preempt_notifier_unregister(struct preempt_notifier *notifier)
1771{
1772 hlist_del(&notifier->link);
1773}
1774EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1775
1776static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1777{
1778 struct preempt_notifier *notifier;
1779 struct hlist_node *node;
1780
1781 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1782 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1783}
1784
1785static void
1786fire_sched_out_preempt_notifiers(struct task_struct *curr,
1787 struct task_struct *next)
1788{
1789 struct preempt_notifier *notifier;
1790 struct hlist_node *node;
1791
1792 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1793 notifier->ops->sched_out(notifier, next);
1794}
1795
1796#else
1797
1798static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1799{
1800}
1801
1802static void
1803fire_sched_out_preempt_notifiers(struct task_struct *curr,
1804 struct task_struct *next)
1805{
1806}
1807
1808#endif
1809
4866cde0
NP
1810/**
1811 * prepare_task_switch - prepare to switch tasks
1812 * @rq: the runqueue preparing to switch
421cee29 1813 * @prev: the current task that is being switched out
4866cde0
NP
1814 * @next: the task we are going to switch to.
1815 *
1816 * This is called with the rq lock held and interrupts off. It must
1817 * be paired with a subsequent finish_task_switch after the context
1818 * switch.
1819 *
1820 * prepare_task_switch sets up locking and calls architecture specific
1821 * hooks.
1822 */
e107be36
AK
1823static inline void
1824prepare_task_switch(struct rq *rq, struct task_struct *prev,
1825 struct task_struct *next)
4866cde0 1826{
e107be36 1827 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1828 prepare_lock_switch(rq, next);
1829 prepare_arch_switch(next);
1830}
1831
1da177e4
LT
1832/**
1833 * finish_task_switch - clean up after a task-switch
344babaa 1834 * @rq: runqueue associated with task-switch
1da177e4
LT
1835 * @prev: the thread we just switched away from.
1836 *
4866cde0
NP
1837 * finish_task_switch must be called after the context switch, paired
1838 * with a prepare_task_switch call before the context switch.
1839 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1840 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1841 *
1842 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1843 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1844 * with the lock held can cause deadlocks; see schedule() for
1845 * details.)
1846 */
a9957449 1847static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1848 __releases(rq->lock)
1849{
1da177e4 1850 struct mm_struct *mm = rq->prev_mm;
55a101f8 1851 long prev_state;
1da177e4
LT
1852
1853 rq->prev_mm = NULL;
1854
1855 /*
1856 * A task struct has one reference for the use as "current".
c394cc9f 1857 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1858 * schedule one last time. The schedule call will never return, and
1859 * the scheduled task must drop that reference.
c394cc9f 1860 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1861 * still held, otherwise prev could be scheduled on another cpu, die
1862 * there before we look at prev->state, and then the reference would
1863 * be dropped twice.
1864 * Manfred Spraul <manfred@colorfullife.com>
1865 */
55a101f8 1866 prev_state = prev->state;
4866cde0
NP
1867 finish_arch_switch(prev);
1868 finish_lock_switch(rq, prev);
e8fa1362
SR
1869 schedule_tail_balance_rt(rq);
1870
e107be36 1871 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1872 if (mm)
1873 mmdrop(mm);
c394cc9f 1874 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1875 /*
1876 * Remove function-return probe instances associated with this
1877 * task and put them back on the free list.
9761eea8 1878 */
c6fd91f0 1879 kprobe_flush_task(prev);
1da177e4 1880 put_task_struct(prev);
c6fd91f0 1881 }
1da177e4
LT
1882}
1883
1884/**
1885 * schedule_tail - first thing a freshly forked thread must call.
1886 * @prev: the thread we just switched away from.
1887 */
36c8b586 1888asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1889 __releases(rq->lock)
1890{
70b97a7f
IM
1891 struct rq *rq = this_rq();
1892
4866cde0
NP
1893 finish_task_switch(rq, prev);
1894#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1895 /* In this case, finish_task_switch does not reenable preemption */
1896 preempt_enable();
1897#endif
1da177e4 1898 if (current->set_child_tid)
b488893a 1899 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1900}
1901
1902/*
1903 * context_switch - switch to the new MM and the new
1904 * thread's register state.
1905 */
dd41f596 1906static inline void
70b97a7f 1907context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1908 struct task_struct *next)
1da177e4 1909{
dd41f596 1910 struct mm_struct *mm, *oldmm;
1da177e4 1911
e107be36 1912 prepare_task_switch(rq, prev, next);
dd41f596
IM
1913 mm = next->mm;
1914 oldmm = prev->active_mm;
9226d125
ZA
1915 /*
1916 * For paravirt, this is coupled with an exit in switch_to to
1917 * combine the page table reload and the switch backend into
1918 * one hypercall.
1919 */
1920 arch_enter_lazy_cpu_mode();
1921
dd41f596 1922 if (unlikely(!mm)) {
1da177e4
LT
1923 next->active_mm = oldmm;
1924 atomic_inc(&oldmm->mm_count);
1925 enter_lazy_tlb(oldmm, next);
1926 } else
1927 switch_mm(oldmm, mm, next);
1928
dd41f596 1929 if (unlikely(!prev->mm)) {
1da177e4 1930 prev->active_mm = NULL;
1da177e4
LT
1931 rq->prev_mm = oldmm;
1932 }
3a5f5e48
IM
1933 /*
1934 * Since the runqueue lock will be released by the next
1935 * task (which is an invalid locking op but in the case
1936 * of the scheduler it's an obvious special-case), so we
1937 * do an early lockdep release here:
1938 */
1939#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1940 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1941#endif
1da177e4
LT
1942
1943 /* Here we just switch the register state and the stack. */
1944 switch_to(prev, next, prev);
1945
dd41f596
IM
1946 barrier();
1947 /*
1948 * this_rq must be evaluated again because prev may have moved
1949 * CPUs since it called schedule(), thus the 'rq' on its stack
1950 * frame will be invalid.
1951 */
1952 finish_task_switch(this_rq(), prev);
1da177e4
LT
1953}
1954
1955/*
1956 * nr_running, nr_uninterruptible and nr_context_switches:
1957 *
1958 * externally visible scheduler statistics: current number of runnable
1959 * threads, current number of uninterruptible-sleeping threads, total
1960 * number of context switches performed since bootup.
1961 */
1962unsigned long nr_running(void)
1963{
1964 unsigned long i, sum = 0;
1965
1966 for_each_online_cpu(i)
1967 sum += cpu_rq(i)->nr_running;
1968
1969 return sum;
1970}
1971
1972unsigned long nr_uninterruptible(void)
1973{
1974 unsigned long i, sum = 0;
1975
0a945022 1976 for_each_possible_cpu(i)
1da177e4
LT
1977 sum += cpu_rq(i)->nr_uninterruptible;
1978
1979 /*
1980 * Since we read the counters lockless, it might be slightly
1981 * inaccurate. Do not allow it to go below zero though:
1982 */
1983 if (unlikely((long)sum < 0))
1984 sum = 0;
1985
1986 return sum;
1987}
1988
1989unsigned long long nr_context_switches(void)
1990{
cc94abfc
SR
1991 int i;
1992 unsigned long long sum = 0;
1da177e4 1993
0a945022 1994 for_each_possible_cpu(i)
1da177e4
LT
1995 sum += cpu_rq(i)->nr_switches;
1996
1997 return sum;
1998}
1999
2000unsigned long nr_iowait(void)
2001{
2002 unsigned long i, sum = 0;
2003
0a945022 2004 for_each_possible_cpu(i)
1da177e4
LT
2005 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2006
2007 return sum;
2008}
2009
db1b1fef
JS
2010unsigned long nr_active(void)
2011{
2012 unsigned long i, running = 0, uninterruptible = 0;
2013
2014 for_each_online_cpu(i) {
2015 running += cpu_rq(i)->nr_running;
2016 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2017 }
2018
2019 if (unlikely((long)uninterruptible < 0))
2020 uninterruptible = 0;
2021
2022 return running + uninterruptible;
2023}
2024
48f24c4d 2025/*
dd41f596
IM
2026 * Update rq->cpu_load[] statistics. This function is usually called every
2027 * scheduler tick (TICK_NSEC).
48f24c4d 2028 */
dd41f596 2029static void update_cpu_load(struct rq *this_rq)
48f24c4d 2030{
495eca49 2031 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2032 int i, scale;
2033
2034 this_rq->nr_load_updates++;
dd41f596
IM
2035
2036 /* Update our load: */
2037 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2038 unsigned long old_load, new_load;
2039
2040 /* scale is effectively 1 << i now, and >> i divides by scale */
2041
2042 old_load = this_rq->cpu_load[i];
2043 new_load = this_load;
a25707f3
IM
2044 /*
2045 * Round up the averaging division if load is increasing. This
2046 * prevents us from getting stuck on 9 if the load is 10, for
2047 * example.
2048 */
2049 if (new_load > old_load)
2050 new_load += scale-1;
dd41f596
IM
2051 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2052 }
48f24c4d
IM
2053}
2054
dd41f596
IM
2055#ifdef CONFIG_SMP
2056
1da177e4
LT
2057/*
2058 * double_rq_lock - safely lock two runqueues
2059 *
2060 * Note this does not disable interrupts like task_rq_lock,
2061 * you need to do so manually before calling.
2062 */
70b97a7f 2063static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2064 __acquires(rq1->lock)
2065 __acquires(rq2->lock)
2066{
054b9108 2067 BUG_ON(!irqs_disabled());
1da177e4
LT
2068 if (rq1 == rq2) {
2069 spin_lock(&rq1->lock);
2070 __acquire(rq2->lock); /* Fake it out ;) */
2071 } else {
c96d145e 2072 if (rq1 < rq2) {
1da177e4
LT
2073 spin_lock(&rq1->lock);
2074 spin_lock(&rq2->lock);
2075 } else {
2076 spin_lock(&rq2->lock);
2077 spin_lock(&rq1->lock);
2078 }
2079 }
6e82a3be
IM
2080 update_rq_clock(rq1);
2081 update_rq_clock(rq2);
1da177e4
LT
2082}
2083
2084/*
2085 * double_rq_unlock - safely unlock two runqueues
2086 *
2087 * Note this does not restore interrupts like task_rq_unlock,
2088 * you need to do so manually after calling.
2089 */
70b97a7f 2090static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2091 __releases(rq1->lock)
2092 __releases(rq2->lock)
2093{
2094 spin_unlock(&rq1->lock);
2095 if (rq1 != rq2)
2096 spin_unlock(&rq2->lock);
2097 else
2098 __release(rq2->lock);
2099}
2100
2101/*
2102 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2103 */
e8fa1362 2104static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2105 __releases(this_rq->lock)
2106 __acquires(busiest->lock)
2107 __acquires(this_rq->lock)
2108{
e8fa1362
SR
2109 int ret = 0;
2110
054b9108
KK
2111 if (unlikely(!irqs_disabled())) {
2112 /* printk() doesn't work good under rq->lock */
2113 spin_unlock(&this_rq->lock);
2114 BUG_ON(1);
2115 }
1da177e4 2116 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2117 if (busiest < this_rq) {
1da177e4
LT
2118 spin_unlock(&this_rq->lock);
2119 spin_lock(&busiest->lock);
2120 spin_lock(&this_rq->lock);
e8fa1362 2121 ret = 1;
1da177e4
LT
2122 } else
2123 spin_lock(&busiest->lock);
2124 }
e8fa1362 2125 return ret;
1da177e4
LT
2126}
2127
1da177e4
LT
2128/*
2129 * If dest_cpu is allowed for this process, migrate the task to it.
2130 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2131 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2132 * the cpu_allowed mask is restored.
2133 */
36c8b586 2134static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2135{
70b97a7f 2136 struct migration_req req;
1da177e4 2137 unsigned long flags;
70b97a7f 2138 struct rq *rq;
1da177e4
LT
2139
2140 rq = task_rq_lock(p, &flags);
2141 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2142 || unlikely(cpu_is_offline(dest_cpu)))
2143 goto out;
2144
2145 /* force the process onto the specified CPU */
2146 if (migrate_task(p, dest_cpu, &req)) {
2147 /* Need to wait for migration thread (might exit: take ref). */
2148 struct task_struct *mt = rq->migration_thread;
36c8b586 2149
1da177e4
LT
2150 get_task_struct(mt);
2151 task_rq_unlock(rq, &flags);
2152 wake_up_process(mt);
2153 put_task_struct(mt);
2154 wait_for_completion(&req.done);
36c8b586 2155
1da177e4
LT
2156 return;
2157 }
2158out:
2159 task_rq_unlock(rq, &flags);
2160}
2161
2162/*
476d139c
NP
2163 * sched_exec - execve() is a valuable balancing opportunity, because at
2164 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2165 */
2166void sched_exec(void)
2167{
1da177e4 2168 int new_cpu, this_cpu = get_cpu();
476d139c 2169 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2170 put_cpu();
476d139c
NP
2171 if (new_cpu != this_cpu)
2172 sched_migrate_task(current, new_cpu);
1da177e4
LT
2173}
2174
2175/*
2176 * pull_task - move a task from a remote runqueue to the local runqueue.
2177 * Both runqueues must be locked.
2178 */
dd41f596
IM
2179static void pull_task(struct rq *src_rq, struct task_struct *p,
2180 struct rq *this_rq, int this_cpu)
1da177e4 2181{
2e1cb74a 2182 deactivate_task(src_rq, p, 0);
1da177e4 2183 set_task_cpu(p, this_cpu);
dd41f596 2184 activate_task(this_rq, p, 0);
1da177e4
LT
2185 /*
2186 * Note that idle threads have a prio of MAX_PRIO, for this test
2187 * to be always true for them.
2188 */
dd41f596 2189 check_preempt_curr(this_rq, p);
1da177e4
LT
2190}
2191
2192/*
2193 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2194 */
858119e1 2195static
70b97a7f 2196int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2197 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2198 int *all_pinned)
1da177e4
LT
2199{
2200 /*
2201 * We do not migrate tasks that are:
2202 * 1) running (obviously), or
2203 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2204 * 3) are cache-hot on their current CPU.
2205 */
cc367732
IM
2206 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2207 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2208 return 0;
cc367732 2209 }
81026794
NP
2210 *all_pinned = 0;
2211
cc367732
IM
2212 if (task_running(rq, p)) {
2213 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2214 return 0;
cc367732 2215 }
1da177e4 2216
da84d961
IM
2217 /*
2218 * Aggressive migration if:
2219 * 1) task is cache cold, or
2220 * 2) too many balance attempts have failed.
2221 */
2222
6bc1665b
IM
2223 if (!task_hot(p, rq->clock, sd) ||
2224 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2225#ifdef CONFIG_SCHEDSTATS
cc367732 2226 if (task_hot(p, rq->clock, sd)) {
da84d961 2227 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2228 schedstat_inc(p, se.nr_forced_migrations);
2229 }
da84d961
IM
2230#endif
2231 return 1;
2232 }
2233
cc367732
IM
2234 if (task_hot(p, rq->clock, sd)) {
2235 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2236 return 0;
cc367732 2237 }
1da177e4
LT
2238 return 1;
2239}
2240
e1d1484f
PW
2241static unsigned long
2242balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2243 unsigned long max_load_move, struct sched_domain *sd,
2244 enum cpu_idle_type idle, int *all_pinned,
2245 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2246{
b82d9fdd 2247 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2248 struct task_struct *p;
2249 long rem_load_move = max_load_move;
1da177e4 2250
e1d1484f 2251 if (max_load_move == 0)
1da177e4
LT
2252 goto out;
2253
81026794
NP
2254 pinned = 1;
2255
1da177e4 2256 /*
dd41f596 2257 * Start the load-balancing iterator:
1da177e4 2258 */
dd41f596
IM
2259 p = iterator->start(iterator->arg);
2260next:
b82d9fdd 2261 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2262 goto out;
50ddd969 2263 /*
b82d9fdd 2264 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2265 * skip a task if it will be the highest priority task (i.e. smallest
2266 * prio value) on its new queue regardless of its load weight
2267 */
dd41f596
IM
2268 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2269 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2270 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2271 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2272 p = iterator->next(iterator->arg);
2273 goto next;
1da177e4
LT
2274 }
2275
dd41f596 2276 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2277 pulled++;
dd41f596 2278 rem_load_move -= p->se.load.weight;
1da177e4 2279
2dd73a4f 2280 /*
b82d9fdd 2281 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2282 */
e1d1484f 2283 if (rem_load_move > 0) {
a4ac01c3
PW
2284 if (p->prio < *this_best_prio)
2285 *this_best_prio = p->prio;
dd41f596
IM
2286 p = iterator->next(iterator->arg);
2287 goto next;
1da177e4
LT
2288 }
2289out:
2290 /*
e1d1484f 2291 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2292 * so we can safely collect pull_task() stats here rather than
2293 * inside pull_task().
2294 */
2295 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2296
2297 if (all_pinned)
2298 *all_pinned = pinned;
e1d1484f
PW
2299
2300 return max_load_move - rem_load_move;
1da177e4
LT
2301}
2302
dd41f596 2303/*
43010659
PW
2304 * move_tasks tries to move up to max_load_move weighted load from busiest to
2305 * this_rq, as part of a balancing operation within domain "sd".
2306 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2307 *
2308 * Called with both runqueues locked.
2309 */
2310static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2311 unsigned long max_load_move,
dd41f596
IM
2312 struct sched_domain *sd, enum cpu_idle_type idle,
2313 int *all_pinned)
2314{
5522d5d5 2315 const struct sched_class *class = sched_class_highest;
43010659 2316 unsigned long total_load_moved = 0;
a4ac01c3 2317 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2318
2319 do {
43010659
PW
2320 total_load_moved +=
2321 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2322 max_load_move - total_load_moved,
a4ac01c3 2323 sd, idle, all_pinned, &this_best_prio);
dd41f596 2324 class = class->next;
43010659 2325 } while (class && max_load_move > total_load_moved);
dd41f596 2326
43010659
PW
2327 return total_load_moved > 0;
2328}
2329
e1d1484f
PW
2330static int
2331iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2332 struct sched_domain *sd, enum cpu_idle_type idle,
2333 struct rq_iterator *iterator)
2334{
2335 struct task_struct *p = iterator->start(iterator->arg);
2336 int pinned = 0;
2337
2338 while (p) {
2339 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2340 pull_task(busiest, p, this_rq, this_cpu);
2341 /*
2342 * Right now, this is only the second place pull_task()
2343 * is called, so we can safely collect pull_task()
2344 * stats here rather than inside pull_task().
2345 */
2346 schedstat_inc(sd, lb_gained[idle]);
2347
2348 return 1;
2349 }
2350 p = iterator->next(iterator->arg);
2351 }
2352
2353 return 0;
2354}
2355
43010659
PW
2356/*
2357 * move_one_task tries to move exactly one task from busiest to this_rq, as
2358 * part of active balancing operations within "domain".
2359 * Returns 1 if successful and 0 otherwise.
2360 *
2361 * Called with both runqueues locked.
2362 */
2363static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2364 struct sched_domain *sd, enum cpu_idle_type idle)
2365{
5522d5d5 2366 const struct sched_class *class;
43010659
PW
2367
2368 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2369 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2370 return 1;
2371
2372 return 0;
dd41f596
IM
2373}
2374
1da177e4
LT
2375/*
2376 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2377 * domain. It calculates and returns the amount of weighted load which
2378 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2379 */
2380static struct sched_group *
2381find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2382 unsigned long *imbalance, enum cpu_idle_type idle,
2383 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2384{
2385 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2386 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2387 unsigned long max_pull;
2dd73a4f
PW
2388 unsigned long busiest_load_per_task, busiest_nr_running;
2389 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2390 int load_idx, group_imb = 0;
5c45bf27
SS
2391#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2392 int power_savings_balance = 1;
2393 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2394 unsigned long min_nr_running = ULONG_MAX;
2395 struct sched_group *group_min = NULL, *group_leader = NULL;
2396#endif
1da177e4
LT
2397
2398 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2399 busiest_load_per_task = busiest_nr_running = 0;
2400 this_load_per_task = this_nr_running = 0;
d15bcfdb 2401 if (idle == CPU_NOT_IDLE)
7897986b 2402 load_idx = sd->busy_idx;
d15bcfdb 2403 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2404 load_idx = sd->newidle_idx;
2405 else
2406 load_idx = sd->idle_idx;
1da177e4
LT
2407
2408 do {
908a7c1b 2409 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2410 int local_group;
2411 int i;
908a7c1b 2412 int __group_imb = 0;
783609c6 2413 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2414 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2415
2416 local_group = cpu_isset(this_cpu, group->cpumask);
2417
783609c6
SS
2418 if (local_group)
2419 balance_cpu = first_cpu(group->cpumask);
2420
1da177e4 2421 /* Tally up the load of all CPUs in the group */
2dd73a4f 2422 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2423 max_cpu_load = 0;
2424 min_cpu_load = ~0UL;
1da177e4
LT
2425
2426 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2427 struct rq *rq;
2428
2429 if (!cpu_isset(i, *cpus))
2430 continue;
2431
2432 rq = cpu_rq(i);
2dd73a4f 2433
9439aab8 2434 if (*sd_idle && rq->nr_running)
5969fe06
NP
2435 *sd_idle = 0;
2436
1da177e4 2437 /* Bias balancing toward cpus of our domain */
783609c6
SS
2438 if (local_group) {
2439 if (idle_cpu(i) && !first_idle_cpu) {
2440 first_idle_cpu = 1;
2441 balance_cpu = i;
2442 }
2443
a2000572 2444 load = target_load(i, load_idx);
908a7c1b 2445 } else {
a2000572 2446 load = source_load(i, load_idx);
908a7c1b
KC
2447 if (load > max_cpu_load)
2448 max_cpu_load = load;
2449 if (min_cpu_load > load)
2450 min_cpu_load = load;
2451 }
1da177e4
LT
2452
2453 avg_load += load;
2dd73a4f 2454 sum_nr_running += rq->nr_running;
dd41f596 2455 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2456 }
2457
783609c6
SS
2458 /*
2459 * First idle cpu or the first cpu(busiest) in this sched group
2460 * is eligible for doing load balancing at this and above
9439aab8
SS
2461 * domains. In the newly idle case, we will allow all the cpu's
2462 * to do the newly idle load balance.
783609c6 2463 */
9439aab8
SS
2464 if (idle != CPU_NEWLY_IDLE && local_group &&
2465 balance_cpu != this_cpu && balance) {
783609c6
SS
2466 *balance = 0;
2467 goto ret;
2468 }
2469
1da177e4 2470 total_load += avg_load;
5517d86b 2471 total_pwr += group->__cpu_power;
1da177e4
LT
2472
2473 /* Adjust by relative CPU power of the group */
5517d86b
ED
2474 avg_load = sg_div_cpu_power(group,
2475 avg_load * SCHED_LOAD_SCALE);
1da177e4 2476
908a7c1b
KC
2477 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2478 __group_imb = 1;
2479
5517d86b 2480 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2481
1da177e4
LT
2482 if (local_group) {
2483 this_load = avg_load;
2484 this = group;
2dd73a4f
PW
2485 this_nr_running = sum_nr_running;
2486 this_load_per_task = sum_weighted_load;
2487 } else if (avg_load > max_load &&
908a7c1b 2488 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2489 max_load = avg_load;
2490 busiest = group;
2dd73a4f
PW
2491 busiest_nr_running = sum_nr_running;
2492 busiest_load_per_task = sum_weighted_load;
908a7c1b 2493 group_imb = __group_imb;
1da177e4 2494 }
5c45bf27
SS
2495
2496#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2497 /*
2498 * Busy processors will not participate in power savings
2499 * balance.
2500 */
dd41f596
IM
2501 if (idle == CPU_NOT_IDLE ||
2502 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2503 goto group_next;
5c45bf27
SS
2504
2505 /*
2506 * If the local group is idle or completely loaded
2507 * no need to do power savings balance at this domain
2508 */
2509 if (local_group && (this_nr_running >= group_capacity ||
2510 !this_nr_running))
2511 power_savings_balance = 0;
2512
dd41f596 2513 /*
5c45bf27
SS
2514 * If a group is already running at full capacity or idle,
2515 * don't include that group in power savings calculations
dd41f596
IM
2516 */
2517 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2518 || !sum_nr_running)
dd41f596 2519 goto group_next;
5c45bf27 2520
dd41f596 2521 /*
5c45bf27 2522 * Calculate the group which has the least non-idle load.
dd41f596
IM
2523 * This is the group from where we need to pick up the load
2524 * for saving power
2525 */
2526 if ((sum_nr_running < min_nr_running) ||
2527 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2528 first_cpu(group->cpumask) <
2529 first_cpu(group_min->cpumask))) {
dd41f596
IM
2530 group_min = group;
2531 min_nr_running = sum_nr_running;
5c45bf27
SS
2532 min_load_per_task = sum_weighted_load /
2533 sum_nr_running;
dd41f596 2534 }
5c45bf27 2535
dd41f596 2536 /*
5c45bf27 2537 * Calculate the group which is almost near its
dd41f596
IM
2538 * capacity but still has some space to pick up some load
2539 * from other group and save more power
2540 */
2541 if (sum_nr_running <= group_capacity - 1) {
2542 if (sum_nr_running > leader_nr_running ||
2543 (sum_nr_running == leader_nr_running &&
2544 first_cpu(group->cpumask) >
2545 first_cpu(group_leader->cpumask))) {
2546 group_leader = group;
2547 leader_nr_running = sum_nr_running;
2548 }
48f24c4d 2549 }
5c45bf27
SS
2550group_next:
2551#endif
1da177e4
LT
2552 group = group->next;
2553 } while (group != sd->groups);
2554
2dd73a4f 2555 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2556 goto out_balanced;
2557
2558 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2559
2560 if (this_load >= avg_load ||
2561 100*max_load <= sd->imbalance_pct*this_load)
2562 goto out_balanced;
2563
2dd73a4f 2564 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2565 if (group_imb)
2566 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2567
1da177e4
LT
2568 /*
2569 * We're trying to get all the cpus to the average_load, so we don't
2570 * want to push ourselves above the average load, nor do we wish to
2571 * reduce the max loaded cpu below the average load, as either of these
2572 * actions would just result in more rebalancing later, and ping-pong
2573 * tasks around. Thus we look for the minimum possible imbalance.
2574 * Negative imbalances (*we* are more loaded than anyone else) will
2575 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2576 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2577 * appear as very large values with unsigned longs.
2578 */
2dd73a4f
PW
2579 if (max_load <= busiest_load_per_task)
2580 goto out_balanced;
2581
2582 /*
2583 * In the presence of smp nice balancing, certain scenarios can have
2584 * max load less than avg load(as we skip the groups at or below
2585 * its cpu_power, while calculating max_load..)
2586 */
2587 if (max_load < avg_load) {
2588 *imbalance = 0;
2589 goto small_imbalance;
2590 }
0c117f1b
SS
2591
2592 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2593 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2594
1da177e4 2595 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2596 *imbalance = min(max_pull * busiest->__cpu_power,
2597 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2598 / SCHED_LOAD_SCALE;
2599
2dd73a4f
PW
2600 /*
2601 * if *imbalance is less than the average load per runnable task
2602 * there is no gaurantee that any tasks will be moved so we'll have
2603 * a think about bumping its value to force at least one task to be
2604 * moved
2605 */
7fd0d2dd 2606 if (*imbalance < busiest_load_per_task) {
48f24c4d 2607 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2608 unsigned int imbn;
2609
2610small_imbalance:
2611 pwr_move = pwr_now = 0;
2612 imbn = 2;
2613 if (this_nr_running) {
2614 this_load_per_task /= this_nr_running;
2615 if (busiest_load_per_task > this_load_per_task)
2616 imbn = 1;
2617 } else
2618 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2619
dd41f596
IM
2620 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2621 busiest_load_per_task * imbn) {
2dd73a4f 2622 *imbalance = busiest_load_per_task;
1da177e4
LT
2623 return busiest;
2624 }
2625
2626 /*
2627 * OK, we don't have enough imbalance to justify moving tasks,
2628 * however we may be able to increase total CPU power used by
2629 * moving them.
2630 */
2631
5517d86b
ED
2632 pwr_now += busiest->__cpu_power *
2633 min(busiest_load_per_task, max_load);
2634 pwr_now += this->__cpu_power *
2635 min(this_load_per_task, this_load);
1da177e4
LT
2636 pwr_now /= SCHED_LOAD_SCALE;
2637
2638 /* Amount of load we'd subtract */
5517d86b
ED
2639 tmp = sg_div_cpu_power(busiest,
2640 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2641 if (max_load > tmp)
5517d86b 2642 pwr_move += busiest->__cpu_power *
2dd73a4f 2643 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2644
2645 /* Amount of load we'd add */
5517d86b 2646 if (max_load * busiest->__cpu_power <
33859f7f 2647 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2648 tmp = sg_div_cpu_power(this,
2649 max_load * busiest->__cpu_power);
1da177e4 2650 else
5517d86b
ED
2651 tmp = sg_div_cpu_power(this,
2652 busiest_load_per_task * SCHED_LOAD_SCALE);
2653 pwr_move += this->__cpu_power *
2654 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2655 pwr_move /= SCHED_LOAD_SCALE;
2656
2657 /* Move if we gain throughput */
7fd0d2dd
SS
2658 if (pwr_move > pwr_now)
2659 *imbalance = busiest_load_per_task;
1da177e4
LT
2660 }
2661
1da177e4
LT
2662 return busiest;
2663
2664out_balanced:
5c45bf27 2665#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2666 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2667 goto ret;
1da177e4 2668
5c45bf27
SS
2669 if (this == group_leader && group_leader != group_min) {
2670 *imbalance = min_load_per_task;
2671 return group_min;
2672 }
5c45bf27 2673#endif
783609c6 2674ret:
1da177e4
LT
2675 *imbalance = 0;
2676 return NULL;
2677}
2678
2679/*
2680 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2681 */
70b97a7f 2682static struct rq *
d15bcfdb 2683find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2684 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2685{
70b97a7f 2686 struct rq *busiest = NULL, *rq;
2dd73a4f 2687 unsigned long max_load = 0;
1da177e4
LT
2688 int i;
2689
2690 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2691 unsigned long wl;
0a2966b4
CL
2692
2693 if (!cpu_isset(i, *cpus))
2694 continue;
2695
48f24c4d 2696 rq = cpu_rq(i);
dd41f596 2697 wl = weighted_cpuload(i);
2dd73a4f 2698
dd41f596 2699 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2700 continue;
1da177e4 2701
dd41f596
IM
2702 if (wl > max_load) {
2703 max_load = wl;
48f24c4d 2704 busiest = rq;
1da177e4
LT
2705 }
2706 }
2707
2708 return busiest;
2709}
2710
77391d71
NP
2711/*
2712 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2713 * so long as it is large enough.
2714 */
2715#define MAX_PINNED_INTERVAL 512
2716
1da177e4
LT
2717/*
2718 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2719 * tasks if there is an imbalance.
1da177e4 2720 */
70b97a7f 2721static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2722 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2723 int *balance)
1da177e4 2724{
43010659 2725 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2726 struct sched_group *group;
1da177e4 2727 unsigned long imbalance;
70b97a7f 2728 struct rq *busiest;
0a2966b4 2729 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2730 unsigned long flags;
5969fe06 2731
89c4710e
SS
2732 /*
2733 * When power savings policy is enabled for the parent domain, idle
2734 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2735 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2736 * portraying it as CPU_NOT_IDLE.
89c4710e 2737 */
d15bcfdb 2738 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2739 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2740 sd_idle = 1;
1da177e4 2741
2d72376b 2742 schedstat_inc(sd, lb_count[idle]);
1da177e4 2743
0a2966b4
CL
2744redo:
2745 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2746 &cpus, balance);
2747
06066714 2748 if (*balance == 0)
783609c6 2749 goto out_balanced;
783609c6 2750
1da177e4
LT
2751 if (!group) {
2752 schedstat_inc(sd, lb_nobusyg[idle]);
2753 goto out_balanced;
2754 }
2755
0a2966b4 2756 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2757 if (!busiest) {
2758 schedstat_inc(sd, lb_nobusyq[idle]);
2759 goto out_balanced;
2760 }
2761
db935dbd 2762 BUG_ON(busiest == this_rq);
1da177e4
LT
2763
2764 schedstat_add(sd, lb_imbalance[idle], imbalance);
2765
43010659 2766 ld_moved = 0;
1da177e4
LT
2767 if (busiest->nr_running > 1) {
2768 /*
2769 * Attempt to move tasks. If find_busiest_group has found
2770 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2771 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2772 * correctly treated as an imbalance.
2773 */
fe2eea3f 2774 local_irq_save(flags);
e17224bf 2775 double_rq_lock(this_rq, busiest);
43010659 2776 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2777 imbalance, sd, idle, &all_pinned);
e17224bf 2778 double_rq_unlock(this_rq, busiest);
fe2eea3f 2779 local_irq_restore(flags);
81026794 2780
46cb4b7c
SS
2781 /*
2782 * some other cpu did the load balance for us.
2783 */
43010659 2784 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2785 resched_cpu(this_cpu);
2786
81026794 2787 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2788 if (unlikely(all_pinned)) {
2789 cpu_clear(cpu_of(busiest), cpus);
2790 if (!cpus_empty(cpus))
2791 goto redo;
81026794 2792 goto out_balanced;
0a2966b4 2793 }
1da177e4 2794 }
81026794 2795
43010659 2796 if (!ld_moved) {
1da177e4
LT
2797 schedstat_inc(sd, lb_failed[idle]);
2798 sd->nr_balance_failed++;
2799
2800 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2801
fe2eea3f 2802 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2803
2804 /* don't kick the migration_thread, if the curr
2805 * task on busiest cpu can't be moved to this_cpu
2806 */
2807 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2808 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2809 all_pinned = 1;
2810 goto out_one_pinned;
2811 }
2812
1da177e4
LT
2813 if (!busiest->active_balance) {
2814 busiest->active_balance = 1;
2815 busiest->push_cpu = this_cpu;
81026794 2816 active_balance = 1;
1da177e4 2817 }
fe2eea3f 2818 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2819 if (active_balance)
1da177e4
LT
2820 wake_up_process(busiest->migration_thread);
2821
2822 /*
2823 * We've kicked active balancing, reset the failure
2824 * counter.
2825 */
39507451 2826 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2827 }
81026794 2828 } else
1da177e4
LT
2829 sd->nr_balance_failed = 0;
2830
81026794 2831 if (likely(!active_balance)) {
1da177e4
LT
2832 /* We were unbalanced, so reset the balancing interval */
2833 sd->balance_interval = sd->min_interval;
81026794
NP
2834 } else {
2835 /*
2836 * If we've begun active balancing, start to back off. This
2837 * case may not be covered by the all_pinned logic if there
2838 * is only 1 task on the busy runqueue (because we don't call
2839 * move_tasks).
2840 */
2841 if (sd->balance_interval < sd->max_interval)
2842 sd->balance_interval *= 2;
1da177e4
LT
2843 }
2844
43010659 2845 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2846 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2847 return -1;
43010659 2848 return ld_moved;
1da177e4
LT
2849
2850out_balanced:
1da177e4
LT
2851 schedstat_inc(sd, lb_balanced[idle]);
2852
16cfb1c0 2853 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2854
2855out_one_pinned:
1da177e4 2856 /* tune up the balancing interval */
77391d71
NP
2857 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2858 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2859 sd->balance_interval *= 2;
2860
48f24c4d 2861 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2862 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2863 return -1;
1da177e4
LT
2864 return 0;
2865}
2866
2867/*
2868 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2869 * tasks if there is an imbalance.
2870 *
d15bcfdb 2871 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2872 * this_rq is locked.
2873 */
48f24c4d 2874static int
70b97a7f 2875load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2876{
2877 struct sched_group *group;
70b97a7f 2878 struct rq *busiest = NULL;
1da177e4 2879 unsigned long imbalance;
43010659 2880 int ld_moved = 0;
5969fe06 2881 int sd_idle = 0;
969bb4e4 2882 int all_pinned = 0;
0a2966b4 2883 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2884
89c4710e
SS
2885 /*
2886 * When power savings policy is enabled for the parent domain, idle
2887 * sibling can pick up load irrespective of busy siblings. In this case,
2888 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2889 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2890 */
2891 if (sd->flags & SD_SHARE_CPUPOWER &&
2892 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2893 sd_idle = 1;
1da177e4 2894
2d72376b 2895 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2896redo:
d15bcfdb 2897 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2898 &sd_idle, &cpus, NULL);
1da177e4 2899 if (!group) {
d15bcfdb 2900 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2901 goto out_balanced;
1da177e4
LT
2902 }
2903
d15bcfdb 2904 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2905 &cpus);
db935dbd 2906 if (!busiest) {
d15bcfdb 2907 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2908 goto out_balanced;
1da177e4
LT
2909 }
2910
db935dbd
NP
2911 BUG_ON(busiest == this_rq);
2912
d15bcfdb 2913 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2914
43010659 2915 ld_moved = 0;
d6d5cfaf
NP
2916 if (busiest->nr_running > 1) {
2917 /* Attempt to move tasks */
2918 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2919 /* this_rq->clock is already updated */
2920 update_rq_clock(busiest);
43010659 2921 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2922 imbalance, sd, CPU_NEWLY_IDLE,
2923 &all_pinned);
d6d5cfaf 2924 spin_unlock(&busiest->lock);
0a2966b4 2925
969bb4e4 2926 if (unlikely(all_pinned)) {
0a2966b4
CL
2927 cpu_clear(cpu_of(busiest), cpus);
2928 if (!cpus_empty(cpus))
2929 goto redo;
2930 }
d6d5cfaf
NP
2931 }
2932
43010659 2933 if (!ld_moved) {
d15bcfdb 2934 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2935 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2936 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2937 return -1;
2938 } else
16cfb1c0 2939 sd->nr_balance_failed = 0;
1da177e4 2940
43010659 2941 return ld_moved;
16cfb1c0
NP
2942
2943out_balanced:
d15bcfdb 2944 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2945 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2946 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2947 return -1;
16cfb1c0 2948 sd->nr_balance_failed = 0;
48f24c4d 2949
16cfb1c0 2950 return 0;
1da177e4
LT
2951}
2952
2953/*
2954 * idle_balance is called by schedule() if this_cpu is about to become
2955 * idle. Attempts to pull tasks from other CPUs.
2956 */
70b97a7f 2957static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2958{
2959 struct sched_domain *sd;
dd41f596
IM
2960 int pulled_task = -1;
2961 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2962
2963 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2964 unsigned long interval;
2965
2966 if (!(sd->flags & SD_LOAD_BALANCE))
2967 continue;
2968
2969 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2970 /* If we've pulled tasks over stop searching: */
1bd77f2d 2971 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2972 this_rq, sd);
2973
2974 interval = msecs_to_jiffies(sd->balance_interval);
2975 if (time_after(next_balance, sd->last_balance + interval))
2976 next_balance = sd->last_balance + interval;
2977 if (pulled_task)
2978 break;
1da177e4 2979 }
dd41f596 2980 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2981 /*
2982 * We are going idle. next_balance may be set based on
2983 * a busy processor. So reset next_balance.
2984 */
2985 this_rq->next_balance = next_balance;
dd41f596 2986 }
1da177e4
LT
2987}
2988
2989/*
2990 * active_load_balance is run by migration threads. It pushes running tasks
2991 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2992 * running on each physical CPU where possible, and avoids physical /
2993 * logical imbalances.
2994 *
2995 * Called with busiest_rq locked.
2996 */
70b97a7f 2997static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2998{
39507451 2999 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3000 struct sched_domain *sd;
3001 struct rq *target_rq;
39507451 3002
48f24c4d 3003 /* Is there any task to move? */
39507451 3004 if (busiest_rq->nr_running <= 1)
39507451
NP
3005 return;
3006
3007 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3008
3009 /*
39507451 3010 * This condition is "impossible", if it occurs
41a2d6cf 3011 * we need to fix it. Originally reported by
39507451 3012 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3013 */
39507451 3014 BUG_ON(busiest_rq == target_rq);
1da177e4 3015
39507451
NP
3016 /* move a task from busiest_rq to target_rq */
3017 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3018 update_rq_clock(busiest_rq);
3019 update_rq_clock(target_rq);
39507451
NP
3020
3021 /* Search for an sd spanning us and the target CPU. */
c96d145e 3022 for_each_domain(target_cpu, sd) {
39507451 3023 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3024 cpu_isset(busiest_cpu, sd->span))
39507451 3025 break;
c96d145e 3026 }
39507451 3027
48f24c4d 3028 if (likely(sd)) {
2d72376b 3029 schedstat_inc(sd, alb_count);
39507451 3030
43010659
PW
3031 if (move_one_task(target_rq, target_cpu, busiest_rq,
3032 sd, CPU_IDLE))
48f24c4d
IM
3033 schedstat_inc(sd, alb_pushed);
3034 else
3035 schedstat_inc(sd, alb_failed);
3036 }
39507451 3037 spin_unlock(&target_rq->lock);
1da177e4
LT
3038}
3039
46cb4b7c
SS
3040#ifdef CONFIG_NO_HZ
3041static struct {
3042 atomic_t load_balancer;
41a2d6cf 3043 cpumask_t cpu_mask;
46cb4b7c
SS
3044} nohz ____cacheline_aligned = {
3045 .load_balancer = ATOMIC_INIT(-1),
3046 .cpu_mask = CPU_MASK_NONE,
3047};
3048
7835b98b 3049/*
46cb4b7c
SS
3050 * This routine will try to nominate the ilb (idle load balancing)
3051 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3052 * load balancing on behalf of all those cpus. If all the cpus in the system
3053 * go into this tickless mode, then there will be no ilb owner (as there is
3054 * no need for one) and all the cpus will sleep till the next wakeup event
3055 * arrives...
3056 *
3057 * For the ilb owner, tick is not stopped. And this tick will be used
3058 * for idle load balancing. ilb owner will still be part of
3059 * nohz.cpu_mask..
7835b98b 3060 *
46cb4b7c
SS
3061 * While stopping the tick, this cpu will become the ilb owner if there
3062 * is no other owner. And will be the owner till that cpu becomes busy
3063 * or if all cpus in the system stop their ticks at which point
3064 * there is no need for ilb owner.
3065 *
3066 * When the ilb owner becomes busy, it nominates another owner, during the
3067 * next busy scheduler_tick()
3068 */
3069int select_nohz_load_balancer(int stop_tick)
3070{
3071 int cpu = smp_processor_id();
3072
3073 if (stop_tick) {
3074 cpu_set(cpu, nohz.cpu_mask);
3075 cpu_rq(cpu)->in_nohz_recently = 1;
3076
3077 /*
3078 * If we are going offline and still the leader, give up!
3079 */
3080 if (cpu_is_offline(cpu) &&
3081 atomic_read(&nohz.load_balancer) == cpu) {
3082 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3083 BUG();
3084 return 0;
3085 }
3086
3087 /* time for ilb owner also to sleep */
3088 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3089 if (atomic_read(&nohz.load_balancer) == cpu)
3090 atomic_set(&nohz.load_balancer, -1);
3091 return 0;
3092 }
3093
3094 if (atomic_read(&nohz.load_balancer) == -1) {
3095 /* make me the ilb owner */
3096 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3097 return 1;
3098 } else if (atomic_read(&nohz.load_balancer) == cpu)
3099 return 1;
3100 } else {
3101 if (!cpu_isset(cpu, nohz.cpu_mask))
3102 return 0;
3103
3104 cpu_clear(cpu, nohz.cpu_mask);
3105
3106 if (atomic_read(&nohz.load_balancer) == cpu)
3107 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3108 BUG();
3109 }
3110 return 0;
3111}
3112#endif
3113
3114static DEFINE_SPINLOCK(balancing);
3115
3116/*
7835b98b
CL
3117 * It checks each scheduling domain to see if it is due to be balanced,
3118 * and initiates a balancing operation if so.
3119 *
3120 * Balancing parameters are set up in arch_init_sched_domains.
3121 */
a9957449 3122static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3123{
46cb4b7c
SS
3124 int balance = 1;
3125 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3126 unsigned long interval;
3127 struct sched_domain *sd;
46cb4b7c 3128 /* Earliest time when we have to do rebalance again */
c9819f45 3129 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3130 int update_next_balance = 0;
1da177e4 3131
46cb4b7c 3132 for_each_domain(cpu, sd) {
1da177e4
LT
3133 if (!(sd->flags & SD_LOAD_BALANCE))
3134 continue;
3135
3136 interval = sd->balance_interval;
d15bcfdb 3137 if (idle != CPU_IDLE)
1da177e4
LT
3138 interval *= sd->busy_factor;
3139
3140 /* scale ms to jiffies */
3141 interval = msecs_to_jiffies(interval);
3142 if (unlikely(!interval))
3143 interval = 1;
dd41f596
IM
3144 if (interval > HZ*NR_CPUS/10)
3145 interval = HZ*NR_CPUS/10;
3146
1da177e4 3147
08c183f3
CL
3148 if (sd->flags & SD_SERIALIZE) {
3149 if (!spin_trylock(&balancing))
3150 goto out;
3151 }
3152
c9819f45 3153 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3154 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3155 /*
3156 * We've pulled tasks over so either we're no
5969fe06
NP
3157 * longer idle, or one of our SMT siblings is
3158 * not idle.
3159 */
d15bcfdb 3160 idle = CPU_NOT_IDLE;
1da177e4 3161 }
1bd77f2d 3162 sd->last_balance = jiffies;
1da177e4 3163 }
08c183f3
CL
3164 if (sd->flags & SD_SERIALIZE)
3165 spin_unlock(&balancing);
3166out:
f549da84 3167 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3168 next_balance = sd->last_balance + interval;
f549da84
SS
3169 update_next_balance = 1;
3170 }
783609c6
SS
3171
3172 /*
3173 * Stop the load balance at this level. There is another
3174 * CPU in our sched group which is doing load balancing more
3175 * actively.
3176 */
3177 if (!balance)
3178 break;
1da177e4 3179 }
f549da84
SS
3180
3181 /*
3182 * next_balance will be updated only when there is a need.
3183 * When the cpu is attached to null domain for ex, it will not be
3184 * updated.
3185 */
3186 if (likely(update_next_balance))
3187 rq->next_balance = next_balance;
46cb4b7c
SS
3188}
3189
3190/*
3191 * run_rebalance_domains is triggered when needed from the scheduler tick.
3192 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3193 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3194 */
3195static void run_rebalance_domains(struct softirq_action *h)
3196{
dd41f596
IM
3197 int this_cpu = smp_processor_id();
3198 struct rq *this_rq = cpu_rq(this_cpu);
3199 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3200 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3201
dd41f596 3202 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3203
3204#ifdef CONFIG_NO_HZ
3205 /*
3206 * If this cpu is the owner for idle load balancing, then do the
3207 * balancing on behalf of the other idle cpus whose ticks are
3208 * stopped.
3209 */
dd41f596
IM
3210 if (this_rq->idle_at_tick &&
3211 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3212 cpumask_t cpus = nohz.cpu_mask;
3213 struct rq *rq;
3214 int balance_cpu;
3215
dd41f596 3216 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3217 for_each_cpu_mask(balance_cpu, cpus) {
3218 /*
3219 * If this cpu gets work to do, stop the load balancing
3220 * work being done for other cpus. Next load
3221 * balancing owner will pick it up.
3222 */
3223 if (need_resched())
3224 break;
3225
de0cf899 3226 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3227
3228 rq = cpu_rq(balance_cpu);
dd41f596
IM
3229 if (time_after(this_rq->next_balance, rq->next_balance))
3230 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3231 }
3232 }
3233#endif
3234}
3235
3236/*
3237 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3238 *
3239 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3240 * idle load balancing owner or decide to stop the periodic load balancing,
3241 * if the whole system is idle.
3242 */
dd41f596 3243static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3244{
46cb4b7c
SS
3245#ifdef CONFIG_NO_HZ
3246 /*
3247 * If we were in the nohz mode recently and busy at the current
3248 * scheduler tick, then check if we need to nominate new idle
3249 * load balancer.
3250 */
3251 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3252 rq->in_nohz_recently = 0;
3253
3254 if (atomic_read(&nohz.load_balancer) == cpu) {
3255 cpu_clear(cpu, nohz.cpu_mask);
3256 atomic_set(&nohz.load_balancer, -1);
3257 }
3258
3259 if (atomic_read(&nohz.load_balancer) == -1) {
3260 /*
3261 * simple selection for now: Nominate the
3262 * first cpu in the nohz list to be the next
3263 * ilb owner.
3264 *
3265 * TBD: Traverse the sched domains and nominate
3266 * the nearest cpu in the nohz.cpu_mask.
3267 */
3268 int ilb = first_cpu(nohz.cpu_mask);
3269
3270 if (ilb != NR_CPUS)
3271 resched_cpu(ilb);
3272 }
3273 }
3274
3275 /*
3276 * If this cpu is idle and doing idle load balancing for all the
3277 * cpus with ticks stopped, is it time for that to stop?
3278 */
3279 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3280 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3281 resched_cpu(cpu);
3282 return;
3283 }
3284
3285 /*
3286 * If this cpu is idle and the idle load balancing is done by
3287 * someone else, then no need raise the SCHED_SOFTIRQ
3288 */
3289 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3290 cpu_isset(cpu, nohz.cpu_mask))
3291 return;
3292#endif
3293 if (time_after_eq(jiffies, rq->next_balance))
3294 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3295}
dd41f596
IM
3296
3297#else /* CONFIG_SMP */
3298
1da177e4
LT
3299/*
3300 * on UP we do not need to balance between CPUs:
3301 */
70b97a7f 3302static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3303{
3304}
dd41f596 3305
1da177e4
LT
3306#endif
3307
1da177e4
LT
3308DEFINE_PER_CPU(struct kernel_stat, kstat);
3309
3310EXPORT_PER_CPU_SYMBOL(kstat);
3311
3312/*
41b86e9c
IM
3313 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3314 * that have not yet been banked in case the task is currently running.
1da177e4 3315 */
41b86e9c 3316unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3317{
1da177e4 3318 unsigned long flags;
41b86e9c
IM
3319 u64 ns, delta_exec;
3320 struct rq *rq;
48f24c4d 3321
41b86e9c
IM
3322 rq = task_rq_lock(p, &flags);
3323 ns = p->se.sum_exec_runtime;
051a1d1a 3324 if (task_current(rq, p)) {
a8e504d2
IM
3325 update_rq_clock(rq);
3326 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3327 if ((s64)delta_exec > 0)
3328 ns += delta_exec;
3329 }
3330 task_rq_unlock(rq, &flags);
48f24c4d 3331
1da177e4
LT
3332 return ns;
3333}
3334
1da177e4
LT
3335/*
3336 * Account user cpu time to a process.
3337 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3338 * @cputime: the cpu time spent in user space since the last update
3339 */
3340void account_user_time(struct task_struct *p, cputime_t cputime)
3341{
3342 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3343 cputime64_t tmp;
3344
3345 p->utime = cputime_add(p->utime, cputime);
3346
3347 /* Add user time to cpustat. */
3348 tmp = cputime_to_cputime64(cputime);
3349 if (TASK_NICE(p) > 0)
3350 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3351 else
3352 cpustat->user = cputime64_add(cpustat->user, tmp);
3353}
3354
94886b84
LV
3355/*
3356 * Account guest cpu time to a process.
3357 * @p: the process that the cpu time gets accounted to
3358 * @cputime: the cpu time spent in virtual machine since the last update
3359 */
f7402e03 3360static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3361{
3362 cputime64_t tmp;
3363 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3364
3365 tmp = cputime_to_cputime64(cputime);
3366
3367 p->utime = cputime_add(p->utime, cputime);
3368 p->gtime = cputime_add(p->gtime, cputime);
3369
3370 cpustat->user = cputime64_add(cpustat->user, tmp);
3371 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3372}
3373
c66f08be
MN
3374/*
3375 * Account scaled user cpu time to a process.
3376 * @p: the process that the cpu time gets accounted to
3377 * @cputime: the cpu time spent in user space since the last update
3378 */
3379void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3380{
3381 p->utimescaled = cputime_add(p->utimescaled, cputime);
3382}
3383
1da177e4
LT
3384/*
3385 * Account system cpu time to a process.
3386 * @p: the process that the cpu time gets accounted to
3387 * @hardirq_offset: the offset to subtract from hardirq_count()
3388 * @cputime: the cpu time spent in kernel space since the last update
3389 */
3390void account_system_time(struct task_struct *p, int hardirq_offset,
3391 cputime_t cputime)
3392{
3393 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3394 struct rq *rq = this_rq();
1da177e4
LT
3395 cputime64_t tmp;
3396
9778385d
CB
3397 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3398 return account_guest_time(p, cputime);
94886b84 3399
1da177e4
LT
3400 p->stime = cputime_add(p->stime, cputime);
3401
3402 /* Add system time to cpustat. */
3403 tmp = cputime_to_cputime64(cputime);
3404 if (hardirq_count() - hardirq_offset)
3405 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3406 else if (softirq_count())
3407 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3408 else if (p != rq->idle)
1da177e4 3409 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3410 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3411 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3412 else
3413 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3414 /* Account for system time used */
3415 acct_update_integrals(p);
1da177e4
LT
3416}
3417
c66f08be
MN
3418/*
3419 * Account scaled system cpu time to a process.
3420 * @p: the process that the cpu time gets accounted to
3421 * @hardirq_offset: the offset to subtract from hardirq_count()
3422 * @cputime: the cpu time spent in kernel space since the last update
3423 */
3424void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3425{
3426 p->stimescaled = cputime_add(p->stimescaled, cputime);
3427}
3428
1da177e4
LT
3429/*
3430 * Account for involuntary wait time.
3431 * @p: the process from which the cpu time has been stolen
3432 * @steal: the cpu time spent in involuntary wait
3433 */
3434void account_steal_time(struct task_struct *p, cputime_t steal)
3435{
3436 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3437 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3438 struct rq *rq = this_rq();
1da177e4
LT
3439
3440 if (p == rq->idle) {
3441 p->stime = cputime_add(p->stime, steal);
3442 if (atomic_read(&rq->nr_iowait) > 0)
3443 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3444 else
3445 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3446 } else
1da177e4
LT
3447 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3448}
3449
7835b98b
CL
3450/*
3451 * This function gets called by the timer code, with HZ frequency.
3452 * We call it with interrupts disabled.
3453 *
3454 * It also gets called by the fork code, when changing the parent's
3455 * timeslices.
3456 */
3457void scheduler_tick(void)
3458{
7835b98b
CL
3459 int cpu = smp_processor_id();
3460 struct rq *rq = cpu_rq(cpu);
dd41f596 3461 struct task_struct *curr = rq->curr;
529c7726 3462 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3463
3464 spin_lock(&rq->lock);
546fe3c9 3465 __update_rq_clock(rq);
529c7726
IM
3466 /*
3467 * Let rq->clock advance by at least TICK_NSEC:
3468 */
3469 if (unlikely(rq->clock < next_tick))
3470 rq->clock = next_tick;
3471 rq->tick_timestamp = rq->clock;
f1a438d8 3472 update_cpu_load(rq);
dd41f596
IM
3473 if (curr != rq->idle) /* FIXME: needed? */
3474 curr->sched_class->task_tick(rq, curr);
dd41f596 3475 spin_unlock(&rq->lock);
7835b98b 3476
e418e1c2 3477#ifdef CONFIG_SMP
dd41f596
IM
3478 rq->idle_at_tick = idle_cpu(cpu);
3479 trigger_load_balance(rq, cpu);
e418e1c2 3480#endif
1da177e4
LT
3481}
3482
1da177e4
LT
3483#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3484
3485void fastcall add_preempt_count(int val)
3486{
3487 /*
3488 * Underflow?
3489 */
9a11b49a
IM
3490 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3491 return;
1da177e4
LT
3492 preempt_count() += val;
3493 /*
3494 * Spinlock count overflowing soon?
3495 */
33859f7f
MOS
3496 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3497 PREEMPT_MASK - 10);
1da177e4
LT
3498}
3499EXPORT_SYMBOL(add_preempt_count);
3500
3501void fastcall sub_preempt_count(int val)
3502{
3503 /*
3504 * Underflow?
3505 */
9a11b49a
IM
3506 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3507 return;
1da177e4
LT
3508 /*
3509 * Is the spinlock portion underflowing?
3510 */
9a11b49a
IM
3511 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3512 !(preempt_count() & PREEMPT_MASK)))
3513 return;
3514
1da177e4
LT
3515 preempt_count() -= val;
3516}
3517EXPORT_SYMBOL(sub_preempt_count);
3518
3519#endif
3520
3521/*
dd41f596 3522 * Print scheduling while atomic bug:
1da177e4 3523 */
dd41f596 3524static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3525{
838225b4
SS
3526 struct pt_regs *regs = get_irq_regs();
3527
3528 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3529 prev->comm, prev->pid, preempt_count());
3530
dd41f596
IM
3531 debug_show_held_locks(prev);
3532 if (irqs_disabled())
3533 print_irqtrace_events(prev);
838225b4
SS
3534
3535 if (regs)
3536 show_regs(regs);
3537 else
3538 dump_stack();
dd41f596 3539}
1da177e4 3540
dd41f596
IM
3541/*
3542 * Various schedule()-time debugging checks and statistics:
3543 */
3544static inline void schedule_debug(struct task_struct *prev)
3545{
1da177e4 3546 /*
41a2d6cf 3547 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3548 * schedule() atomically, we ignore that path for now.
3549 * Otherwise, whine if we are scheduling when we should not be.
3550 */
dd41f596
IM
3551 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3552 __schedule_bug(prev);
3553
1da177e4
LT
3554 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3555
2d72376b 3556 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3557#ifdef CONFIG_SCHEDSTATS
3558 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3559 schedstat_inc(this_rq(), bkl_count);
3560 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3561 }
3562#endif
dd41f596
IM
3563}
3564
3565/*
3566 * Pick up the highest-prio task:
3567 */
3568static inline struct task_struct *
ff95f3df 3569pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3570{
5522d5d5 3571 const struct sched_class *class;
dd41f596 3572 struct task_struct *p;
1da177e4
LT
3573
3574 /*
dd41f596
IM
3575 * Optimization: we know that if all tasks are in
3576 * the fair class we can call that function directly:
1da177e4 3577 */
dd41f596 3578 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3579 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3580 if (likely(p))
3581 return p;
1da177e4
LT
3582 }
3583
dd41f596
IM
3584 class = sched_class_highest;
3585 for ( ; ; ) {
fb8d4724 3586 p = class->pick_next_task(rq);
dd41f596
IM
3587 if (p)
3588 return p;
3589 /*
3590 * Will never be NULL as the idle class always
3591 * returns a non-NULL p:
3592 */
3593 class = class->next;
3594 }
3595}
1da177e4 3596
dd41f596
IM
3597/*
3598 * schedule() is the main scheduler function.
3599 */
3600asmlinkage void __sched schedule(void)
3601{
3602 struct task_struct *prev, *next;
3603 long *switch_count;
3604 struct rq *rq;
dd41f596
IM
3605 int cpu;
3606
3607need_resched:
3608 preempt_disable();
3609 cpu = smp_processor_id();
3610 rq = cpu_rq(cpu);
3611 rcu_qsctr_inc(cpu);
3612 prev = rq->curr;
3613 switch_count = &prev->nivcsw;
3614
3615 release_kernel_lock(prev);
3616need_resched_nonpreemptible:
3617
3618 schedule_debug(prev);
1da177e4 3619
1e819950
IM
3620 /*
3621 * Do the rq-clock update outside the rq lock:
3622 */
3623 local_irq_disable();
c1b3da3e 3624 __update_rq_clock(rq);
1e819950
IM
3625 spin_lock(&rq->lock);
3626 clear_tsk_need_resched(prev);
1da177e4 3627
1da177e4 3628 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3629 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3630 unlikely(signal_pending(prev)))) {
1da177e4 3631 prev->state = TASK_RUNNING;
dd41f596 3632 } else {
2e1cb74a 3633 deactivate_task(rq, prev, 1);
1da177e4 3634 }
dd41f596 3635 switch_count = &prev->nvcsw;
1da177e4
LT
3636 }
3637
f65eda4f
SR
3638 schedule_balance_rt(rq, prev);
3639
dd41f596 3640 if (unlikely(!rq->nr_running))
1da177e4 3641 idle_balance(cpu, rq);
1da177e4 3642
31ee529c 3643 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3644 next = pick_next_task(rq, prev);
1da177e4
LT
3645
3646 sched_info_switch(prev, next);
dd41f596 3647
1da177e4 3648 if (likely(prev != next)) {
1da177e4
LT
3649 rq->nr_switches++;
3650 rq->curr = next;
3651 ++*switch_count;
3652
dd41f596 3653 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3654 } else
3655 spin_unlock_irq(&rq->lock);
3656
dd41f596
IM
3657 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3658 cpu = smp_processor_id();
3659 rq = cpu_rq(cpu);
1da177e4 3660 goto need_resched_nonpreemptible;
dd41f596 3661 }
1da177e4
LT
3662 preempt_enable_no_resched();
3663 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3664 goto need_resched;
3665}
1da177e4
LT
3666EXPORT_SYMBOL(schedule);
3667
3668#ifdef CONFIG_PREEMPT
3669/*
2ed6e34f 3670 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3671 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3672 * occur there and call schedule directly.
3673 */
3674asmlinkage void __sched preempt_schedule(void)
3675{
3676 struct thread_info *ti = current_thread_info();
3677#ifdef CONFIG_PREEMPT_BKL
3678 struct task_struct *task = current;
3679 int saved_lock_depth;
3680#endif
3681 /*
3682 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3683 * we do not want to preempt the current task. Just return..
1da177e4 3684 */
beed33a8 3685 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3686 return;
3687
3a5c359a
AK
3688 do {
3689 add_preempt_count(PREEMPT_ACTIVE);
3690
3691 /*
3692 * We keep the big kernel semaphore locked, but we
3693 * clear ->lock_depth so that schedule() doesnt
3694 * auto-release the semaphore:
3695 */
1da177e4 3696#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3697 saved_lock_depth = task->lock_depth;
3698 task->lock_depth = -1;
1da177e4 3699#endif
3a5c359a 3700 schedule();
1da177e4 3701#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3702 task->lock_depth = saved_lock_depth;
1da177e4 3703#endif
3a5c359a 3704 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3705
3a5c359a
AK
3706 /*
3707 * Check again in case we missed a preemption opportunity
3708 * between schedule and now.
3709 */
3710 barrier();
3711 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3712}
1da177e4
LT
3713EXPORT_SYMBOL(preempt_schedule);
3714
3715/*
2ed6e34f 3716 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3717 * off of irq context.
3718 * Note, that this is called and return with irqs disabled. This will
3719 * protect us against recursive calling from irq.
3720 */
3721asmlinkage void __sched preempt_schedule_irq(void)
3722{
3723 struct thread_info *ti = current_thread_info();
3724#ifdef CONFIG_PREEMPT_BKL
3725 struct task_struct *task = current;
3726 int saved_lock_depth;
3727#endif
2ed6e34f 3728 /* Catch callers which need to be fixed */
1da177e4
LT
3729 BUG_ON(ti->preempt_count || !irqs_disabled());
3730
3a5c359a
AK
3731 do {
3732 add_preempt_count(PREEMPT_ACTIVE);
3733
3734 /*
3735 * We keep the big kernel semaphore locked, but we
3736 * clear ->lock_depth so that schedule() doesnt
3737 * auto-release the semaphore:
3738 */
1da177e4 3739#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3740 saved_lock_depth = task->lock_depth;
3741 task->lock_depth = -1;
1da177e4 3742#endif
3a5c359a
AK
3743 local_irq_enable();
3744 schedule();
3745 local_irq_disable();
1da177e4 3746#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3747 task->lock_depth = saved_lock_depth;
1da177e4 3748#endif
3a5c359a 3749 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3750
3a5c359a
AK
3751 /*
3752 * Check again in case we missed a preemption opportunity
3753 * between schedule and now.
3754 */
3755 barrier();
3756 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3757}
3758
3759#endif /* CONFIG_PREEMPT */
3760
95cdf3b7
IM
3761int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3762 void *key)
1da177e4 3763{
48f24c4d 3764 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3765}
1da177e4
LT
3766EXPORT_SYMBOL(default_wake_function);
3767
3768/*
41a2d6cf
IM
3769 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3770 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3771 * number) then we wake all the non-exclusive tasks and one exclusive task.
3772 *
3773 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3774 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3775 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3776 */
3777static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3778 int nr_exclusive, int sync, void *key)
3779{
2e45874c 3780 wait_queue_t *curr, *next;
1da177e4 3781
2e45874c 3782 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3783 unsigned flags = curr->flags;
3784
1da177e4 3785 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3786 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3787 break;
3788 }
3789}
3790
3791/**
3792 * __wake_up - wake up threads blocked on a waitqueue.
3793 * @q: the waitqueue
3794 * @mode: which threads
3795 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3796 * @key: is directly passed to the wakeup function
1da177e4
LT
3797 */
3798void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3799 int nr_exclusive, void *key)
1da177e4
LT
3800{
3801 unsigned long flags;
3802
3803 spin_lock_irqsave(&q->lock, flags);
3804 __wake_up_common(q, mode, nr_exclusive, 0, key);
3805 spin_unlock_irqrestore(&q->lock, flags);
3806}
1da177e4
LT
3807EXPORT_SYMBOL(__wake_up);
3808
3809/*
3810 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3811 */
3812void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3813{
3814 __wake_up_common(q, mode, 1, 0, NULL);
3815}
3816
3817/**
67be2dd1 3818 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3819 * @q: the waitqueue
3820 * @mode: which threads
3821 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3822 *
3823 * The sync wakeup differs that the waker knows that it will schedule
3824 * away soon, so while the target thread will be woken up, it will not
3825 * be migrated to another CPU - ie. the two threads are 'synchronized'
3826 * with each other. This can prevent needless bouncing between CPUs.
3827 *
3828 * On UP it can prevent extra preemption.
3829 */
95cdf3b7
IM
3830void fastcall
3831__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3832{
3833 unsigned long flags;
3834 int sync = 1;
3835
3836 if (unlikely(!q))
3837 return;
3838
3839 if (unlikely(!nr_exclusive))
3840 sync = 0;
3841
3842 spin_lock_irqsave(&q->lock, flags);
3843 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3844 spin_unlock_irqrestore(&q->lock, flags);
3845}
3846EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3847
b15136e9 3848void complete(struct completion *x)
1da177e4
LT
3849{
3850 unsigned long flags;
3851
3852 spin_lock_irqsave(&x->wait.lock, flags);
3853 x->done++;
3854 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3855 1, 0, NULL);
3856 spin_unlock_irqrestore(&x->wait.lock, flags);
3857}
3858EXPORT_SYMBOL(complete);
3859
b15136e9 3860void complete_all(struct completion *x)
1da177e4
LT
3861{
3862 unsigned long flags;
3863
3864 spin_lock_irqsave(&x->wait.lock, flags);
3865 x->done += UINT_MAX/2;
3866 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3867 0, 0, NULL);
3868 spin_unlock_irqrestore(&x->wait.lock, flags);
3869}
3870EXPORT_SYMBOL(complete_all);
3871
8cbbe86d
AK
3872static inline long __sched
3873do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3874{
1da177e4
LT
3875 if (!x->done) {
3876 DECLARE_WAITQUEUE(wait, current);
3877
3878 wait.flags |= WQ_FLAG_EXCLUSIVE;
3879 __add_wait_queue_tail(&x->wait, &wait);
3880 do {
8cbbe86d
AK
3881 if (state == TASK_INTERRUPTIBLE &&
3882 signal_pending(current)) {
3883 __remove_wait_queue(&x->wait, &wait);
3884 return -ERESTARTSYS;
3885 }
3886 __set_current_state(state);
1da177e4
LT
3887 spin_unlock_irq(&x->wait.lock);
3888 timeout = schedule_timeout(timeout);
3889 spin_lock_irq(&x->wait.lock);
3890 if (!timeout) {
3891 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3892 return timeout;
1da177e4
LT
3893 }
3894 } while (!x->done);
3895 __remove_wait_queue(&x->wait, &wait);
3896 }
3897 x->done--;
1da177e4
LT
3898 return timeout;
3899}
1da177e4 3900
8cbbe86d
AK
3901static long __sched
3902wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3903{
1da177e4
LT
3904 might_sleep();
3905
3906 spin_lock_irq(&x->wait.lock);
8cbbe86d 3907 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3908 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3909 return timeout;
3910}
1da177e4 3911
b15136e9 3912void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3913{
3914 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3915}
8cbbe86d 3916EXPORT_SYMBOL(wait_for_completion);
1da177e4 3917
b15136e9 3918unsigned long __sched
8cbbe86d 3919wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3920{
8cbbe86d 3921 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3922}
8cbbe86d 3923EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3924
8cbbe86d 3925int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3926{
51e97990
AK
3927 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3928 if (t == -ERESTARTSYS)
3929 return t;
3930 return 0;
0fec171c 3931}
8cbbe86d 3932EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3933
b15136e9 3934unsigned long __sched
8cbbe86d
AK
3935wait_for_completion_interruptible_timeout(struct completion *x,
3936 unsigned long timeout)
0fec171c 3937{
8cbbe86d 3938 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3939}
8cbbe86d 3940EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3941
8cbbe86d
AK
3942static long __sched
3943sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3944{
0fec171c
IM
3945 unsigned long flags;
3946 wait_queue_t wait;
3947
3948 init_waitqueue_entry(&wait, current);
1da177e4 3949
8cbbe86d 3950 __set_current_state(state);
1da177e4 3951
8cbbe86d
AK
3952 spin_lock_irqsave(&q->lock, flags);
3953 __add_wait_queue(q, &wait);
3954 spin_unlock(&q->lock);
3955 timeout = schedule_timeout(timeout);
3956 spin_lock_irq(&q->lock);
3957 __remove_wait_queue(q, &wait);
3958 spin_unlock_irqrestore(&q->lock, flags);
3959
3960 return timeout;
3961}
3962
3963void __sched interruptible_sleep_on(wait_queue_head_t *q)
3964{
3965 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3966}
1da177e4
LT
3967EXPORT_SYMBOL(interruptible_sleep_on);
3968
0fec171c 3969long __sched
95cdf3b7 3970interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3971{
8cbbe86d 3972 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3973}
1da177e4
LT
3974EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3975
0fec171c 3976void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3977{
8cbbe86d 3978 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3979}
1da177e4
LT
3980EXPORT_SYMBOL(sleep_on);
3981
0fec171c 3982long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3983{
8cbbe86d 3984 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3985}
1da177e4
LT
3986EXPORT_SYMBOL(sleep_on_timeout);
3987
b29739f9
IM
3988#ifdef CONFIG_RT_MUTEXES
3989
3990/*
3991 * rt_mutex_setprio - set the current priority of a task
3992 * @p: task
3993 * @prio: prio value (kernel-internal form)
3994 *
3995 * This function changes the 'effective' priority of a task. It does
3996 * not touch ->normal_prio like __setscheduler().
3997 *
3998 * Used by the rt_mutex code to implement priority inheritance logic.
3999 */
36c8b586 4000void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4001{
4002 unsigned long flags;
83b699ed 4003 int oldprio, on_rq, running;
70b97a7f 4004 struct rq *rq;
b29739f9
IM
4005
4006 BUG_ON(prio < 0 || prio > MAX_PRIO);
4007
4008 rq = task_rq_lock(p, &flags);
a8e504d2 4009 update_rq_clock(rq);
b29739f9 4010
d5f9f942 4011 oldprio = p->prio;
dd41f596 4012 on_rq = p->se.on_rq;
051a1d1a 4013 running = task_current(rq, p);
83b699ed 4014 if (on_rq) {
69be72c1 4015 dequeue_task(rq, p, 0);
83b699ed
SV
4016 if (running)
4017 p->sched_class->put_prev_task(rq, p);
4018 }
dd41f596
IM
4019
4020 if (rt_prio(prio))
4021 p->sched_class = &rt_sched_class;
4022 else
4023 p->sched_class = &fair_sched_class;
4024
b29739f9
IM
4025 p->prio = prio;
4026
dd41f596 4027 if (on_rq) {
83b699ed
SV
4028 if (running)
4029 p->sched_class->set_curr_task(rq);
8159f87e 4030 enqueue_task(rq, p, 0);
b29739f9
IM
4031 /*
4032 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4033 * our priority decreased, or if we are not currently running on
4034 * this runqueue and our priority is higher than the current's
b29739f9 4035 */
83b699ed 4036 if (running) {
d5f9f942
AM
4037 if (p->prio > oldprio)
4038 resched_task(rq->curr);
dd41f596
IM
4039 } else {
4040 check_preempt_curr(rq, p);
4041 }
b29739f9
IM
4042 }
4043 task_rq_unlock(rq, &flags);
4044}
4045
4046#endif
4047
36c8b586 4048void set_user_nice(struct task_struct *p, long nice)
1da177e4 4049{
dd41f596 4050 int old_prio, delta, on_rq;
1da177e4 4051 unsigned long flags;
70b97a7f 4052 struct rq *rq;
1da177e4
LT
4053
4054 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4055 return;
4056 /*
4057 * We have to be careful, if called from sys_setpriority(),
4058 * the task might be in the middle of scheduling on another CPU.
4059 */
4060 rq = task_rq_lock(p, &flags);
a8e504d2 4061 update_rq_clock(rq);
1da177e4
LT
4062 /*
4063 * The RT priorities are set via sched_setscheduler(), but we still
4064 * allow the 'normal' nice value to be set - but as expected
4065 * it wont have any effect on scheduling until the task is
dd41f596 4066 * SCHED_FIFO/SCHED_RR:
1da177e4 4067 */
e05606d3 4068 if (task_has_rt_policy(p)) {
1da177e4
LT
4069 p->static_prio = NICE_TO_PRIO(nice);
4070 goto out_unlock;
4071 }
dd41f596 4072 on_rq = p->se.on_rq;
58e2d4ca 4073 if (on_rq)
69be72c1 4074 dequeue_task(rq, p, 0);
1da177e4 4075
1da177e4 4076 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4077 set_load_weight(p);
b29739f9
IM
4078 old_prio = p->prio;
4079 p->prio = effective_prio(p);
4080 delta = p->prio - old_prio;
1da177e4 4081
dd41f596 4082 if (on_rq) {
8159f87e 4083 enqueue_task(rq, p, 0);
1da177e4 4084 /*
d5f9f942
AM
4085 * If the task increased its priority or is running and
4086 * lowered its priority, then reschedule its CPU:
1da177e4 4087 */
d5f9f942 4088 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4089 resched_task(rq->curr);
4090 }
4091out_unlock:
4092 task_rq_unlock(rq, &flags);
4093}
1da177e4
LT
4094EXPORT_SYMBOL(set_user_nice);
4095
e43379f1
MM
4096/*
4097 * can_nice - check if a task can reduce its nice value
4098 * @p: task
4099 * @nice: nice value
4100 */
36c8b586 4101int can_nice(const struct task_struct *p, const int nice)
e43379f1 4102{
024f4747
MM
4103 /* convert nice value [19,-20] to rlimit style value [1,40] */
4104 int nice_rlim = 20 - nice;
48f24c4d 4105
e43379f1
MM
4106 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4107 capable(CAP_SYS_NICE));
4108}
4109
1da177e4
LT
4110#ifdef __ARCH_WANT_SYS_NICE
4111
4112/*
4113 * sys_nice - change the priority of the current process.
4114 * @increment: priority increment
4115 *
4116 * sys_setpriority is a more generic, but much slower function that
4117 * does similar things.
4118 */
4119asmlinkage long sys_nice(int increment)
4120{
48f24c4d 4121 long nice, retval;
1da177e4
LT
4122
4123 /*
4124 * Setpriority might change our priority at the same moment.
4125 * We don't have to worry. Conceptually one call occurs first
4126 * and we have a single winner.
4127 */
e43379f1
MM
4128 if (increment < -40)
4129 increment = -40;
1da177e4
LT
4130 if (increment > 40)
4131 increment = 40;
4132
4133 nice = PRIO_TO_NICE(current->static_prio) + increment;
4134 if (nice < -20)
4135 nice = -20;
4136 if (nice > 19)
4137 nice = 19;
4138
e43379f1
MM
4139 if (increment < 0 && !can_nice(current, nice))
4140 return -EPERM;
4141
1da177e4
LT
4142 retval = security_task_setnice(current, nice);
4143 if (retval)
4144 return retval;
4145
4146 set_user_nice(current, nice);
4147 return 0;
4148}
4149
4150#endif
4151
4152/**
4153 * task_prio - return the priority value of a given task.
4154 * @p: the task in question.
4155 *
4156 * This is the priority value as seen by users in /proc.
4157 * RT tasks are offset by -200. Normal tasks are centered
4158 * around 0, value goes from -16 to +15.
4159 */
36c8b586 4160int task_prio(const struct task_struct *p)
1da177e4
LT
4161{
4162 return p->prio - MAX_RT_PRIO;
4163}
4164
4165/**
4166 * task_nice - return the nice value of a given task.
4167 * @p: the task in question.
4168 */
36c8b586 4169int task_nice(const struct task_struct *p)
1da177e4
LT
4170{
4171 return TASK_NICE(p);
4172}
1da177e4 4173EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4174
4175/**
4176 * idle_cpu - is a given cpu idle currently?
4177 * @cpu: the processor in question.
4178 */
4179int idle_cpu(int cpu)
4180{
4181 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4182}
4183
1da177e4
LT
4184/**
4185 * idle_task - return the idle task for a given cpu.
4186 * @cpu: the processor in question.
4187 */
36c8b586 4188struct task_struct *idle_task(int cpu)
1da177e4
LT
4189{
4190 return cpu_rq(cpu)->idle;
4191}
4192
4193/**
4194 * find_process_by_pid - find a process with a matching PID value.
4195 * @pid: the pid in question.
4196 */
a9957449 4197static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4198{
228ebcbe 4199 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4200}
4201
4202/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4203static void
4204__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4205{
dd41f596 4206 BUG_ON(p->se.on_rq);
48f24c4d 4207
1da177e4 4208 p->policy = policy;
dd41f596
IM
4209 switch (p->policy) {
4210 case SCHED_NORMAL:
4211 case SCHED_BATCH:
4212 case SCHED_IDLE:
4213 p->sched_class = &fair_sched_class;
4214 break;
4215 case SCHED_FIFO:
4216 case SCHED_RR:
4217 p->sched_class = &rt_sched_class;
4218 break;
4219 }
4220
1da177e4 4221 p->rt_priority = prio;
b29739f9
IM
4222 p->normal_prio = normal_prio(p);
4223 /* we are holding p->pi_lock already */
4224 p->prio = rt_mutex_getprio(p);
2dd73a4f 4225 set_load_weight(p);
1da177e4
LT
4226}
4227
4228/**
72fd4a35 4229 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4230 * @p: the task in question.
4231 * @policy: new policy.
4232 * @param: structure containing the new RT priority.
5fe1d75f 4233 *
72fd4a35 4234 * NOTE that the task may be already dead.
1da177e4 4235 */
95cdf3b7
IM
4236int sched_setscheduler(struct task_struct *p, int policy,
4237 struct sched_param *param)
1da177e4 4238{
83b699ed 4239 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4240 unsigned long flags;
70b97a7f 4241 struct rq *rq;
1da177e4 4242
66e5393a
SR
4243 /* may grab non-irq protected spin_locks */
4244 BUG_ON(in_interrupt());
1da177e4
LT
4245recheck:
4246 /* double check policy once rq lock held */
4247 if (policy < 0)
4248 policy = oldpolicy = p->policy;
4249 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4250 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4251 policy != SCHED_IDLE)
b0a9499c 4252 return -EINVAL;
1da177e4
LT
4253 /*
4254 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4255 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4256 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4257 */
4258 if (param->sched_priority < 0 ||
95cdf3b7 4259 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4260 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4261 return -EINVAL;
e05606d3 4262 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4263 return -EINVAL;
4264
37e4ab3f
OC
4265 /*
4266 * Allow unprivileged RT tasks to decrease priority:
4267 */
4268 if (!capable(CAP_SYS_NICE)) {
e05606d3 4269 if (rt_policy(policy)) {
8dc3e909 4270 unsigned long rlim_rtprio;
8dc3e909
ON
4271
4272 if (!lock_task_sighand(p, &flags))
4273 return -ESRCH;
4274 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4275 unlock_task_sighand(p, &flags);
4276
4277 /* can't set/change the rt policy */
4278 if (policy != p->policy && !rlim_rtprio)
4279 return -EPERM;
4280
4281 /* can't increase priority */
4282 if (param->sched_priority > p->rt_priority &&
4283 param->sched_priority > rlim_rtprio)
4284 return -EPERM;
4285 }
dd41f596
IM
4286 /*
4287 * Like positive nice levels, dont allow tasks to
4288 * move out of SCHED_IDLE either:
4289 */
4290 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4291 return -EPERM;
5fe1d75f 4292
37e4ab3f
OC
4293 /* can't change other user's priorities */
4294 if ((current->euid != p->euid) &&
4295 (current->euid != p->uid))
4296 return -EPERM;
4297 }
1da177e4
LT
4298
4299 retval = security_task_setscheduler(p, policy, param);
4300 if (retval)
4301 return retval;
b29739f9
IM
4302 /*
4303 * make sure no PI-waiters arrive (or leave) while we are
4304 * changing the priority of the task:
4305 */
4306 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4307 /*
4308 * To be able to change p->policy safely, the apropriate
4309 * runqueue lock must be held.
4310 */
b29739f9 4311 rq = __task_rq_lock(p);
1da177e4
LT
4312 /* recheck policy now with rq lock held */
4313 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4314 policy = oldpolicy = -1;
b29739f9
IM
4315 __task_rq_unlock(rq);
4316 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4317 goto recheck;
4318 }
2daa3577 4319 update_rq_clock(rq);
dd41f596 4320 on_rq = p->se.on_rq;
051a1d1a 4321 running = task_current(rq, p);
83b699ed 4322 if (on_rq) {
2e1cb74a 4323 deactivate_task(rq, p, 0);
83b699ed
SV
4324 if (running)
4325 p->sched_class->put_prev_task(rq, p);
4326 }
f6b53205 4327
1da177e4 4328 oldprio = p->prio;
dd41f596 4329 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4330
dd41f596 4331 if (on_rq) {
83b699ed
SV
4332 if (running)
4333 p->sched_class->set_curr_task(rq);
dd41f596 4334 activate_task(rq, p, 0);
1da177e4
LT
4335 /*
4336 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4337 * our priority decreased, or if we are not currently running on
4338 * this runqueue and our priority is higher than the current's
1da177e4 4339 */
83b699ed 4340 if (running) {
d5f9f942
AM
4341 if (p->prio > oldprio)
4342 resched_task(rq->curr);
dd41f596
IM
4343 } else {
4344 check_preempt_curr(rq, p);
4345 }
1da177e4 4346 }
b29739f9
IM
4347 __task_rq_unlock(rq);
4348 spin_unlock_irqrestore(&p->pi_lock, flags);
4349
95e02ca9
TG
4350 rt_mutex_adjust_pi(p);
4351
1da177e4
LT
4352 return 0;
4353}
4354EXPORT_SYMBOL_GPL(sched_setscheduler);
4355
95cdf3b7
IM
4356static int
4357do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4358{
1da177e4
LT
4359 struct sched_param lparam;
4360 struct task_struct *p;
36c8b586 4361 int retval;
1da177e4
LT
4362
4363 if (!param || pid < 0)
4364 return -EINVAL;
4365 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4366 return -EFAULT;
5fe1d75f
ON
4367
4368 rcu_read_lock();
4369 retval = -ESRCH;
1da177e4 4370 p = find_process_by_pid(pid);
5fe1d75f
ON
4371 if (p != NULL)
4372 retval = sched_setscheduler(p, policy, &lparam);
4373 rcu_read_unlock();
36c8b586 4374
1da177e4
LT
4375 return retval;
4376}
4377
4378/**
4379 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4380 * @pid: the pid in question.
4381 * @policy: new policy.
4382 * @param: structure containing the new RT priority.
4383 */
41a2d6cf
IM
4384asmlinkage long
4385sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4386{
c21761f1
JB
4387 /* negative values for policy are not valid */
4388 if (policy < 0)
4389 return -EINVAL;
4390
1da177e4
LT
4391 return do_sched_setscheduler(pid, policy, param);
4392}
4393
4394/**
4395 * sys_sched_setparam - set/change the RT priority of a thread
4396 * @pid: the pid in question.
4397 * @param: structure containing the new RT priority.
4398 */
4399asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4400{
4401 return do_sched_setscheduler(pid, -1, param);
4402}
4403
4404/**
4405 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4406 * @pid: the pid in question.
4407 */
4408asmlinkage long sys_sched_getscheduler(pid_t pid)
4409{
36c8b586 4410 struct task_struct *p;
3a5c359a 4411 int retval;
1da177e4
LT
4412
4413 if (pid < 0)
3a5c359a 4414 return -EINVAL;
1da177e4
LT
4415
4416 retval = -ESRCH;
4417 read_lock(&tasklist_lock);
4418 p = find_process_by_pid(pid);
4419 if (p) {
4420 retval = security_task_getscheduler(p);
4421 if (!retval)
4422 retval = p->policy;
4423 }
4424 read_unlock(&tasklist_lock);
1da177e4
LT
4425 return retval;
4426}
4427
4428/**
4429 * sys_sched_getscheduler - get the RT priority of a thread
4430 * @pid: the pid in question.
4431 * @param: structure containing the RT priority.
4432 */
4433asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4434{
4435 struct sched_param lp;
36c8b586 4436 struct task_struct *p;
3a5c359a 4437 int retval;
1da177e4
LT
4438
4439 if (!param || pid < 0)
3a5c359a 4440 return -EINVAL;
1da177e4
LT
4441
4442 read_lock(&tasklist_lock);
4443 p = find_process_by_pid(pid);
4444 retval = -ESRCH;
4445 if (!p)
4446 goto out_unlock;
4447
4448 retval = security_task_getscheduler(p);
4449 if (retval)
4450 goto out_unlock;
4451
4452 lp.sched_priority = p->rt_priority;
4453 read_unlock(&tasklist_lock);
4454
4455 /*
4456 * This one might sleep, we cannot do it with a spinlock held ...
4457 */
4458 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4459
1da177e4
LT
4460 return retval;
4461
4462out_unlock:
4463 read_unlock(&tasklist_lock);
4464 return retval;
4465}
4466
4467long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4468{
1da177e4 4469 cpumask_t cpus_allowed;
36c8b586
IM
4470 struct task_struct *p;
4471 int retval;
1da177e4 4472
95402b38 4473 get_online_cpus();
1da177e4
LT
4474 read_lock(&tasklist_lock);
4475
4476 p = find_process_by_pid(pid);
4477 if (!p) {
4478 read_unlock(&tasklist_lock);
95402b38 4479 put_online_cpus();
1da177e4
LT
4480 return -ESRCH;
4481 }
4482
4483 /*
4484 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4485 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4486 * usage count and then drop tasklist_lock.
4487 */
4488 get_task_struct(p);
4489 read_unlock(&tasklist_lock);
4490
4491 retval = -EPERM;
4492 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4493 !capable(CAP_SYS_NICE))
4494 goto out_unlock;
4495
e7834f8f
DQ
4496 retval = security_task_setscheduler(p, 0, NULL);
4497 if (retval)
4498 goto out_unlock;
4499
1da177e4
LT
4500 cpus_allowed = cpuset_cpus_allowed(p);
4501 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4502 again:
1da177e4
LT
4503 retval = set_cpus_allowed(p, new_mask);
4504
8707d8b8
PM
4505 if (!retval) {
4506 cpus_allowed = cpuset_cpus_allowed(p);
4507 if (!cpus_subset(new_mask, cpus_allowed)) {
4508 /*
4509 * We must have raced with a concurrent cpuset
4510 * update. Just reset the cpus_allowed to the
4511 * cpuset's cpus_allowed
4512 */
4513 new_mask = cpus_allowed;
4514 goto again;
4515 }
4516 }
1da177e4
LT
4517out_unlock:
4518 put_task_struct(p);
95402b38 4519 put_online_cpus();
1da177e4
LT
4520 return retval;
4521}
4522
4523static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4524 cpumask_t *new_mask)
4525{
4526 if (len < sizeof(cpumask_t)) {
4527 memset(new_mask, 0, sizeof(cpumask_t));
4528 } else if (len > sizeof(cpumask_t)) {
4529 len = sizeof(cpumask_t);
4530 }
4531 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4532}
4533
4534/**
4535 * sys_sched_setaffinity - set the cpu affinity of a process
4536 * @pid: pid of the process
4537 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4538 * @user_mask_ptr: user-space pointer to the new cpu mask
4539 */
4540asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4541 unsigned long __user *user_mask_ptr)
4542{
4543 cpumask_t new_mask;
4544 int retval;
4545
4546 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4547 if (retval)
4548 return retval;
4549
4550 return sched_setaffinity(pid, new_mask);
4551}
4552
4553/*
4554 * Represents all cpu's present in the system
4555 * In systems capable of hotplug, this map could dynamically grow
4556 * as new cpu's are detected in the system via any platform specific
4557 * method, such as ACPI for e.g.
4558 */
4559
4cef0c61 4560cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4561EXPORT_SYMBOL(cpu_present_map);
4562
4563#ifndef CONFIG_SMP
4cef0c61 4564cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4565EXPORT_SYMBOL(cpu_online_map);
4566
4cef0c61 4567cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4568EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4569#endif
4570
4571long sched_getaffinity(pid_t pid, cpumask_t *mask)
4572{
36c8b586 4573 struct task_struct *p;
1da177e4 4574 int retval;
1da177e4 4575
95402b38 4576 get_online_cpus();
1da177e4
LT
4577 read_lock(&tasklist_lock);
4578
4579 retval = -ESRCH;
4580 p = find_process_by_pid(pid);
4581 if (!p)
4582 goto out_unlock;
4583
e7834f8f
DQ
4584 retval = security_task_getscheduler(p);
4585 if (retval)
4586 goto out_unlock;
4587
2f7016d9 4588 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4589
4590out_unlock:
4591 read_unlock(&tasklist_lock);
95402b38 4592 put_online_cpus();
1da177e4 4593
9531b62f 4594 return retval;
1da177e4
LT
4595}
4596
4597/**
4598 * sys_sched_getaffinity - get the cpu affinity of a process
4599 * @pid: pid of the process
4600 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4601 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4602 */
4603asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4604 unsigned long __user *user_mask_ptr)
4605{
4606 int ret;
4607 cpumask_t mask;
4608
4609 if (len < sizeof(cpumask_t))
4610 return -EINVAL;
4611
4612 ret = sched_getaffinity(pid, &mask);
4613 if (ret < 0)
4614 return ret;
4615
4616 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4617 return -EFAULT;
4618
4619 return sizeof(cpumask_t);
4620}
4621
4622/**
4623 * sys_sched_yield - yield the current processor to other threads.
4624 *
dd41f596
IM
4625 * This function yields the current CPU to other tasks. If there are no
4626 * other threads running on this CPU then this function will return.
1da177e4
LT
4627 */
4628asmlinkage long sys_sched_yield(void)
4629{
70b97a7f 4630 struct rq *rq = this_rq_lock();
1da177e4 4631
2d72376b 4632 schedstat_inc(rq, yld_count);
4530d7ab 4633 current->sched_class->yield_task(rq);
1da177e4
LT
4634
4635 /*
4636 * Since we are going to call schedule() anyway, there's
4637 * no need to preempt or enable interrupts:
4638 */
4639 __release(rq->lock);
8a25d5de 4640 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4641 _raw_spin_unlock(&rq->lock);
4642 preempt_enable_no_resched();
4643
4644 schedule();
4645
4646 return 0;
4647}
4648
e7b38404 4649static void __cond_resched(void)
1da177e4 4650{
8e0a43d8
IM
4651#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4652 __might_sleep(__FILE__, __LINE__);
4653#endif
5bbcfd90
IM
4654 /*
4655 * The BKS might be reacquired before we have dropped
4656 * PREEMPT_ACTIVE, which could trigger a second
4657 * cond_resched() call.
4658 */
1da177e4
LT
4659 do {
4660 add_preempt_count(PREEMPT_ACTIVE);
4661 schedule();
4662 sub_preempt_count(PREEMPT_ACTIVE);
4663 } while (need_resched());
4664}
4665
4666int __sched cond_resched(void)
4667{
9414232f
IM
4668 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4669 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4670 __cond_resched();
4671 return 1;
4672 }
4673 return 0;
4674}
1da177e4
LT
4675EXPORT_SYMBOL(cond_resched);
4676
4677/*
4678 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4679 * call schedule, and on return reacquire the lock.
4680 *
41a2d6cf 4681 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4682 * operations here to prevent schedule() from being called twice (once via
4683 * spin_unlock(), once by hand).
4684 */
95cdf3b7 4685int cond_resched_lock(spinlock_t *lock)
1da177e4 4686{
6df3cecb
JK
4687 int ret = 0;
4688
1da177e4
LT
4689 if (need_lockbreak(lock)) {
4690 spin_unlock(lock);
4691 cpu_relax();
6df3cecb 4692 ret = 1;
1da177e4
LT
4693 spin_lock(lock);
4694 }
9414232f 4695 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4696 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4697 _raw_spin_unlock(lock);
4698 preempt_enable_no_resched();
4699 __cond_resched();
6df3cecb 4700 ret = 1;
1da177e4 4701 spin_lock(lock);
1da177e4 4702 }
6df3cecb 4703 return ret;
1da177e4 4704}
1da177e4
LT
4705EXPORT_SYMBOL(cond_resched_lock);
4706
4707int __sched cond_resched_softirq(void)
4708{
4709 BUG_ON(!in_softirq());
4710
9414232f 4711 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4712 local_bh_enable();
1da177e4
LT
4713 __cond_resched();
4714 local_bh_disable();
4715 return 1;
4716 }
4717 return 0;
4718}
1da177e4
LT
4719EXPORT_SYMBOL(cond_resched_softirq);
4720
1da177e4
LT
4721/**
4722 * yield - yield the current processor to other threads.
4723 *
72fd4a35 4724 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4725 * thread runnable and calls sys_sched_yield().
4726 */
4727void __sched yield(void)
4728{
4729 set_current_state(TASK_RUNNING);
4730 sys_sched_yield();
4731}
1da177e4
LT
4732EXPORT_SYMBOL(yield);
4733
4734/*
41a2d6cf 4735 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4736 * that process accounting knows that this is a task in IO wait state.
4737 *
4738 * But don't do that if it is a deliberate, throttling IO wait (this task
4739 * has set its backing_dev_info: the queue against which it should throttle)
4740 */
4741void __sched io_schedule(void)
4742{
70b97a7f 4743 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4744
0ff92245 4745 delayacct_blkio_start();
1da177e4
LT
4746 atomic_inc(&rq->nr_iowait);
4747 schedule();
4748 atomic_dec(&rq->nr_iowait);
0ff92245 4749 delayacct_blkio_end();
1da177e4 4750}
1da177e4
LT
4751EXPORT_SYMBOL(io_schedule);
4752
4753long __sched io_schedule_timeout(long timeout)
4754{
70b97a7f 4755 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4756 long ret;
4757
0ff92245 4758 delayacct_blkio_start();
1da177e4
LT
4759 atomic_inc(&rq->nr_iowait);
4760 ret = schedule_timeout(timeout);
4761 atomic_dec(&rq->nr_iowait);
0ff92245 4762 delayacct_blkio_end();
1da177e4
LT
4763 return ret;
4764}
4765
4766/**
4767 * sys_sched_get_priority_max - return maximum RT priority.
4768 * @policy: scheduling class.
4769 *
4770 * this syscall returns the maximum rt_priority that can be used
4771 * by a given scheduling class.
4772 */
4773asmlinkage long sys_sched_get_priority_max(int policy)
4774{
4775 int ret = -EINVAL;
4776
4777 switch (policy) {
4778 case SCHED_FIFO:
4779 case SCHED_RR:
4780 ret = MAX_USER_RT_PRIO-1;
4781 break;
4782 case SCHED_NORMAL:
b0a9499c 4783 case SCHED_BATCH:
dd41f596 4784 case SCHED_IDLE:
1da177e4
LT
4785 ret = 0;
4786 break;
4787 }
4788 return ret;
4789}
4790
4791/**
4792 * sys_sched_get_priority_min - return minimum RT priority.
4793 * @policy: scheduling class.
4794 *
4795 * this syscall returns the minimum rt_priority that can be used
4796 * by a given scheduling class.
4797 */
4798asmlinkage long sys_sched_get_priority_min(int policy)
4799{
4800 int ret = -EINVAL;
4801
4802 switch (policy) {
4803 case SCHED_FIFO:
4804 case SCHED_RR:
4805 ret = 1;
4806 break;
4807 case SCHED_NORMAL:
b0a9499c 4808 case SCHED_BATCH:
dd41f596 4809 case SCHED_IDLE:
1da177e4
LT
4810 ret = 0;
4811 }
4812 return ret;
4813}
4814
4815/**
4816 * sys_sched_rr_get_interval - return the default timeslice of a process.
4817 * @pid: pid of the process.
4818 * @interval: userspace pointer to the timeslice value.
4819 *
4820 * this syscall writes the default timeslice value of a given process
4821 * into the user-space timespec buffer. A value of '0' means infinity.
4822 */
4823asmlinkage
4824long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4825{
36c8b586 4826 struct task_struct *p;
a4ec24b4 4827 unsigned int time_slice;
3a5c359a 4828 int retval;
1da177e4 4829 struct timespec t;
1da177e4
LT
4830
4831 if (pid < 0)
3a5c359a 4832 return -EINVAL;
1da177e4
LT
4833
4834 retval = -ESRCH;
4835 read_lock(&tasklist_lock);
4836 p = find_process_by_pid(pid);
4837 if (!p)
4838 goto out_unlock;
4839
4840 retval = security_task_getscheduler(p);
4841 if (retval)
4842 goto out_unlock;
4843
77034937
IM
4844 /*
4845 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4846 * tasks that are on an otherwise idle runqueue:
4847 */
4848 time_slice = 0;
4849 if (p->policy == SCHED_RR) {
a4ec24b4 4850 time_slice = DEF_TIMESLICE;
77034937 4851 } else {
a4ec24b4
DA
4852 struct sched_entity *se = &p->se;
4853 unsigned long flags;
4854 struct rq *rq;
4855
4856 rq = task_rq_lock(p, &flags);
77034937
IM
4857 if (rq->cfs.load.weight)
4858 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4859 task_rq_unlock(rq, &flags);
4860 }
1da177e4 4861 read_unlock(&tasklist_lock);
a4ec24b4 4862 jiffies_to_timespec(time_slice, &t);
1da177e4 4863 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4864 return retval;
3a5c359a 4865
1da177e4
LT
4866out_unlock:
4867 read_unlock(&tasklist_lock);
4868 return retval;
4869}
4870
2ed6e34f 4871static const char stat_nam[] = "RSDTtZX";
36c8b586 4872
82a1fcb9 4873void sched_show_task(struct task_struct *p)
1da177e4 4874{
1da177e4 4875 unsigned long free = 0;
36c8b586 4876 unsigned state;
1da177e4 4877
1da177e4 4878 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4879 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4880 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4881#if BITS_PER_LONG == 32
1da177e4 4882 if (state == TASK_RUNNING)
cc4ea795 4883 printk(KERN_CONT " running ");
1da177e4 4884 else
cc4ea795 4885 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4886#else
4887 if (state == TASK_RUNNING)
cc4ea795 4888 printk(KERN_CONT " running task ");
1da177e4 4889 else
cc4ea795 4890 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4891#endif
4892#ifdef CONFIG_DEBUG_STACK_USAGE
4893 {
10ebffde 4894 unsigned long *n = end_of_stack(p);
1da177e4
LT
4895 while (!*n)
4896 n++;
10ebffde 4897 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4898 }
4899#endif
ba25f9dc 4900 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4901 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4902
4903 if (state != TASK_RUNNING)
4904 show_stack(p, NULL);
4905}
4906
e59e2ae2 4907void show_state_filter(unsigned long state_filter)
1da177e4 4908{
36c8b586 4909 struct task_struct *g, *p;
1da177e4 4910
4bd77321
IM
4911#if BITS_PER_LONG == 32
4912 printk(KERN_INFO
4913 " task PC stack pid father\n");
1da177e4 4914#else
4bd77321
IM
4915 printk(KERN_INFO
4916 " task PC stack pid father\n");
1da177e4
LT
4917#endif
4918 read_lock(&tasklist_lock);
4919 do_each_thread(g, p) {
4920 /*
4921 * reset the NMI-timeout, listing all files on a slow
4922 * console might take alot of time:
4923 */
4924 touch_nmi_watchdog();
39bc89fd 4925 if (!state_filter || (p->state & state_filter))
82a1fcb9 4926 sched_show_task(p);
1da177e4
LT
4927 } while_each_thread(g, p);
4928
04c9167f
JF
4929 touch_all_softlockup_watchdogs();
4930
dd41f596
IM
4931#ifdef CONFIG_SCHED_DEBUG
4932 sysrq_sched_debug_show();
4933#endif
1da177e4 4934 read_unlock(&tasklist_lock);
e59e2ae2
IM
4935 /*
4936 * Only show locks if all tasks are dumped:
4937 */
4938 if (state_filter == -1)
4939 debug_show_all_locks();
1da177e4
LT
4940}
4941
1df21055
IM
4942void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4943{
dd41f596 4944 idle->sched_class = &idle_sched_class;
1df21055
IM
4945}
4946
f340c0d1
IM
4947/**
4948 * init_idle - set up an idle thread for a given CPU
4949 * @idle: task in question
4950 * @cpu: cpu the idle task belongs to
4951 *
4952 * NOTE: this function does not set the idle thread's NEED_RESCHED
4953 * flag, to make booting more robust.
4954 */
5c1e1767 4955void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4956{
70b97a7f 4957 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4958 unsigned long flags;
4959
dd41f596
IM
4960 __sched_fork(idle);
4961 idle->se.exec_start = sched_clock();
4962
b29739f9 4963 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4964 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4965 __set_task_cpu(idle, cpu);
1da177e4
LT
4966
4967 spin_lock_irqsave(&rq->lock, flags);
4968 rq->curr = rq->idle = idle;
4866cde0
NP
4969#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4970 idle->oncpu = 1;
4971#endif
1da177e4
LT
4972 spin_unlock_irqrestore(&rq->lock, flags);
4973
4974 /* Set the preempt count _outside_ the spinlocks! */
4975#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4976 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4977#else
a1261f54 4978 task_thread_info(idle)->preempt_count = 0;
1da177e4 4979#endif
dd41f596
IM
4980 /*
4981 * The idle tasks have their own, simple scheduling class:
4982 */
4983 idle->sched_class = &idle_sched_class;
1da177e4
LT
4984}
4985
4986/*
4987 * In a system that switches off the HZ timer nohz_cpu_mask
4988 * indicates which cpus entered this state. This is used
4989 * in the rcu update to wait only for active cpus. For system
4990 * which do not switch off the HZ timer nohz_cpu_mask should
4991 * always be CPU_MASK_NONE.
4992 */
4993cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4994
19978ca6
IM
4995/*
4996 * Increase the granularity value when there are more CPUs,
4997 * because with more CPUs the 'effective latency' as visible
4998 * to users decreases. But the relationship is not linear,
4999 * so pick a second-best guess by going with the log2 of the
5000 * number of CPUs.
5001 *
5002 * This idea comes from the SD scheduler of Con Kolivas:
5003 */
5004static inline void sched_init_granularity(void)
5005{
5006 unsigned int factor = 1 + ilog2(num_online_cpus());
5007 const unsigned long limit = 200000000;
5008
5009 sysctl_sched_min_granularity *= factor;
5010 if (sysctl_sched_min_granularity > limit)
5011 sysctl_sched_min_granularity = limit;
5012
5013 sysctl_sched_latency *= factor;
5014 if (sysctl_sched_latency > limit)
5015 sysctl_sched_latency = limit;
5016
5017 sysctl_sched_wakeup_granularity *= factor;
5018 sysctl_sched_batch_wakeup_granularity *= factor;
5019}
5020
1da177e4
LT
5021#ifdef CONFIG_SMP
5022/*
5023 * This is how migration works:
5024 *
70b97a7f 5025 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5026 * runqueue and wake up that CPU's migration thread.
5027 * 2) we down() the locked semaphore => thread blocks.
5028 * 3) migration thread wakes up (implicitly it forces the migrated
5029 * thread off the CPU)
5030 * 4) it gets the migration request and checks whether the migrated
5031 * task is still in the wrong runqueue.
5032 * 5) if it's in the wrong runqueue then the migration thread removes
5033 * it and puts it into the right queue.
5034 * 6) migration thread up()s the semaphore.
5035 * 7) we wake up and the migration is done.
5036 */
5037
5038/*
5039 * Change a given task's CPU affinity. Migrate the thread to a
5040 * proper CPU and schedule it away if the CPU it's executing on
5041 * is removed from the allowed bitmask.
5042 *
5043 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5044 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5045 * call is not atomic; no spinlocks may be held.
5046 */
36c8b586 5047int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5048{
70b97a7f 5049 struct migration_req req;
1da177e4 5050 unsigned long flags;
70b97a7f 5051 struct rq *rq;
48f24c4d 5052 int ret = 0;
1da177e4
LT
5053
5054 rq = task_rq_lock(p, &flags);
5055 if (!cpus_intersects(new_mask, cpu_online_map)) {
5056 ret = -EINVAL;
5057 goto out;
5058 }
5059
73fe6aae
GH
5060 if (p->sched_class->set_cpus_allowed)
5061 p->sched_class->set_cpus_allowed(p, &new_mask);
5062 else {
5063 p->cpus_allowed = new_mask;
5064 p->nr_cpus_allowed = cpus_weight(new_mask);
5065 }
5066
1da177e4
LT
5067 /* Can the task run on the task's current CPU? If so, we're done */
5068 if (cpu_isset(task_cpu(p), new_mask))
5069 goto out;
5070
5071 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5072 /* Need help from migration thread: drop lock and wait. */
5073 task_rq_unlock(rq, &flags);
5074 wake_up_process(rq->migration_thread);
5075 wait_for_completion(&req.done);
5076 tlb_migrate_finish(p->mm);
5077 return 0;
5078 }
5079out:
5080 task_rq_unlock(rq, &flags);
48f24c4d 5081
1da177e4
LT
5082 return ret;
5083}
1da177e4
LT
5084EXPORT_SYMBOL_GPL(set_cpus_allowed);
5085
5086/*
41a2d6cf 5087 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5088 * this because either it can't run here any more (set_cpus_allowed()
5089 * away from this CPU, or CPU going down), or because we're
5090 * attempting to rebalance this task on exec (sched_exec).
5091 *
5092 * So we race with normal scheduler movements, but that's OK, as long
5093 * as the task is no longer on this CPU.
efc30814
KK
5094 *
5095 * Returns non-zero if task was successfully migrated.
1da177e4 5096 */
efc30814 5097static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5098{
70b97a7f 5099 struct rq *rq_dest, *rq_src;
dd41f596 5100 int ret = 0, on_rq;
1da177e4
LT
5101
5102 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5103 return ret;
1da177e4
LT
5104
5105 rq_src = cpu_rq(src_cpu);
5106 rq_dest = cpu_rq(dest_cpu);
5107
5108 double_rq_lock(rq_src, rq_dest);
5109 /* Already moved. */
5110 if (task_cpu(p) != src_cpu)
5111 goto out;
5112 /* Affinity changed (again). */
5113 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5114 goto out;
5115
dd41f596 5116 on_rq = p->se.on_rq;
6e82a3be 5117 if (on_rq)
2e1cb74a 5118 deactivate_task(rq_src, p, 0);
6e82a3be 5119
1da177e4 5120 set_task_cpu(p, dest_cpu);
dd41f596
IM
5121 if (on_rq) {
5122 activate_task(rq_dest, p, 0);
5123 check_preempt_curr(rq_dest, p);
1da177e4 5124 }
efc30814 5125 ret = 1;
1da177e4
LT
5126out:
5127 double_rq_unlock(rq_src, rq_dest);
efc30814 5128 return ret;
1da177e4
LT
5129}
5130
5131/*
5132 * migration_thread - this is a highprio system thread that performs
5133 * thread migration by bumping thread off CPU then 'pushing' onto
5134 * another runqueue.
5135 */
95cdf3b7 5136static int migration_thread(void *data)
1da177e4 5137{
1da177e4 5138 int cpu = (long)data;
70b97a7f 5139 struct rq *rq;
1da177e4
LT
5140
5141 rq = cpu_rq(cpu);
5142 BUG_ON(rq->migration_thread != current);
5143
5144 set_current_state(TASK_INTERRUPTIBLE);
5145 while (!kthread_should_stop()) {
70b97a7f 5146 struct migration_req *req;
1da177e4 5147 struct list_head *head;
1da177e4 5148
1da177e4
LT
5149 spin_lock_irq(&rq->lock);
5150
5151 if (cpu_is_offline(cpu)) {
5152 spin_unlock_irq(&rq->lock);
5153 goto wait_to_die;
5154 }
5155
5156 if (rq->active_balance) {
5157 active_load_balance(rq, cpu);
5158 rq->active_balance = 0;
5159 }
5160
5161 head = &rq->migration_queue;
5162
5163 if (list_empty(head)) {
5164 spin_unlock_irq(&rq->lock);
5165 schedule();
5166 set_current_state(TASK_INTERRUPTIBLE);
5167 continue;
5168 }
70b97a7f 5169 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5170 list_del_init(head->next);
5171
674311d5
NP
5172 spin_unlock(&rq->lock);
5173 __migrate_task(req->task, cpu, req->dest_cpu);
5174 local_irq_enable();
1da177e4
LT
5175
5176 complete(&req->done);
5177 }
5178 __set_current_state(TASK_RUNNING);
5179 return 0;
5180
5181wait_to_die:
5182 /* Wait for kthread_stop */
5183 set_current_state(TASK_INTERRUPTIBLE);
5184 while (!kthread_should_stop()) {
5185 schedule();
5186 set_current_state(TASK_INTERRUPTIBLE);
5187 }
5188 __set_current_state(TASK_RUNNING);
5189 return 0;
5190}
5191
5192#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5193
5194static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5195{
5196 int ret;
5197
5198 local_irq_disable();
5199 ret = __migrate_task(p, src_cpu, dest_cpu);
5200 local_irq_enable();
5201 return ret;
5202}
5203
054b9108 5204/*
3a4fa0a2 5205 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5206 * NOTE: interrupts should be disabled by the caller
5207 */
48f24c4d 5208static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5209{
efc30814 5210 unsigned long flags;
1da177e4 5211 cpumask_t mask;
70b97a7f
IM
5212 struct rq *rq;
5213 int dest_cpu;
1da177e4 5214
3a5c359a
AK
5215 do {
5216 /* On same node? */
5217 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5218 cpus_and(mask, mask, p->cpus_allowed);
5219 dest_cpu = any_online_cpu(mask);
5220
5221 /* On any allowed CPU? */
5222 if (dest_cpu == NR_CPUS)
5223 dest_cpu = any_online_cpu(p->cpus_allowed);
5224
5225 /* No more Mr. Nice Guy. */
5226 if (dest_cpu == NR_CPUS) {
470fd646
CW
5227 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5228 /*
5229 * Try to stay on the same cpuset, where the
5230 * current cpuset may be a subset of all cpus.
5231 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5232 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5233 * called within calls to cpuset_lock/cpuset_unlock.
5234 */
3a5c359a 5235 rq = task_rq_lock(p, &flags);
470fd646 5236 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5237 dest_cpu = any_online_cpu(p->cpus_allowed);
5238 task_rq_unlock(rq, &flags);
1da177e4 5239
3a5c359a
AK
5240 /*
5241 * Don't tell them about moving exiting tasks or
5242 * kernel threads (both mm NULL), since they never
5243 * leave kernel.
5244 */
41a2d6cf 5245 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5246 printk(KERN_INFO "process %d (%s) no "
5247 "longer affine to cpu%d\n",
41a2d6cf
IM
5248 task_pid_nr(p), p->comm, dead_cpu);
5249 }
3a5c359a 5250 }
f7b4cddc 5251 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5252}
5253
5254/*
5255 * While a dead CPU has no uninterruptible tasks queued at this point,
5256 * it might still have a nonzero ->nr_uninterruptible counter, because
5257 * for performance reasons the counter is not stricly tracking tasks to
5258 * their home CPUs. So we just add the counter to another CPU's counter,
5259 * to keep the global sum constant after CPU-down:
5260 */
70b97a7f 5261static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5262{
70b97a7f 5263 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5264 unsigned long flags;
5265
5266 local_irq_save(flags);
5267 double_rq_lock(rq_src, rq_dest);
5268 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5269 rq_src->nr_uninterruptible = 0;
5270 double_rq_unlock(rq_src, rq_dest);
5271 local_irq_restore(flags);
5272}
5273
5274/* Run through task list and migrate tasks from the dead cpu. */
5275static void migrate_live_tasks(int src_cpu)
5276{
48f24c4d 5277 struct task_struct *p, *t;
1da177e4 5278
f7b4cddc 5279 read_lock(&tasklist_lock);
1da177e4 5280
48f24c4d
IM
5281 do_each_thread(t, p) {
5282 if (p == current)
1da177e4
LT
5283 continue;
5284
48f24c4d
IM
5285 if (task_cpu(p) == src_cpu)
5286 move_task_off_dead_cpu(src_cpu, p);
5287 } while_each_thread(t, p);
1da177e4 5288
f7b4cddc 5289 read_unlock(&tasklist_lock);
1da177e4
LT
5290}
5291
dd41f596
IM
5292/*
5293 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5294 * It does so by boosting its priority to highest possible.
5295 * Used by CPU offline code.
1da177e4
LT
5296 */
5297void sched_idle_next(void)
5298{
48f24c4d 5299 int this_cpu = smp_processor_id();
70b97a7f 5300 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5301 struct task_struct *p = rq->idle;
5302 unsigned long flags;
5303
5304 /* cpu has to be offline */
48f24c4d 5305 BUG_ON(cpu_online(this_cpu));
1da177e4 5306
48f24c4d
IM
5307 /*
5308 * Strictly not necessary since rest of the CPUs are stopped by now
5309 * and interrupts disabled on the current cpu.
1da177e4
LT
5310 */
5311 spin_lock_irqsave(&rq->lock, flags);
5312
dd41f596 5313 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5314
94bc9a7b
DA
5315 update_rq_clock(rq);
5316 activate_task(rq, p, 0);
1da177e4
LT
5317
5318 spin_unlock_irqrestore(&rq->lock, flags);
5319}
5320
48f24c4d
IM
5321/*
5322 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5323 * offline.
5324 */
5325void idle_task_exit(void)
5326{
5327 struct mm_struct *mm = current->active_mm;
5328
5329 BUG_ON(cpu_online(smp_processor_id()));
5330
5331 if (mm != &init_mm)
5332 switch_mm(mm, &init_mm, current);
5333 mmdrop(mm);
5334}
5335
054b9108 5336/* called under rq->lock with disabled interrupts */
36c8b586 5337static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5338{
70b97a7f 5339 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5340
5341 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5342 BUG_ON(!p->exit_state);
1da177e4
LT
5343
5344 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5345 BUG_ON(p->state == TASK_DEAD);
1da177e4 5346
48f24c4d 5347 get_task_struct(p);
1da177e4
LT
5348
5349 /*
5350 * Drop lock around migration; if someone else moves it,
41a2d6cf 5351 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5352 * fine.
5353 */
f7b4cddc 5354 spin_unlock_irq(&rq->lock);
48f24c4d 5355 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5356 spin_lock_irq(&rq->lock);
1da177e4 5357
48f24c4d 5358 put_task_struct(p);
1da177e4
LT
5359}
5360
5361/* release_task() removes task from tasklist, so we won't find dead tasks. */
5362static void migrate_dead_tasks(unsigned int dead_cpu)
5363{
70b97a7f 5364 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5365 struct task_struct *next;
48f24c4d 5366
dd41f596
IM
5367 for ( ; ; ) {
5368 if (!rq->nr_running)
5369 break;
a8e504d2 5370 update_rq_clock(rq);
ff95f3df 5371 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5372 if (!next)
5373 break;
5374 migrate_dead(dead_cpu, next);
e692ab53 5375
1da177e4
LT
5376 }
5377}
5378#endif /* CONFIG_HOTPLUG_CPU */
5379
e692ab53
NP
5380#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5381
5382static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5383 {
5384 .procname = "sched_domain",
c57baf1e 5385 .mode = 0555,
e0361851 5386 },
38605cae 5387 {0, },
e692ab53
NP
5388};
5389
5390static struct ctl_table sd_ctl_root[] = {
e0361851 5391 {
c57baf1e 5392 .ctl_name = CTL_KERN,
e0361851 5393 .procname = "kernel",
c57baf1e 5394 .mode = 0555,
e0361851
AD
5395 .child = sd_ctl_dir,
5396 },
38605cae 5397 {0, },
e692ab53
NP
5398};
5399
5400static struct ctl_table *sd_alloc_ctl_entry(int n)
5401{
5402 struct ctl_table *entry =
5cf9f062 5403 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5404
e692ab53
NP
5405 return entry;
5406}
5407
6382bc90
MM
5408static void sd_free_ctl_entry(struct ctl_table **tablep)
5409{
cd790076 5410 struct ctl_table *entry;
6382bc90 5411
cd790076
MM
5412 /*
5413 * In the intermediate directories, both the child directory and
5414 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5415 * will always be set. In the lowest directory the names are
cd790076
MM
5416 * static strings and all have proc handlers.
5417 */
5418 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5419 if (entry->child)
5420 sd_free_ctl_entry(&entry->child);
cd790076
MM
5421 if (entry->proc_handler == NULL)
5422 kfree(entry->procname);
5423 }
6382bc90
MM
5424
5425 kfree(*tablep);
5426 *tablep = NULL;
5427}
5428
e692ab53 5429static void
e0361851 5430set_table_entry(struct ctl_table *entry,
e692ab53
NP
5431 const char *procname, void *data, int maxlen,
5432 mode_t mode, proc_handler *proc_handler)
5433{
e692ab53
NP
5434 entry->procname = procname;
5435 entry->data = data;
5436 entry->maxlen = maxlen;
5437 entry->mode = mode;
5438 entry->proc_handler = proc_handler;
5439}
5440
5441static struct ctl_table *
5442sd_alloc_ctl_domain_table(struct sched_domain *sd)
5443{
ace8b3d6 5444 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5445
ad1cdc1d
MM
5446 if (table == NULL)
5447 return NULL;
5448
e0361851 5449 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5450 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5451 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5452 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5453 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5454 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5455 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5456 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5457 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5458 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5459 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5460 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5461 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5462 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5463 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5464 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5465 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5466 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5467 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5468 &sd->cache_nice_tries,
5469 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5470 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5471 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5472 /* &table[11] is terminator */
e692ab53
NP
5473
5474 return table;
5475}
5476
9a4e7159 5477static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5478{
5479 struct ctl_table *entry, *table;
5480 struct sched_domain *sd;
5481 int domain_num = 0, i;
5482 char buf[32];
5483
5484 for_each_domain(cpu, sd)
5485 domain_num++;
5486 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5487 if (table == NULL)
5488 return NULL;
e692ab53
NP
5489
5490 i = 0;
5491 for_each_domain(cpu, sd) {
5492 snprintf(buf, 32, "domain%d", i);
e692ab53 5493 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5494 entry->mode = 0555;
e692ab53
NP
5495 entry->child = sd_alloc_ctl_domain_table(sd);
5496 entry++;
5497 i++;
5498 }
5499 return table;
5500}
5501
5502static struct ctl_table_header *sd_sysctl_header;
6382bc90 5503static void register_sched_domain_sysctl(void)
e692ab53
NP
5504{
5505 int i, cpu_num = num_online_cpus();
5506 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5507 char buf[32];
5508
7378547f
MM
5509 WARN_ON(sd_ctl_dir[0].child);
5510 sd_ctl_dir[0].child = entry;
5511
ad1cdc1d
MM
5512 if (entry == NULL)
5513 return;
5514
97b6ea7b 5515 for_each_online_cpu(i) {
e692ab53 5516 snprintf(buf, 32, "cpu%d", i);
e692ab53 5517 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5518 entry->mode = 0555;
e692ab53 5519 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5520 entry++;
e692ab53 5521 }
7378547f
MM
5522
5523 WARN_ON(sd_sysctl_header);
e692ab53
NP
5524 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5525}
6382bc90 5526
7378547f 5527/* may be called multiple times per register */
6382bc90
MM
5528static void unregister_sched_domain_sysctl(void)
5529{
7378547f
MM
5530 if (sd_sysctl_header)
5531 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5532 sd_sysctl_header = NULL;
7378547f
MM
5533 if (sd_ctl_dir[0].child)
5534 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5535}
e692ab53 5536#else
6382bc90
MM
5537static void register_sched_domain_sysctl(void)
5538{
5539}
5540static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5541{
5542}
5543#endif
5544
1da177e4
LT
5545/*
5546 * migration_call - callback that gets triggered when a CPU is added.
5547 * Here we can start up the necessary migration thread for the new CPU.
5548 */
48f24c4d
IM
5549static int __cpuinit
5550migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5551{
1da177e4 5552 struct task_struct *p;
48f24c4d 5553 int cpu = (long)hcpu;
1da177e4 5554 unsigned long flags;
70b97a7f 5555 struct rq *rq;
1da177e4
LT
5556
5557 switch (action) {
5be9361c 5558
1da177e4 5559 case CPU_UP_PREPARE:
8bb78442 5560 case CPU_UP_PREPARE_FROZEN:
dd41f596 5561 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5562 if (IS_ERR(p))
5563 return NOTIFY_BAD;
1da177e4
LT
5564 kthread_bind(p, cpu);
5565 /* Must be high prio: stop_machine expects to yield to it. */
5566 rq = task_rq_lock(p, &flags);
dd41f596 5567 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5568 task_rq_unlock(rq, &flags);
5569 cpu_rq(cpu)->migration_thread = p;
5570 break;
48f24c4d 5571
1da177e4 5572 case CPU_ONLINE:
8bb78442 5573 case CPU_ONLINE_FROZEN:
3a4fa0a2 5574 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5575 wake_up_process(cpu_rq(cpu)->migration_thread);
57d885fe
GH
5576
5577 /* Update our root-domain */
5578 rq = cpu_rq(cpu);
5579 spin_lock_irqsave(&rq->lock, flags);
5580 if (rq->rd) {
5581 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5582 cpu_set(cpu, rq->rd->online);
5583 }
5584 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5585 break;
48f24c4d 5586
1da177e4
LT
5587#ifdef CONFIG_HOTPLUG_CPU
5588 case CPU_UP_CANCELED:
8bb78442 5589 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5590 if (!cpu_rq(cpu)->migration_thread)
5591 break;
41a2d6cf 5592 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5593 kthread_bind(cpu_rq(cpu)->migration_thread,
5594 any_online_cpu(cpu_online_map));
1da177e4
LT
5595 kthread_stop(cpu_rq(cpu)->migration_thread);
5596 cpu_rq(cpu)->migration_thread = NULL;
5597 break;
48f24c4d 5598
1da177e4 5599 case CPU_DEAD:
8bb78442 5600 case CPU_DEAD_FROZEN:
470fd646 5601 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5602 migrate_live_tasks(cpu);
5603 rq = cpu_rq(cpu);
5604 kthread_stop(rq->migration_thread);
5605 rq->migration_thread = NULL;
5606 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5607 spin_lock_irq(&rq->lock);
a8e504d2 5608 update_rq_clock(rq);
2e1cb74a 5609 deactivate_task(rq, rq->idle, 0);
1da177e4 5610 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5611 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5612 rq->idle->sched_class = &idle_sched_class;
1da177e4 5613 migrate_dead_tasks(cpu);
d2da272a 5614 spin_unlock_irq(&rq->lock);
470fd646 5615 cpuset_unlock();
1da177e4
LT
5616 migrate_nr_uninterruptible(rq);
5617 BUG_ON(rq->nr_running != 0);
5618
41a2d6cf
IM
5619 /*
5620 * No need to migrate the tasks: it was best-effort if
5621 * they didn't take sched_hotcpu_mutex. Just wake up
5622 * the requestors.
5623 */
1da177e4
LT
5624 spin_lock_irq(&rq->lock);
5625 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5626 struct migration_req *req;
5627
1da177e4 5628 req = list_entry(rq->migration_queue.next,
70b97a7f 5629 struct migration_req, list);
1da177e4
LT
5630 list_del_init(&req->list);
5631 complete(&req->done);
5632 }
5633 spin_unlock_irq(&rq->lock);
5634 break;
57d885fe
GH
5635
5636 case CPU_DOWN_PREPARE:
5637 /* Update our root-domain */
5638 rq = cpu_rq(cpu);
5639 spin_lock_irqsave(&rq->lock, flags);
5640 if (rq->rd) {
5641 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5642 cpu_clear(cpu, rq->rd->online);
5643 }
5644 spin_unlock_irqrestore(&rq->lock, flags);
5645 break;
1da177e4
LT
5646#endif
5647 }
5648 return NOTIFY_OK;
5649}
5650
5651/* Register at highest priority so that task migration (migrate_all_tasks)
5652 * happens before everything else.
5653 */
26c2143b 5654static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5655 .notifier_call = migration_call,
5656 .priority = 10
5657};
5658
e6fe6649 5659void __init migration_init(void)
1da177e4
LT
5660{
5661 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5662 int err;
48f24c4d
IM
5663
5664 /* Start one for the boot CPU: */
07dccf33
AM
5665 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5666 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5667 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5668 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5669}
5670#endif
5671
5672#ifdef CONFIG_SMP
476f3534
CL
5673
5674/* Number of possible processor ids */
5675int nr_cpu_ids __read_mostly = NR_CPUS;
5676EXPORT_SYMBOL(nr_cpu_ids);
5677
3e9830dc 5678#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5679
5680static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5681{
4dcf6aff
IM
5682 struct sched_group *group = sd->groups;
5683 cpumask_t groupmask;
5684 char str[NR_CPUS];
1da177e4 5685
4dcf6aff
IM
5686 cpumask_scnprintf(str, NR_CPUS, sd->span);
5687 cpus_clear(groupmask);
5688
5689 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5690
5691 if (!(sd->flags & SD_LOAD_BALANCE)) {
5692 printk("does not load-balance\n");
5693 if (sd->parent)
5694 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5695 " has parent");
5696 return -1;
41c7ce9a
NP
5697 }
5698
4dcf6aff
IM
5699 printk(KERN_CONT "span %s\n", str);
5700
5701 if (!cpu_isset(cpu, sd->span)) {
5702 printk(KERN_ERR "ERROR: domain->span does not contain "
5703 "CPU%d\n", cpu);
5704 }
5705 if (!cpu_isset(cpu, group->cpumask)) {
5706 printk(KERN_ERR "ERROR: domain->groups does not contain"
5707 " CPU%d\n", cpu);
5708 }
1da177e4 5709
4dcf6aff 5710 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5711 do {
4dcf6aff
IM
5712 if (!group) {
5713 printk("\n");
5714 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5715 break;
5716 }
5717
4dcf6aff
IM
5718 if (!group->__cpu_power) {
5719 printk(KERN_CONT "\n");
5720 printk(KERN_ERR "ERROR: domain->cpu_power not "
5721 "set\n");
5722 break;
5723 }
1da177e4 5724
4dcf6aff
IM
5725 if (!cpus_weight(group->cpumask)) {
5726 printk(KERN_CONT "\n");
5727 printk(KERN_ERR "ERROR: empty group\n");
5728 break;
5729 }
1da177e4 5730
4dcf6aff
IM
5731 if (cpus_intersects(groupmask, group->cpumask)) {
5732 printk(KERN_CONT "\n");
5733 printk(KERN_ERR "ERROR: repeated CPUs\n");
5734 break;
5735 }
1da177e4 5736
4dcf6aff 5737 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5738
4dcf6aff
IM
5739 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5740 printk(KERN_CONT " %s", str);
1da177e4 5741
4dcf6aff
IM
5742 group = group->next;
5743 } while (group != sd->groups);
5744 printk(KERN_CONT "\n");
1da177e4 5745
4dcf6aff
IM
5746 if (!cpus_equal(sd->span, groupmask))
5747 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5748
4dcf6aff
IM
5749 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5750 printk(KERN_ERR "ERROR: parent span is not a superset "
5751 "of domain->span\n");
5752 return 0;
5753}
1da177e4 5754
4dcf6aff
IM
5755static void sched_domain_debug(struct sched_domain *sd, int cpu)
5756{
5757 int level = 0;
1da177e4 5758
4dcf6aff
IM
5759 if (!sd) {
5760 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5761 return;
5762 }
1da177e4 5763
4dcf6aff
IM
5764 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5765
5766 for (;;) {
5767 if (sched_domain_debug_one(sd, cpu, level))
5768 break;
1da177e4
LT
5769 level++;
5770 sd = sd->parent;
33859f7f 5771 if (!sd)
4dcf6aff
IM
5772 break;
5773 }
1da177e4
LT
5774}
5775#else
48f24c4d 5776# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5777#endif
5778
1a20ff27 5779static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5780{
5781 if (cpus_weight(sd->span) == 1)
5782 return 1;
5783
5784 /* Following flags need at least 2 groups */
5785 if (sd->flags & (SD_LOAD_BALANCE |
5786 SD_BALANCE_NEWIDLE |
5787 SD_BALANCE_FORK |
89c4710e
SS
5788 SD_BALANCE_EXEC |
5789 SD_SHARE_CPUPOWER |
5790 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5791 if (sd->groups != sd->groups->next)
5792 return 0;
5793 }
5794
5795 /* Following flags don't use groups */
5796 if (sd->flags & (SD_WAKE_IDLE |
5797 SD_WAKE_AFFINE |
5798 SD_WAKE_BALANCE))
5799 return 0;
5800
5801 return 1;
5802}
5803
48f24c4d
IM
5804static int
5805sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5806{
5807 unsigned long cflags = sd->flags, pflags = parent->flags;
5808
5809 if (sd_degenerate(parent))
5810 return 1;
5811
5812 if (!cpus_equal(sd->span, parent->span))
5813 return 0;
5814
5815 /* Does parent contain flags not in child? */
5816 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5817 if (cflags & SD_WAKE_AFFINE)
5818 pflags &= ~SD_WAKE_BALANCE;
5819 /* Flags needing groups don't count if only 1 group in parent */
5820 if (parent->groups == parent->groups->next) {
5821 pflags &= ~(SD_LOAD_BALANCE |
5822 SD_BALANCE_NEWIDLE |
5823 SD_BALANCE_FORK |
89c4710e
SS
5824 SD_BALANCE_EXEC |
5825 SD_SHARE_CPUPOWER |
5826 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5827 }
5828 if (~cflags & pflags)
5829 return 0;
5830
5831 return 1;
5832}
5833
57d885fe
GH
5834static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5835{
5836 unsigned long flags;
5837 const struct sched_class *class;
5838
5839 spin_lock_irqsave(&rq->lock, flags);
5840
5841 if (rq->rd) {
5842 struct root_domain *old_rd = rq->rd;
5843
5844 for (class = sched_class_highest; class; class = class->next)
5845 if (class->leave_domain)
5846 class->leave_domain(rq);
5847
5848 if (atomic_dec_and_test(&old_rd->refcount))
5849 kfree(old_rd);
5850 }
5851
5852 atomic_inc(&rd->refcount);
5853 rq->rd = rd;
5854
5855 for (class = sched_class_highest; class; class = class->next)
5856 if (class->join_domain)
5857 class->join_domain(rq);
5858
5859 spin_unlock_irqrestore(&rq->lock, flags);
5860}
5861
5862static void init_rootdomain(struct root_domain *rd, const cpumask_t *map)
5863{
5864 memset(rd, 0, sizeof(*rd));
5865
5866 rd->span = *map;
5867 cpus_and(rd->online, rd->span, cpu_online_map);
5868}
5869
5870static void init_defrootdomain(void)
5871{
5872 cpumask_t cpus = CPU_MASK_ALL;
5873
5874 init_rootdomain(&def_root_domain, &cpus);
5875 atomic_set(&def_root_domain.refcount, 1);
5876}
5877
5878static struct root_domain *alloc_rootdomain(const cpumask_t *map)
5879{
5880 struct root_domain *rd;
5881
5882 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5883 if (!rd)
5884 return NULL;
5885
5886 init_rootdomain(rd, map);
5887
5888 return rd;
5889}
5890
1da177e4
LT
5891/*
5892 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5893 * hold the hotplug lock.
5894 */
57d885fe
GH
5895static void cpu_attach_domain(struct sched_domain *sd,
5896 struct root_domain *rd, int cpu)
1da177e4 5897{
70b97a7f 5898 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5899 struct sched_domain *tmp;
5900
5901 /* Remove the sched domains which do not contribute to scheduling. */
5902 for (tmp = sd; tmp; tmp = tmp->parent) {
5903 struct sched_domain *parent = tmp->parent;
5904 if (!parent)
5905 break;
1a848870 5906 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5907 tmp->parent = parent->parent;
1a848870
SS
5908 if (parent->parent)
5909 parent->parent->child = tmp;
5910 }
245af2c7
SS
5911 }
5912
1a848870 5913 if (sd && sd_degenerate(sd)) {
245af2c7 5914 sd = sd->parent;
1a848870
SS
5915 if (sd)
5916 sd->child = NULL;
5917 }
1da177e4
LT
5918
5919 sched_domain_debug(sd, cpu);
5920
57d885fe 5921 rq_attach_root(rq, rd);
674311d5 5922 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5923}
5924
5925/* cpus with isolated domains */
67af63a6 5926static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5927
5928/* Setup the mask of cpus configured for isolated domains */
5929static int __init isolated_cpu_setup(char *str)
5930{
5931 int ints[NR_CPUS], i;
5932
5933 str = get_options(str, ARRAY_SIZE(ints), ints);
5934 cpus_clear(cpu_isolated_map);
5935 for (i = 1; i <= ints[0]; i++)
5936 if (ints[i] < NR_CPUS)
5937 cpu_set(ints[i], cpu_isolated_map);
5938 return 1;
5939}
5940
8927f494 5941__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5942
5943/*
6711cab4
SS
5944 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5945 * to a function which identifies what group(along with sched group) a CPU
5946 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5947 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5948 *
5949 * init_sched_build_groups will build a circular linked list of the groups
5950 * covered by the given span, and will set each group's ->cpumask correctly,
5951 * and ->cpu_power to 0.
5952 */
a616058b 5953static void
6711cab4
SS
5954init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5955 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5956 struct sched_group **sg))
1da177e4
LT
5957{
5958 struct sched_group *first = NULL, *last = NULL;
5959 cpumask_t covered = CPU_MASK_NONE;
5960 int i;
5961
5962 for_each_cpu_mask(i, span) {
6711cab4
SS
5963 struct sched_group *sg;
5964 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5965 int j;
5966
5967 if (cpu_isset(i, covered))
5968 continue;
5969
5970 sg->cpumask = CPU_MASK_NONE;
5517d86b 5971 sg->__cpu_power = 0;
1da177e4
LT
5972
5973 for_each_cpu_mask(j, span) {
6711cab4 5974 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5975 continue;
5976
5977 cpu_set(j, covered);
5978 cpu_set(j, sg->cpumask);
5979 }
5980 if (!first)
5981 first = sg;
5982 if (last)
5983 last->next = sg;
5984 last = sg;
5985 }
5986 last->next = first;
5987}
5988
9c1cfda2 5989#define SD_NODES_PER_DOMAIN 16
1da177e4 5990
9c1cfda2 5991#ifdef CONFIG_NUMA
198e2f18 5992
9c1cfda2
JH
5993/**
5994 * find_next_best_node - find the next node to include in a sched_domain
5995 * @node: node whose sched_domain we're building
5996 * @used_nodes: nodes already in the sched_domain
5997 *
41a2d6cf 5998 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5999 * finds the closest node not already in the @used_nodes map.
6000 *
6001 * Should use nodemask_t.
6002 */
6003static int find_next_best_node(int node, unsigned long *used_nodes)
6004{
6005 int i, n, val, min_val, best_node = 0;
6006
6007 min_val = INT_MAX;
6008
6009 for (i = 0; i < MAX_NUMNODES; i++) {
6010 /* Start at @node */
6011 n = (node + i) % MAX_NUMNODES;
6012
6013 if (!nr_cpus_node(n))
6014 continue;
6015
6016 /* Skip already used nodes */
6017 if (test_bit(n, used_nodes))
6018 continue;
6019
6020 /* Simple min distance search */
6021 val = node_distance(node, n);
6022
6023 if (val < min_val) {
6024 min_val = val;
6025 best_node = n;
6026 }
6027 }
6028
6029 set_bit(best_node, used_nodes);
6030 return best_node;
6031}
6032
6033/**
6034 * sched_domain_node_span - get a cpumask for a node's sched_domain
6035 * @node: node whose cpumask we're constructing
6036 * @size: number of nodes to include in this span
6037 *
41a2d6cf 6038 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6039 * should be one that prevents unnecessary balancing, but also spreads tasks
6040 * out optimally.
6041 */
6042static cpumask_t sched_domain_node_span(int node)
6043{
9c1cfda2 6044 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6045 cpumask_t span, nodemask;
6046 int i;
9c1cfda2
JH
6047
6048 cpus_clear(span);
6049 bitmap_zero(used_nodes, MAX_NUMNODES);
6050
6051 nodemask = node_to_cpumask(node);
6052 cpus_or(span, span, nodemask);
6053 set_bit(node, used_nodes);
6054
6055 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6056 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6057
9c1cfda2
JH
6058 nodemask = node_to_cpumask(next_node);
6059 cpus_or(span, span, nodemask);
6060 }
6061
6062 return span;
6063}
6064#endif
6065
5c45bf27 6066int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6067
9c1cfda2 6068/*
48f24c4d 6069 * SMT sched-domains:
9c1cfda2 6070 */
1da177e4
LT
6071#ifdef CONFIG_SCHED_SMT
6072static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6073static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6074
41a2d6cf
IM
6075static int
6076cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6077{
6711cab4
SS
6078 if (sg)
6079 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6080 return cpu;
6081}
6082#endif
6083
48f24c4d
IM
6084/*
6085 * multi-core sched-domains:
6086 */
1e9f28fa
SS
6087#ifdef CONFIG_SCHED_MC
6088static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6089static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6090#endif
6091
6092#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6093static int
6094cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6095{
6711cab4 6096 int group;
d5a7430d 6097 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6098 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6099 group = first_cpu(mask);
6100 if (sg)
6101 *sg = &per_cpu(sched_group_core, group);
6102 return group;
1e9f28fa
SS
6103}
6104#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6105static int
6106cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6107{
6711cab4
SS
6108 if (sg)
6109 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6110 return cpu;
6111}
6112#endif
6113
1da177e4 6114static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6115static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6116
41a2d6cf
IM
6117static int
6118cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6119{
6711cab4 6120 int group;
48f24c4d 6121#ifdef CONFIG_SCHED_MC
1e9f28fa 6122 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6123 cpus_and(mask, mask, *cpu_map);
6711cab4 6124 group = first_cpu(mask);
1e9f28fa 6125#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6126 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6127 cpus_and(mask, mask, *cpu_map);
6711cab4 6128 group = first_cpu(mask);
1da177e4 6129#else
6711cab4 6130 group = cpu;
1da177e4 6131#endif
6711cab4
SS
6132 if (sg)
6133 *sg = &per_cpu(sched_group_phys, group);
6134 return group;
1da177e4
LT
6135}
6136
6137#ifdef CONFIG_NUMA
1da177e4 6138/*
9c1cfda2
JH
6139 * The init_sched_build_groups can't handle what we want to do with node
6140 * groups, so roll our own. Now each node has its own list of groups which
6141 * gets dynamically allocated.
1da177e4 6142 */
9c1cfda2 6143static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6144static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6145
9c1cfda2 6146static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6147static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6148
6711cab4
SS
6149static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6150 struct sched_group **sg)
9c1cfda2 6151{
6711cab4
SS
6152 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6153 int group;
6154
6155 cpus_and(nodemask, nodemask, *cpu_map);
6156 group = first_cpu(nodemask);
6157
6158 if (sg)
6159 *sg = &per_cpu(sched_group_allnodes, group);
6160 return group;
1da177e4 6161}
6711cab4 6162
08069033
SS
6163static void init_numa_sched_groups_power(struct sched_group *group_head)
6164{
6165 struct sched_group *sg = group_head;
6166 int j;
6167
6168 if (!sg)
6169 return;
3a5c359a
AK
6170 do {
6171 for_each_cpu_mask(j, sg->cpumask) {
6172 struct sched_domain *sd;
08069033 6173
3a5c359a
AK
6174 sd = &per_cpu(phys_domains, j);
6175 if (j != first_cpu(sd->groups->cpumask)) {
6176 /*
6177 * Only add "power" once for each
6178 * physical package.
6179 */
6180 continue;
6181 }
08069033 6182
3a5c359a
AK
6183 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6184 }
6185 sg = sg->next;
6186 } while (sg != group_head);
08069033 6187}
1da177e4
LT
6188#endif
6189
a616058b 6190#ifdef CONFIG_NUMA
51888ca2
SV
6191/* Free memory allocated for various sched_group structures */
6192static void free_sched_groups(const cpumask_t *cpu_map)
6193{
a616058b 6194 int cpu, i;
51888ca2
SV
6195
6196 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6197 struct sched_group **sched_group_nodes
6198 = sched_group_nodes_bycpu[cpu];
6199
51888ca2
SV
6200 if (!sched_group_nodes)
6201 continue;
6202
6203 for (i = 0; i < MAX_NUMNODES; i++) {
6204 cpumask_t nodemask = node_to_cpumask(i);
6205 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6206
6207 cpus_and(nodemask, nodemask, *cpu_map);
6208 if (cpus_empty(nodemask))
6209 continue;
6210
6211 if (sg == NULL)
6212 continue;
6213 sg = sg->next;
6214next_sg:
6215 oldsg = sg;
6216 sg = sg->next;
6217 kfree(oldsg);
6218 if (oldsg != sched_group_nodes[i])
6219 goto next_sg;
6220 }
6221 kfree(sched_group_nodes);
6222 sched_group_nodes_bycpu[cpu] = NULL;
6223 }
51888ca2 6224}
a616058b
SS
6225#else
6226static void free_sched_groups(const cpumask_t *cpu_map)
6227{
6228}
6229#endif
51888ca2 6230
89c4710e
SS
6231/*
6232 * Initialize sched groups cpu_power.
6233 *
6234 * cpu_power indicates the capacity of sched group, which is used while
6235 * distributing the load between different sched groups in a sched domain.
6236 * Typically cpu_power for all the groups in a sched domain will be same unless
6237 * there are asymmetries in the topology. If there are asymmetries, group
6238 * having more cpu_power will pickup more load compared to the group having
6239 * less cpu_power.
6240 *
6241 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6242 * the maximum number of tasks a group can handle in the presence of other idle
6243 * or lightly loaded groups in the same sched domain.
6244 */
6245static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6246{
6247 struct sched_domain *child;
6248 struct sched_group *group;
6249
6250 WARN_ON(!sd || !sd->groups);
6251
6252 if (cpu != first_cpu(sd->groups->cpumask))
6253 return;
6254
6255 child = sd->child;
6256
5517d86b
ED
6257 sd->groups->__cpu_power = 0;
6258
89c4710e
SS
6259 /*
6260 * For perf policy, if the groups in child domain share resources
6261 * (for example cores sharing some portions of the cache hierarchy
6262 * or SMT), then set this domain groups cpu_power such that each group
6263 * can handle only one task, when there are other idle groups in the
6264 * same sched domain.
6265 */
6266 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6267 (child->flags &
6268 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6269 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6270 return;
6271 }
6272
89c4710e
SS
6273 /*
6274 * add cpu_power of each child group to this groups cpu_power
6275 */
6276 group = child->groups;
6277 do {
5517d86b 6278 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6279 group = group->next;
6280 } while (group != child->groups);
6281}
6282
1da177e4 6283/*
1a20ff27
DG
6284 * Build sched domains for a given set of cpus and attach the sched domains
6285 * to the individual cpus
1da177e4 6286 */
51888ca2 6287static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6288{
6289 int i;
57d885fe 6290 struct root_domain *rd;
d1b55138
JH
6291#ifdef CONFIG_NUMA
6292 struct sched_group **sched_group_nodes = NULL;
6711cab4 6293 int sd_allnodes = 0;
d1b55138
JH
6294
6295 /*
6296 * Allocate the per-node list of sched groups
6297 */
5cf9f062 6298 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6299 GFP_KERNEL);
d1b55138
JH
6300 if (!sched_group_nodes) {
6301 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6302 return -ENOMEM;
d1b55138
JH
6303 }
6304 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6305#endif
1da177e4 6306
57d885fe
GH
6307 rd = alloc_rootdomain(cpu_map);
6308 if (!rd) {
6309 printk(KERN_WARNING "Cannot alloc root domain\n");
6310 return -ENOMEM;
6311 }
6312
1da177e4 6313 /*
1a20ff27 6314 * Set up domains for cpus specified by the cpu_map.
1da177e4 6315 */
1a20ff27 6316 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6317 struct sched_domain *sd = NULL, *p;
6318 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6319
1a20ff27 6320 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6321
6322#ifdef CONFIG_NUMA
dd41f596
IM
6323 if (cpus_weight(*cpu_map) >
6324 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6325 sd = &per_cpu(allnodes_domains, i);
6326 *sd = SD_ALLNODES_INIT;
6327 sd->span = *cpu_map;
6711cab4 6328 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6329 p = sd;
6711cab4 6330 sd_allnodes = 1;
9c1cfda2
JH
6331 } else
6332 p = NULL;
6333
1da177e4 6334 sd = &per_cpu(node_domains, i);
1da177e4 6335 *sd = SD_NODE_INIT;
9c1cfda2
JH
6336 sd->span = sched_domain_node_span(cpu_to_node(i));
6337 sd->parent = p;
1a848870
SS
6338 if (p)
6339 p->child = sd;
9c1cfda2 6340 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6341#endif
6342
6343 p = sd;
6344 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6345 *sd = SD_CPU_INIT;
6346 sd->span = nodemask;
6347 sd->parent = p;
1a848870
SS
6348 if (p)
6349 p->child = sd;
6711cab4 6350 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6351
1e9f28fa
SS
6352#ifdef CONFIG_SCHED_MC
6353 p = sd;
6354 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6355 *sd = SD_MC_INIT;
6356 sd->span = cpu_coregroup_map(i);
6357 cpus_and(sd->span, sd->span, *cpu_map);
6358 sd->parent = p;
1a848870 6359 p->child = sd;
6711cab4 6360 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6361#endif
6362
1da177e4
LT
6363#ifdef CONFIG_SCHED_SMT
6364 p = sd;
6365 sd = &per_cpu(cpu_domains, i);
1da177e4 6366 *sd = SD_SIBLING_INIT;
d5a7430d 6367 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6368 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6369 sd->parent = p;
1a848870 6370 p->child = sd;
6711cab4 6371 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6372#endif
6373 }
6374
6375#ifdef CONFIG_SCHED_SMT
6376 /* Set up CPU (sibling) groups */
9c1cfda2 6377 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6378 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6379 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6380 if (i != first_cpu(this_sibling_map))
6381 continue;
6382
dd41f596
IM
6383 init_sched_build_groups(this_sibling_map, cpu_map,
6384 &cpu_to_cpu_group);
1da177e4
LT
6385 }
6386#endif
6387
1e9f28fa
SS
6388#ifdef CONFIG_SCHED_MC
6389 /* Set up multi-core groups */
6390 for_each_cpu_mask(i, *cpu_map) {
6391 cpumask_t this_core_map = cpu_coregroup_map(i);
6392 cpus_and(this_core_map, this_core_map, *cpu_map);
6393 if (i != first_cpu(this_core_map))
6394 continue;
dd41f596
IM
6395 init_sched_build_groups(this_core_map, cpu_map,
6396 &cpu_to_core_group);
1e9f28fa
SS
6397 }
6398#endif
6399
1da177e4
LT
6400 /* Set up physical groups */
6401 for (i = 0; i < MAX_NUMNODES; i++) {
6402 cpumask_t nodemask = node_to_cpumask(i);
6403
1a20ff27 6404 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6405 if (cpus_empty(nodemask))
6406 continue;
6407
6711cab4 6408 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6409 }
6410
6411#ifdef CONFIG_NUMA
6412 /* Set up node groups */
6711cab4 6413 if (sd_allnodes)
dd41f596
IM
6414 init_sched_build_groups(*cpu_map, cpu_map,
6415 &cpu_to_allnodes_group);
9c1cfda2
JH
6416
6417 for (i = 0; i < MAX_NUMNODES; i++) {
6418 /* Set up node groups */
6419 struct sched_group *sg, *prev;
6420 cpumask_t nodemask = node_to_cpumask(i);
6421 cpumask_t domainspan;
6422 cpumask_t covered = CPU_MASK_NONE;
6423 int j;
6424
6425 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6426 if (cpus_empty(nodemask)) {
6427 sched_group_nodes[i] = NULL;
9c1cfda2 6428 continue;
d1b55138 6429 }
9c1cfda2
JH
6430
6431 domainspan = sched_domain_node_span(i);
6432 cpus_and(domainspan, domainspan, *cpu_map);
6433
15f0b676 6434 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6435 if (!sg) {
6436 printk(KERN_WARNING "Can not alloc domain group for "
6437 "node %d\n", i);
6438 goto error;
6439 }
9c1cfda2
JH
6440 sched_group_nodes[i] = sg;
6441 for_each_cpu_mask(j, nodemask) {
6442 struct sched_domain *sd;
9761eea8 6443
9c1cfda2
JH
6444 sd = &per_cpu(node_domains, j);
6445 sd->groups = sg;
9c1cfda2 6446 }
5517d86b 6447 sg->__cpu_power = 0;
9c1cfda2 6448 sg->cpumask = nodemask;
51888ca2 6449 sg->next = sg;
9c1cfda2
JH
6450 cpus_or(covered, covered, nodemask);
6451 prev = sg;
6452
6453 for (j = 0; j < MAX_NUMNODES; j++) {
6454 cpumask_t tmp, notcovered;
6455 int n = (i + j) % MAX_NUMNODES;
6456
6457 cpus_complement(notcovered, covered);
6458 cpus_and(tmp, notcovered, *cpu_map);
6459 cpus_and(tmp, tmp, domainspan);
6460 if (cpus_empty(tmp))
6461 break;
6462
6463 nodemask = node_to_cpumask(n);
6464 cpus_and(tmp, tmp, nodemask);
6465 if (cpus_empty(tmp))
6466 continue;
6467
15f0b676
SV
6468 sg = kmalloc_node(sizeof(struct sched_group),
6469 GFP_KERNEL, i);
9c1cfda2
JH
6470 if (!sg) {
6471 printk(KERN_WARNING
6472 "Can not alloc domain group for node %d\n", j);
51888ca2 6473 goto error;
9c1cfda2 6474 }
5517d86b 6475 sg->__cpu_power = 0;
9c1cfda2 6476 sg->cpumask = tmp;
51888ca2 6477 sg->next = prev->next;
9c1cfda2
JH
6478 cpus_or(covered, covered, tmp);
6479 prev->next = sg;
6480 prev = sg;
6481 }
9c1cfda2 6482 }
1da177e4
LT
6483#endif
6484
6485 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6486#ifdef CONFIG_SCHED_SMT
1a20ff27 6487 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6488 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6489
89c4710e 6490 init_sched_groups_power(i, sd);
5c45bf27 6491 }
1da177e4 6492#endif
1e9f28fa 6493#ifdef CONFIG_SCHED_MC
5c45bf27 6494 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6495 struct sched_domain *sd = &per_cpu(core_domains, i);
6496
89c4710e 6497 init_sched_groups_power(i, sd);
5c45bf27
SS
6498 }
6499#endif
1e9f28fa 6500
5c45bf27 6501 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6502 struct sched_domain *sd = &per_cpu(phys_domains, i);
6503
89c4710e 6504 init_sched_groups_power(i, sd);
1da177e4
LT
6505 }
6506
9c1cfda2 6507#ifdef CONFIG_NUMA
08069033
SS
6508 for (i = 0; i < MAX_NUMNODES; i++)
6509 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6510
6711cab4
SS
6511 if (sd_allnodes) {
6512 struct sched_group *sg;
f712c0c7 6513
6711cab4 6514 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6515 init_numa_sched_groups_power(sg);
6516 }
9c1cfda2
JH
6517#endif
6518
1da177e4 6519 /* Attach the domains */
1a20ff27 6520 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6521 struct sched_domain *sd;
6522#ifdef CONFIG_SCHED_SMT
6523 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6524#elif defined(CONFIG_SCHED_MC)
6525 sd = &per_cpu(core_domains, i);
1da177e4
LT
6526#else
6527 sd = &per_cpu(phys_domains, i);
6528#endif
57d885fe 6529 cpu_attach_domain(sd, rd, i);
1da177e4 6530 }
51888ca2
SV
6531
6532 return 0;
6533
a616058b 6534#ifdef CONFIG_NUMA
51888ca2
SV
6535error:
6536 free_sched_groups(cpu_map);
6537 return -ENOMEM;
a616058b 6538#endif
1da177e4 6539}
029190c5
PJ
6540
6541static cpumask_t *doms_cur; /* current sched domains */
6542static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6543
6544/*
6545 * Special case: If a kmalloc of a doms_cur partition (array of
6546 * cpumask_t) fails, then fallback to a single sched domain,
6547 * as determined by the single cpumask_t fallback_doms.
6548 */
6549static cpumask_t fallback_doms;
6550
1a20ff27 6551/*
41a2d6cf 6552 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6553 * For now this just excludes isolated cpus, but could be used to
6554 * exclude other special cases in the future.
1a20ff27 6555 */
51888ca2 6556static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6557{
7378547f
MM
6558 int err;
6559
029190c5
PJ
6560 ndoms_cur = 1;
6561 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6562 if (!doms_cur)
6563 doms_cur = &fallback_doms;
6564 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6565 err = build_sched_domains(doms_cur);
6382bc90 6566 register_sched_domain_sysctl();
7378547f
MM
6567
6568 return err;
1a20ff27
DG
6569}
6570
6571static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6572{
51888ca2 6573 free_sched_groups(cpu_map);
9c1cfda2 6574}
1da177e4 6575
1a20ff27
DG
6576/*
6577 * Detach sched domains from a group of cpus specified in cpu_map
6578 * These cpus will now be attached to the NULL domain
6579 */
858119e1 6580static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6581{
6582 int i;
6583
6382bc90
MM
6584 unregister_sched_domain_sysctl();
6585
1a20ff27 6586 for_each_cpu_mask(i, *cpu_map)
57d885fe 6587 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6588 synchronize_sched();
6589 arch_destroy_sched_domains(cpu_map);
6590}
6591
029190c5
PJ
6592/*
6593 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6594 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6595 * doms_new[] to the current sched domain partitioning, doms_cur[].
6596 * It destroys each deleted domain and builds each new domain.
6597 *
6598 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6599 * The masks don't intersect (don't overlap.) We should setup one
6600 * sched domain for each mask. CPUs not in any of the cpumasks will
6601 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6602 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6603 * it as it is.
6604 *
41a2d6cf
IM
6605 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6606 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6607 * failed the kmalloc call, then it can pass in doms_new == NULL,
6608 * and partition_sched_domains() will fallback to the single partition
6609 * 'fallback_doms'.
6610 *
6611 * Call with hotplug lock held
6612 */
6613void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6614{
6615 int i, j;
6616
a1835615
SV
6617 lock_doms_cur();
6618
7378547f
MM
6619 /* always unregister in case we don't destroy any domains */
6620 unregister_sched_domain_sysctl();
6621
029190c5
PJ
6622 if (doms_new == NULL) {
6623 ndoms_new = 1;
6624 doms_new = &fallback_doms;
6625 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6626 }
6627
6628 /* Destroy deleted domains */
6629 for (i = 0; i < ndoms_cur; i++) {
6630 for (j = 0; j < ndoms_new; j++) {
6631 if (cpus_equal(doms_cur[i], doms_new[j]))
6632 goto match1;
6633 }
6634 /* no match - a current sched domain not in new doms_new[] */
6635 detach_destroy_domains(doms_cur + i);
6636match1:
6637 ;
6638 }
6639
6640 /* Build new domains */
6641 for (i = 0; i < ndoms_new; i++) {
6642 for (j = 0; j < ndoms_cur; j++) {
6643 if (cpus_equal(doms_new[i], doms_cur[j]))
6644 goto match2;
6645 }
6646 /* no match - add a new doms_new */
6647 build_sched_domains(doms_new + i);
6648match2:
6649 ;
6650 }
6651
6652 /* Remember the new sched domains */
6653 if (doms_cur != &fallback_doms)
6654 kfree(doms_cur);
6655 doms_cur = doms_new;
6656 ndoms_cur = ndoms_new;
7378547f
MM
6657
6658 register_sched_domain_sysctl();
a1835615
SV
6659
6660 unlock_doms_cur();
029190c5
PJ
6661}
6662
5c45bf27 6663#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6664static int arch_reinit_sched_domains(void)
5c45bf27
SS
6665{
6666 int err;
6667
95402b38 6668 get_online_cpus();
5c45bf27
SS
6669 detach_destroy_domains(&cpu_online_map);
6670 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6671 put_online_cpus();
5c45bf27
SS
6672
6673 return err;
6674}
6675
6676static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6677{
6678 int ret;
6679
6680 if (buf[0] != '0' && buf[0] != '1')
6681 return -EINVAL;
6682
6683 if (smt)
6684 sched_smt_power_savings = (buf[0] == '1');
6685 else
6686 sched_mc_power_savings = (buf[0] == '1');
6687
6688 ret = arch_reinit_sched_domains();
6689
6690 return ret ? ret : count;
6691}
6692
5c45bf27
SS
6693#ifdef CONFIG_SCHED_MC
6694static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6695{
6696 return sprintf(page, "%u\n", sched_mc_power_savings);
6697}
48f24c4d
IM
6698static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6699 const char *buf, size_t count)
5c45bf27
SS
6700{
6701 return sched_power_savings_store(buf, count, 0);
6702}
6707de00
AB
6703static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6704 sched_mc_power_savings_store);
5c45bf27
SS
6705#endif
6706
6707#ifdef CONFIG_SCHED_SMT
6708static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6709{
6710 return sprintf(page, "%u\n", sched_smt_power_savings);
6711}
48f24c4d
IM
6712static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6713 const char *buf, size_t count)
5c45bf27
SS
6714{
6715 return sched_power_savings_store(buf, count, 1);
6716}
6707de00
AB
6717static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6718 sched_smt_power_savings_store);
6719#endif
6720
6721int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6722{
6723 int err = 0;
6724
6725#ifdef CONFIG_SCHED_SMT
6726 if (smt_capable())
6727 err = sysfs_create_file(&cls->kset.kobj,
6728 &attr_sched_smt_power_savings.attr);
6729#endif
6730#ifdef CONFIG_SCHED_MC
6731 if (!err && mc_capable())
6732 err = sysfs_create_file(&cls->kset.kobj,
6733 &attr_sched_mc_power_savings.attr);
6734#endif
6735 return err;
6736}
5c45bf27
SS
6737#endif
6738
1da177e4 6739/*
41a2d6cf 6740 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6741 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6742 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6743 * which will prevent rebalancing while the sched domains are recalculated.
6744 */
6745static int update_sched_domains(struct notifier_block *nfb,
6746 unsigned long action, void *hcpu)
6747{
1da177e4
LT
6748 switch (action) {
6749 case CPU_UP_PREPARE:
8bb78442 6750 case CPU_UP_PREPARE_FROZEN:
1da177e4 6751 case CPU_DOWN_PREPARE:
8bb78442 6752 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6753 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6754 return NOTIFY_OK;
6755
6756 case CPU_UP_CANCELED:
8bb78442 6757 case CPU_UP_CANCELED_FROZEN:
1da177e4 6758 case CPU_DOWN_FAILED:
8bb78442 6759 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6760 case CPU_ONLINE:
8bb78442 6761 case CPU_ONLINE_FROZEN:
1da177e4 6762 case CPU_DEAD:
8bb78442 6763 case CPU_DEAD_FROZEN:
1da177e4
LT
6764 /*
6765 * Fall through and re-initialise the domains.
6766 */
6767 break;
6768 default:
6769 return NOTIFY_DONE;
6770 }
6771
6772 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6773 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6774
6775 return NOTIFY_OK;
6776}
1da177e4
LT
6777
6778void __init sched_init_smp(void)
6779{
5c1e1767
NP
6780 cpumask_t non_isolated_cpus;
6781
95402b38 6782 get_online_cpus();
1a20ff27 6783 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6784 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6785 if (cpus_empty(non_isolated_cpus))
6786 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 6787 put_online_cpus();
1da177e4
LT
6788 /* XXX: Theoretical race here - CPU may be hotplugged now */
6789 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6790
6791 /* Move init over to a non-isolated CPU */
6792 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6793 BUG();
19978ca6 6794 sched_init_granularity();
6b2d7700
SV
6795
6796#ifdef CONFIG_FAIR_GROUP_SCHED
6797 if (nr_cpu_ids == 1)
6798 return;
6799
6800 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6801 "group_balance");
6802 if (!IS_ERR(lb_monitor_task)) {
6803 lb_monitor_task->flags |= PF_NOFREEZE;
6804 wake_up_process(lb_monitor_task);
6805 } else {
6806 printk(KERN_ERR "Could not create load balance monitor thread"
6807 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6808 }
6809#endif
1da177e4
LT
6810}
6811#else
6812void __init sched_init_smp(void)
6813{
19978ca6 6814 sched_init_granularity();
1da177e4
LT
6815}
6816#endif /* CONFIG_SMP */
6817
6818int in_sched_functions(unsigned long addr)
6819{
1da177e4
LT
6820 return in_lock_functions(addr) ||
6821 (addr >= (unsigned long)__sched_text_start
6822 && addr < (unsigned long)__sched_text_end);
6823}
6824
a9957449 6825static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6826{
6827 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6828#ifdef CONFIG_FAIR_GROUP_SCHED
6829 cfs_rq->rq = rq;
6830#endif
67e9fb2a 6831 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6832}
6833
1da177e4
LT
6834void __init sched_init(void)
6835{
476f3534 6836 int highest_cpu = 0;
dd41f596
IM
6837 int i, j;
6838
57d885fe
GH
6839#ifdef CONFIG_SMP
6840 init_defrootdomain();
6841#endif
6842
0a945022 6843 for_each_possible_cpu(i) {
dd41f596 6844 struct rt_prio_array *array;
70b97a7f 6845 struct rq *rq;
1da177e4
LT
6846
6847 rq = cpu_rq(i);
6848 spin_lock_init(&rq->lock);
fcb99371 6849 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6850 rq->nr_running = 0;
dd41f596
IM
6851 rq->clock = 1;
6852 init_cfs_rq(&rq->cfs, rq);
6853#ifdef CONFIG_FAIR_GROUP_SCHED
6854 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6855 {
6856 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6857 struct sched_entity *se =
6858 &per_cpu(init_sched_entity, i);
6859
6860 init_cfs_rq_p[i] = cfs_rq;
6861 init_cfs_rq(cfs_rq, rq);
4cf86d77 6862 cfs_rq->tg = &init_task_group;
3a252015 6863 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6864 &rq->leaf_cfs_rq_list);
6865
3a252015
IM
6866 init_sched_entity_p[i] = se;
6867 se->cfs_rq = &rq->cfs;
6868 se->my_q = cfs_rq;
4cf86d77 6869 se->load.weight = init_task_group_load;
9b5b7751 6870 se->load.inv_weight =
4cf86d77 6871 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6872 se->parent = NULL;
6873 }
4cf86d77 6874 init_task_group.shares = init_task_group_load;
dd41f596 6875#endif
1da177e4 6876
dd41f596
IM
6877 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6878 rq->cpu_load[j] = 0;
1da177e4 6879#ifdef CONFIG_SMP
41c7ce9a 6880 rq->sd = NULL;
57d885fe
GH
6881 rq->rd = NULL;
6882 rq_attach_root(rq, &def_root_domain);
1da177e4 6883 rq->active_balance = 0;
dd41f596 6884 rq->next_balance = jiffies;
1da177e4 6885 rq->push_cpu = 0;
0a2966b4 6886 rq->cpu = i;
1da177e4
LT
6887 rq->migration_thread = NULL;
6888 INIT_LIST_HEAD(&rq->migration_queue);
764a9d6f 6889 rq->rt.highest_prio = MAX_RT_PRIO;
a22d7fc1 6890 rq->rt.overloaded = 0;
1da177e4
LT
6891#endif
6892 atomic_set(&rq->nr_iowait, 0);
6893
dd41f596
IM
6894 array = &rq->rt.active;
6895 for (j = 0; j < MAX_RT_PRIO; j++) {
6896 INIT_LIST_HEAD(array->queue + j);
6897 __clear_bit(j, array->bitmap);
1da177e4 6898 }
476f3534 6899 highest_cpu = i;
dd41f596
IM
6900 /* delimiter for bitsearch: */
6901 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6902 }
6903
2dd73a4f 6904 set_load_weight(&init_task);
b50f60ce 6905
e107be36
AK
6906#ifdef CONFIG_PREEMPT_NOTIFIERS
6907 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6908#endif
6909
c9819f45 6910#ifdef CONFIG_SMP
476f3534 6911 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6912 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6913#endif
6914
b50f60ce
HC
6915#ifdef CONFIG_RT_MUTEXES
6916 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6917#endif
6918
1da177e4
LT
6919 /*
6920 * The boot idle thread does lazy MMU switching as well:
6921 */
6922 atomic_inc(&init_mm.mm_count);
6923 enter_lazy_tlb(&init_mm, current);
6924
6925 /*
6926 * Make us the idle thread. Technically, schedule() should not be
6927 * called from this thread, however somewhere below it might be,
6928 * but because we are the idle thread, we just pick up running again
6929 * when this runqueue becomes "idle".
6930 */
6931 init_idle(current, smp_processor_id());
dd41f596
IM
6932 /*
6933 * During early bootup we pretend to be a normal task:
6934 */
6935 current->sched_class = &fair_sched_class;
1da177e4
LT
6936}
6937
6938#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6939void __might_sleep(char *file, int line)
6940{
48f24c4d 6941#ifdef in_atomic
1da177e4
LT
6942 static unsigned long prev_jiffy; /* ratelimiting */
6943
6944 if ((in_atomic() || irqs_disabled()) &&
6945 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6946 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6947 return;
6948 prev_jiffy = jiffies;
91368d73 6949 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6950 " context at %s:%d\n", file, line);
6951 printk("in_atomic():%d, irqs_disabled():%d\n",
6952 in_atomic(), irqs_disabled());
a4c410f0 6953 debug_show_held_locks(current);
3117df04
IM
6954 if (irqs_disabled())
6955 print_irqtrace_events(current);
1da177e4
LT
6956 dump_stack();
6957 }
6958#endif
6959}
6960EXPORT_SYMBOL(__might_sleep);
6961#endif
6962
6963#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6964static void normalize_task(struct rq *rq, struct task_struct *p)
6965{
6966 int on_rq;
6967 update_rq_clock(rq);
6968 on_rq = p->se.on_rq;
6969 if (on_rq)
6970 deactivate_task(rq, p, 0);
6971 __setscheduler(rq, p, SCHED_NORMAL, 0);
6972 if (on_rq) {
6973 activate_task(rq, p, 0);
6974 resched_task(rq->curr);
6975 }
6976}
6977
1da177e4
LT
6978void normalize_rt_tasks(void)
6979{
a0f98a1c 6980 struct task_struct *g, *p;
1da177e4 6981 unsigned long flags;
70b97a7f 6982 struct rq *rq;
1da177e4
LT
6983
6984 read_lock_irq(&tasklist_lock);
a0f98a1c 6985 do_each_thread(g, p) {
178be793
IM
6986 /*
6987 * Only normalize user tasks:
6988 */
6989 if (!p->mm)
6990 continue;
6991
6cfb0d5d 6992 p->se.exec_start = 0;
6cfb0d5d 6993#ifdef CONFIG_SCHEDSTATS
dd41f596 6994 p->se.wait_start = 0;
dd41f596 6995 p->se.sleep_start = 0;
dd41f596 6996 p->se.block_start = 0;
6cfb0d5d 6997#endif
dd41f596
IM
6998 task_rq(p)->clock = 0;
6999
7000 if (!rt_task(p)) {
7001 /*
7002 * Renice negative nice level userspace
7003 * tasks back to 0:
7004 */
7005 if (TASK_NICE(p) < 0 && p->mm)
7006 set_user_nice(p, 0);
1da177e4 7007 continue;
dd41f596 7008 }
1da177e4 7009
b29739f9
IM
7010 spin_lock_irqsave(&p->pi_lock, flags);
7011 rq = __task_rq_lock(p);
1da177e4 7012
178be793 7013 normalize_task(rq, p);
3a5e4dc1 7014
b29739f9
IM
7015 __task_rq_unlock(rq);
7016 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
7017 } while_each_thread(g, p);
7018
1da177e4
LT
7019 read_unlock_irq(&tasklist_lock);
7020}
7021
7022#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7023
7024#ifdef CONFIG_IA64
7025/*
7026 * These functions are only useful for the IA64 MCA handling.
7027 *
7028 * They can only be called when the whole system has been
7029 * stopped - every CPU needs to be quiescent, and no scheduling
7030 * activity can take place. Using them for anything else would
7031 * be a serious bug, and as a result, they aren't even visible
7032 * under any other configuration.
7033 */
7034
7035/**
7036 * curr_task - return the current task for a given cpu.
7037 * @cpu: the processor in question.
7038 *
7039 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7040 */
36c8b586 7041struct task_struct *curr_task(int cpu)
1df5c10a
LT
7042{
7043 return cpu_curr(cpu);
7044}
7045
7046/**
7047 * set_curr_task - set the current task for a given cpu.
7048 * @cpu: the processor in question.
7049 * @p: the task pointer to set.
7050 *
7051 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7052 * are serviced on a separate stack. It allows the architecture to switch the
7053 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7054 * must be called with all CPU's synchronized, and interrupts disabled, the
7055 * and caller must save the original value of the current task (see
7056 * curr_task() above) and restore that value before reenabling interrupts and
7057 * re-starting the system.
7058 *
7059 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7060 */
36c8b586 7061void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7062{
7063 cpu_curr(cpu) = p;
7064}
7065
7066#endif
29f59db3
SV
7067
7068#ifdef CONFIG_FAIR_GROUP_SCHED
7069
6b2d7700
SV
7070#ifdef CONFIG_SMP
7071/*
7072 * distribute shares of all task groups among their schedulable entities,
7073 * to reflect load distrbution across cpus.
7074 */
7075static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7076{
7077 struct cfs_rq *cfs_rq;
7078 struct rq *rq = cpu_rq(this_cpu);
7079 cpumask_t sdspan = sd->span;
7080 int balanced = 1;
7081
7082 /* Walk thr' all the task groups that we have */
7083 for_each_leaf_cfs_rq(rq, cfs_rq) {
7084 int i;
7085 unsigned long total_load = 0, total_shares;
7086 struct task_group *tg = cfs_rq->tg;
7087
7088 /* Gather total task load of this group across cpus */
7089 for_each_cpu_mask(i, sdspan)
7090 total_load += tg->cfs_rq[i]->load.weight;
7091
7092 /* Nothing to do if this group has no load */
7093 if (!total_load)
7094 continue;
7095
7096 /*
7097 * tg->shares represents the number of cpu shares the task group
7098 * is eligible to hold on a single cpu. On N cpus, it is
7099 * eligible to hold (N * tg->shares) number of cpu shares.
7100 */
7101 total_shares = tg->shares * cpus_weight(sdspan);
7102
7103 /*
7104 * redistribute total_shares across cpus as per the task load
7105 * distribution.
7106 */
7107 for_each_cpu_mask(i, sdspan) {
7108 unsigned long local_load, local_shares;
7109
7110 local_load = tg->cfs_rq[i]->load.weight;
7111 local_shares = (local_load * total_shares) / total_load;
7112 if (!local_shares)
7113 local_shares = MIN_GROUP_SHARES;
7114 if (local_shares == tg->se[i]->load.weight)
7115 continue;
7116
7117 spin_lock_irq(&cpu_rq(i)->lock);
7118 set_se_shares(tg->se[i], local_shares);
7119 spin_unlock_irq(&cpu_rq(i)->lock);
7120 balanced = 0;
7121 }
7122 }
7123
7124 return balanced;
7125}
7126
7127/*
7128 * How frequently should we rebalance_shares() across cpus?
7129 *
7130 * The more frequently we rebalance shares, the more accurate is the fairness
7131 * of cpu bandwidth distribution between task groups. However higher frequency
7132 * also implies increased scheduling overhead.
7133 *
7134 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7135 * consecutive calls to rebalance_shares() in the same sched domain.
7136 *
7137 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7138 * consecutive calls to rebalance_shares() in the same sched domain.
7139 *
7140 * These settings allows for the appropriate tradeoff between accuracy of
7141 * fairness and the associated overhead.
7142 *
7143 */
7144
7145/* default: 8ms, units: milliseconds */
7146const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7147
7148/* default: 128ms, units: milliseconds */
7149const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7150
7151/* kernel thread that runs rebalance_shares() periodically */
7152static int load_balance_monitor(void *unused)
7153{
7154 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7155 struct sched_param schedparm;
7156 int ret;
7157
7158 /*
7159 * We don't want this thread's execution to be limited by the shares
7160 * assigned to default group (init_task_group). Hence make it run
7161 * as a SCHED_RR RT task at the lowest priority.
7162 */
7163 schedparm.sched_priority = 1;
7164 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7165 if (ret)
7166 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7167 " monitor thread (error = %d) \n", ret);
7168
7169 while (!kthread_should_stop()) {
7170 int i, cpu, balanced = 1;
7171
7172 /* Prevent cpus going down or coming up */
86ef5c9a 7173 get_online_cpus();
6b2d7700
SV
7174 /* lockout changes to doms_cur[] array */
7175 lock_doms_cur();
7176 /*
7177 * Enter a rcu read-side critical section to safely walk rq->sd
7178 * chain on various cpus and to walk task group list
7179 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7180 */
7181 rcu_read_lock();
7182
7183 for (i = 0; i < ndoms_cur; i++) {
7184 cpumask_t cpumap = doms_cur[i];
7185 struct sched_domain *sd = NULL, *sd_prev = NULL;
7186
7187 cpu = first_cpu(cpumap);
7188
7189 /* Find the highest domain at which to balance shares */
7190 for_each_domain(cpu, sd) {
7191 if (!(sd->flags & SD_LOAD_BALANCE))
7192 continue;
7193 sd_prev = sd;
7194 }
7195
7196 sd = sd_prev;
7197 /* sd == NULL? No load balance reqd in this domain */
7198 if (!sd)
7199 continue;
7200
7201 balanced &= rebalance_shares(sd, cpu);
7202 }
7203
7204 rcu_read_unlock();
7205
7206 unlock_doms_cur();
86ef5c9a 7207 put_online_cpus();
6b2d7700
SV
7208
7209 if (!balanced)
7210 timeout = sysctl_sched_min_bal_int_shares;
7211 else if (timeout < sysctl_sched_max_bal_int_shares)
7212 timeout *= 2;
7213
7214 msleep_interruptible(timeout);
7215 }
7216
7217 return 0;
7218}
7219#endif /* CONFIG_SMP */
7220
29f59db3 7221/* allocate runqueue etc for a new task group */
4cf86d77 7222struct task_group *sched_create_group(void)
29f59db3 7223{
4cf86d77 7224 struct task_group *tg;
29f59db3
SV
7225 struct cfs_rq *cfs_rq;
7226 struct sched_entity *se;
9b5b7751 7227 struct rq *rq;
29f59db3
SV
7228 int i;
7229
29f59db3
SV
7230 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7231 if (!tg)
7232 return ERR_PTR(-ENOMEM);
7233
9b5b7751 7234 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7235 if (!tg->cfs_rq)
7236 goto err;
9b5b7751 7237 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7238 if (!tg->se)
7239 goto err;
7240
7241 for_each_possible_cpu(i) {
9b5b7751 7242 rq = cpu_rq(i);
29f59db3
SV
7243
7244 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7245 cpu_to_node(i));
7246 if (!cfs_rq)
7247 goto err;
7248
7249 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7250 cpu_to_node(i));
7251 if (!se)
7252 goto err;
7253
7254 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7255 memset(se, 0, sizeof(struct sched_entity));
7256
7257 tg->cfs_rq[i] = cfs_rq;
7258 init_cfs_rq(cfs_rq, rq);
7259 cfs_rq->tg = tg;
29f59db3
SV
7260
7261 tg->se[i] = se;
7262 se->cfs_rq = &rq->cfs;
7263 se->my_q = cfs_rq;
7264 se->load.weight = NICE_0_LOAD;
7265 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7266 se->parent = NULL;
7267 }
7268
ec2c507f
SV
7269 tg->shares = NICE_0_LOAD;
7270
7271 lock_task_group_list();
9b5b7751
SV
7272 for_each_possible_cpu(i) {
7273 rq = cpu_rq(i);
7274 cfs_rq = tg->cfs_rq[i];
7275 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7276 }
ec2c507f 7277 unlock_task_group_list();
29f59db3 7278
9b5b7751 7279 return tg;
29f59db3
SV
7280
7281err:
7282 for_each_possible_cpu(i) {
a65914b3 7283 if (tg->cfs_rq)
29f59db3 7284 kfree(tg->cfs_rq[i]);
a65914b3 7285 if (tg->se)
29f59db3
SV
7286 kfree(tg->se[i]);
7287 }
a65914b3
IM
7288 kfree(tg->cfs_rq);
7289 kfree(tg->se);
7290 kfree(tg);
29f59db3
SV
7291
7292 return ERR_PTR(-ENOMEM);
7293}
7294
9b5b7751
SV
7295/* rcu callback to free various structures associated with a task group */
7296static void free_sched_group(struct rcu_head *rhp)
29f59db3 7297{
ae8393e5
SV
7298 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7299 struct cfs_rq *cfs_rq;
29f59db3
SV
7300 struct sched_entity *se;
7301 int i;
7302
29f59db3
SV
7303 /* now it should be safe to free those cfs_rqs */
7304 for_each_possible_cpu(i) {
7305 cfs_rq = tg->cfs_rq[i];
7306 kfree(cfs_rq);
7307
7308 se = tg->se[i];
7309 kfree(se);
7310 }
7311
7312 kfree(tg->cfs_rq);
7313 kfree(tg->se);
7314 kfree(tg);
7315}
7316
9b5b7751 7317/* Destroy runqueue etc associated with a task group */
4cf86d77 7318void sched_destroy_group(struct task_group *tg)
29f59db3 7319{
7bae49d4 7320 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7321 int i;
29f59db3 7322
ec2c507f 7323 lock_task_group_list();
9b5b7751
SV
7324 for_each_possible_cpu(i) {
7325 cfs_rq = tg->cfs_rq[i];
7326 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7327 }
ec2c507f 7328 unlock_task_group_list();
9b5b7751 7329
7bae49d4 7330 BUG_ON(!cfs_rq);
9b5b7751
SV
7331
7332 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7333 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7334}
7335
9b5b7751 7336/* change task's runqueue when it moves between groups.
3a252015
IM
7337 * The caller of this function should have put the task in its new group
7338 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7339 * reflect its new group.
9b5b7751
SV
7340 */
7341void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7342{
7343 int on_rq, running;
7344 unsigned long flags;
7345 struct rq *rq;
7346
7347 rq = task_rq_lock(tsk, &flags);
7348
dae51f56 7349 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7350 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7351 goto done;
dae51f56 7352 }
29f59db3
SV
7353
7354 update_rq_clock(rq);
7355
051a1d1a 7356 running = task_current(rq, tsk);
29f59db3
SV
7357 on_rq = tsk->se.on_rq;
7358
83b699ed 7359 if (on_rq) {
29f59db3 7360 dequeue_task(rq, tsk, 0);
83b699ed
SV
7361 if (unlikely(running))
7362 tsk->sched_class->put_prev_task(rq, tsk);
7363 }
29f59db3 7364
ce96b5ac 7365 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7366
83b699ed
SV
7367 if (on_rq) {
7368 if (unlikely(running))
7369 tsk->sched_class->set_curr_task(rq);
7074badb 7370 enqueue_task(rq, tsk, 0);
83b699ed 7371 }
29f59db3
SV
7372
7373done:
7374 task_rq_unlock(rq, &flags);
7375}
7376
6b2d7700 7377/* rq->lock to be locked by caller */
29f59db3
SV
7378static void set_se_shares(struct sched_entity *se, unsigned long shares)
7379{
7380 struct cfs_rq *cfs_rq = se->cfs_rq;
7381 struct rq *rq = cfs_rq->rq;
7382 int on_rq;
7383
6b2d7700
SV
7384 if (!shares)
7385 shares = MIN_GROUP_SHARES;
29f59db3
SV
7386
7387 on_rq = se->on_rq;
6b2d7700 7388 if (on_rq) {
29f59db3 7389 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7390 dec_cpu_load(rq, se->load.weight);
7391 }
29f59db3
SV
7392
7393 se->load.weight = shares;
7394 se->load.inv_weight = div64_64((1ULL<<32), shares);
7395
6b2d7700 7396 if (on_rq) {
29f59db3 7397 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7398 inc_cpu_load(rq, se->load.weight);
7399 }
29f59db3
SV
7400}
7401
4cf86d77 7402int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7403{
7404 int i;
6b2d7700
SV
7405 struct cfs_rq *cfs_rq;
7406 struct rq *rq;
c61935fd 7407
ec2c507f 7408 lock_task_group_list();
9b5b7751 7409 if (tg->shares == shares)
5cb350ba 7410 goto done;
29f59db3 7411
6b2d7700
SV
7412 if (shares < MIN_GROUP_SHARES)
7413 shares = MIN_GROUP_SHARES;
7414
7415 /*
7416 * Prevent any load balance activity (rebalance_shares,
7417 * load_balance_fair) from referring to this group first,
7418 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7419 */
7420 for_each_possible_cpu(i) {
7421 cfs_rq = tg->cfs_rq[i];
7422 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7423 }
7424
7425 /* wait for any ongoing reference to this group to finish */
7426 synchronize_sched();
7427
7428 /*
7429 * Now we are free to modify the group's share on each cpu
7430 * w/o tripping rebalance_share or load_balance_fair.
7431 */
9b5b7751 7432 tg->shares = shares;
6b2d7700
SV
7433 for_each_possible_cpu(i) {
7434 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7435 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7436 spin_unlock_irq(&cpu_rq(i)->lock);
7437 }
29f59db3 7438
6b2d7700
SV
7439 /*
7440 * Enable load balance activity on this group, by inserting it back on
7441 * each cpu's rq->leaf_cfs_rq_list.
7442 */
7443 for_each_possible_cpu(i) {
7444 rq = cpu_rq(i);
7445 cfs_rq = tg->cfs_rq[i];
7446 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7447 }
5cb350ba 7448done:
ec2c507f 7449 unlock_task_group_list();
9b5b7751 7450 return 0;
29f59db3
SV
7451}
7452
5cb350ba
DG
7453unsigned long sched_group_shares(struct task_group *tg)
7454{
7455 return tg->shares;
7456}
7457
3a252015 7458#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7459
7460#ifdef CONFIG_FAIR_CGROUP_SCHED
7461
7462/* return corresponding task_group object of a cgroup */
2b01dfe3 7463static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7464{
2b01dfe3
PM
7465 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7466 struct task_group, css);
68318b8e
SV
7467}
7468
7469static struct cgroup_subsys_state *
2b01dfe3 7470cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7471{
7472 struct task_group *tg;
7473
2b01dfe3 7474 if (!cgrp->parent) {
68318b8e 7475 /* This is early initialization for the top cgroup */
2b01dfe3 7476 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7477 return &init_task_group.css;
7478 }
7479
7480 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7481 if (cgrp->parent->parent)
68318b8e
SV
7482 return ERR_PTR(-EINVAL);
7483
7484 tg = sched_create_group();
7485 if (IS_ERR(tg))
7486 return ERR_PTR(-ENOMEM);
7487
7488 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7489 tg->css.cgroup = cgrp;
68318b8e
SV
7490
7491 return &tg->css;
7492}
7493
41a2d6cf
IM
7494static void
7495cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7496{
2b01dfe3 7497 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7498
7499 sched_destroy_group(tg);
7500}
7501
41a2d6cf
IM
7502static int
7503cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7504 struct task_struct *tsk)
68318b8e
SV
7505{
7506 /* We don't support RT-tasks being in separate groups */
7507 if (tsk->sched_class != &fair_sched_class)
7508 return -EINVAL;
7509
7510 return 0;
7511}
7512
7513static void
2b01dfe3 7514cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7515 struct cgroup *old_cont, struct task_struct *tsk)
7516{
7517 sched_move_task(tsk);
7518}
7519
2b01dfe3
PM
7520static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7521 u64 shareval)
68318b8e 7522{
2b01dfe3 7523 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7524}
7525
2b01dfe3 7526static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7527{
2b01dfe3 7528 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7529
7530 return (u64) tg->shares;
7531}
7532
fe5c7cc2
PM
7533static struct cftype cpu_files[] = {
7534 {
7535 .name = "shares",
7536 .read_uint = cpu_shares_read_uint,
7537 .write_uint = cpu_shares_write_uint,
7538 },
68318b8e
SV
7539};
7540
7541static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7542{
fe5c7cc2 7543 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7544}
7545
7546struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7547 .name = "cpu",
7548 .create = cpu_cgroup_create,
7549 .destroy = cpu_cgroup_destroy,
7550 .can_attach = cpu_cgroup_can_attach,
7551 .attach = cpu_cgroup_attach,
7552 .populate = cpu_cgroup_populate,
7553 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7554 .early_init = 1,
7555};
7556
7557#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7558
7559#ifdef CONFIG_CGROUP_CPUACCT
7560
7561/*
7562 * CPU accounting code for task groups.
7563 *
7564 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7565 * (balbir@in.ibm.com).
7566 */
7567
7568/* track cpu usage of a group of tasks */
7569struct cpuacct {
7570 struct cgroup_subsys_state css;
7571 /* cpuusage holds pointer to a u64-type object on every cpu */
7572 u64 *cpuusage;
7573};
7574
7575struct cgroup_subsys cpuacct_subsys;
7576
7577/* return cpu accounting group corresponding to this container */
7578static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7579{
7580 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7581 struct cpuacct, css);
7582}
7583
7584/* return cpu accounting group to which this task belongs */
7585static inline struct cpuacct *task_ca(struct task_struct *tsk)
7586{
7587 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7588 struct cpuacct, css);
7589}
7590
7591/* create a new cpu accounting group */
7592static struct cgroup_subsys_state *cpuacct_create(
7593 struct cgroup_subsys *ss, struct cgroup *cont)
7594{
7595 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7596
7597 if (!ca)
7598 return ERR_PTR(-ENOMEM);
7599
7600 ca->cpuusage = alloc_percpu(u64);
7601 if (!ca->cpuusage) {
7602 kfree(ca);
7603 return ERR_PTR(-ENOMEM);
7604 }
7605
7606 return &ca->css;
7607}
7608
7609/* destroy an existing cpu accounting group */
41a2d6cf
IM
7610static void
7611cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7612{
7613 struct cpuacct *ca = cgroup_ca(cont);
7614
7615 free_percpu(ca->cpuusage);
7616 kfree(ca);
7617}
7618
7619/* return total cpu usage (in nanoseconds) of a group */
7620static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7621{
7622 struct cpuacct *ca = cgroup_ca(cont);
7623 u64 totalcpuusage = 0;
7624 int i;
7625
7626 for_each_possible_cpu(i) {
7627 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7628
7629 /*
7630 * Take rq->lock to make 64-bit addition safe on 32-bit
7631 * platforms.
7632 */
7633 spin_lock_irq(&cpu_rq(i)->lock);
7634 totalcpuusage += *cpuusage;
7635 spin_unlock_irq(&cpu_rq(i)->lock);
7636 }
7637
7638 return totalcpuusage;
7639}
7640
7641static struct cftype files[] = {
7642 {
7643 .name = "usage",
7644 .read_uint = cpuusage_read,
7645 },
7646};
7647
7648static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7649{
7650 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7651}
7652
7653/*
7654 * charge this task's execution time to its accounting group.
7655 *
7656 * called with rq->lock held.
7657 */
7658static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7659{
7660 struct cpuacct *ca;
7661
7662 if (!cpuacct_subsys.active)
7663 return;
7664
7665 ca = task_ca(tsk);
7666 if (ca) {
7667 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7668
7669 *cpuusage += cputime;
7670 }
7671}
7672
7673struct cgroup_subsys cpuacct_subsys = {
7674 .name = "cpuacct",
7675 .create = cpuacct_create,
7676 .destroy = cpuacct_destroy,
7677 .populate = cpuacct_populate,
7678 .subsys_id = cpuacct_subsys_id,
7679};
7680#endif /* CONFIG_CGROUP_CPUACCT */