posix-timers: use "struct pid*" instead of "struct task_struct*"
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
84
85/*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94/*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
27af4245 119 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
1da177e4
LT
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 135
1da177e4 136/*
becf8b5d 137 * These ones are defined below.
1da177e4 138 */
becf8b5d
TG
139static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141static void common_timer_get(struct k_itimer *, struct itimerspec *);
142static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144static int common_timer_del(struct k_itimer *timer);
1da177e4 145
c9cb2e3d 146static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4
LT
147
148static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151{
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153}
154
155/*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158#define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163/*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
a924b04d 171static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
172 struct timespec *tp)
173{
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177}
178
becf8b5d
TG
179/*
180 * Get real time for posix timers
181 */
182static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 183{
becf8b5d 184 ktime_get_real_ts(tp);
1da177e4
LT
185 return 0;
186}
187
a924b04d
TG
188static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
1da177e4
LT
190{
191 return do_sys_settimeofday(tp, NULL);
192}
193
858119e1 194static int common_timer_create(struct k_itimer *new_timer)
1da177e4 195{
7978672c 196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
197 return 0;
198}
199
200/*
becf8b5d 201 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 202 */
a924b04d 203static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
204{
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
1da177e4
LT
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
1da177e4
LT
213 return 1;
214}
215
becf8b5d
TG
216/*
217 * Get monotonic time for posix timers
218 */
219static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
220{
221 ktime_get_ts(tp);
222 return 0;
223}
1da177e4 224
2d42244a
JS
225/*
226 * Get monotonic time for posix timers
227 */
228static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
229{
230 getrawmonotonic(tp);
231 return 0;
232}
233
1da177e4
LT
234/*
235 * Initialize everything, well, just everything in Posix clocks/timers ;)
236 */
237static __init int init_posix_timers(void)
238{
becf8b5d
TG
239 struct k_clock clock_realtime = {
240 .clock_getres = hrtimer_get_res,
1da177e4 241 };
becf8b5d
TG
242 struct k_clock clock_monotonic = {
243 .clock_getres = hrtimer_get_res,
244 .clock_get = posix_ktime_get_ts,
245 .clock_set = do_posix_clock_nosettime,
1da177e4 246 };
2d42244a
JS
247 struct k_clock clock_monotonic_raw = {
248 .clock_getres = hrtimer_get_res,
249 .clock_get = posix_get_monotonic_raw,
250 .clock_set = do_posix_clock_nosettime,
251 };
1da177e4
LT
252
253 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
254 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
2d42244a 255 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
1da177e4
LT
256
257 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
258 sizeof (struct k_itimer), 0, SLAB_PANIC,
259 NULL);
1da177e4
LT
260 idr_init(&posix_timers_id);
261 return 0;
262}
263
264__initcall(init_posix_timers);
265
1da177e4
LT
266static void schedule_next_timer(struct k_itimer *timr)
267{
44f21475
RZ
268 struct hrtimer *timer = &timr->it.real.timer;
269
becf8b5d 270 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
271 return;
272
4d672e7a
DL
273 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
274 timer->base->get_time(),
275 timr->it.real.interval);
44f21475 276
1da177e4
LT
277 timr->it_overrun_last = timr->it_overrun;
278 timr->it_overrun = -1;
279 ++timr->it_requeue_pending;
44f21475 280 hrtimer_restart(timer);
1da177e4
LT
281}
282
283/*
284 * This function is exported for use by the signal deliver code. It is
285 * called just prior to the info block being released and passes that
286 * block to us. It's function is to update the overrun entry AND to
287 * restart the timer. It should only be called if the timer is to be
288 * restarted (i.e. we have flagged this in the sys_private entry of the
289 * info block).
290 *
291 * To protect aginst the timer going away while the interrupt is queued,
292 * we require that the it_requeue_pending flag be set.
293 */
294void do_schedule_next_timer(struct siginfo *info)
295{
296 struct k_itimer *timr;
297 unsigned long flags;
298
299 timr = lock_timer(info->si_tid, &flags);
300
becf8b5d
TG
301 if (timr && timr->it_requeue_pending == info->si_sys_private) {
302 if (timr->it_clock < 0)
303 posix_cpu_timer_schedule(timr);
304 else
305 schedule_next_timer(timr);
1da177e4 306
54da1174 307 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
308 }
309
b6557fbc
TG
310 if (timr)
311 unlock_timer(timr, flags);
1da177e4
LT
312}
313
ba661292 314int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 315{
27af4245
ON
316 struct task_struct *task;
317 int shared, ret = -1;
ba661292
ON
318 /*
319 * FIXME: if ->sigq is queued we can race with
320 * dequeue_signal()->do_schedule_next_timer().
321 *
322 * If dequeue_signal() sees the "right" value of
323 * si_sys_private it calls do_schedule_next_timer().
324 * We re-queue ->sigq and drop ->it_lock().
325 * do_schedule_next_timer() locks the timer
326 * and re-schedules it while ->sigq is pending.
327 * Not really bad, but not that we want.
328 */
1da177e4 329 timr->sigq->info.si_sys_private = si_private;
1da177e4 330
27af4245
ON
331 rcu_read_lock();
332 task = pid_task(timr->it_pid, PIDTYPE_PID);
333 if (task) {
334 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
335 ret = send_sigqueue(timr->sigq, task, shared);
336 }
337 rcu_read_unlock();
4aa73611
ON
338 /* If we failed to send the signal the timer stops. */
339 return ret > 0;
1da177e4
LT
340}
341EXPORT_SYMBOL_GPL(posix_timer_event);
342
343/*
344 * This function gets called when a POSIX.1b interval timer expires. It
345 * is used as a callback from the kernel internal timer. The
346 * run_timer_list code ALWAYS calls with interrupts on.
347
348 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
349 */
c9cb2e3d 350static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 351{
05cfb614 352 struct k_itimer *timr;
1da177e4 353 unsigned long flags;
becf8b5d 354 int si_private = 0;
c9cb2e3d 355 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 356
05cfb614 357 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 358 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 359
becf8b5d
TG
360 if (timr->it.real.interval.tv64 != 0)
361 si_private = ++timr->it_requeue_pending;
1da177e4 362
becf8b5d
TG
363 if (posix_timer_event(timr, si_private)) {
364 /*
365 * signal was not sent because of sig_ignor
366 * we will not get a call back to restart it AND
367 * it should be restarted.
368 */
369 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
370 ktime_t now = hrtimer_cb_get_time(timer);
371
372 /*
373 * FIXME: What we really want, is to stop this
374 * timer completely and restart it in case the
375 * SIG_IGN is removed. This is a non trivial
376 * change which involves sighand locking
377 * (sigh !), which we don't want to do late in
378 * the release cycle.
379 *
380 * For now we just let timers with an interval
381 * less than a jiffie expire every jiffie to
382 * avoid softirq starvation in case of SIG_IGN
383 * and a very small interval, which would put
384 * the timer right back on the softirq pending
385 * list. By moving now ahead of time we trick
386 * hrtimer_forward() to expire the timer
387 * later, while we still maintain the overrun
388 * accuracy, but have some inconsistency in
389 * the timer_gettime() case. This is at least
390 * better than a starved softirq. A more
391 * complex fix which solves also another related
392 * inconsistency is already in the pipeline.
393 */
394#ifdef CONFIG_HIGH_RES_TIMERS
395 {
396 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
397
398 if (timr->it.real.interval.tv64 < kj.tv64)
399 now = ktime_add(now, kj);
400 }
401#endif
4d672e7a 402 timr->it_overrun += (unsigned int)
58229a18 403 hrtimer_forward(timer, now,
becf8b5d
TG
404 timr->it.real.interval);
405 ret = HRTIMER_RESTART;
a0a0c28c 406 ++timr->it_requeue_pending;
1da177e4 407 }
1da177e4 408 }
1da177e4 409
becf8b5d
TG
410 unlock_timer(timr, flags);
411 return ret;
412}
1da177e4 413
27af4245 414static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
415{
416 struct task_struct *rtn = current->group_leader;
417
418 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 419 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 420 !same_thread_group(rtn, current) ||
1da177e4
LT
421 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
422 return NULL;
423
424 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
425 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
426 return NULL;
427
27af4245 428 return task_pid(rtn);
1da177e4
LT
429}
430
a924b04d 431void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
432{
433 if ((unsigned) clock_id >= MAX_CLOCKS) {
434 printk("POSIX clock register failed for clock_id %d\n",
435 clock_id);
436 return;
437 }
438
439 posix_clocks[clock_id] = *new_clock;
440}
441EXPORT_SYMBOL_GPL(register_posix_clock);
442
443static struct k_itimer * alloc_posix_timer(void)
444{
445 struct k_itimer *tmr;
c3762229 446 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
447 if (!tmr)
448 return tmr;
1da177e4
LT
449 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
450 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 451 return NULL;
1da177e4 452 }
ba661292 453 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
454 return tmr;
455}
456
457#define IT_ID_SET 1
458#define IT_ID_NOT_SET 0
459static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
460{
461 if (it_id_set) {
462 unsigned long flags;
463 spin_lock_irqsave(&idr_lock, flags);
464 idr_remove(&posix_timers_id, tmr->it_id);
465 spin_unlock_irqrestore(&idr_lock, flags);
466 }
467 sigqueue_free(tmr->sigq);
1da177e4
LT
468 kmem_cache_free(posix_timers_cache, tmr);
469}
470
471/* Create a POSIX.1b interval timer. */
472
473asmlinkage long
a924b04d 474sys_timer_create(const clockid_t which_clock,
1da177e4
LT
475 struct sigevent __user *timer_event_spec,
476 timer_t __user * created_timer_id)
477{
2cd499e3 478 struct k_itimer *new_timer;
ef864c95 479 int error, new_timer_id;
27af4245 480 struct pid *it_pid;
1da177e4
LT
481 sigevent_t event;
482 int it_id_set = IT_ID_NOT_SET;
483
484 if (invalid_clockid(which_clock))
485 return -EINVAL;
486
487 new_timer = alloc_posix_timer();
488 if (unlikely(!new_timer))
489 return -EAGAIN;
490
491 spin_lock_init(&new_timer->it_lock);
492 retry:
493 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
494 error = -EAGAIN;
495 goto out;
496 }
497 spin_lock_irq(&idr_lock);
5a51b713 498 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 499 spin_unlock_irq(&idr_lock);
ef864c95
ON
500 if (error) {
501 if (error == -EAGAIN)
502 goto retry;
1da177e4 503 /*
0b0a3e7b 504 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
505 * full (proper POSIX return value for this)
506 */
507 error = -EAGAIN;
508 goto out;
509 }
510
511 it_id_set = IT_ID_SET;
512 new_timer->it_id = (timer_t) new_timer_id;
513 new_timer->it_clock = which_clock;
514 new_timer->it_overrun = -1;
515 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
516 if (error)
517 goto out;
518
519 /*
520 * return the timer_id now. The next step is hard to
521 * back out if there is an error.
522 */
523 if (copy_to_user(created_timer_id,
524 &new_timer_id, sizeof (new_timer_id))) {
525 error = -EFAULT;
526 goto out;
527 }
528 if (timer_event_spec) {
529 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
530 error = -EFAULT;
531 goto out;
532 }
36b2f046 533 rcu_read_lock();
27af4245 534 it_pid = get_pid(good_sigevent(&event));
36b2f046 535 rcu_read_unlock();
27af4245 536 if (!it_pid) {
1da177e4
LT
537 error = -EINVAL;
538 goto out;
539 }
540 } else {
5a9fa730
ON
541 event.sigev_notify = SIGEV_SIGNAL;
542 event.sigev_signo = SIGALRM;
543 event.sigev_value.sival_int = new_timer->it_id;
27af4245 544 it_pid = get_pid(task_tgid(current));
1da177e4
LT
545 }
546
5a9fa730
ON
547 new_timer->it_sigev_notify = event.sigev_notify;
548 new_timer->sigq->info.si_signo = event.sigev_signo;
549 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 550 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 551 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 552
36b2f046 553 spin_lock_irq(&current->sighand->siglock);
27af4245
ON
554 new_timer->it_pid = it_pid;
555 new_timer->it_signal = current->signal;
36b2f046
ON
556 list_add(&new_timer->list, &current->signal->posix_timers);
557 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
558
559 return 0;
1da177e4
LT
560 /*
561 * In the case of the timer belonging to another task, after
562 * the task is unlocked, the timer is owned by the other task
563 * and may cease to exist at any time. Don't use or modify
564 * new_timer after the unlock call.
565 */
1da177e4 566out:
ef864c95 567 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
568 return error;
569}
570
1da177e4
LT
571/*
572 * Locking issues: We need to protect the result of the id look up until
573 * we get the timer locked down so it is not deleted under us. The
574 * removal is done under the idr spinlock so we use that here to bridge
575 * the find to the timer lock. To avoid a dead lock, the timer id MUST
576 * be release with out holding the timer lock.
577 */
31d92845 578static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
579{
580 struct k_itimer *timr;
581 /*
582 * Watch out here. We do a irqsave on the idr_lock and pass the
583 * flags part over to the timer lock. Must not let interrupts in
584 * while we are moving the lock.
585 */
1da177e4 586 spin_lock_irqsave(&idr_lock, *flags);
31d92845 587 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
588 if (timr) {
589 spin_lock(&timr->it_lock);
27af4245 590 if (timr->it_pid && timr->it_signal == current->signal) {
179394af 591 spin_unlock(&idr_lock);
31d92845
ON
592 return timr;
593 }
594 spin_unlock(&timr->it_lock);
595 }
596 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 597
31d92845 598 return NULL;
1da177e4
LT
599}
600
601/*
602 * Get the time remaining on a POSIX.1b interval timer. This function
603 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
604 * mess with irq.
605 *
606 * We have a couple of messes to clean up here. First there is the case
607 * of a timer that has a requeue pending. These timers should appear to
608 * be in the timer list with an expiry as if we were to requeue them
609 * now.
610 *
611 * The second issue is the SIGEV_NONE timer which may be active but is
612 * not really ever put in the timer list (to save system resources).
613 * This timer may be expired, and if so, we will do it here. Otherwise
614 * it is the same as a requeue pending timer WRT to what we should
615 * report.
616 */
617static void
618common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
619{
3b98a532 620 ktime_t now, remaining, iv;
becf8b5d 621 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 622
becf8b5d 623 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 624
3b98a532
RZ
625 iv = timr->it.real.interval;
626
becf8b5d 627 /* interval timer ? */
3b98a532
RZ
628 if (iv.tv64)
629 cur_setting->it_interval = ktime_to_timespec(iv);
630 else if (!hrtimer_active(timer) &&
631 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 632 return;
3b98a532
RZ
633
634 now = timer->base->get_time();
635
becf8b5d 636 /*
3b98a532
RZ
637 * When a requeue is pending or this is a SIGEV_NONE
638 * timer move the expiry time forward by intervals, so
639 * expiry is > now.
becf8b5d 640 */
3b98a532
RZ
641 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
642 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 643 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 644
cc584b21 645 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 646 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
647 if (remaining.tv64 <= 0) {
648 /*
649 * A single shot SIGEV_NONE timer must return 0, when
650 * it is expired !
651 */
652 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
653 cur_setting->it_value.tv_nsec = 1;
654 } else
becf8b5d 655 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
656}
657
658/* Get the time remaining on a POSIX.1b interval timer. */
659asmlinkage long
660sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
661{
662 struct k_itimer *timr;
663 struct itimerspec cur_setting;
664 unsigned long flags;
665
666 timr = lock_timer(timer_id, &flags);
667 if (!timr)
668 return -EINVAL;
669
670 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
671
672 unlock_timer(timr, flags);
673
674 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
675 return -EFAULT;
676
677 return 0;
678}
becf8b5d 679
1da177e4
LT
680/*
681 * Get the number of overruns of a POSIX.1b interval timer. This is to
682 * be the overrun of the timer last delivered. At the same time we are
683 * accumulating overruns on the next timer. The overrun is frozen when
684 * the signal is delivered, either at the notify time (if the info block
685 * is not queued) or at the actual delivery time (as we are informed by
686 * the call back to do_schedule_next_timer(). So all we need to do is
687 * to pick up the frozen overrun.
688 */
1da177e4
LT
689asmlinkage long
690sys_timer_getoverrun(timer_t timer_id)
691{
692 struct k_itimer *timr;
693 int overrun;
5ba25331 694 unsigned long flags;
1da177e4
LT
695
696 timr = lock_timer(timer_id, &flags);
697 if (!timr)
698 return -EINVAL;
699
700 overrun = timr->it_overrun_last;
701 unlock_timer(timr, flags);
702
703 return overrun;
704}
1da177e4
LT
705
706/* Set a POSIX.1b interval timer. */
707/* timr->it_lock is taken. */
858119e1 708static int
1da177e4
LT
709common_timer_set(struct k_itimer *timr, int flags,
710 struct itimerspec *new_setting, struct itimerspec *old_setting)
711{
becf8b5d 712 struct hrtimer *timer = &timr->it.real.timer;
7978672c 713 enum hrtimer_mode mode;
1da177e4
LT
714
715 if (old_setting)
716 common_timer_get(timr, old_setting);
717
718 /* disable the timer */
becf8b5d 719 timr->it.real.interval.tv64 = 0;
1da177e4
LT
720 /*
721 * careful here. If smp we could be in the "fire" routine which will
722 * be spinning as we hold the lock. But this is ONLY an SMP issue.
723 */
becf8b5d 724 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 725 return TIMER_RETRY;
1da177e4
LT
726
727 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
728 ~REQUEUE_PENDING;
729 timr->it_overrun_last = 0;
1da177e4 730
becf8b5d
TG
731 /* switch off the timer when it_value is zero */
732 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
733 return 0;
1da177e4 734
c9cb2e3d 735 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 736 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 737 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 738
cc584b21 739 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
740
741 /* Convert interval */
742 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
743
744 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
745 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
746 /* Setup correct expiry time for relative timers */
5a7780e7 747 if (mode == HRTIMER_MODE_REL) {
cc584b21 748 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 749 }
becf8b5d 750 return 0;
952bbc87 751 }
becf8b5d 752
cc584b21 753 hrtimer_start_expires(timer, mode);
1da177e4
LT
754 return 0;
755}
756
757/* Set a POSIX.1b interval timer */
758asmlinkage long
759sys_timer_settime(timer_t timer_id, int flags,
760 const struct itimerspec __user *new_setting,
761 struct itimerspec __user *old_setting)
762{
763 struct k_itimer *timr;
764 struct itimerspec new_spec, old_spec;
765 int error = 0;
5ba25331 766 unsigned long flag;
1da177e4
LT
767 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
768
769 if (!new_setting)
770 return -EINVAL;
771
772 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
773 return -EFAULT;
774
becf8b5d
TG
775 if (!timespec_valid(&new_spec.it_interval) ||
776 !timespec_valid(&new_spec.it_value))
1da177e4
LT
777 return -EINVAL;
778retry:
779 timr = lock_timer(timer_id, &flag);
780 if (!timr)
781 return -EINVAL;
782
783 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
784 (timr, flags, &new_spec, rtn));
785
786 unlock_timer(timr, flag);
787 if (error == TIMER_RETRY) {
788 rtn = NULL; // We already got the old time...
789 goto retry;
790 }
791
becf8b5d
TG
792 if (old_setting && !error &&
793 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
794 error = -EFAULT;
795
796 return error;
797}
798
799static inline int common_timer_del(struct k_itimer *timer)
800{
becf8b5d 801 timer->it.real.interval.tv64 = 0;
f972be33 802
becf8b5d 803 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 804 return TIMER_RETRY;
1da177e4
LT
805 return 0;
806}
807
808static inline int timer_delete_hook(struct k_itimer *timer)
809{
810 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
811}
812
813/* Delete a POSIX.1b interval timer. */
814asmlinkage long
815sys_timer_delete(timer_t timer_id)
816{
817 struct k_itimer *timer;
5ba25331 818 unsigned long flags;
1da177e4 819
1da177e4 820retry_delete:
1da177e4
LT
821 timer = lock_timer(timer_id, &flags);
822 if (!timer)
823 return -EINVAL;
824
becf8b5d 825 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
826 unlock_timer(timer, flags);
827 goto retry_delete;
828 }
becf8b5d 829
1da177e4
LT
830 spin_lock(&current->sighand->siglock);
831 list_del(&timer->list);
832 spin_unlock(&current->sighand->siglock);
833 /*
834 * This keeps any tasks waiting on the spin lock from thinking
835 * they got something (see the lock code above).
836 */
27af4245
ON
837 put_pid(timer->it_pid);
838 timer->it_pid = NULL;
4b7a1304 839
1da177e4
LT
840 unlock_timer(timer, flags);
841 release_posix_timer(timer, IT_ID_SET);
842 return 0;
843}
becf8b5d 844
1da177e4
LT
845/*
846 * return timer owned by the process, used by exit_itimers
847 */
858119e1 848static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
849{
850 unsigned long flags;
851
1da177e4 852retry_delete:
1da177e4
LT
853 spin_lock_irqsave(&timer->it_lock, flags);
854
becf8b5d 855 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
856 unlock_timer(timer, flags);
857 goto retry_delete;
858 }
1da177e4
LT
859 list_del(&timer->list);
860 /*
861 * This keeps any tasks waiting on the spin lock from thinking
862 * they got something (see the lock code above).
863 */
27af4245
ON
864 put_pid(timer->it_pid);
865 timer->it_pid = NULL;
4b7a1304 866
1da177e4
LT
867 unlock_timer(timer, flags);
868 release_posix_timer(timer, IT_ID_SET);
869}
870
871/*
25f407f0 872 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
873 * references to the shared signal_struct.
874 */
875void exit_itimers(struct signal_struct *sig)
876{
877 struct k_itimer *tmr;
878
879 while (!list_empty(&sig->posix_timers)) {
880 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
881 itimer_delete(tmr);
882 }
883}
884
becf8b5d 885/* Not available / possible... functions */
a924b04d 886int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
887{
888 return -EINVAL;
889}
890EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
891
a924b04d 892int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
97735f25 893 struct timespec *t, struct timespec __user *r)
1da177e4
LT
894{
895#ifndef ENOTSUP
896 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
897#else /* parisc does define it separately. */
898 return -ENOTSUP;
899#endif
900}
901EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
902
a924b04d
TG
903asmlinkage long sys_clock_settime(const clockid_t which_clock,
904 const struct timespec __user *tp)
1da177e4
LT
905{
906 struct timespec new_tp;
907
908 if (invalid_clockid(which_clock))
909 return -EINVAL;
910 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
911 return -EFAULT;
912
913 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
914}
915
916asmlinkage long
a924b04d 917sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
918{
919 struct timespec kernel_tp;
920 int error;
921
922 if (invalid_clockid(which_clock))
923 return -EINVAL;
924 error = CLOCK_DISPATCH(which_clock, clock_get,
925 (which_clock, &kernel_tp));
926 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
927 error = -EFAULT;
928
929 return error;
930
931}
932
933asmlinkage long
a924b04d 934sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
935{
936 struct timespec rtn_tp;
937 int error;
938
939 if (invalid_clockid(which_clock))
940 return -EINVAL;
941
942 error = CLOCK_DISPATCH(which_clock, clock_getres,
943 (which_clock, &rtn_tp));
944
945 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
946 error = -EFAULT;
947 }
948
949 return error;
950}
951
97735f25
TG
952/*
953 * nanosleep for monotonic and realtime clocks
954 */
955static int common_nsleep(const clockid_t which_clock, int flags,
956 struct timespec *tsave, struct timespec __user *rmtp)
957{
080344b9
ON
958 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
959 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
960 which_clock);
97735f25 961}
1da177e4
LT
962
963asmlinkage long
a924b04d 964sys_clock_nanosleep(const clockid_t which_clock, int flags,
1da177e4
LT
965 const struct timespec __user *rqtp,
966 struct timespec __user *rmtp)
967{
968 struct timespec t;
1da177e4
LT
969
970 if (invalid_clockid(which_clock))
971 return -EINVAL;
972
973 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
974 return -EFAULT;
975
5f82b2b7 976 if (!timespec_valid(&t))
1da177e4
LT
977 return -EINVAL;
978
97735f25
TG
979 return CLOCK_DISPATCH(which_clock, nsleep,
980 (which_clock, flags, &t, rmtp));
1da177e4 981}
1711ef38
TA
982
983/*
984 * nanosleep_restart for monotonic and realtime clocks
985 */
986static int common_nsleep_restart(struct restart_block *restart_block)
987{
988 return hrtimer_nanosleep_restart(restart_block);
989}
990
991/*
992 * This will restart clock_nanosleep. This is required only by
993 * compat_clock_nanosleep_restart for now.
994 */
995long
996clock_nanosleep_restart(struct restart_block *restart_block)
997{
998 clockid_t which_clock = restart_block->arg0;
999
1000 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1001 (restart_block));
1002}