Merge master.kernel.org:/home/rmk/linux-2.6-serial
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
7#include <asm/uaccess.h>
8#include <linux/errno.h>
9
10static int check_clock(clockid_t which_clock)
11{
12 int error = 0;
13 struct task_struct *p;
14 const pid_t pid = CPUCLOCK_PID(which_clock);
15
16 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
17 return -EINVAL;
18
19 if (pid == 0)
20 return 0;
21
22 read_lock(&tasklist_lock);
23 p = find_task_by_pid(pid);
24 if (!p || (CPUCLOCK_PERTHREAD(which_clock) ?
25 p->tgid != current->tgid : p->tgid != pid)) {
26 error = -EINVAL;
27 }
28 read_unlock(&tasklist_lock);
29
30 return error;
31}
32
33static inline union cpu_time_count
34timespec_to_sample(clockid_t which_clock, const struct timespec *tp)
35{
36 union cpu_time_count ret;
37 ret.sched = 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
39 ret.sched = tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
40 } else {
41 ret.cpu = timespec_to_cputime(tp);
42 }
43 return ret;
44}
45
46static void sample_to_timespec(clockid_t which_clock,
47 union cpu_time_count cpu,
48 struct timespec *tp)
49{
50 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
51 tp->tv_sec = div_long_long_rem(cpu.sched,
52 NSEC_PER_SEC, &tp->tv_nsec);
53 } else {
54 cputime_to_timespec(cpu.cpu, tp);
55 }
56}
57
58static inline int cpu_time_before(clockid_t which_clock,
59 union cpu_time_count now,
60 union cpu_time_count then)
61{
62 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
63 return now.sched < then.sched;
64 } else {
65 return cputime_lt(now.cpu, then.cpu);
66 }
67}
68static inline void cpu_time_add(clockid_t which_clock,
69 union cpu_time_count *acc,
70 union cpu_time_count val)
71{
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
73 acc->sched += val.sched;
74 } else {
75 acc->cpu = cputime_add(acc->cpu, val.cpu);
76 }
77}
78static inline union cpu_time_count cpu_time_sub(clockid_t which_clock,
79 union cpu_time_count a,
80 union cpu_time_count b)
81{
82 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
83 a.sched -= b.sched;
84 } else {
85 a.cpu = cputime_sub(a.cpu, b.cpu);
86 }
87 return a;
88}
89
90/*
91 * Update expiry time from increment, and increase overrun count,
92 * given the current clock sample.
93 */
94static inline void bump_cpu_timer(struct k_itimer *timer,
95 union cpu_time_count now)
96{
97 int i;
98
99 if (timer->it.cpu.incr.sched == 0)
100 return;
101
102 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
103 unsigned long long delta, incr;
104
105 if (now.sched < timer->it.cpu.expires.sched)
106 return;
107 incr = timer->it.cpu.incr.sched;
108 delta = now.sched + incr - timer->it.cpu.expires.sched;
109 /* Don't use (incr*2 < delta), incr*2 might overflow. */
110 for (i = 0; incr < delta - incr; i++)
111 incr = incr << 1;
112 for (; i >= 0; incr >>= 1, i--) {
113 if (delta <= incr)
114 continue;
115 timer->it.cpu.expires.sched += incr;
116 timer->it_overrun += 1 << i;
117 delta -= incr;
118 }
119 } else {
120 cputime_t delta, incr;
121
122 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
123 return;
124 incr = timer->it.cpu.incr.cpu;
125 delta = cputime_sub(cputime_add(now.cpu, incr),
126 timer->it.cpu.expires.cpu);
127 /* Don't use (incr*2 < delta), incr*2 might overflow. */
128 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
129 incr = cputime_add(incr, incr);
130 for (; i >= 0; incr = cputime_halve(incr), i--) {
131 if (cputime_le(delta, incr))
132 continue;
133 timer->it.cpu.expires.cpu =
134 cputime_add(timer->it.cpu.expires.cpu, incr);
135 timer->it_overrun += 1 << i;
136 delta = cputime_sub(delta, incr);
137 }
138 }
139}
140
141static inline cputime_t prof_ticks(struct task_struct *p)
142{
143 return cputime_add(p->utime, p->stime);
144}
145static inline cputime_t virt_ticks(struct task_struct *p)
146{
147 return p->utime;
148}
149static inline unsigned long long sched_ns(struct task_struct *p)
150{
151 return (p == current) ? current_sched_time(p) : p->sched_time;
152}
153
154int posix_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
155{
156 int error = check_clock(which_clock);
157 if (!error) {
158 tp->tv_sec = 0;
159 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
160 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
161 /*
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
165 */
166 tp->tv_nsec = 1;
167 }
168 }
169 return error;
170}
171
172int posix_cpu_clock_set(clockid_t which_clock, const struct timespec *tp)
173{
174 /*
175 * You can never reset a CPU clock, but we check for other errors
176 * in the call before failing with EPERM.
177 */
178 int error = check_clock(which_clock);
179 if (error == 0) {
180 error = -EPERM;
181 }
182 return error;
183}
184
185
186/*
187 * Sample a per-thread clock for the given task.
188 */
189static int cpu_clock_sample(clockid_t which_clock, struct task_struct *p,
190 union cpu_time_count *cpu)
191{
192 switch (CPUCLOCK_WHICH(which_clock)) {
193 default:
194 return -EINVAL;
195 case CPUCLOCK_PROF:
196 cpu->cpu = prof_ticks(p);
197 break;
198 case CPUCLOCK_VIRT:
199 cpu->cpu = virt_ticks(p);
200 break;
201 case CPUCLOCK_SCHED:
202 cpu->sched = sched_ns(p);
203 break;
204 }
205 return 0;
206}
207
208/*
209 * Sample a process (thread group) clock for the given group_leader task.
210 * Must be called with tasklist_lock held for reading.
211 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
212 */
213static int cpu_clock_sample_group_locked(unsigned int clock_idx,
214 struct task_struct *p,
215 union cpu_time_count *cpu)
216{
217 struct task_struct *t = p;
218 switch (clock_idx) {
219 default:
220 return -EINVAL;
221 case CPUCLOCK_PROF:
222 cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
223 do {
224 cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
225 t = next_thread(t);
226 } while (t != p);
227 break;
228 case CPUCLOCK_VIRT:
229 cpu->cpu = p->signal->utime;
230 do {
231 cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
232 t = next_thread(t);
233 } while (t != p);
234 break;
235 case CPUCLOCK_SCHED:
236 cpu->sched = p->signal->sched_time;
237 /* Add in each other live thread. */
238 while ((t = next_thread(t)) != p) {
239 cpu->sched += t->sched_time;
240 }
241 if (p->tgid == current->tgid) {
242 /*
243 * We're sampling ourselves, so include the
244 * cycles not yet banked. We still omit
245 * other threads running on other CPUs,
246 * so the total can always be behind as
247 * much as max(nthreads-1,ncpus) * (NSEC_PER_SEC/HZ).
248 */
249 cpu->sched += current_sched_time(current);
250 } else {
251 cpu->sched += p->sched_time;
252 }
253 break;
254 }
255 return 0;
256}
257
258/*
259 * Sample a process (thread group) clock for the given group_leader task.
260 * Must be called with tasklist_lock held for reading.
261 */
262static int cpu_clock_sample_group(clockid_t which_clock,
263 struct task_struct *p,
264 union cpu_time_count *cpu)
265{
266 int ret;
267 unsigned long flags;
268 spin_lock_irqsave(&p->sighand->siglock, flags);
269 ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
270 cpu);
271 spin_unlock_irqrestore(&p->sighand->siglock, flags);
272 return ret;
273}
274
275
276int posix_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
277{
278 const pid_t pid = CPUCLOCK_PID(which_clock);
279 int error = -EINVAL;
280 union cpu_time_count rtn;
281
282 if (pid == 0) {
283 /*
284 * Special case constant value for our own clocks.
285 * We don't have to do any lookup to find ourselves.
286 */
287 if (CPUCLOCK_PERTHREAD(which_clock)) {
288 /*
289 * Sampling just ourselves we can do with no locking.
290 */
291 error = cpu_clock_sample(which_clock,
292 current, &rtn);
293 } else {
294 read_lock(&tasklist_lock);
295 error = cpu_clock_sample_group(which_clock,
296 current, &rtn);
297 read_unlock(&tasklist_lock);
298 }
299 } else {
300 /*
301 * Find the given PID, and validate that the caller
302 * should be able to see it.
303 */
304 struct task_struct *p;
305 read_lock(&tasklist_lock);
306 p = find_task_by_pid(pid);
307 if (p) {
308 if (CPUCLOCK_PERTHREAD(which_clock)) {
309 if (p->tgid == current->tgid) {
310 error = cpu_clock_sample(which_clock,
311 p, &rtn);
312 }
313 } else if (p->tgid == pid && p->signal) {
314 error = cpu_clock_sample_group(which_clock,
315 p, &rtn);
316 }
317 }
318 read_unlock(&tasklist_lock);
319 }
320
321 if (error)
322 return error;
323 sample_to_timespec(which_clock, rtn, tp);
324 return 0;
325}
326
327
328/*
329 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
330 * This is called from sys_timer_create with the new timer already locked.
331 */
332int posix_cpu_timer_create(struct k_itimer *new_timer)
333{
334 int ret = 0;
335 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
336 struct task_struct *p;
337
338 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
339 return -EINVAL;
340
341 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
342 new_timer->it.cpu.incr.sched = 0;
343 new_timer->it.cpu.expires.sched = 0;
344
345 read_lock(&tasklist_lock);
346 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
347 if (pid == 0) {
348 p = current;
349 } else {
350 p = find_task_by_pid(pid);
351 if (p && p->tgid != current->tgid)
352 p = NULL;
353 }
354 } else {
355 if (pid == 0) {
356 p = current->group_leader;
357 } else {
358 p = find_task_by_pid(pid);
359 if (p && p->tgid != pid)
360 p = NULL;
361 }
362 }
363 new_timer->it.cpu.task = p;
364 if (p) {
365 get_task_struct(p);
366 } else {
367 ret = -EINVAL;
368 }
369 read_unlock(&tasklist_lock);
370
371 return ret;
372}
373
374/*
375 * Clean up a CPU-clock timer that is about to be destroyed.
376 * This is called from timer deletion with the timer already locked.
377 * If we return TIMER_RETRY, it's necessary to release the timer's lock
378 * and try again. (This happens when the timer is in the middle of firing.)
379 */
380int posix_cpu_timer_del(struct k_itimer *timer)
381{
382 struct task_struct *p = timer->it.cpu.task;
108150ea 383 int ret = 0;
1da177e4 384
108150ea 385 if (likely(p != NULL)) {
9465bee8
LT
386 read_lock(&tasklist_lock);
387 if (unlikely(p->signal == NULL)) {
388 /*
389 * We raced with the reaping of the task.
390 * The deletion should have cleared us off the list.
391 */
392 BUG_ON(!list_empty(&timer->it.cpu.entry));
393 } else {
9465bee8 394 spin_lock(&p->sighand->siglock);
108150ea
ON
395 if (timer->it.cpu.firing)
396 ret = TIMER_RETRY;
397 else
398 list_del(&timer->it.cpu.entry);
9465bee8
LT
399 spin_unlock(&p->sighand->siglock);
400 }
401 read_unlock(&tasklist_lock);
108150ea
ON
402
403 if (!ret)
404 put_task_struct(p);
1da177e4 405 }
1da177e4 406
108150ea 407 return ret;
1da177e4
LT
408}
409
410/*
411 * Clean out CPU timers still ticking when a thread exited. The task
412 * pointer is cleared, and the expiry time is replaced with the residual
413 * time for later timer_gettime calls to return.
414 * This must be called with the siglock held.
415 */
416static void cleanup_timers(struct list_head *head,
417 cputime_t utime, cputime_t stime,
418 unsigned long long sched_time)
419{
420 struct cpu_timer_list *timer, *next;
421 cputime_t ptime = cputime_add(utime, stime);
422
423 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
424 list_del_init(&timer->entry);
425 if (cputime_lt(timer->expires.cpu, ptime)) {
426 timer->expires.cpu = cputime_zero;
427 } else {
428 timer->expires.cpu = cputime_sub(timer->expires.cpu,
429 ptime);
430 }
431 }
432
433 ++head;
434 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
435 list_del_init(&timer->entry);
436 if (cputime_lt(timer->expires.cpu, utime)) {
437 timer->expires.cpu = cputime_zero;
438 } else {
439 timer->expires.cpu = cputime_sub(timer->expires.cpu,
440 utime);
441 }
442 }
443
444 ++head;
445 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
446 list_del_init(&timer->entry);
447 if (timer->expires.sched < sched_time) {
448 timer->expires.sched = 0;
449 } else {
450 timer->expires.sched -= sched_time;
451 }
452 }
453}
454
455/*
456 * These are both called with the siglock held, when the current thread
457 * is being reaped. When the final (leader) thread in the group is reaped,
458 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
459 */
460void posix_cpu_timers_exit(struct task_struct *tsk)
461{
462 cleanup_timers(tsk->cpu_timers,
463 tsk->utime, tsk->stime, tsk->sched_time);
464
465}
466void posix_cpu_timers_exit_group(struct task_struct *tsk)
467{
468 cleanup_timers(tsk->signal->cpu_timers,
469 cputime_add(tsk->utime, tsk->signal->utime),
470 cputime_add(tsk->stime, tsk->signal->stime),
471 tsk->sched_time + tsk->signal->sched_time);
472}
473
474
475/*
476 * Set the expiry times of all the threads in the process so one of them
477 * will go off before the process cumulative expiry total is reached.
478 */
479static void process_timer_rebalance(struct task_struct *p,
480 unsigned int clock_idx,
481 union cpu_time_count expires,
482 union cpu_time_count val)
483{
484 cputime_t ticks, left;
485 unsigned long long ns, nsleft;
486 struct task_struct *t = p;
487 unsigned int nthreads = atomic_read(&p->signal->live);
488
ca531a0a
ON
489 if (!nthreads)
490 return;
491
1da177e4
LT
492 switch (clock_idx) {
493 default:
494 BUG();
495 break;
496 case CPUCLOCK_PROF:
497 left = cputime_div(cputime_sub(expires.cpu, val.cpu),
498 nthreads);
499 do {
500 if (!unlikely(t->exit_state)) {
501 ticks = cputime_add(prof_ticks(t), left);
502 if (cputime_eq(t->it_prof_expires,
503 cputime_zero) ||
504 cputime_gt(t->it_prof_expires, ticks)) {
505 t->it_prof_expires = ticks;
506 }
507 }
508 t = next_thread(t);
509 } while (t != p);
510 break;
511 case CPUCLOCK_VIRT:
512 left = cputime_div(cputime_sub(expires.cpu, val.cpu),
513 nthreads);
514 do {
515 if (!unlikely(t->exit_state)) {
516 ticks = cputime_add(virt_ticks(t), left);
517 if (cputime_eq(t->it_virt_expires,
518 cputime_zero) ||
519 cputime_gt(t->it_virt_expires, ticks)) {
520 t->it_virt_expires = ticks;
521 }
522 }
523 t = next_thread(t);
524 } while (t != p);
525 break;
526 case CPUCLOCK_SCHED:
527 nsleft = expires.sched - val.sched;
528 do_div(nsleft, nthreads);
529 do {
530 if (!unlikely(t->exit_state)) {
531 ns = t->sched_time + nsleft;
532 if (t->it_sched_expires == 0 ||
533 t->it_sched_expires > ns) {
534 t->it_sched_expires = ns;
535 }
536 }
537 t = next_thread(t);
538 } while (t != p);
539 break;
540 }
541}
542
543static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
544{
545 /*
546 * That's all for this thread or process.
547 * We leave our residual in expires to be reported.
548 */
549 put_task_struct(timer->it.cpu.task);
550 timer->it.cpu.task = NULL;
551 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
552 timer->it.cpu.expires,
553 now);
554}
555
556/*
557 * Insert the timer on the appropriate list before any timers that
558 * expire later. This must be called with the tasklist_lock held
559 * for reading, and interrupts disabled.
560 */
561static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
562{
563 struct task_struct *p = timer->it.cpu.task;
564 struct list_head *head, *listpos;
565 struct cpu_timer_list *const nt = &timer->it.cpu;
566 struct cpu_timer_list *next;
567 unsigned long i;
568
569 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
570 p->cpu_timers : p->signal->cpu_timers);
571 head += CPUCLOCK_WHICH(timer->it_clock);
572
573 BUG_ON(!irqs_disabled());
574 spin_lock(&p->sighand->siglock);
575
576 listpos = head;
577 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
578 list_for_each_entry(next, head, entry) {
70ab81c2 579 if (next->expires.sched > nt->expires.sched)
1da177e4 580 break;
70ab81c2 581 listpos = &next->entry;
1da177e4
LT
582 }
583 } else {
584 list_for_each_entry(next, head, entry) {
70ab81c2 585 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
1da177e4 586 break;
70ab81c2 587 listpos = &next->entry;
1da177e4
LT
588 }
589 }
590 list_add(&nt->entry, listpos);
591
592 if (listpos == head) {
593 /*
594 * We are the new earliest-expiring timer.
595 * If we are a thread timer, there can always
596 * be a process timer telling us to stop earlier.
597 */
598
599 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
600 switch (CPUCLOCK_WHICH(timer->it_clock)) {
601 default:
602 BUG();
603 case CPUCLOCK_PROF:
604 if (cputime_eq(p->it_prof_expires,
605 cputime_zero) ||
606 cputime_gt(p->it_prof_expires,
607 nt->expires.cpu))
608 p->it_prof_expires = nt->expires.cpu;
609 break;
610 case CPUCLOCK_VIRT:
611 if (cputime_eq(p->it_virt_expires,
612 cputime_zero) ||
613 cputime_gt(p->it_virt_expires,
614 nt->expires.cpu))
615 p->it_virt_expires = nt->expires.cpu;
616 break;
617 case CPUCLOCK_SCHED:
618 if (p->it_sched_expires == 0 ||
619 p->it_sched_expires > nt->expires.sched)
620 p->it_sched_expires = nt->expires.sched;
621 break;
622 }
623 } else {
624 /*
625 * For a process timer, we must balance
626 * all the live threads' expirations.
627 */
628 switch (CPUCLOCK_WHICH(timer->it_clock)) {
629 default:
630 BUG();
631 case CPUCLOCK_VIRT:
632 if (!cputime_eq(p->signal->it_virt_expires,
633 cputime_zero) &&
634 cputime_lt(p->signal->it_virt_expires,
635 timer->it.cpu.expires.cpu))
636 break;
637 goto rebalance;
638 case CPUCLOCK_PROF:
639 if (!cputime_eq(p->signal->it_prof_expires,
640 cputime_zero) &&
641 cputime_lt(p->signal->it_prof_expires,
642 timer->it.cpu.expires.cpu))
643 break;
644 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
645 if (i != RLIM_INFINITY &&
646 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
647 break;
648 goto rebalance;
649 case CPUCLOCK_SCHED:
650 rebalance:
651 process_timer_rebalance(
652 timer->it.cpu.task,
653 CPUCLOCK_WHICH(timer->it_clock),
654 timer->it.cpu.expires, now);
655 break;
656 }
657 }
658 }
659
660 spin_unlock(&p->sighand->siglock);
661}
662
663/*
664 * The timer is locked, fire it and arrange for its reload.
665 */
666static void cpu_timer_fire(struct k_itimer *timer)
667{
668 if (unlikely(timer->sigq == NULL)) {
669 /*
670 * This a special case for clock_nanosleep,
671 * not a normal timer from sys_timer_create.
672 */
673 wake_up_process(timer->it_process);
674 timer->it.cpu.expires.sched = 0;
675 } else if (timer->it.cpu.incr.sched == 0) {
676 /*
677 * One-shot timer. Clear it as soon as it's fired.
678 */
679 posix_timer_event(timer, 0);
680 timer->it.cpu.expires.sched = 0;
681 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
682 /*
683 * The signal did not get queued because the signal
684 * was ignored, so we won't get any callback to
685 * reload the timer. But we need to keep it
686 * ticking in case the signal is deliverable next time.
687 */
688 posix_cpu_timer_schedule(timer);
689 }
690}
691
692/*
693 * Guts of sys_timer_settime for CPU timers.
694 * This is called with the timer locked and interrupts disabled.
695 * If we return TIMER_RETRY, it's necessary to release the timer's lock
696 * and try again. (This happens when the timer is in the middle of firing.)
697 */
698int posix_cpu_timer_set(struct k_itimer *timer, int flags,
699 struct itimerspec *new, struct itimerspec *old)
700{
701 struct task_struct *p = timer->it.cpu.task;
702 union cpu_time_count old_expires, new_expires, val;
703 int ret;
704
705 if (unlikely(p == NULL)) {
706 /*
707 * Timer refers to a dead task's clock.
708 */
709 return -ESRCH;
710 }
711
712 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
713
714 read_lock(&tasklist_lock);
715 /*
716 * We need the tasklist_lock to protect against reaping that
717 * clears p->signal. If p has just been reaped, we can no
718 * longer get any information about it at all.
719 */
720 if (unlikely(p->signal == NULL)) {
721 read_unlock(&tasklist_lock);
722 put_task_struct(p);
723 timer->it.cpu.task = NULL;
724 return -ESRCH;
725 }
726
727 /*
728 * Disarm any old timer after extracting its expiry time.
729 */
730 BUG_ON(!irqs_disabled());
a69ac4a7
ON
731
732 ret = 0;
1da177e4
LT
733 spin_lock(&p->sighand->siglock);
734 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
735 if (unlikely(timer->it.cpu.firing)) {
736 timer->it.cpu.firing = -1;
737 ret = TIMER_RETRY;
738 } else
739 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
740 spin_unlock(&p->sighand->siglock);
741
742 /*
743 * We need to sample the current value to convert the new
744 * value from to relative and absolute, and to convert the
745 * old value from absolute to relative. To set a process
746 * timer, we need a sample to balance the thread expiry
747 * times (in arm_timer). With an absolute time, we must
748 * check if it's already passed. In short, we need a sample.
749 */
750 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
751 cpu_clock_sample(timer->it_clock, p, &val);
752 } else {
753 cpu_clock_sample_group(timer->it_clock, p, &val);
754 }
755
756 if (old) {
757 if (old_expires.sched == 0) {
758 old->it_value.tv_sec = 0;
759 old->it_value.tv_nsec = 0;
760 } else {
761 /*
762 * Update the timer in case it has
763 * overrun already. If it has,
764 * we'll report it as having overrun
765 * and with the next reloaded timer
766 * already ticking, though we are
767 * swallowing that pending
768 * notification here to install the
769 * new setting.
770 */
771 bump_cpu_timer(timer, val);
772 if (cpu_time_before(timer->it_clock, val,
773 timer->it.cpu.expires)) {
774 old_expires = cpu_time_sub(
775 timer->it_clock,
776 timer->it.cpu.expires, val);
777 sample_to_timespec(timer->it_clock,
778 old_expires,
779 &old->it_value);
780 } else {
781 old->it_value.tv_nsec = 1;
782 old->it_value.tv_sec = 0;
783 }
784 }
785 }
786
a69ac4a7 787 if (unlikely(ret)) {
1da177e4
LT
788 /*
789 * We are colliding with the timer actually firing.
790 * Punt after filling in the timer's old value, and
791 * disable this firing since we are already reporting
792 * it as an overrun (thanks to bump_cpu_timer above).
793 */
794 read_unlock(&tasklist_lock);
1da177e4
LT
795 goto out;
796 }
797
798 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
799 cpu_time_add(timer->it_clock, &new_expires, val);
800 }
801
802 /*
803 * Install the new expiry time (or zero).
804 * For a timer with no notification action, we don't actually
805 * arm the timer (we'll just fake it for timer_gettime).
806 */
807 timer->it.cpu.expires = new_expires;
808 if (new_expires.sched != 0 &&
809 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
810 cpu_time_before(timer->it_clock, val, new_expires)) {
811 arm_timer(timer, val);
812 }
813
814 read_unlock(&tasklist_lock);
815
816 /*
817 * Install the new reload setting, and
818 * set up the signal and overrun bookkeeping.
819 */
820 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
821 &new->it_interval);
822
823 /*
824 * This acts as a modification timestamp for the timer,
825 * so any automatic reload attempt will punt on seeing
826 * that we have reset the timer manually.
827 */
828 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
829 ~REQUEUE_PENDING;
830 timer->it_overrun_last = 0;
831 timer->it_overrun = -1;
832
833 if (new_expires.sched != 0 &&
834 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
835 !cpu_time_before(timer->it_clock, val, new_expires)) {
836 /*
837 * The designated time already passed, so we notify
838 * immediately, even if the thread never runs to
839 * accumulate more time on this clock.
840 */
841 cpu_timer_fire(timer);
842 }
843
844 ret = 0;
845 out:
846 if (old) {
847 sample_to_timespec(timer->it_clock,
848 timer->it.cpu.incr, &old->it_interval);
849 }
850 return ret;
851}
852
853void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
854{
855 union cpu_time_count now;
856 struct task_struct *p = timer->it.cpu.task;
857 int clear_dead;
858
859 /*
860 * Easy part: convert the reload time.
861 */
862 sample_to_timespec(timer->it_clock,
863 timer->it.cpu.incr, &itp->it_interval);
864
865 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
866 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
867 return;
868 }
869
870 if (unlikely(p == NULL)) {
871 /*
872 * This task already died and the timer will never fire.
873 * In this case, expires is actually the dead value.
874 */
875 dead:
876 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
877 &itp->it_value);
878 return;
879 }
880
881 /*
882 * Sample the clock to take the difference with the expiry time.
883 */
884 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
885 cpu_clock_sample(timer->it_clock, p, &now);
886 clear_dead = p->exit_state;
887 } else {
888 read_lock(&tasklist_lock);
889 if (unlikely(p->signal == NULL)) {
890 /*
891 * The process has been reaped.
892 * We can't even collect a sample any more.
893 * Call the timer disarmed, nothing else to do.
894 */
895 put_task_struct(p);
896 timer->it.cpu.task = NULL;
897 timer->it.cpu.expires.sched = 0;
898 read_unlock(&tasklist_lock);
899 goto dead;
900 } else {
901 cpu_clock_sample_group(timer->it_clock, p, &now);
902 clear_dead = (unlikely(p->exit_state) &&
903 thread_group_empty(p));
904 }
905 read_unlock(&tasklist_lock);
906 }
907
908 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
909 if (timer->it.cpu.incr.sched == 0 &&
910 cpu_time_before(timer->it_clock,
911 timer->it.cpu.expires, now)) {
912 /*
913 * Do-nothing timer expired and has no reload,
914 * so it's as if it was never set.
915 */
916 timer->it.cpu.expires.sched = 0;
917 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
918 return;
919 }
920 /*
921 * Account for any expirations and reloads that should
922 * have happened.
923 */
924 bump_cpu_timer(timer, now);
925 }
926
927 if (unlikely(clear_dead)) {
928 /*
929 * We've noticed that the thread is dead, but
930 * not yet reaped. Take this opportunity to
931 * drop our task ref.
932 */
933 clear_dead_task(timer, now);
934 goto dead;
935 }
936
937 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
938 sample_to_timespec(timer->it_clock,
939 cpu_time_sub(timer->it_clock,
940 timer->it.cpu.expires, now),
941 &itp->it_value);
942 } else {
943 /*
944 * The timer should have expired already, but the firing
945 * hasn't taken place yet. Say it's just about to expire.
946 */
947 itp->it_value.tv_nsec = 1;
948 itp->it_value.tv_sec = 0;
949 }
950}
951
952/*
953 * Check for any per-thread CPU timers that have fired and move them off
954 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
955 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
956 */
957static void check_thread_timers(struct task_struct *tsk,
958 struct list_head *firing)
959{
e80eda94 960 int maxfire;
1da177e4
LT
961 struct list_head *timers = tsk->cpu_timers;
962
e80eda94 963 maxfire = 20;
1da177e4
LT
964 tsk->it_prof_expires = cputime_zero;
965 while (!list_empty(timers)) {
966 struct cpu_timer_list *t = list_entry(timers->next,
967 struct cpu_timer_list,
968 entry);
e80eda94 969 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
1da177e4
LT
970 tsk->it_prof_expires = t->expires.cpu;
971 break;
972 }
973 t->firing = 1;
974 list_move_tail(&t->entry, firing);
975 }
976
977 ++timers;
e80eda94 978 maxfire = 20;
1da177e4
LT
979 tsk->it_virt_expires = cputime_zero;
980 while (!list_empty(timers)) {
981 struct cpu_timer_list *t = list_entry(timers->next,
982 struct cpu_timer_list,
983 entry);
e80eda94 984 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
1da177e4
LT
985 tsk->it_virt_expires = t->expires.cpu;
986 break;
987 }
988 t->firing = 1;
989 list_move_tail(&t->entry, firing);
990 }
991
992 ++timers;
e80eda94 993 maxfire = 20;
1da177e4
LT
994 tsk->it_sched_expires = 0;
995 while (!list_empty(timers)) {
996 struct cpu_timer_list *t = list_entry(timers->next,
997 struct cpu_timer_list,
998 entry);
e80eda94 999 if (!--maxfire || tsk->sched_time < t->expires.sched) {
1da177e4
LT
1000 tsk->it_sched_expires = t->expires.sched;
1001 break;
1002 }
1003 t->firing = 1;
1004 list_move_tail(&t->entry, firing);
1005 }
1006}
1007
1008/*
1009 * Check for any per-thread CPU timers that have fired and move them
1010 * off the tsk->*_timers list onto the firing list. Per-thread timers
1011 * have already been taken off.
1012 */
1013static void check_process_timers(struct task_struct *tsk,
1014 struct list_head *firing)
1015{
e80eda94 1016 int maxfire;
1da177e4
LT
1017 struct signal_struct *const sig = tsk->signal;
1018 cputime_t utime, stime, ptime, virt_expires, prof_expires;
1019 unsigned long long sched_time, sched_expires;
1020 struct task_struct *t;
1021 struct list_head *timers = sig->cpu_timers;
1022
1023 /*
1024 * Don't sample the current process CPU clocks if there are no timers.
1025 */
1026 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1027 cputime_eq(sig->it_prof_expires, cputime_zero) &&
1028 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1029 list_empty(&timers[CPUCLOCK_VIRT]) &&
1030 cputime_eq(sig->it_virt_expires, cputime_zero) &&
1031 list_empty(&timers[CPUCLOCK_SCHED]))
1032 return;
1033
1034 /*
1035 * Collect the current process totals.
1036 */
1037 utime = sig->utime;
1038 stime = sig->stime;
1039 sched_time = sig->sched_time;
1040 t = tsk;
1041 do {
1042 utime = cputime_add(utime, t->utime);
1043 stime = cputime_add(stime, t->stime);
1044 sched_time += t->sched_time;
1045 t = next_thread(t);
1046 } while (t != tsk);
1047 ptime = cputime_add(utime, stime);
1048
e80eda94 1049 maxfire = 20;
1da177e4
LT
1050 prof_expires = cputime_zero;
1051 while (!list_empty(timers)) {
1052 struct cpu_timer_list *t = list_entry(timers->next,
1053 struct cpu_timer_list,
1054 entry);
e80eda94 1055 if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) {
1da177e4
LT
1056 prof_expires = t->expires.cpu;
1057 break;
1058 }
1059 t->firing = 1;
1060 list_move_tail(&t->entry, firing);
1061 }
1062
1063 ++timers;
e80eda94 1064 maxfire = 20;
1da177e4
LT
1065 virt_expires = cputime_zero;
1066 while (!list_empty(timers)) {
1067 struct cpu_timer_list *t = list_entry(timers->next,
1068 struct cpu_timer_list,
1069 entry);
e80eda94 1070 if (!--maxfire || cputime_lt(utime, t->expires.cpu)) {
1da177e4
LT
1071 virt_expires = t->expires.cpu;
1072 break;
1073 }
1074 t->firing = 1;
1075 list_move_tail(&t->entry, firing);
1076 }
1077
1078 ++timers;
e80eda94 1079 maxfire = 20;
1da177e4
LT
1080 sched_expires = 0;
1081 while (!list_empty(timers)) {
1082 struct cpu_timer_list *t = list_entry(timers->next,
1083 struct cpu_timer_list,
1084 entry);
e80eda94 1085 if (!--maxfire || sched_time < t->expires.sched) {
1da177e4
LT
1086 sched_expires = t->expires.sched;
1087 break;
1088 }
1089 t->firing = 1;
1090 list_move_tail(&t->entry, firing);
1091 }
1092
1093 /*
1094 * Check for the special case process timers.
1095 */
1096 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1097 if (cputime_ge(ptime, sig->it_prof_expires)) {
1098 /* ITIMER_PROF fires and reloads. */
1099 sig->it_prof_expires = sig->it_prof_incr;
1100 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1101 sig->it_prof_expires = cputime_add(
1102 sig->it_prof_expires, ptime);
1103 }
1104 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1105 }
1106 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1107 (cputime_eq(prof_expires, cputime_zero) ||
1108 cputime_lt(sig->it_prof_expires, prof_expires))) {
1109 prof_expires = sig->it_prof_expires;
1110 }
1111 }
1112 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1113 if (cputime_ge(utime, sig->it_virt_expires)) {
1114 /* ITIMER_VIRTUAL fires and reloads. */
1115 sig->it_virt_expires = sig->it_virt_incr;
1116 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1117 sig->it_virt_expires = cputime_add(
1118 sig->it_virt_expires, utime);
1119 }
1120 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1121 }
1122 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1123 (cputime_eq(virt_expires, cputime_zero) ||
1124 cputime_lt(sig->it_virt_expires, virt_expires))) {
1125 virt_expires = sig->it_virt_expires;
1126 }
1127 }
1128 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1129 unsigned long psecs = cputime_to_secs(ptime);
1130 cputime_t x;
1131 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1132 /*
1133 * At the hard limit, we just die.
1134 * No need to calculate anything else now.
1135 */
1136 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1137 return;
1138 }
1139 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1140 /*
1141 * At the soft limit, send a SIGXCPU every second.
1142 */
1143 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1144 if (sig->rlim[RLIMIT_CPU].rlim_cur
1145 < sig->rlim[RLIMIT_CPU].rlim_max) {
1146 sig->rlim[RLIMIT_CPU].rlim_cur++;
1147 }
1148 }
1149 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1150 if (cputime_eq(prof_expires, cputime_zero) ||
1151 cputime_lt(x, prof_expires)) {
1152 prof_expires = x;
1153 }
1154 }
1155
1156 if (!cputime_eq(prof_expires, cputime_zero) ||
1157 !cputime_eq(virt_expires, cputime_zero) ||
1158 sched_expires != 0) {
1159 /*
1160 * Rebalance the threads' expiry times for the remaining
1161 * process CPU timers.
1162 */
1163
1164 cputime_t prof_left, virt_left, ticks;
1165 unsigned long long sched_left, sched;
1166 const unsigned int nthreads = atomic_read(&sig->live);
1167
ca531a0a
ON
1168 if (!nthreads)
1169 return;
1170
1da177e4
LT
1171 prof_left = cputime_sub(prof_expires, utime);
1172 prof_left = cputime_sub(prof_left, stime);
1173 prof_left = cputime_div(prof_left, nthreads);
1174 virt_left = cputime_sub(virt_expires, utime);
1175 virt_left = cputime_div(virt_left, nthreads);
1176 if (sched_expires) {
1177 sched_left = sched_expires - sched_time;
1178 do_div(sched_left, nthreads);
1179 } else {
1180 sched_left = 0;
1181 }
1182 t = tsk;
1183 do {
1184 ticks = cputime_add(cputime_add(t->utime, t->stime),
1185 prof_left);
1186 if (!cputime_eq(prof_expires, cputime_zero) &&
1187 (cputime_eq(t->it_prof_expires, cputime_zero) ||
1188 cputime_gt(t->it_prof_expires, ticks))) {
1189 t->it_prof_expires = ticks;
1190 }
1191
1192 ticks = cputime_add(t->utime, virt_left);
1193 if (!cputime_eq(virt_expires, cputime_zero) &&
1194 (cputime_eq(t->it_virt_expires, cputime_zero) ||
1195 cputime_gt(t->it_virt_expires, ticks))) {
1196 t->it_virt_expires = ticks;
1197 }
1198
1199 sched = t->sched_time + sched_left;
1200 if (sched_expires && (t->it_sched_expires == 0 ||
1201 t->it_sched_expires > sched)) {
1202 t->it_sched_expires = sched;
1203 }
1204
1205 do {
1206 t = next_thread(t);
1207 } while (unlikely(t->exit_state));
1208 } while (t != tsk);
1209 }
1210}
1211
1212/*
1213 * This is called from the signal code (via do_schedule_next_timer)
1214 * when the last timer signal was delivered and we have to reload the timer.
1215 */
1216void posix_cpu_timer_schedule(struct k_itimer *timer)
1217{
1218 struct task_struct *p = timer->it.cpu.task;
1219 union cpu_time_count now;
1220
1221 if (unlikely(p == NULL))
1222 /*
1223 * The task was cleaned up already, no future firings.
1224 */
1225 return;
1226
1227 /*
1228 * Fetch the current sample and update the timer's expiry time.
1229 */
1230 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1231 cpu_clock_sample(timer->it_clock, p, &now);
1232 bump_cpu_timer(timer, now);
1233 if (unlikely(p->exit_state)) {
1234 clear_dead_task(timer, now);
1235 return;
1236 }
1237 read_lock(&tasklist_lock); /* arm_timer needs it. */
1238 } else {
1239 read_lock(&tasklist_lock);
1240 if (unlikely(p->signal == NULL)) {
1241 /*
1242 * The process has been reaped.
1243 * We can't even collect a sample any more.
1244 */
1245 put_task_struct(p);
1246 timer->it.cpu.task = p = NULL;
1247 timer->it.cpu.expires.sched = 0;
1248 read_unlock(&tasklist_lock);
1249 return;
1250 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1251 /*
1252 * We've noticed that the thread is dead, but
1253 * not yet reaped. Take this opportunity to
1254 * drop our task ref.
1255 */
1256 clear_dead_task(timer, now);
1257 read_unlock(&tasklist_lock);
1258 return;
1259 }
1260 cpu_clock_sample_group(timer->it_clock, p, &now);
1261 bump_cpu_timer(timer, now);
1262 /* Leave the tasklist_lock locked for the call below. */
1263 }
1264
1265 /*
1266 * Now re-arm for the new expiry time.
1267 */
1268 arm_timer(timer, now);
1269
1270 read_unlock(&tasklist_lock);
1271}
1272
1273/*
1274 * This is called from the timer interrupt handler. The irq handler has
1275 * already updated our counts. We need to check if any timers fire now.
1276 * Interrupts are disabled.
1277 */
1278void run_posix_cpu_timers(struct task_struct *tsk)
1279{
1280 LIST_HEAD(firing);
1281 struct k_itimer *timer, *next;
1282
1283 BUG_ON(!irqs_disabled());
1284
1285#define UNEXPIRED(clock) \
1286 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1287 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1288
1289 if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1290 (tsk->it_sched_expires == 0 ||
1291 tsk->sched_time < tsk->it_sched_expires))
1292 return;
1293
1294#undef UNEXPIRED
1295
1da177e4
LT
1296 /*
1297 * Double-check with locks held.
1298 */
1299 read_lock(&tasklist_lock);
3de463c7
ON
1300 if (likely(tsk->signal != NULL)) {
1301 spin_lock(&tsk->sighand->siglock);
1da177e4 1302
3de463c7
ON
1303 /*
1304 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1305 * all the timers that are firing, and put them on the firing list.
1306 */
1307 check_thread_timers(tsk, &firing);
1308 check_process_timers(tsk, &firing);
1da177e4 1309
3de463c7
ON
1310 /*
1311 * We must release these locks before taking any timer's lock.
1312 * There is a potential race with timer deletion here, as the
1313 * siglock now protects our private firing list. We have set
1314 * the firing flag in each timer, so that a deletion attempt
1315 * that gets the timer lock before we do will give it up and
1316 * spin until we've taken care of that timer below.
1317 */
1318 spin_unlock(&tsk->sighand->siglock);
1319 }
1da177e4
LT
1320 read_unlock(&tasklist_lock);
1321
1322 /*
1323 * Now that all the timers on our list have the firing flag,
1324 * noone will touch their list entries but us. We'll take
1325 * each timer's lock before clearing its firing flag, so no
1326 * timer call will interfere.
1327 */
1328 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1329 int firing;
1330 spin_lock(&timer->it_lock);
1331 list_del_init(&timer->it.cpu.entry);
1332 firing = timer->it.cpu.firing;
1333 timer->it.cpu.firing = 0;
1334 /*
1335 * The firing flag is -1 if we collided with a reset
1336 * of the timer, which already reported this
1337 * almost-firing as an overrun. So don't generate an event.
1338 */
1339 if (likely(firing >= 0)) {
1340 cpu_timer_fire(timer);
1341 }
1342 spin_unlock(&timer->it_lock);
1343 }
1344}
1345
1346/*
1347 * Set one of the process-wide special case CPU timers.
1348 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1349 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1350 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1351 * it to be absolute, *oldval is absolute and we update it to be relative.
1352 */
1353void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1354 cputime_t *newval, cputime_t *oldval)
1355{
1356 union cpu_time_count now;
1357 struct list_head *head;
1358
1359 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1360 cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1361
1362 if (oldval) {
1363 if (!cputime_eq(*oldval, cputime_zero)) {
1364 if (cputime_le(*oldval, now.cpu)) {
1365 /* Just about to fire. */
1366 *oldval = jiffies_to_cputime(1);
1367 } else {
1368 *oldval = cputime_sub(*oldval, now.cpu);
1369 }
1370 }
1371
1372 if (cputime_eq(*newval, cputime_zero))
1373 return;
1374 *newval = cputime_add(*newval, now.cpu);
1375
1376 /*
1377 * If the RLIMIT_CPU timer will expire before the
1378 * ITIMER_PROF timer, we have nothing else to do.
1379 */
1380 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1381 < cputime_to_secs(*newval))
1382 return;
1383 }
1384
1385 /*
1386 * Check whether there are any process timers already set to fire
1387 * before this one. If so, we don't have anything more to do.
1388 */
1389 head = &tsk->signal->cpu_timers[clock_idx];
1390 if (list_empty(head) ||
1391 cputime_ge(list_entry(head->next,
1392 struct cpu_timer_list, entry)->expires.cpu,
1393 *newval)) {
1394 /*
1395 * Rejigger each thread's expiry time so that one will
1396 * notice before we hit the process-cumulative expiry time.
1397 */
1398 union cpu_time_count expires = { .sched = 0 };
1399 expires.cpu = *newval;
1400 process_timer_rebalance(tsk, clock_idx, expires, now);
1401 }
1402}
1403
1404static long posix_cpu_clock_nanosleep_restart(struct restart_block *);
1405
1406int posix_cpu_nsleep(clockid_t which_clock, int flags,
1407 struct timespec *rqtp)
1408{
1409 struct restart_block *restart_block =
1410 &current_thread_info()->restart_block;
1411 struct k_itimer timer;
1412 int error;
1413
1414 /*
1415 * Diagnose required errors first.
1416 */
1417 if (CPUCLOCK_PERTHREAD(which_clock) &&
1418 (CPUCLOCK_PID(which_clock) == 0 ||
1419 CPUCLOCK_PID(which_clock) == current->pid))
1420 return -EINVAL;
1421
1422 /*
1423 * Set up a temporary timer and then wait for it to go off.
1424 */
1425 memset(&timer, 0, sizeof timer);
1426 spin_lock_init(&timer.it_lock);
1427 timer.it_clock = which_clock;
1428 timer.it_overrun = -1;
1429 error = posix_cpu_timer_create(&timer);
1430 timer.it_process = current;
1431 if (!error) {
1432 struct timespec __user *rmtp;
1433 static struct itimerspec zero_it;
1434 struct itimerspec it = { .it_value = *rqtp,
1435 .it_interval = {} };
1436
1437 spin_lock_irq(&timer.it_lock);
1438 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1439 if (error) {
1440 spin_unlock_irq(&timer.it_lock);
1441 return error;
1442 }
1443
1444 while (!signal_pending(current)) {
1445 if (timer.it.cpu.expires.sched == 0) {
1446 /*
1447 * Our timer fired and was reset.
1448 */
1449 spin_unlock_irq(&timer.it_lock);
1450 return 0;
1451 }
1452
1453 /*
1454 * Block until cpu_timer_fire (or a signal) wakes us.
1455 */
1456 __set_current_state(TASK_INTERRUPTIBLE);
1457 spin_unlock_irq(&timer.it_lock);
1458 schedule();
1459 spin_lock_irq(&timer.it_lock);
1460 }
1461
1462 /*
1463 * We were interrupted by a signal.
1464 */
1465 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1466 posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1467 spin_unlock_irq(&timer.it_lock);
1468
1469 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1470 /*
1471 * It actually did fire already.
1472 */
1473 return 0;
1474 }
1475
1476 /*
1477 * Report back to the user the time still remaining.
1478 */
1479 rmtp = (struct timespec __user *) restart_block->arg1;
1480 if (rmtp != NULL && !(flags & TIMER_ABSTIME) &&
1481 copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1482 return -EFAULT;
1483
1484 restart_block->fn = posix_cpu_clock_nanosleep_restart;
1485 /* Caller already set restart_block->arg1 */
1486 restart_block->arg0 = which_clock;
1487 restart_block->arg2 = rqtp->tv_sec;
1488 restart_block->arg3 = rqtp->tv_nsec;
1489
1490 error = -ERESTART_RESTARTBLOCK;
1491 }
1492
1493 return error;
1494}
1495
1496static long
1497posix_cpu_clock_nanosleep_restart(struct restart_block *restart_block)
1498{
1499 clockid_t which_clock = restart_block->arg0;
1500 struct timespec t = { .tv_sec = restart_block->arg2,
1501 .tv_nsec = restart_block->arg3 };
1502 restart_block->fn = do_no_restart_syscall;
1503 return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t);
1504}
1505
1506
1507#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1508#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1509
1510static int process_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
1511{
1512 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1513}
1514static int process_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
1515{
1516 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1517}
1518static int process_cpu_timer_create(struct k_itimer *timer)
1519{
1520 timer->it_clock = PROCESS_CLOCK;
1521 return posix_cpu_timer_create(timer);
1522}
1523static int process_cpu_nsleep(clockid_t which_clock, int flags,
1524 struct timespec *rqtp)
1525{
1526 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1527}
1528static int thread_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
1529{
1530 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1531}
1532static int thread_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
1533{
1534 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1535}
1536static int thread_cpu_timer_create(struct k_itimer *timer)
1537{
1538 timer->it_clock = THREAD_CLOCK;
1539 return posix_cpu_timer_create(timer);
1540}
1541static int thread_cpu_nsleep(clockid_t which_clock, int flags,
1542 struct timespec *rqtp)
1543{
1544 return -EINVAL;
1545}
1546
1547static __init int init_posix_cpu_timers(void)
1548{
1549 struct k_clock process = {
1550 .clock_getres = process_cpu_clock_getres,
1551 .clock_get = process_cpu_clock_get,
1552 .clock_set = do_posix_clock_nosettime,
1553 .timer_create = process_cpu_timer_create,
1554 .nsleep = process_cpu_nsleep,
1555 };
1556 struct k_clock thread = {
1557 .clock_getres = thread_cpu_clock_getres,
1558 .clock_get = thread_cpu_clock_get,
1559 .clock_set = do_posix_clock_nosettime,
1560 .timer_create = thread_cpu_timer_create,
1561 .nsleep = thread_cpu_nsleep,
1562 };
1563
1564 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1565 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1566
1567 return 0;
1568}
1569__initcall(init_posix_cpu_timers);