itimers: Merge ITIMER_VIRT and ITIMER_PROF
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
1da177e4 7#include <linux/errno.h>
f8bd2258
RZ
8#include <linux/math64.h>
9#include <asm/uaccess.h>
bb34d92f 10#include <linux/kernel_stat.h>
1da177e4 11
f06febc9
FM
12/*
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
14 */
15void update_rlimit_cpu(unsigned long rlim_new)
16{
42c4ab41
SG
17 cputime_t cputime = secs_to_cputime(rlim_new);
18 struct signal_struct *const sig = current->signal;
f06febc9 19
42c4ab41
SG
20 if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) ||
21 cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) {
f06febc9
FM
22 spin_lock_irq(&current->sighand->siglock);
23 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
24 spin_unlock_irq(&current->sighand->siglock);
25 }
26}
27
a924b04d 28static int check_clock(const clockid_t which_clock)
1da177e4
LT
29{
30 int error = 0;
31 struct task_struct *p;
32 const pid_t pid = CPUCLOCK_PID(which_clock);
33
34 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 return -EINVAL;
36
37 if (pid == 0)
38 return 0;
39
40 read_lock(&tasklist_lock);
8dc86af0 41 p = find_task_by_vpid(pid);
bac0abd6
PE
42 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 same_thread_group(p, current) : thread_group_leader(p))) {
1da177e4
LT
44 error = -EINVAL;
45 }
46 read_unlock(&tasklist_lock);
47
48 return error;
49}
50
51static inline union cpu_time_count
a924b04d 52timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
53{
54 union cpu_time_count ret;
55 ret.sched = 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
ee500f27 57 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
1da177e4
LT
58 } else {
59 ret.cpu = timespec_to_cputime(tp);
60 }
61 return ret;
62}
63
a924b04d 64static void sample_to_timespec(const clockid_t which_clock,
1da177e4
LT
65 union cpu_time_count cpu,
66 struct timespec *tp)
67{
f8bd2258
RZ
68 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 *tp = ns_to_timespec(cpu.sched);
70 else
1da177e4 71 cputime_to_timespec(cpu.cpu, tp);
1da177e4
LT
72}
73
a924b04d 74static inline int cpu_time_before(const clockid_t which_clock,
1da177e4
LT
75 union cpu_time_count now,
76 union cpu_time_count then)
77{
78 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 return now.sched < then.sched;
80 } else {
81 return cputime_lt(now.cpu, then.cpu);
82 }
83}
a924b04d 84static inline void cpu_time_add(const clockid_t which_clock,
1da177e4
LT
85 union cpu_time_count *acc,
86 union cpu_time_count val)
87{
88 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 acc->sched += val.sched;
90 } else {
91 acc->cpu = cputime_add(acc->cpu, val.cpu);
92 }
93}
a924b04d 94static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
1da177e4
LT
95 union cpu_time_count a,
96 union cpu_time_count b)
97{
98 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 a.sched -= b.sched;
100 } else {
101 a.cpu = cputime_sub(a.cpu, b.cpu);
102 }
103 return a;
104}
105
ac08c264
TG
106/*
107 * Divide and limit the result to res >= 1
108 *
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
111 */
112static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113{
114 cputime_t res = cputime_div(time, div);
115
116 return max_t(cputime_t, res, 1);
117}
118
1da177e4
LT
119/*
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
122 */
7a4ed937 123static void bump_cpu_timer(struct k_itimer *timer,
1da177e4
LT
124 union cpu_time_count now)
125{
126 int i;
127
128 if (timer->it.cpu.incr.sched == 0)
129 return;
130
131 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 unsigned long long delta, incr;
133
134 if (now.sched < timer->it.cpu.expires.sched)
135 return;
136 incr = timer->it.cpu.incr.sched;
137 delta = now.sched + incr - timer->it.cpu.expires.sched;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i = 0; incr < delta - incr; i++)
140 incr = incr << 1;
141 for (; i >= 0; incr >>= 1, i--) {
7a4ed937 142 if (delta < incr)
1da177e4
LT
143 continue;
144 timer->it.cpu.expires.sched += incr;
145 timer->it_overrun += 1 << i;
146 delta -= incr;
147 }
148 } else {
149 cputime_t delta, incr;
150
151 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 return;
153 incr = timer->it.cpu.incr.cpu;
154 delta = cputime_sub(cputime_add(now.cpu, incr),
155 timer->it.cpu.expires.cpu);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 incr = cputime_add(incr, incr);
159 for (; i >= 0; incr = cputime_halve(incr), i--) {
7a4ed937 160 if (cputime_lt(delta, incr))
1da177e4
LT
161 continue;
162 timer->it.cpu.expires.cpu =
163 cputime_add(timer->it.cpu.expires.cpu, incr);
164 timer->it_overrun += 1 << i;
165 delta = cputime_sub(delta, incr);
166 }
167 }
168}
169
170static inline cputime_t prof_ticks(struct task_struct *p)
171{
172 return cputime_add(p->utime, p->stime);
173}
174static inline cputime_t virt_ticks(struct task_struct *p)
175{
176 return p->utime;
177}
1da177e4 178
a924b04d 179int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
180{
181 int error = check_clock(which_clock);
182 if (!error) {
183 tp->tv_sec = 0;
184 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186 /*
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
190 */
191 tp->tv_nsec = 1;
192 }
193 }
194 return error;
195}
196
a924b04d 197int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
198{
199 /*
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
202 */
203 int error = check_clock(which_clock);
204 if (error == 0) {
205 error = -EPERM;
206 }
207 return error;
208}
209
210
211/*
212 * Sample a per-thread clock for the given task.
213 */
a924b04d 214static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
1da177e4
LT
215 union cpu_time_count *cpu)
216{
217 switch (CPUCLOCK_WHICH(which_clock)) {
218 default:
219 return -EINVAL;
220 case CPUCLOCK_PROF:
221 cpu->cpu = prof_ticks(p);
222 break;
223 case CPUCLOCK_VIRT:
224 cpu->cpu = virt_ticks(p);
225 break;
226 case CPUCLOCK_SCHED:
c5f8d995 227 cpu->sched = task_sched_runtime(p);
1da177e4
LT
228 break;
229 }
230 return 0;
231}
232
4cd4c1b4
PZ
233void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
234{
235 struct sighand_struct *sighand;
236 struct signal_struct *sig;
237 struct task_struct *t;
238
239 *times = INIT_CPUTIME;
240
241 rcu_read_lock();
242 sighand = rcu_dereference(tsk->sighand);
243 if (!sighand)
244 goto out;
245
246 sig = tsk->signal;
247
248 t = tsk;
249 do {
250 times->utime = cputime_add(times->utime, t->utime);
251 times->stime = cputime_add(times->stime, t->stime);
252 times->sum_exec_runtime += t->se.sum_exec_runtime;
253
254 t = next_thread(t);
255 } while (t != tsk);
256
257 times->utime = cputime_add(times->utime, sig->utime);
258 times->stime = cputime_add(times->stime, sig->stime);
259 times->sum_exec_runtime += sig->sum_sched_runtime;
260out:
261 rcu_read_unlock();
262}
263
4da94d49
PZ
264static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
265{
266 if (cputime_gt(b->utime, a->utime))
267 a->utime = b->utime;
268
269 if (cputime_gt(b->stime, a->stime))
270 a->stime = b->stime;
271
272 if (b->sum_exec_runtime > a->sum_exec_runtime)
273 a->sum_exec_runtime = b->sum_exec_runtime;
274}
275
276void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
277{
278 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
279 struct task_cputime sum;
280 unsigned long flags;
281
282 spin_lock_irqsave(&cputimer->lock, flags);
283 if (!cputimer->running) {
284 cputimer->running = 1;
285 /*
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
289 * it.
290 */
291 thread_group_cputime(tsk, &sum);
292 update_gt_cputime(&cputimer->cputime, &sum);
293 }
294 *times = cputimer->cputime;
295 spin_unlock_irqrestore(&cputimer->lock, flags);
296}
297
1da177e4
LT
298/*
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
1da177e4 301 */
bb34d92f
FM
302static int cpu_clock_sample_group(const clockid_t which_clock,
303 struct task_struct *p,
304 union cpu_time_count *cpu)
1da177e4 305{
f06febc9
FM
306 struct task_cputime cputime;
307
eccdaeaf 308 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
309 default:
310 return -EINVAL;
311 case CPUCLOCK_PROF:
c5f8d995 312 thread_group_cputime(p, &cputime);
f06febc9 313 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
1da177e4
LT
314 break;
315 case CPUCLOCK_VIRT:
c5f8d995 316 thread_group_cputime(p, &cputime);
f06febc9 317 cpu->cpu = cputime.utime;
1da177e4
LT
318 break;
319 case CPUCLOCK_SCHED:
c5f8d995 320 cpu->sched = thread_group_sched_runtime(p);
1da177e4
LT
321 break;
322 }
323 return 0;
324}
325
1da177e4 326
a924b04d 327int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
328{
329 const pid_t pid = CPUCLOCK_PID(which_clock);
330 int error = -EINVAL;
331 union cpu_time_count rtn;
332
333 if (pid == 0) {
334 /*
335 * Special case constant value for our own clocks.
336 * We don't have to do any lookup to find ourselves.
337 */
338 if (CPUCLOCK_PERTHREAD(which_clock)) {
339 /*
340 * Sampling just ourselves we can do with no locking.
341 */
342 error = cpu_clock_sample(which_clock,
343 current, &rtn);
344 } else {
345 read_lock(&tasklist_lock);
346 error = cpu_clock_sample_group(which_clock,
347 current, &rtn);
348 read_unlock(&tasklist_lock);
349 }
350 } else {
351 /*
352 * Find the given PID, and validate that the caller
353 * should be able to see it.
354 */
355 struct task_struct *p;
1f2ea083 356 rcu_read_lock();
8dc86af0 357 p = find_task_by_vpid(pid);
1da177e4
LT
358 if (p) {
359 if (CPUCLOCK_PERTHREAD(which_clock)) {
bac0abd6 360 if (same_thread_group(p, current)) {
1da177e4
LT
361 error = cpu_clock_sample(which_clock,
362 p, &rtn);
363 }
1f2ea083
PM
364 } else {
365 read_lock(&tasklist_lock);
bac0abd6 366 if (thread_group_leader(p) && p->signal) {
1f2ea083
PM
367 error =
368 cpu_clock_sample_group(which_clock,
369 p, &rtn);
370 }
371 read_unlock(&tasklist_lock);
1da177e4
LT
372 }
373 }
1f2ea083 374 rcu_read_unlock();
1da177e4
LT
375 }
376
377 if (error)
378 return error;
379 sample_to_timespec(which_clock, rtn, tp);
380 return 0;
381}
382
383
384/*
385 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
386 * This is called from sys_timer_create with the new timer already locked.
387 */
388int posix_cpu_timer_create(struct k_itimer *new_timer)
389{
390 int ret = 0;
391 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
392 struct task_struct *p;
393
394 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
395 return -EINVAL;
396
397 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
398 new_timer->it.cpu.incr.sched = 0;
399 new_timer->it.cpu.expires.sched = 0;
400
401 read_lock(&tasklist_lock);
402 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
403 if (pid == 0) {
404 p = current;
405 } else {
8dc86af0 406 p = find_task_by_vpid(pid);
bac0abd6 407 if (p && !same_thread_group(p, current))
1da177e4
LT
408 p = NULL;
409 }
410 } else {
411 if (pid == 0) {
412 p = current->group_leader;
413 } else {
8dc86af0 414 p = find_task_by_vpid(pid);
bac0abd6 415 if (p && !thread_group_leader(p))
1da177e4
LT
416 p = NULL;
417 }
418 }
419 new_timer->it.cpu.task = p;
420 if (p) {
421 get_task_struct(p);
422 } else {
423 ret = -EINVAL;
424 }
425 read_unlock(&tasklist_lock);
426
427 return ret;
428}
429
430/*
431 * Clean up a CPU-clock timer that is about to be destroyed.
432 * This is called from timer deletion with the timer already locked.
433 * If we return TIMER_RETRY, it's necessary to release the timer's lock
434 * and try again. (This happens when the timer is in the middle of firing.)
435 */
436int posix_cpu_timer_del(struct k_itimer *timer)
437{
438 struct task_struct *p = timer->it.cpu.task;
108150ea 439 int ret = 0;
1da177e4 440
108150ea 441 if (likely(p != NULL)) {
9465bee8
LT
442 read_lock(&tasklist_lock);
443 if (unlikely(p->signal == NULL)) {
444 /*
445 * We raced with the reaping of the task.
446 * The deletion should have cleared us off the list.
447 */
448 BUG_ON(!list_empty(&timer->it.cpu.entry));
449 } else {
9465bee8 450 spin_lock(&p->sighand->siglock);
108150ea
ON
451 if (timer->it.cpu.firing)
452 ret = TIMER_RETRY;
453 else
454 list_del(&timer->it.cpu.entry);
9465bee8
LT
455 spin_unlock(&p->sighand->siglock);
456 }
457 read_unlock(&tasklist_lock);
108150ea
ON
458
459 if (!ret)
460 put_task_struct(p);
1da177e4 461 }
1da177e4 462
108150ea 463 return ret;
1da177e4
LT
464}
465
466/*
467 * Clean out CPU timers still ticking when a thread exited. The task
468 * pointer is cleared, and the expiry time is replaced with the residual
469 * time for later timer_gettime calls to return.
470 * This must be called with the siglock held.
471 */
472static void cleanup_timers(struct list_head *head,
473 cputime_t utime, cputime_t stime,
41b86e9c 474 unsigned long long sum_exec_runtime)
1da177e4
LT
475{
476 struct cpu_timer_list *timer, *next;
477 cputime_t ptime = cputime_add(utime, stime);
478
479 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
480 list_del_init(&timer->entry);
481 if (cputime_lt(timer->expires.cpu, ptime)) {
482 timer->expires.cpu = cputime_zero;
483 } else {
484 timer->expires.cpu = cputime_sub(timer->expires.cpu,
485 ptime);
486 }
487 }
488
489 ++head;
490 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
491 list_del_init(&timer->entry);
492 if (cputime_lt(timer->expires.cpu, utime)) {
493 timer->expires.cpu = cputime_zero;
494 } else {
495 timer->expires.cpu = cputime_sub(timer->expires.cpu,
496 utime);
497 }
498 }
499
500 ++head;
501 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 502 list_del_init(&timer->entry);
41b86e9c 503 if (timer->expires.sched < sum_exec_runtime) {
1da177e4
LT
504 timer->expires.sched = 0;
505 } else {
41b86e9c 506 timer->expires.sched -= sum_exec_runtime;
1da177e4
LT
507 }
508 }
509}
510
511/*
512 * These are both called with the siglock held, when the current thread
513 * is being reaped. When the final (leader) thread in the group is reaped,
514 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
515 */
516void posix_cpu_timers_exit(struct task_struct *tsk)
517{
518 cleanup_timers(tsk->cpu_timers,
41b86e9c 519 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
1da177e4
LT
520
521}
522void posix_cpu_timers_exit_group(struct task_struct *tsk)
523{
f06febc9 524 struct task_cputime cputime;
ca531a0a 525
3fccfd67 526 thread_group_cputimer(tsk, &cputime);
f06febc9
FM
527 cleanup_timers(tsk->signal->cpu_timers,
528 cputime.utime, cputime.stime, cputime.sum_exec_runtime);
1da177e4
LT
529}
530
531static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
532{
533 /*
534 * That's all for this thread or process.
535 * We leave our residual in expires to be reported.
536 */
537 put_task_struct(timer->it.cpu.task);
538 timer->it.cpu.task = NULL;
539 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
540 timer->it.cpu.expires,
541 now);
542}
543
544/*
545 * Insert the timer on the appropriate list before any timers that
546 * expire later. This must be called with the tasklist_lock held
547 * for reading, and interrupts disabled.
548 */
549static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
550{
551 struct task_struct *p = timer->it.cpu.task;
552 struct list_head *head, *listpos;
553 struct cpu_timer_list *const nt = &timer->it.cpu;
554 struct cpu_timer_list *next;
555 unsigned long i;
556
557 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
558 p->cpu_timers : p->signal->cpu_timers);
559 head += CPUCLOCK_WHICH(timer->it_clock);
560
561 BUG_ON(!irqs_disabled());
562 spin_lock(&p->sighand->siglock);
563
564 listpos = head;
565 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
566 list_for_each_entry(next, head, entry) {
70ab81c2 567 if (next->expires.sched > nt->expires.sched)
1da177e4 568 break;
70ab81c2 569 listpos = &next->entry;
1da177e4
LT
570 }
571 } else {
572 list_for_each_entry(next, head, entry) {
70ab81c2 573 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
1da177e4 574 break;
70ab81c2 575 listpos = &next->entry;
1da177e4
LT
576 }
577 }
578 list_add(&nt->entry, listpos);
579
580 if (listpos == head) {
581 /*
582 * We are the new earliest-expiring timer.
583 * If we are a thread timer, there can always
584 * be a process timer telling us to stop earlier.
585 */
586
587 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
588 switch (CPUCLOCK_WHICH(timer->it_clock)) {
589 default:
590 BUG();
591 case CPUCLOCK_PROF:
f06febc9 592 if (cputime_eq(p->cputime_expires.prof_exp,
1da177e4 593 cputime_zero) ||
f06febc9 594 cputime_gt(p->cputime_expires.prof_exp,
1da177e4 595 nt->expires.cpu))
f06febc9
FM
596 p->cputime_expires.prof_exp =
597 nt->expires.cpu;
1da177e4
LT
598 break;
599 case CPUCLOCK_VIRT:
f06febc9 600 if (cputime_eq(p->cputime_expires.virt_exp,
1da177e4 601 cputime_zero) ||
f06febc9 602 cputime_gt(p->cputime_expires.virt_exp,
1da177e4 603 nt->expires.cpu))
f06febc9
FM
604 p->cputime_expires.virt_exp =
605 nt->expires.cpu;
1da177e4
LT
606 break;
607 case CPUCLOCK_SCHED:
f06febc9
FM
608 if (p->cputime_expires.sched_exp == 0 ||
609 p->cputime_expires.sched_exp >
610 nt->expires.sched)
611 p->cputime_expires.sched_exp =
612 nt->expires.sched;
1da177e4
LT
613 break;
614 }
615 } else {
42c4ab41
SG
616 struct signal_struct *const sig = p->signal;
617 union cpu_time_count *exp = &timer->it.cpu.expires;
618
1da177e4 619 /*
f06febc9 620 * For a process timer, set the cached expiration time.
1da177e4
LT
621 */
622 switch (CPUCLOCK_WHICH(timer->it_clock)) {
623 default:
624 BUG();
625 case CPUCLOCK_VIRT:
42c4ab41 626 if (!cputime_eq(sig->it[CPUCLOCK_VIRT].expires,
1da177e4 627 cputime_zero) &&
42c4ab41
SG
628 cputime_lt(sig->it[CPUCLOCK_VIRT].expires,
629 exp->cpu))
1da177e4 630 break;
42c4ab41 631 sig->cputime_expires.virt_exp = exp->cpu;
f06febc9 632 break;
1da177e4 633 case CPUCLOCK_PROF:
42c4ab41 634 if (!cputime_eq(sig->it[CPUCLOCK_PROF].expires,
1da177e4 635 cputime_zero) &&
42c4ab41
SG
636 cputime_lt(sig->it[CPUCLOCK_PROF].expires,
637 exp->cpu))
1da177e4 638 break;
42c4ab41 639 i = sig->rlim[RLIMIT_CPU].rlim_cur;
1da177e4 640 if (i != RLIM_INFINITY &&
42c4ab41 641 i <= cputime_to_secs(exp->cpu))
1da177e4 642 break;
42c4ab41 643 sig->cputime_expires.prof_exp = exp->cpu;
f06febc9 644 break;
1da177e4 645 case CPUCLOCK_SCHED:
42c4ab41 646 sig->cputime_expires.sched_exp = exp->sched;
1da177e4
LT
647 break;
648 }
649 }
650 }
651
652 spin_unlock(&p->sighand->siglock);
653}
654
655/*
656 * The timer is locked, fire it and arrange for its reload.
657 */
658static void cpu_timer_fire(struct k_itimer *timer)
659{
660 if (unlikely(timer->sigq == NULL)) {
661 /*
662 * This a special case for clock_nanosleep,
663 * not a normal timer from sys_timer_create.
664 */
665 wake_up_process(timer->it_process);
666 timer->it.cpu.expires.sched = 0;
667 } else if (timer->it.cpu.incr.sched == 0) {
668 /*
669 * One-shot timer. Clear it as soon as it's fired.
670 */
671 posix_timer_event(timer, 0);
672 timer->it.cpu.expires.sched = 0;
673 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
674 /*
675 * The signal did not get queued because the signal
676 * was ignored, so we won't get any callback to
677 * reload the timer. But we need to keep it
678 * ticking in case the signal is deliverable next time.
679 */
680 posix_cpu_timer_schedule(timer);
681 }
682}
683
3997ad31
PZ
684/*
685 * Sample a process (thread group) timer for the given group_leader task.
686 * Must be called with tasklist_lock held for reading.
687 */
688static int cpu_timer_sample_group(const clockid_t which_clock,
689 struct task_struct *p,
690 union cpu_time_count *cpu)
691{
692 struct task_cputime cputime;
693
694 thread_group_cputimer(p, &cputime);
695 switch (CPUCLOCK_WHICH(which_clock)) {
696 default:
697 return -EINVAL;
698 case CPUCLOCK_PROF:
699 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
700 break;
701 case CPUCLOCK_VIRT:
702 cpu->cpu = cputime.utime;
703 break;
704 case CPUCLOCK_SCHED:
705 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
706 break;
707 }
708 return 0;
709}
710
1da177e4
LT
711/*
712 * Guts of sys_timer_settime for CPU timers.
713 * This is called with the timer locked and interrupts disabled.
714 * If we return TIMER_RETRY, it's necessary to release the timer's lock
715 * and try again. (This happens when the timer is in the middle of firing.)
716 */
717int posix_cpu_timer_set(struct k_itimer *timer, int flags,
718 struct itimerspec *new, struct itimerspec *old)
719{
720 struct task_struct *p = timer->it.cpu.task;
721 union cpu_time_count old_expires, new_expires, val;
722 int ret;
723
724 if (unlikely(p == NULL)) {
725 /*
726 * Timer refers to a dead task's clock.
727 */
728 return -ESRCH;
729 }
730
731 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
732
733 read_lock(&tasklist_lock);
734 /*
735 * We need the tasklist_lock to protect against reaping that
736 * clears p->signal. If p has just been reaped, we can no
737 * longer get any information about it at all.
738 */
739 if (unlikely(p->signal == NULL)) {
740 read_unlock(&tasklist_lock);
741 put_task_struct(p);
742 timer->it.cpu.task = NULL;
743 return -ESRCH;
744 }
745
746 /*
747 * Disarm any old timer after extracting its expiry time.
748 */
749 BUG_ON(!irqs_disabled());
a69ac4a7
ON
750
751 ret = 0;
1da177e4
LT
752 spin_lock(&p->sighand->siglock);
753 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
754 if (unlikely(timer->it.cpu.firing)) {
755 timer->it.cpu.firing = -1;
756 ret = TIMER_RETRY;
757 } else
758 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
759 spin_unlock(&p->sighand->siglock);
760
761 /*
762 * We need to sample the current value to convert the new
763 * value from to relative and absolute, and to convert the
764 * old value from absolute to relative. To set a process
765 * timer, we need a sample to balance the thread expiry
766 * times (in arm_timer). With an absolute time, we must
767 * check if it's already passed. In short, we need a sample.
768 */
769 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
770 cpu_clock_sample(timer->it_clock, p, &val);
771 } else {
3997ad31 772 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
773 }
774
775 if (old) {
776 if (old_expires.sched == 0) {
777 old->it_value.tv_sec = 0;
778 old->it_value.tv_nsec = 0;
779 } else {
780 /*
781 * Update the timer in case it has
782 * overrun already. If it has,
783 * we'll report it as having overrun
784 * and with the next reloaded timer
785 * already ticking, though we are
786 * swallowing that pending
787 * notification here to install the
788 * new setting.
789 */
790 bump_cpu_timer(timer, val);
791 if (cpu_time_before(timer->it_clock, val,
792 timer->it.cpu.expires)) {
793 old_expires = cpu_time_sub(
794 timer->it_clock,
795 timer->it.cpu.expires, val);
796 sample_to_timespec(timer->it_clock,
797 old_expires,
798 &old->it_value);
799 } else {
800 old->it_value.tv_nsec = 1;
801 old->it_value.tv_sec = 0;
802 }
803 }
804 }
805
a69ac4a7 806 if (unlikely(ret)) {
1da177e4
LT
807 /*
808 * We are colliding with the timer actually firing.
809 * Punt after filling in the timer's old value, and
810 * disable this firing since we are already reporting
811 * it as an overrun (thanks to bump_cpu_timer above).
812 */
813 read_unlock(&tasklist_lock);
1da177e4
LT
814 goto out;
815 }
816
817 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
818 cpu_time_add(timer->it_clock, &new_expires, val);
819 }
820
821 /*
822 * Install the new expiry time (or zero).
823 * For a timer with no notification action, we don't actually
824 * arm the timer (we'll just fake it for timer_gettime).
825 */
826 timer->it.cpu.expires = new_expires;
827 if (new_expires.sched != 0 &&
828 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
829 cpu_time_before(timer->it_clock, val, new_expires)) {
830 arm_timer(timer, val);
831 }
832
833 read_unlock(&tasklist_lock);
834
835 /*
836 * Install the new reload setting, and
837 * set up the signal and overrun bookkeeping.
838 */
839 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
840 &new->it_interval);
841
842 /*
843 * This acts as a modification timestamp for the timer,
844 * so any automatic reload attempt will punt on seeing
845 * that we have reset the timer manually.
846 */
847 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
848 ~REQUEUE_PENDING;
849 timer->it_overrun_last = 0;
850 timer->it_overrun = -1;
851
852 if (new_expires.sched != 0 &&
853 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
854 !cpu_time_before(timer->it_clock, val, new_expires)) {
855 /*
856 * The designated time already passed, so we notify
857 * immediately, even if the thread never runs to
858 * accumulate more time on this clock.
859 */
860 cpu_timer_fire(timer);
861 }
862
863 ret = 0;
864 out:
865 if (old) {
866 sample_to_timespec(timer->it_clock,
867 timer->it.cpu.incr, &old->it_interval);
868 }
869 return ret;
870}
871
872void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
873{
874 union cpu_time_count now;
875 struct task_struct *p = timer->it.cpu.task;
876 int clear_dead;
877
878 /*
879 * Easy part: convert the reload time.
880 */
881 sample_to_timespec(timer->it_clock,
882 timer->it.cpu.incr, &itp->it_interval);
883
884 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
885 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
886 return;
887 }
888
889 if (unlikely(p == NULL)) {
890 /*
891 * This task already died and the timer will never fire.
892 * In this case, expires is actually the dead value.
893 */
894 dead:
895 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
896 &itp->it_value);
897 return;
898 }
899
900 /*
901 * Sample the clock to take the difference with the expiry time.
902 */
903 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
904 cpu_clock_sample(timer->it_clock, p, &now);
905 clear_dead = p->exit_state;
906 } else {
907 read_lock(&tasklist_lock);
908 if (unlikely(p->signal == NULL)) {
909 /*
910 * The process has been reaped.
911 * We can't even collect a sample any more.
912 * Call the timer disarmed, nothing else to do.
913 */
914 put_task_struct(p);
915 timer->it.cpu.task = NULL;
916 timer->it.cpu.expires.sched = 0;
917 read_unlock(&tasklist_lock);
918 goto dead;
919 } else {
3997ad31 920 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
921 clear_dead = (unlikely(p->exit_state) &&
922 thread_group_empty(p));
923 }
924 read_unlock(&tasklist_lock);
925 }
926
927 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
928 if (timer->it.cpu.incr.sched == 0 &&
929 cpu_time_before(timer->it_clock,
930 timer->it.cpu.expires, now)) {
931 /*
932 * Do-nothing timer expired and has no reload,
933 * so it's as if it was never set.
934 */
935 timer->it.cpu.expires.sched = 0;
936 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
937 return;
938 }
939 /*
940 * Account for any expirations and reloads that should
941 * have happened.
942 */
943 bump_cpu_timer(timer, now);
944 }
945
946 if (unlikely(clear_dead)) {
947 /*
948 * We've noticed that the thread is dead, but
949 * not yet reaped. Take this opportunity to
950 * drop our task ref.
951 */
952 clear_dead_task(timer, now);
953 goto dead;
954 }
955
956 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
957 sample_to_timespec(timer->it_clock,
958 cpu_time_sub(timer->it_clock,
959 timer->it.cpu.expires, now),
960 &itp->it_value);
961 } else {
962 /*
963 * The timer should have expired already, but the firing
964 * hasn't taken place yet. Say it's just about to expire.
965 */
966 itp->it_value.tv_nsec = 1;
967 itp->it_value.tv_sec = 0;
968 }
969}
970
971/*
972 * Check for any per-thread CPU timers that have fired and move them off
973 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
974 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
975 */
976static void check_thread_timers(struct task_struct *tsk,
977 struct list_head *firing)
978{
e80eda94 979 int maxfire;
1da177e4 980 struct list_head *timers = tsk->cpu_timers;
78f2c7db 981 struct signal_struct *const sig = tsk->signal;
1da177e4 982
e80eda94 983 maxfire = 20;
f06febc9 984 tsk->cputime_expires.prof_exp = cputime_zero;
1da177e4 985 while (!list_empty(timers)) {
b5e61818 986 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
987 struct cpu_timer_list,
988 entry);
e80eda94 989 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
f06febc9 990 tsk->cputime_expires.prof_exp = t->expires.cpu;
1da177e4
LT
991 break;
992 }
993 t->firing = 1;
994 list_move_tail(&t->entry, firing);
995 }
996
997 ++timers;
e80eda94 998 maxfire = 20;
f06febc9 999 tsk->cputime_expires.virt_exp = cputime_zero;
1da177e4 1000 while (!list_empty(timers)) {
b5e61818 1001 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1002 struct cpu_timer_list,
1003 entry);
e80eda94 1004 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
f06febc9 1005 tsk->cputime_expires.virt_exp = t->expires.cpu;
1da177e4
LT
1006 break;
1007 }
1008 t->firing = 1;
1009 list_move_tail(&t->entry, firing);
1010 }
1011
1012 ++timers;
e80eda94 1013 maxfire = 20;
f06febc9 1014 tsk->cputime_expires.sched_exp = 0;
1da177e4 1015 while (!list_empty(timers)) {
b5e61818 1016 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1017 struct cpu_timer_list,
1018 entry);
41b86e9c 1019 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
f06febc9 1020 tsk->cputime_expires.sched_exp = t->expires.sched;
1da177e4
LT
1021 break;
1022 }
1023 t->firing = 1;
1024 list_move_tail(&t->entry, firing);
1025 }
78f2c7db
PZ
1026
1027 /*
1028 * Check for the special case thread timers.
1029 */
1030 if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1031 unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1032 unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1033
5a52dd50
PZ
1034 if (hard != RLIM_INFINITY &&
1035 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
1036 /*
1037 * At the hard limit, we just die.
1038 * No need to calculate anything else now.
1039 */
1040 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1041 return;
1042 }
1043 if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1044 /*
1045 * At the soft limit, send a SIGXCPU every second.
1046 */
1047 if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1048 < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1049 sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1050 USEC_PER_SEC;
1051 }
81d50bb2
HS
1052 printk(KERN_INFO
1053 "RT Watchdog Timeout: %s[%d]\n",
1054 tsk->comm, task_pid_nr(tsk));
78f2c7db
PZ
1055 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1056 }
1057 }
1da177e4
LT
1058}
1059
3fccfd67
PZ
1060static void stop_process_timers(struct task_struct *tsk)
1061{
1062 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1063 unsigned long flags;
1064
1065 if (!cputimer->running)
1066 return;
1067
1068 spin_lock_irqsave(&cputimer->lock, flags);
1069 cputimer->running = 0;
1070 spin_unlock_irqrestore(&cputimer->lock, flags);
1071}
1072
42c4ab41
SG
1073static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1074 cputime_t *expires, cputime_t cur_time, int signo)
1075{
1076 if (cputime_eq(it->expires, cputime_zero))
1077 return;
1078
1079 if (cputime_ge(cur_time, it->expires)) {
1080 it->expires = it->incr;
1081 if (!cputime_eq(it->expires, cputime_zero))
1082 it->expires = cputime_add(it->expires, cur_time);
1083
1084 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1085 }
1086
1087 if (!cputime_eq(it->expires, cputime_zero) &&
1088 (cputime_eq(*expires, cputime_zero) ||
1089 cputime_lt(it->expires, *expires))) {
1090 *expires = it->expires;
1091 }
1092}
1093
1da177e4
LT
1094/*
1095 * Check for any per-thread CPU timers that have fired and move them
1096 * off the tsk->*_timers list onto the firing list. Per-thread timers
1097 * have already been taken off.
1098 */
1099static void check_process_timers(struct task_struct *tsk,
1100 struct list_head *firing)
1101{
e80eda94 1102 int maxfire;
1da177e4 1103 struct signal_struct *const sig = tsk->signal;
f06febc9 1104 cputime_t utime, ptime, virt_expires, prof_expires;
41b86e9c 1105 unsigned long long sum_sched_runtime, sched_expires;
1da177e4 1106 struct list_head *timers = sig->cpu_timers;
f06febc9 1107 struct task_cputime cputime;
1da177e4
LT
1108
1109 /*
1110 * Don't sample the current process CPU clocks if there are no timers.
1111 */
1112 if (list_empty(&timers[CPUCLOCK_PROF]) &&
42c4ab41 1113 cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1da177e4
LT
1114 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1115 list_empty(&timers[CPUCLOCK_VIRT]) &&
42c4ab41 1116 cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
4cd4c1b4
PZ
1117 list_empty(&timers[CPUCLOCK_SCHED])) {
1118 stop_process_timers(tsk);
1da177e4 1119 return;
4cd4c1b4 1120 }
1da177e4
LT
1121
1122 /*
1123 * Collect the current process totals.
1124 */
4cd4c1b4 1125 thread_group_cputimer(tsk, &cputime);
f06febc9
FM
1126 utime = cputime.utime;
1127 ptime = cputime_add(utime, cputime.stime);
1128 sum_sched_runtime = cputime.sum_exec_runtime;
e80eda94 1129 maxfire = 20;
1da177e4
LT
1130 prof_expires = cputime_zero;
1131 while (!list_empty(timers)) {
ee7dd205 1132 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1133 struct cpu_timer_list,
1134 entry);
ee7dd205
WC
1135 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1136 prof_expires = tl->expires.cpu;
1da177e4
LT
1137 break;
1138 }
ee7dd205
WC
1139 tl->firing = 1;
1140 list_move_tail(&tl->entry, firing);
1da177e4
LT
1141 }
1142
1143 ++timers;
e80eda94 1144 maxfire = 20;
1da177e4
LT
1145 virt_expires = cputime_zero;
1146 while (!list_empty(timers)) {
ee7dd205 1147 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1148 struct cpu_timer_list,
1149 entry);
ee7dd205
WC
1150 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1151 virt_expires = tl->expires.cpu;
1da177e4
LT
1152 break;
1153 }
ee7dd205
WC
1154 tl->firing = 1;
1155 list_move_tail(&tl->entry, firing);
1da177e4
LT
1156 }
1157
1158 ++timers;
e80eda94 1159 maxfire = 20;
1da177e4
LT
1160 sched_expires = 0;
1161 while (!list_empty(timers)) {
ee7dd205 1162 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1163 struct cpu_timer_list,
1164 entry);
ee7dd205
WC
1165 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1166 sched_expires = tl->expires.sched;
1da177e4
LT
1167 break;
1168 }
ee7dd205
WC
1169 tl->firing = 1;
1170 list_move_tail(&tl->entry, firing);
1da177e4
LT
1171 }
1172
1173 /*
1174 * Check for the special case process timers.
1175 */
42c4ab41
SG
1176 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1177 SIGPROF);
1178 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1179 SIGVTALRM);
1180
1da177e4
LT
1181 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1182 unsigned long psecs = cputime_to_secs(ptime);
1183 cputime_t x;
1184 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1185 /*
1186 * At the hard limit, we just die.
1187 * No need to calculate anything else now.
1188 */
1189 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1190 return;
1191 }
1192 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1193 /*
1194 * At the soft limit, send a SIGXCPU every second.
1195 */
1196 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1197 if (sig->rlim[RLIMIT_CPU].rlim_cur
1198 < sig->rlim[RLIMIT_CPU].rlim_max) {
1199 sig->rlim[RLIMIT_CPU].rlim_cur++;
1200 }
1201 }
1202 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1203 if (cputime_eq(prof_expires, cputime_zero) ||
1204 cputime_lt(x, prof_expires)) {
1205 prof_expires = x;
1206 }
1207 }
1208
f06febc9
FM
1209 if (!cputime_eq(prof_expires, cputime_zero) &&
1210 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1211 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1212 sig->cputime_expires.prof_exp = prof_expires;
1213 if (!cputime_eq(virt_expires, cputime_zero) &&
1214 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1215 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1216 sig->cputime_expires.virt_exp = virt_expires;
1217 if (sched_expires != 0 &&
1218 (sig->cputime_expires.sched_exp == 0 ||
1219 sig->cputime_expires.sched_exp > sched_expires))
1220 sig->cputime_expires.sched_exp = sched_expires;
1da177e4
LT
1221}
1222
1223/*
1224 * This is called from the signal code (via do_schedule_next_timer)
1225 * when the last timer signal was delivered and we have to reload the timer.
1226 */
1227void posix_cpu_timer_schedule(struct k_itimer *timer)
1228{
1229 struct task_struct *p = timer->it.cpu.task;
1230 union cpu_time_count now;
1231
1232 if (unlikely(p == NULL))
1233 /*
1234 * The task was cleaned up already, no future firings.
1235 */
708f430d 1236 goto out;
1da177e4
LT
1237
1238 /*
1239 * Fetch the current sample and update the timer's expiry time.
1240 */
1241 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1242 cpu_clock_sample(timer->it_clock, p, &now);
1243 bump_cpu_timer(timer, now);
1244 if (unlikely(p->exit_state)) {
1245 clear_dead_task(timer, now);
708f430d 1246 goto out;
1da177e4
LT
1247 }
1248 read_lock(&tasklist_lock); /* arm_timer needs it. */
1249 } else {
1250 read_lock(&tasklist_lock);
1251 if (unlikely(p->signal == NULL)) {
1252 /*
1253 * The process has been reaped.
1254 * We can't even collect a sample any more.
1255 */
1256 put_task_struct(p);
1257 timer->it.cpu.task = p = NULL;
1258 timer->it.cpu.expires.sched = 0;
708f430d 1259 goto out_unlock;
1da177e4
LT
1260 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1261 /*
1262 * We've noticed that the thread is dead, but
1263 * not yet reaped. Take this opportunity to
1264 * drop our task ref.
1265 */
1266 clear_dead_task(timer, now);
708f430d 1267 goto out_unlock;
1da177e4 1268 }
3997ad31 1269 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
1270 bump_cpu_timer(timer, now);
1271 /* Leave the tasklist_lock locked for the call below. */
1272 }
1273
1274 /*
1275 * Now re-arm for the new expiry time.
1276 */
1277 arm_timer(timer, now);
1278
708f430d 1279out_unlock:
1da177e4 1280 read_unlock(&tasklist_lock);
708f430d
RM
1281
1282out:
1283 timer->it_overrun_last = timer->it_overrun;
1284 timer->it_overrun = -1;
1285 ++timer->it_requeue_pending;
1da177e4
LT
1286}
1287
f06febc9
FM
1288/**
1289 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1290 *
1291 * @cputime: The struct to compare.
1292 *
1293 * Checks @cputime to see if all fields are zero. Returns true if all fields
1294 * are zero, false if any field is nonzero.
1295 */
1296static inline int task_cputime_zero(const struct task_cputime *cputime)
1297{
1298 if (cputime_eq(cputime->utime, cputime_zero) &&
1299 cputime_eq(cputime->stime, cputime_zero) &&
1300 cputime->sum_exec_runtime == 0)
1301 return 1;
1302 return 0;
1303}
1304
1305/**
1306 * task_cputime_expired - Compare two task_cputime entities.
1307 *
1308 * @sample: The task_cputime structure to be checked for expiration.
1309 * @expires: Expiration times, against which @sample will be checked.
1310 *
1311 * Checks @sample against @expires to see if any field of @sample has expired.
1312 * Returns true if any field of the former is greater than the corresponding
1313 * field of the latter if the latter field is set. Otherwise returns false.
1314 */
1315static inline int task_cputime_expired(const struct task_cputime *sample,
1316 const struct task_cputime *expires)
1317{
1318 if (!cputime_eq(expires->utime, cputime_zero) &&
1319 cputime_ge(sample->utime, expires->utime))
1320 return 1;
1321 if (!cputime_eq(expires->stime, cputime_zero) &&
1322 cputime_ge(cputime_add(sample->utime, sample->stime),
1323 expires->stime))
1324 return 1;
1325 if (expires->sum_exec_runtime != 0 &&
1326 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1327 return 1;
1328 return 0;
1329}
1330
1331/**
1332 * fastpath_timer_check - POSIX CPU timers fast path.
1333 *
1334 * @tsk: The task (thread) being checked.
f06febc9 1335 *
bb34d92f
FM
1336 * Check the task and thread group timers. If both are zero (there are no
1337 * timers set) return false. Otherwise snapshot the task and thread group
1338 * timers and compare them with the corresponding expiration times. Return
1339 * true if a timer has expired, else return false.
f06febc9 1340 */
bb34d92f 1341static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1342{
ad133ba3 1343 struct signal_struct *sig;
bb34d92f 1344
ad133ba3
ON
1345 /* tsk == current, ensure it is safe to use ->signal/sighand */
1346 if (unlikely(tsk->exit_state))
f06febc9 1347 return 0;
bb34d92f
FM
1348
1349 if (!task_cputime_zero(&tsk->cputime_expires)) {
1350 struct task_cputime task_sample = {
1351 .utime = tsk->utime,
1352 .stime = tsk->stime,
1353 .sum_exec_runtime = tsk->se.sum_exec_runtime
1354 };
1355
1356 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1357 return 1;
1358 }
ad133ba3
ON
1359
1360 sig = tsk->signal;
bb34d92f
FM
1361 if (!task_cputime_zero(&sig->cputime_expires)) {
1362 struct task_cputime group_sample;
1363
4cd4c1b4 1364 thread_group_cputimer(tsk, &group_sample);
bb34d92f
FM
1365 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1366 return 1;
1367 }
37bebc70
ON
1368
1369 return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
f06febc9
FM
1370}
1371
1da177e4
LT
1372/*
1373 * This is called from the timer interrupt handler. The irq handler has
1374 * already updated our counts. We need to check if any timers fire now.
1375 * Interrupts are disabled.
1376 */
1377void run_posix_cpu_timers(struct task_struct *tsk)
1378{
1379 LIST_HEAD(firing);
1380 struct k_itimer *timer, *next;
1381
1382 BUG_ON(!irqs_disabled());
1383
1da177e4 1384 /*
f06febc9 1385 * The fast path checks that there are no expired thread or thread
bb34d92f 1386 * group timers. If that's so, just return.
1da177e4 1387 */
bb34d92f 1388 if (!fastpath_timer_check(tsk))
f06febc9 1389 return;
5ce73a4a 1390
bb34d92f
FM
1391 spin_lock(&tsk->sighand->siglock);
1392 /*
1393 * Here we take off tsk->signal->cpu_timers[N] and
1394 * tsk->cpu_timers[N] all the timers that are firing, and
1395 * put them on the firing list.
1396 */
1397 check_thread_timers(tsk, &firing);
1398 check_process_timers(tsk, &firing);
1da177e4 1399
bb34d92f
FM
1400 /*
1401 * We must release these locks before taking any timer's lock.
1402 * There is a potential race with timer deletion here, as the
1403 * siglock now protects our private firing list. We have set
1404 * the firing flag in each timer, so that a deletion attempt
1405 * that gets the timer lock before we do will give it up and
1406 * spin until we've taken care of that timer below.
1407 */
1408 spin_unlock(&tsk->sighand->siglock);
1da177e4
LT
1409
1410 /*
1411 * Now that all the timers on our list have the firing flag,
1412 * noone will touch their list entries but us. We'll take
1413 * each timer's lock before clearing its firing flag, so no
1414 * timer call will interfere.
1415 */
1416 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1417 int cpu_firing;
1418
1da177e4
LT
1419 spin_lock(&timer->it_lock);
1420 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1421 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1422 timer->it.cpu.firing = 0;
1423 /*
1424 * The firing flag is -1 if we collided with a reset
1425 * of the timer, which already reported this
1426 * almost-firing as an overrun. So don't generate an event.
1427 */
6e85c5ba 1428 if (likely(cpu_firing >= 0))
1da177e4 1429 cpu_timer_fire(timer);
1da177e4
LT
1430 spin_unlock(&timer->it_lock);
1431 }
1432}
1433
1434/*
1435 * Set one of the process-wide special case CPU timers.
f06febc9
FM
1436 * The tsk->sighand->siglock must be held by the caller.
1437 * The *newval argument is relative and we update it to be absolute, *oldval
1438 * is absolute and we update it to be relative.
1da177e4
LT
1439 */
1440void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1441 cputime_t *newval, cputime_t *oldval)
1442{
1443 union cpu_time_count now;
1444 struct list_head *head;
1445
1446 BUG_ON(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1447 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1448
1449 if (oldval) {
1450 if (!cputime_eq(*oldval, cputime_zero)) {
1451 if (cputime_le(*oldval, now.cpu)) {
1452 /* Just about to fire. */
1453 *oldval = jiffies_to_cputime(1);
1454 } else {
1455 *oldval = cputime_sub(*oldval, now.cpu);
1456 }
1457 }
1458
1459 if (cputime_eq(*newval, cputime_zero))
1460 return;
1461 *newval = cputime_add(*newval, now.cpu);
1462
1463 /*
1464 * If the RLIMIT_CPU timer will expire before the
1465 * ITIMER_PROF timer, we have nothing else to do.
1466 */
1467 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1468 < cputime_to_secs(*newval))
1469 return;
1470 }
1471
1472 /*
1473 * Check whether there are any process timers already set to fire
1474 * before this one. If so, we don't have anything more to do.
1475 */
1476 head = &tsk->signal->cpu_timers[clock_idx];
1477 if (list_empty(head) ||
b5e61818 1478 cputime_ge(list_first_entry(head,
1da177e4
LT
1479 struct cpu_timer_list, entry)->expires.cpu,
1480 *newval)) {
f06febc9
FM
1481 switch (clock_idx) {
1482 case CPUCLOCK_PROF:
1483 tsk->signal->cputime_expires.prof_exp = *newval;
1484 break;
1485 case CPUCLOCK_VIRT:
1486 tsk->signal->cputime_expires.virt_exp = *newval;
1487 break;
1488 }
1da177e4
LT
1489 }
1490}
1491
e4b76555
TA
1492static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1493 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1494{
1da177e4
LT
1495 struct k_itimer timer;
1496 int error;
1497
1da177e4
LT
1498 /*
1499 * Set up a temporary timer and then wait for it to go off.
1500 */
1501 memset(&timer, 0, sizeof timer);
1502 spin_lock_init(&timer.it_lock);
1503 timer.it_clock = which_clock;
1504 timer.it_overrun = -1;
1505 error = posix_cpu_timer_create(&timer);
1506 timer.it_process = current;
1507 if (!error) {
1da177e4 1508 static struct itimerspec zero_it;
e4b76555
TA
1509
1510 memset(it, 0, sizeof *it);
1511 it->it_value = *rqtp;
1da177e4
LT
1512
1513 spin_lock_irq(&timer.it_lock);
e4b76555 1514 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1515 if (error) {
1516 spin_unlock_irq(&timer.it_lock);
1517 return error;
1518 }
1519
1520 while (!signal_pending(current)) {
1521 if (timer.it.cpu.expires.sched == 0) {
1522 /*
1523 * Our timer fired and was reset.
1524 */
1525 spin_unlock_irq(&timer.it_lock);
1526 return 0;
1527 }
1528
1529 /*
1530 * Block until cpu_timer_fire (or a signal) wakes us.
1531 */
1532 __set_current_state(TASK_INTERRUPTIBLE);
1533 spin_unlock_irq(&timer.it_lock);
1534 schedule();
1535 spin_lock_irq(&timer.it_lock);
1536 }
1537
1538 /*
1539 * We were interrupted by a signal.
1540 */
1541 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
e4b76555 1542 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1da177e4
LT
1543 spin_unlock_irq(&timer.it_lock);
1544
e4b76555 1545 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1546 /*
1547 * It actually did fire already.
1548 */
1549 return 0;
1550 }
1551
e4b76555
TA
1552 error = -ERESTART_RESTARTBLOCK;
1553 }
1554
1555 return error;
1556}
1557
1558int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1559 struct timespec *rqtp, struct timespec __user *rmtp)
1560{
1561 struct restart_block *restart_block =
1562 &current_thread_info()->restart_block;
1563 struct itimerspec it;
1564 int error;
1565
1566 /*
1567 * Diagnose required errors first.
1568 */
1569 if (CPUCLOCK_PERTHREAD(which_clock) &&
1570 (CPUCLOCK_PID(which_clock) == 0 ||
1571 CPUCLOCK_PID(which_clock) == current->pid))
1572 return -EINVAL;
1573
1574 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1575
1576 if (error == -ERESTART_RESTARTBLOCK) {
1577
1578 if (flags & TIMER_ABSTIME)
1579 return -ERESTARTNOHAND;
1da177e4 1580 /*
e4b76555
TA
1581 * Report back to the user the time still remaining.
1582 */
1583 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1584 return -EFAULT;
1585
1711ef38 1586 restart_block->fn = posix_cpu_nsleep_restart;
1da177e4 1587 restart_block->arg0 = which_clock;
97735f25 1588 restart_block->arg1 = (unsigned long) rmtp;
1da177e4
LT
1589 restart_block->arg2 = rqtp->tv_sec;
1590 restart_block->arg3 = rqtp->tv_nsec;
1da177e4 1591 }
1da177e4
LT
1592 return error;
1593}
1594
1711ef38 1595long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4
LT
1596{
1597 clockid_t which_clock = restart_block->arg0;
97735f25
TG
1598 struct timespec __user *rmtp;
1599 struct timespec t;
e4b76555
TA
1600 struct itimerspec it;
1601 int error;
97735f25
TG
1602
1603 rmtp = (struct timespec __user *) restart_block->arg1;
1604 t.tv_sec = restart_block->arg2;
1605 t.tv_nsec = restart_block->arg3;
1606
1da177e4 1607 restart_block->fn = do_no_restart_syscall;
e4b76555
TA
1608 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1609
1610 if (error == -ERESTART_RESTARTBLOCK) {
1611 /*
1612 * Report back to the user the time still remaining.
1613 */
1614 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1615 return -EFAULT;
1616
1617 restart_block->fn = posix_cpu_nsleep_restart;
1618 restart_block->arg0 = which_clock;
1619 restart_block->arg1 = (unsigned long) rmtp;
1620 restart_block->arg2 = t.tv_sec;
1621 restart_block->arg3 = t.tv_nsec;
1622 }
1623 return error;
1624
1da177e4
LT
1625}
1626
1627
1628#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1629#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1630
a924b04d
TG
1631static int process_cpu_clock_getres(const clockid_t which_clock,
1632 struct timespec *tp)
1da177e4
LT
1633{
1634 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1635}
a924b04d
TG
1636static int process_cpu_clock_get(const clockid_t which_clock,
1637 struct timespec *tp)
1da177e4
LT
1638{
1639 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1640}
1641static int process_cpu_timer_create(struct k_itimer *timer)
1642{
1643 timer->it_clock = PROCESS_CLOCK;
1644 return posix_cpu_timer_create(timer);
1645}
a924b04d 1646static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1647 struct timespec *rqtp,
1648 struct timespec __user *rmtp)
1da177e4 1649{
97735f25 1650 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1651}
1711ef38
TA
1652static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1653{
1654 return -EINVAL;
1655}
a924b04d
TG
1656static int thread_cpu_clock_getres(const clockid_t which_clock,
1657 struct timespec *tp)
1da177e4
LT
1658{
1659 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1660}
a924b04d
TG
1661static int thread_cpu_clock_get(const clockid_t which_clock,
1662 struct timespec *tp)
1da177e4
LT
1663{
1664 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1665}
1666static int thread_cpu_timer_create(struct k_itimer *timer)
1667{
1668 timer->it_clock = THREAD_CLOCK;
1669 return posix_cpu_timer_create(timer);
1670}
a924b04d 1671static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25 1672 struct timespec *rqtp, struct timespec __user *rmtp)
1da177e4
LT
1673{
1674 return -EINVAL;
1675}
1711ef38
TA
1676static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1677{
1678 return -EINVAL;
1679}
1da177e4
LT
1680
1681static __init int init_posix_cpu_timers(void)
1682{
1683 struct k_clock process = {
1684 .clock_getres = process_cpu_clock_getres,
1685 .clock_get = process_cpu_clock_get,
1686 .clock_set = do_posix_clock_nosettime,
1687 .timer_create = process_cpu_timer_create,
1688 .nsleep = process_cpu_nsleep,
1711ef38 1689 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1690 };
1691 struct k_clock thread = {
1692 .clock_getres = thread_cpu_clock_getres,
1693 .clock_get = thread_cpu_clock_get,
1694 .clock_set = do_posix_clock_nosettime,
1695 .timer_create = thread_cpu_timer_create,
1696 .nsleep = thread_cpu_nsleep,
1711ef38 1697 .nsleep_restart = thread_cpu_nsleep_restart,
1da177e4
LT
1698 };
1699
1700 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1701 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1702
1703 return 0;
1704}
1705__initcall(init_posix_cpu_timers);