cpu-timers: Change SIGEV_NONE timer implementation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
1da177e4 7#include <linux/errno.h>
f8bd2258
RZ
8#include <linux/math64.h>
9#include <asm/uaccess.h>
bb34d92f 10#include <linux/kernel_stat.h>
3f0a525e 11#include <trace/events/timer.h>
1da177e4 12
f06febc9 13/*
f55db609
SG
14 * Called after updating RLIMIT_CPU to run cpu timer and update
15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
16 * siglock protection since other code may update expiration cache as
17 * well.
f06febc9
FM
18 */
19void update_rlimit_cpu(unsigned long rlim_new)
20{
42c4ab41 21 cputime_t cputime = secs_to_cputime(rlim_new);
f06febc9 22
f55db609
SG
23 spin_lock_irq(&current->sighand->siglock);
24 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
25 spin_unlock_irq(&current->sighand->siglock);
f06febc9
FM
26}
27
a924b04d 28static int check_clock(const clockid_t which_clock)
1da177e4
LT
29{
30 int error = 0;
31 struct task_struct *p;
32 const pid_t pid = CPUCLOCK_PID(which_clock);
33
34 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 return -EINVAL;
36
37 if (pid == 0)
38 return 0;
39
40 read_lock(&tasklist_lock);
8dc86af0 41 p = find_task_by_vpid(pid);
bac0abd6
PE
42 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 same_thread_group(p, current) : thread_group_leader(p))) {
1da177e4
LT
44 error = -EINVAL;
45 }
46 read_unlock(&tasklist_lock);
47
48 return error;
49}
50
51static inline union cpu_time_count
a924b04d 52timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
53{
54 union cpu_time_count ret;
55 ret.sched = 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
ee500f27 57 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
1da177e4
LT
58 } else {
59 ret.cpu = timespec_to_cputime(tp);
60 }
61 return ret;
62}
63
a924b04d 64static void sample_to_timespec(const clockid_t which_clock,
1da177e4
LT
65 union cpu_time_count cpu,
66 struct timespec *tp)
67{
f8bd2258
RZ
68 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 *tp = ns_to_timespec(cpu.sched);
70 else
1da177e4 71 cputime_to_timespec(cpu.cpu, tp);
1da177e4
LT
72}
73
a924b04d 74static inline int cpu_time_before(const clockid_t which_clock,
1da177e4
LT
75 union cpu_time_count now,
76 union cpu_time_count then)
77{
78 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 return now.sched < then.sched;
80 } else {
81 return cputime_lt(now.cpu, then.cpu);
82 }
83}
a924b04d 84static inline void cpu_time_add(const clockid_t which_clock,
1da177e4
LT
85 union cpu_time_count *acc,
86 union cpu_time_count val)
87{
88 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 acc->sched += val.sched;
90 } else {
91 acc->cpu = cputime_add(acc->cpu, val.cpu);
92 }
93}
a924b04d 94static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
1da177e4
LT
95 union cpu_time_count a,
96 union cpu_time_count b)
97{
98 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 a.sched -= b.sched;
100 } else {
101 a.cpu = cputime_sub(a.cpu, b.cpu);
102 }
103 return a;
104}
105
ac08c264
TG
106/*
107 * Divide and limit the result to res >= 1
108 *
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
111 */
112static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113{
114 cputime_t res = cputime_div(time, div);
115
116 return max_t(cputime_t, res, 1);
117}
118
1da177e4
LT
119/*
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
122 */
7a4ed937 123static void bump_cpu_timer(struct k_itimer *timer,
1da177e4
LT
124 union cpu_time_count now)
125{
126 int i;
127
128 if (timer->it.cpu.incr.sched == 0)
129 return;
130
131 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 unsigned long long delta, incr;
133
134 if (now.sched < timer->it.cpu.expires.sched)
135 return;
136 incr = timer->it.cpu.incr.sched;
137 delta = now.sched + incr - timer->it.cpu.expires.sched;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i = 0; incr < delta - incr; i++)
140 incr = incr << 1;
141 for (; i >= 0; incr >>= 1, i--) {
7a4ed937 142 if (delta < incr)
1da177e4
LT
143 continue;
144 timer->it.cpu.expires.sched += incr;
145 timer->it_overrun += 1 << i;
146 delta -= incr;
147 }
148 } else {
149 cputime_t delta, incr;
150
151 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 return;
153 incr = timer->it.cpu.incr.cpu;
154 delta = cputime_sub(cputime_add(now.cpu, incr),
155 timer->it.cpu.expires.cpu);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 incr = cputime_add(incr, incr);
159 for (; i >= 0; incr = cputime_halve(incr), i--) {
7a4ed937 160 if (cputime_lt(delta, incr))
1da177e4
LT
161 continue;
162 timer->it.cpu.expires.cpu =
163 cputime_add(timer->it.cpu.expires.cpu, incr);
164 timer->it_overrun += 1 << i;
165 delta = cputime_sub(delta, incr);
166 }
167 }
168}
169
170static inline cputime_t prof_ticks(struct task_struct *p)
171{
172 return cputime_add(p->utime, p->stime);
173}
174static inline cputime_t virt_ticks(struct task_struct *p)
175{
176 return p->utime;
177}
1da177e4 178
a924b04d 179int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
180{
181 int error = check_clock(which_clock);
182 if (!error) {
183 tp->tv_sec = 0;
184 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186 /*
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
190 */
191 tp->tv_nsec = 1;
192 }
193 }
194 return error;
195}
196
a924b04d 197int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
198{
199 /*
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
202 */
203 int error = check_clock(which_clock);
204 if (error == 0) {
205 error = -EPERM;
206 }
207 return error;
208}
209
210
211/*
212 * Sample a per-thread clock for the given task.
213 */
a924b04d 214static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
1da177e4
LT
215 union cpu_time_count *cpu)
216{
217 switch (CPUCLOCK_WHICH(which_clock)) {
218 default:
219 return -EINVAL;
220 case CPUCLOCK_PROF:
221 cpu->cpu = prof_ticks(p);
222 break;
223 case CPUCLOCK_VIRT:
224 cpu->cpu = virt_ticks(p);
225 break;
226 case CPUCLOCK_SCHED:
c5f8d995 227 cpu->sched = task_sched_runtime(p);
1da177e4
LT
228 break;
229 }
230 return 0;
231}
232
4cd4c1b4
PZ
233void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
234{
235 struct sighand_struct *sighand;
236 struct signal_struct *sig;
237 struct task_struct *t;
238
239 *times = INIT_CPUTIME;
240
241 rcu_read_lock();
242 sighand = rcu_dereference(tsk->sighand);
243 if (!sighand)
244 goto out;
245
246 sig = tsk->signal;
247
248 t = tsk;
249 do {
250 times->utime = cputime_add(times->utime, t->utime);
251 times->stime = cputime_add(times->stime, t->stime);
252 times->sum_exec_runtime += t->se.sum_exec_runtime;
253
254 t = next_thread(t);
255 } while (t != tsk);
256
257 times->utime = cputime_add(times->utime, sig->utime);
258 times->stime = cputime_add(times->stime, sig->stime);
259 times->sum_exec_runtime += sig->sum_sched_runtime;
260out:
261 rcu_read_unlock();
262}
263
4da94d49
PZ
264static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
265{
266 if (cputime_gt(b->utime, a->utime))
267 a->utime = b->utime;
268
269 if (cputime_gt(b->stime, a->stime))
270 a->stime = b->stime;
271
272 if (b->sum_exec_runtime > a->sum_exec_runtime)
273 a->sum_exec_runtime = b->sum_exec_runtime;
274}
275
276void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
277{
278 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
279 struct task_cputime sum;
280 unsigned long flags;
281
282 spin_lock_irqsave(&cputimer->lock, flags);
283 if (!cputimer->running) {
284 cputimer->running = 1;
285 /*
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
289 * it.
290 */
291 thread_group_cputime(tsk, &sum);
292 update_gt_cputime(&cputimer->cputime, &sum);
293 }
294 *times = cputimer->cputime;
295 spin_unlock_irqrestore(&cputimer->lock, flags);
296}
297
1da177e4
LT
298/*
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
1da177e4 301 */
bb34d92f
FM
302static int cpu_clock_sample_group(const clockid_t which_clock,
303 struct task_struct *p,
304 union cpu_time_count *cpu)
1da177e4 305{
f06febc9
FM
306 struct task_cputime cputime;
307
eccdaeaf 308 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
309 default:
310 return -EINVAL;
311 case CPUCLOCK_PROF:
c5f8d995 312 thread_group_cputime(p, &cputime);
f06febc9 313 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
1da177e4
LT
314 break;
315 case CPUCLOCK_VIRT:
c5f8d995 316 thread_group_cputime(p, &cputime);
f06febc9 317 cpu->cpu = cputime.utime;
1da177e4
LT
318 break;
319 case CPUCLOCK_SCHED:
c5f8d995 320 cpu->sched = thread_group_sched_runtime(p);
1da177e4
LT
321 break;
322 }
323 return 0;
324}
325
1da177e4 326
a924b04d 327int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
328{
329 const pid_t pid = CPUCLOCK_PID(which_clock);
330 int error = -EINVAL;
331 union cpu_time_count rtn;
332
333 if (pid == 0) {
334 /*
335 * Special case constant value for our own clocks.
336 * We don't have to do any lookup to find ourselves.
337 */
338 if (CPUCLOCK_PERTHREAD(which_clock)) {
339 /*
340 * Sampling just ourselves we can do with no locking.
341 */
342 error = cpu_clock_sample(which_clock,
343 current, &rtn);
344 } else {
345 read_lock(&tasklist_lock);
346 error = cpu_clock_sample_group(which_clock,
347 current, &rtn);
348 read_unlock(&tasklist_lock);
349 }
350 } else {
351 /*
352 * Find the given PID, and validate that the caller
353 * should be able to see it.
354 */
355 struct task_struct *p;
1f2ea083 356 rcu_read_lock();
8dc86af0 357 p = find_task_by_vpid(pid);
1da177e4
LT
358 if (p) {
359 if (CPUCLOCK_PERTHREAD(which_clock)) {
bac0abd6 360 if (same_thread_group(p, current)) {
1da177e4
LT
361 error = cpu_clock_sample(which_clock,
362 p, &rtn);
363 }
1f2ea083
PM
364 } else {
365 read_lock(&tasklist_lock);
bac0abd6 366 if (thread_group_leader(p) && p->signal) {
1f2ea083
PM
367 error =
368 cpu_clock_sample_group(which_clock,
369 p, &rtn);
370 }
371 read_unlock(&tasklist_lock);
1da177e4
LT
372 }
373 }
1f2ea083 374 rcu_read_unlock();
1da177e4
LT
375 }
376
377 if (error)
378 return error;
379 sample_to_timespec(which_clock, rtn, tp);
380 return 0;
381}
382
383
384/*
385 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
386 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
387 * new timer already all-zeros initialized.
1da177e4
LT
388 */
389int posix_cpu_timer_create(struct k_itimer *new_timer)
390{
391 int ret = 0;
392 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
393 struct task_struct *p;
394
395 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
396 return -EINVAL;
397
398 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4
LT
399
400 read_lock(&tasklist_lock);
401 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
402 if (pid == 0) {
403 p = current;
404 } else {
8dc86af0 405 p = find_task_by_vpid(pid);
bac0abd6 406 if (p && !same_thread_group(p, current))
1da177e4
LT
407 p = NULL;
408 }
409 } else {
410 if (pid == 0) {
411 p = current->group_leader;
412 } else {
8dc86af0 413 p = find_task_by_vpid(pid);
bac0abd6 414 if (p && !thread_group_leader(p))
1da177e4
LT
415 p = NULL;
416 }
417 }
418 new_timer->it.cpu.task = p;
419 if (p) {
420 get_task_struct(p);
421 } else {
422 ret = -EINVAL;
423 }
424 read_unlock(&tasklist_lock);
425
426 return ret;
427}
428
429/*
430 * Clean up a CPU-clock timer that is about to be destroyed.
431 * This is called from timer deletion with the timer already locked.
432 * If we return TIMER_RETRY, it's necessary to release the timer's lock
433 * and try again. (This happens when the timer is in the middle of firing.)
434 */
435int posix_cpu_timer_del(struct k_itimer *timer)
436{
437 struct task_struct *p = timer->it.cpu.task;
108150ea 438 int ret = 0;
1da177e4 439
108150ea 440 if (likely(p != NULL)) {
9465bee8
LT
441 read_lock(&tasklist_lock);
442 if (unlikely(p->signal == NULL)) {
443 /*
444 * We raced with the reaping of the task.
445 * The deletion should have cleared us off the list.
446 */
447 BUG_ON(!list_empty(&timer->it.cpu.entry));
448 } else {
9465bee8 449 spin_lock(&p->sighand->siglock);
108150ea
ON
450 if (timer->it.cpu.firing)
451 ret = TIMER_RETRY;
452 else
453 list_del(&timer->it.cpu.entry);
9465bee8
LT
454 spin_unlock(&p->sighand->siglock);
455 }
456 read_unlock(&tasklist_lock);
108150ea
ON
457
458 if (!ret)
459 put_task_struct(p);
1da177e4 460 }
1da177e4 461
108150ea 462 return ret;
1da177e4
LT
463}
464
465/*
466 * Clean out CPU timers still ticking when a thread exited. The task
467 * pointer is cleared, and the expiry time is replaced with the residual
468 * time for later timer_gettime calls to return.
469 * This must be called with the siglock held.
470 */
471static void cleanup_timers(struct list_head *head,
472 cputime_t utime, cputime_t stime,
41b86e9c 473 unsigned long long sum_exec_runtime)
1da177e4
LT
474{
475 struct cpu_timer_list *timer, *next;
476 cputime_t ptime = cputime_add(utime, stime);
477
478 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
479 list_del_init(&timer->entry);
480 if (cputime_lt(timer->expires.cpu, ptime)) {
481 timer->expires.cpu = cputime_zero;
482 } else {
483 timer->expires.cpu = cputime_sub(timer->expires.cpu,
484 ptime);
485 }
486 }
487
488 ++head;
489 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
490 list_del_init(&timer->entry);
491 if (cputime_lt(timer->expires.cpu, utime)) {
492 timer->expires.cpu = cputime_zero;
493 } else {
494 timer->expires.cpu = cputime_sub(timer->expires.cpu,
495 utime);
496 }
497 }
498
499 ++head;
500 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 501 list_del_init(&timer->entry);
41b86e9c 502 if (timer->expires.sched < sum_exec_runtime) {
1da177e4
LT
503 timer->expires.sched = 0;
504 } else {
41b86e9c 505 timer->expires.sched -= sum_exec_runtime;
1da177e4
LT
506 }
507 }
508}
509
510/*
511 * These are both called with the siglock held, when the current thread
512 * is being reaped. When the final (leader) thread in the group is reaped,
513 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
514 */
515void posix_cpu_timers_exit(struct task_struct *tsk)
516{
517 cleanup_timers(tsk->cpu_timers,
41b86e9c 518 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
1da177e4
LT
519
520}
521void posix_cpu_timers_exit_group(struct task_struct *tsk)
522{
17d42c1c 523 struct signal_struct *const sig = tsk->signal;
ca531a0a 524
f06febc9 525 cleanup_timers(tsk->signal->cpu_timers,
17d42c1c
SG
526 cputime_add(tsk->utime, sig->utime),
527 cputime_add(tsk->stime, sig->stime),
528 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
1da177e4
LT
529}
530
531static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
532{
533 /*
534 * That's all for this thread or process.
535 * We leave our residual in expires to be reported.
536 */
537 put_task_struct(timer->it.cpu.task);
538 timer->it.cpu.task = NULL;
539 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
540 timer->it.cpu.expires,
541 now);
542}
543
d1e3b6d1
SG
544static inline int expires_gt(cputime_t expires, cputime_t new_exp)
545{
546 return cputime_eq(expires, cputime_zero) ||
547 cputime_gt(expires, new_exp);
548}
549
1da177e4
LT
550/*
551 * Insert the timer on the appropriate list before any timers that
552 * expire later. This must be called with the tasklist_lock held
553 * for reading, and interrupts disabled.
554 */
5eb9aa64 555static void arm_timer(struct k_itimer *timer)
1da177e4
LT
556{
557 struct task_struct *p = timer->it.cpu.task;
558 struct list_head *head, *listpos;
5eb9aa64 559 struct task_cputime *cputime_expires;
1da177e4
LT
560 struct cpu_timer_list *const nt = &timer->it.cpu;
561 struct cpu_timer_list *next;
1da177e4 562
5eb9aa64
SG
563 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
564 head = p->cpu_timers;
565 cputime_expires = &p->cputime_expires;
566 } else {
567 head = p->signal->cpu_timers;
568 cputime_expires = &p->signal->cputime_expires;
569 }
1da177e4
LT
570 head += CPUCLOCK_WHICH(timer->it_clock);
571
572 BUG_ON(!irqs_disabled());
573 spin_lock(&p->sighand->siglock);
574
575 listpos = head;
5eb9aa64
SG
576 list_for_each_entry(next, head, entry) {
577 if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
578 break;
579 listpos = &next->entry;
1da177e4
LT
580 }
581 list_add(&nt->entry, listpos);
582
583 if (listpos == head) {
5eb9aa64
SG
584 union cpu_time_count *exp = &nt->expires;
585
1da177e4 586 /*
5eb9aa64
SG
587 * We are the new earliest-expiring POSIX 1.b timer, hence
588 * need to update expiration cache. Take into account that
589 * for process timers we share expiration cache with itimers
590 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
1da177e4
LT
591 */
592
5eb9aa64
SG
593 switch (CPUCLOCK_WHICH(timer->it_clock)) {
594 case CPUCLOCK_PROF:
595 if (expires_gt(cputime_expires->prof_exp, exp->cpu))
596 cputime_expires->prof_exp = exp->cpu;
597 break;
598 case CPUCLOCK_VIRT:
599 if (expires_gt(cputime_expires->virt_exp, exp->cpu))
600 cputime_expires->virt_exp = exp->cpu;
601 break;
602 case CPUCLOCK_SCHED:
603 if (cputime_expires->sched_exp == 0 ||
604 cputime_expires->sched_exp > exp->sched)
605 cputime_expires->sched_exp = exp->sched;
606 break;
1da177e4
LT
607 }
608 }
609
610 spin_unlock(&p->sighand->siglock);
611}
612
613/*
614 * The timer is locked, fire it and arrange for its reload.
615 */
616static void cpu_timer_fire(struct k_itimer *timer)
617{
1f169f84
SG
618 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
619 /*
620 * User don't want any signal.
621 */
622 timer->it.cpu.expires.sched = 0;
623 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
624 /*
625 * This a special case for clock_nanosleep,
626 * not a normal timer from sys_timer_create.
627 */
628 wake_up_process(timer->it_process);
629 timer->it.cpu.expires.sched = 0;
630 } else if (timer->it.cpu.incr.sched == 0) {
631 /*
632 * One-shot timer. Clear it as soon as it's fired.
633 */
634 posix_timer_event(timer, 0);
635 timer->it.cpu.expires.sched = 0;
636 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
637 /*
638 * The signal did not get queued because the signal
639 * was ignored, so we won't get any callback to
640 * reload the timer. But we need to keep it
641 * ticking in case the signal is deliverable next time.
642 */
643 posix_cpu_timer_schedule(timer);
644 }
645}
646
3997ad31
PZ
647/*
648 * Sample a process (thread group) timer for the given group_leader task.
649 * Must be called with tasklist_lock held for reading.
650 */
651static int cpu_timer_sample_group(const clockid_t which_clock,
652 struct task_struct *p,
653 union cpu_time_count *cpu)
654{
655 struct task_cputime cputime;
656
657 thread_group_cputimer(p, &cputime);
658 switch (CPUCLOCK_WHICH(which_clock)) {
659 default:
660 return -EINVAL;
661 case CPUCLOCK_PROF:
662 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
663 break;
664 case CPUCLOCK_VIRT:
665 cpu->cpu = cputime.utime;
666 break;
667 case CPUCLOCK_SCHED:
668 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
669 break;
670 }
671 return 0;
672}
673
1da177e4
LT
674/*
675 * Guts of sys_timer_settime for CPU timers.
676 * This is called with the timer locked and interrupts disabled.
677 * If we return TIMER_RETRY, it's necessary to release the timer's lock
678 * and try again. (This happens when the timer is in the middle of firing.)
679 */
680int posix_cpu_timer_set(struct k_itimer *timer, int flags,
681 struct itimerspec *new, struct itimerspec *old)
682{
683 struct task_struct *p = timer->it.cpu.task;
ae1a78ee 684 union cpu_time_count old_expires, new_expires, old_incr, val;
1da177e4
LT
685 int ret;
686
687 if (unlikely(p == NULL)) {
688 /*
689 * Timer refers to a dead task's clock.
690 */
691 return -ESRCH;
692 }
693
694 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
695
696 read_lock(&tasklist_lock);
697 /*
698 * We need the tasklist_lock to protect against reaping that
699 * clears p->signal. If p has just been reaped, we can no
700 * longer get any information about it at all.
701 */
702 if (unlikely(p->signal == NULL)) {
703 read_unlock(&tasklist_lock);
704 put_task_struct(p);
705 timer->it.cpu.task = NULL;
706 return -ESRCH;
707 }
708
709 /*
710 * Disarm any old timer after extracting its expiry time.
711 */
712 BUG_ON(!irqs_disabled());
a69ac4a7
ON
713
714 ret = 0;
ae1a78ee 715 old_incr = timer->it.cpu.incr;
1da177e4
LT
716 spin_lock(&p->sighand->siglock);
717 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
718 if (unlikely(timer->it.cpu.firing)) {
719 timer->it.cpu.firing = -1;
720 ret = TIMER_RETRY;
721 } else
722 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
723 spin_unlock(&p->sighand->siglock);
724
725 /*
726 * We need to sample the current value to convert the new
727 * value from to relative and absolute, and to convert the
728 * old value from absolute to relative. To set a process
729 * timer, we need a sample to balance the thread expiry
730 * times (in arm_timer). With an absolute time, we must
731 * check if it's already passed. In short, we need a sample.
732 */
733 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
734 cpu_clock_sample(timer->it_clock, p, &val);
735 } else {
3997ad31 736 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
737 }
738
739 if (old) {
740 if (old_expires.sched == 0) {
741 old->it_value.tv_sec = 0;
742 old->it_value.tv_nsec = 0;
743 } else {
744 /*
745 * Update the timer in case it has
746 * overrun already. If it has,
747 * we'll report it as having overrun
748 * and with the next reloaded timer
749 * already ticking, though we are
750 * swallowing that pending
751 * notification here to install the
752 * new setting.
753 */
754 bump_cpu_timer(timer, val);
755 if (cpu_time_before(timer->it_clock, val,
756 timer->it.cpu.expires)) {
757 old_expires = cpu_time_sub(
758 timer->it_clock,
759 timer->it.cpu.expires, val);
760 sample_to_timespec(timer->it_clock,
761 old_expires,
762 &old->it_value);
763 } else {
764 old->it_value.tv_nsec = 1;
765 old->it_value.tv_sec = 0;
766 }
767 }
768 }
769
a69ac4a7 770 if (unlikely(ret)) {
1da177e4
LT
771 /*
772 * We are colliding with the timer actually firing.
773 * Punt after filling in the timer's old value, and
774 * disable this firing since we are already reporting
775 * it as an overrun (thanks to bump_cpu_timer above).
776 */
777 read_unlock(&tasklist_lock);
1da177e4
LT
778 goto out;
779 }
780
781 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
782 cpu_time_add(timer->it_clock, &new_expires, val);
783 }
784
785 /*
786 * Install the new expiry time (or zero).
787 * For a timer with no notification action, we don't actually
788 * arm the timer (we'll just fake it for timer_gettime).
789 */
790 timer->it.cpu.expires = new_expires;
791 if (new_expires.sched != 0 &&
1da177e4 792 cpu_time_before(timer->it_clock, val, new_expires)) {
5eb9aa64 793 arm_timer(timer);
1da177e4
LT
794 }
795
796 read_unlock(&tasklist_lock);
797
798 /*
799 * Install the new reload setting, and
800 * set up the signal and overrun bookkeeping.
801 */
802 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
803 &new->it_interval);
804
805 /*
806 * This acts as a modification timestamp for the timer,
807 * so any automatic reload attempt will punt on seeing
808 * that we have reset the timer manually.
809 */
810 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
811 ~REQUEUE_PENDING;
812 timer->it_overrun_last = 0;
813 timer->it_overrun = -1;
814
815 if (new_expires.sched != 0 &&
1da177e4
LT
816 !cpu_time_before(timer->it_clock, val, new_expires)) {
817 /*
818 * The designated time already passed, so we notify
819 * immediately, even if the thread never runs to
820 * accumulate more time on this clock.
821 */
822 cpu_timer_fire(timer);
823 }
824
825 ret = 0;
826 out:
827 if (old) {
828 sample_to_timespec(timer->it_clock,
ae1a78ee 829 old_incr, &old->it_interval);
1da177e4
LT
830 }
831 return ret;
832}
833
834void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
835{
836 union cpu_time_count now;
837 struct task_struct *p = timer->it.cpu.task;
838 int clear_dead;
839
840 /*
841 * Easy part: convert the reload time.
842 */
843 sample_to_timespec(timer->it_clock,
844 timer->it.cpu.incr, &itp->it_interval);
845
846 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
847 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
848 return;
849 }
850
851 if (unlikely(p == NULL)) {
852 /*
853 * This task already died and the timer will never fire.
854 * In this case, expires is actually the dead value.
855 */
856 dead:
857 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
858 &itp->it_value);
859 return;
860 }
861
862 /*
863 * Sample the clock to take the difference with the expiry time.
864 */
865 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
866 cpu_clock_sample(timer->it_clock, p, &now);
867 clear_dead = p->exit_state;
868 } else {
869 read_lock(&tasklist_lock);
870 if (unlikely(p->signal == NULL)) {
871 /*
872 * The process has been reaped.
873 * We can't even collect a sample any more.
874 * Call the timer disarmed, nothing else to do.
875 */
876 put_task_struct(p);
877 timer->it.cpu.task = NULL;
878 timer->it.cpu.expires.sched = 0;
879 read_unlock(&tasklist_lock);
880 goto dead;
881 } else {
3997ad31 882 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
883 clear_dead = (unlikely(p->exit_state) &&
884 thread_group_empty(p));
885 }
886 read_unlock(&tasklist_lock);
887 }
888
1da177e4
LT
889 if (unlikely(clear_dead)) {
890 /*
891 * We've noticed that the thread is dead, but
892 * not yet reaped. Take this opportunity to
893 * drop our task ref.
894 */
895 clear_dead_task(timer, now);
896 goto dead;
897 }
898
899 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
900 sample_to_timespec(timer->it_clock,
901 cpu_time_sub(timer->it_clock,
902 timer->it.cpu.expires, now),
903 &itp->it_value);
904 } else {
905 /*
906 * The timer should have expired already, but the firing
907 * hasn't taken place yet. Say it's just about to expire.
908 */
909 itp->it_value.tv_nsec = 1;
910 itp->it_value.tv_sec = 0;
911 }
912}
913
914/*
915 * Check for any per-thread CPU timers that have fired and move them off
916 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
917 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
918 */
919static void check_thread_timers(struct task_struct *tsk,
920 struct list_head *firing)
921{
e80eda94 922 int maxfire;
1da177e4 923 struct list_head *timers = tsk->cpu_timers;
78f2c7db 924 struct signal_struct *const sig = tsk->signal;
d4bb5274 925 unsigned long soft;
1da177e4 926
e80eda94 927 maxfire = 20;
f06febc9 928 tsk->cputime_expires.prof_exp = cputime_zero;
1da177e4 929 while (!list_empty(timers)) {
b5e61818 930 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
931 struct cpu_timer_list,
932 entry);
e80eda94 933 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
f06febc9 934 tsk->cputime_expires.prof_exp = t->expires.cpu;
1da177e4
LT
935 break;
936 }
937 t->firing = 1;
938 list_move_tail(&t->entry, firing);
939 }
940
941 ++timers;
e80eda94 942 maxfire = 20;
f06febc9 943 tsk->cputime_expires.virt_exp = cputime_zero;
1da177e4 944 while (!list_empty(timers)) {
b5e61818 945 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
946 struct cpu_timer_list,
947 entry);
e80eda94 948 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
f06febc9 949 tsk->cputime_expires.virt_exp = t->expires.cpu;
1da177e4
LT
950 break;
951 }
952 t->firing = 1;
953 list_move_tail(&t->entry, firing);
954 }
955
956 ++timers;
e80eda94 957 maxfire = 20;
f06febc9 958 tsk->cputime_expires.sched_exp = 0;
1da177e4 959 while (!list_empty(timers)) {
b5e61818 960 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
961 struct cpu_timer_list,
962 entry);
41b86e9c 963 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
f06febc9 964 tsk->cputime_expires.sched_exp = t->expires.sched;
1da177e4
LT
965 break;
966 }
967 t->firing = 1;
968 list_move_tail(&t->entry, firing);
969 }
78f2c7db
PZ
970
971 /*
972 * Check for the special case thread timers.
973 */
78d7d407 974 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
d4bb5274 975 if (soft != RLIM_INFINITY) {
78d7d407
JS
976 unsigned long hard =
977 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
78f2c7db 978
5a52dd50
PZ
979 if (hard != RLIM_INFINITY &&
980 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
981 /*
982 * At the hard limit, we just die.
983 * No need to calculate anything else now.
984 */
985 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
986 return;
987 }
d4bb5274 988 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
989 /*
990 * At the soft limit, send a SIGXCPU every second.
991 */
d4bb5274
JS
992 if (soft < hard) {
993 soft += USEC_PER_SEC;
994 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db 995 }
81d50bb2
HS
996 printk(KERN_INFO
997 "RT Watchdog Timeout: %s[%d]\n",
998 tsk->comm, task_pid_nr(tsk));
78f2c7db
PZ
999 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1000 }
1001 }
1da177e4
LT
1002}
1003
3fccfd67
PZ
1004static void stop_process_timers(struct task_struct *tsk)
1005{
1006 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1007 unsigned long flags;
1008
1009 if (!cputimer->running)
1010 return;
1011
1012 spin_lock_irqsave(&cputimer->lock, flags);
1013 cputimer->running = 0;
1014 spin_unlock_irqrestore(&cputimer->lock, flags);
1015}
1016
8356b5f9
SG
1017static u32 onecputick;
1018
42c4ab41
SG
1019static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1020 cputime_t *expires, cputime_t cur_time, int signo)
1021{
1022 if (cputime_eq(it->expires, cputime_zero))
1023 return;
1024
1025 if (cputime_ge(cur_time, it->expires)) {
8356b5f9
SG
1026 if (!cputime_eq(it->incr, cputime_zero)) {
1027 it->expires = cputime_add(it->expires, it->incr);
1028 it->error += it->incr_error;
1029 if (it->error >= onecputick) {
1030 it->expires = cputime_sub(it->expires,
a42548a1 1031 cputime_one_jiffy);
8356b5f9
SG
1032 it->error -= onecputick;
1033 }
3f0a525e 1034 } else {
8356b5f9 1035 it->expires = cputime_zero;
3f0a525e 1036 }
42c4ab41 1037
3f0a525e
XG
1038 trace_itimer_expire(signo == SIGPROF ?
1039 ITIMER_PROF : ITIMER_VIRTUAL,
1040 tsk->signal->leader_pid, cur_time);
42c4ab41
SG
1041 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1042 }
1043
1044 if (!cputime_eq(it->expires, cputime_zero) &&
1045 (cputime_eq(*expires, cputime_zero) ||
1046 cputime_lt(it->expires, *expires))) {
1047 *expires = it->expires;
1048 }
1049}
1050
1da177e4
LT
1051/*
1052 * Check for any per-thread CPU timers that have fired and move them
1053 * off the tsk->*_timers list onto the firing list. Per-thread timers
1054 * have already been taken off.
1055 */
1056static void check_process_timers(struct task_struct *tsk,
1057 struct list_head *firing)
1058{
e80eda94 1059 int maxfire;
1da177e4 1060 struct signal_struct *const sig = tsk->signal;
f06febc9 1061 cputime_t utime, ptime, virt_expires, prof_expires;
41b86e9c 1062 unsigned long long sum_sched_runtime, sched_expires;
1da177e4 1063 struct list_head *timers = sig->cpu_timers;
f06febc9 1064 struct task_cputime cputime;
d4bb5274 1065 unsigned long soft;
1da177e4
LT
1066
1067 /*
1068 * Don't sample the current process CPU clocks if there are no timers.
1069 */
1070 if (list_empty(&timers[CPUCLOCK_PROF]) &&
42c4ab41 1071 cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1da177e4
LT
1072 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1073 list_empty(&timers[CPUCLOCK_VIRT]) &&
42c4ab41 1074 cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
4cd4c1b4
PZ
1075 list_empty(&timers[CPUCLOCK_SCHED])) {
1076 stop_process_timers(tsk);
1da177e4 1077 return;
4cd4c1b4 1078 }
1da177e4
LT
1079
1080 /*
1081 * Collect the current process totals.
1082 */
4cd4c1b4 1083 thread_group_cputimer(tsk, &cputime);
f06febc9
FM
1084 utime = cputime.utime;
1085 ptime = cputime_add(utime, cputime.stime);
1086 sum_sched_runtime = cputime.sum_exec_runtime;
e80eda94 1087 maxfire = 20;
1da177e4
LT
1088 prof_expires = cputime_zero;
1089 while (!list_empty(timers)) {
ee7dd205 1090 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1091 struct cpu_timer_list,
1092 entry);
ee7dd205
WC
1093 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1094 prof_expires = tl->expires.cpu;
1da177e4
LT
1095 break;
1096 }
ee7dd205
WC
1097 tl->firing = 1;
1098 list_move_tail(&tl->entry, firing);
1da177e4
LT
1099 }
1100
1101 ++timers;
e80eda94 1102 maxfire = 20;
1da177e4
LT
1103 virt_expires = cputime_zero;
1104 while (!list_empty(timers)) {
ee7dd205 1105 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1106 struct cpu_timer_list,
1107 entry);
ee7dd205
WC
1108 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1109 virt_expires = tl->expires.cpu;
1da177e4
LT
1110 break;
1111 }
ee7dd205
WC
1112 tl->firing = 1;
1113 list_move_tail(&tl->entry, firing);
1da177e4
LT
1114 }
1115
1116 ++timers;
e80eda94 1117 maxfire = 20;
1da177e4
LT
1118 sched_expires = 0;
1119 while (!list_empty(timers)) {
ee7dd205 1120 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1121 struct cpu_timer_list,
1122 entry);
ee7dd205
WC
1123 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1124 sched_expires = tl->expires.sched;
1da177e4
LT
1125 break;
1126 }
ee7dd205
WC
1127 tl->firing = 1;
1128 list_move_tail(&tl->entry, firing);
1da177e4
LT
1129 }
1130
1131 /*
1132 * Check for the special case process timers.
1133 */
42c4ab41
SG
1134 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1135 SIGPROF);
1136 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1137 SIGVTALRM);
78d7d407 1138 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
d4bb5274 1139 if (soft != RLIM_INFINITY) {
1da177e4 1140 unsigned long psecs = cputime_to_secs(ptime);
78d7d407
JS
1141 unsigned long hard =
1142 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1da177e4 1143 cputime_t x;
d4bb5274 1144 if (psecs >= hard) {
1da177e4
LT
1145 /*
1146 * At the hard limit, we just die.
1147 * No need to calculate anything else now.
1148 */
1149 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1150 return;
1151 }
d4bb5274 1152 if (psecs >= soft) {
1da177e4
LT
1153 /*
1154 * At the soft limit, send a SIGXCPU every second.
1155 */
1156 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
1157 if (soft < hard) {
1158 soft++;
1159 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
1160 }
1161 }
d4bb5274 1162 x = secs_to_cputime(soft);
1da177e4
LT
1163 if (cputime_eq(prof_expires, cputime_zero) ||
1164 cputime_lt(x, prof_expires)) {
1165 prof_expires = x;
1166 }
1167 }
1168
f06febc9
FM
1169 if (!cputime_eq(prof_expires, cputime_zero) &&
1170 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1171 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1172 sig->cputime_expires.prof_exp = prof_expires;
1173 if (!cputime_eq(virt_expires, cputime_zero) &&
1174 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1175 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1176 sig->cputime_expires.virt_exp = virt_expires;
1177 if (sched_expires != 0 &&
1178 (sig->cputime_expires.sched_exp == 0 ||
1179 sig->cputime_expires.sched_exp > sched_expires))
1180 sig->cputime_expires.sched_exp = sched_expires;
1da177e4
LT
1181}
1182
1183/*
1184 * This is called from the signal code (via do_schedule_next_timer)
1185 * when the last timer signal was delivered and we have to reload the timer.
1186 */
1187void posix_cpu_timer_schedule(struct k_itimer *timer)
1188{
1189 struct task_struct *p = timer->it.cpu.task;
1190 union cpu_time_count now;
1191
1192 if (unlikely(p == NULL))
1193 /*
1194 * The task was cleaned up already, no future firings.
1195 */
708f430d 1196 goto out;
1da177e4
LT
1197
1198 /*
1199 * Fetch the current sample and update the timer's expiry time.
1200 */
1201 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1202 cpu_clock_sample(timer->it_clock, p, &now);
1203 bump_cpu_timer(timer, now);
1204 if (unlikely(p->exit_state)) {
1205 clear_dead_task(timer, now);
708f430d 1206 goto out;
1da177e4
LT
1207 }
1208 read_lock(&tasklist_lock); /* arm_timer needs it. */
1209 } else {
1210 read_lock(&tasklist_lock);
1211 if (unlikely(p->signal == NULL)) {
1212 /*
1213 * The process has been reaped.
1214 * We can't even collect a sample any more.
1215 */
1216 put_task_struct(p);
1217 timer->it.cpu.task = p = NULL;
1218 timer->it.cpu.expires.sched = 0;
708f430d 1219 goto out_unlock;
1da177e4
LT
1220 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1221 /*
1222 * We've noticed that the thread is dead, but
1223 * not yet reaped. Take this opportunity to
1224 * drop our task ref.
1225 */
1226 clear_dead_task(timer, now);
708f430d 1227 goto out_unlock;
1da177e4 1228 }
3997ad31 1229 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
1230 bump_cpu_timer(timer, now);
1231 /* Leave the tasklist_lock locked for the call below. */
1232 }
1233
1234 /*
1235 * Now re-arm for the new expiry time.
1236 */
5eb9aa64 1237 arm_timer(timer);
1da177e4 1238
708f430d 1239out_unlock:
1da177e4 1240 read_unlock(&tasklist_lock);
708f430d
RM
1241
1242out:
1243 timer->it_overrun_last = timer->it_overrun;
1244 timer->it_overrun = -1;
1245 ++timer->it_requeue_pending;
1da177e4
LT
1246}
1247
f06febc9
FM
1248/**
1249 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1250 *
1251 * @cputime: The struct to compare.
1252 *
1253 * Checks @cputime to see if all fields are zero. Returns true if all fields
1254 * are zero, false if any field is nonzero.
1255 */
1256static inline int task_cputime_zero(const struct task_cputime *cputime)
1257{
1258 if (cputime_eq(cputime->utime, cputime_zero) &&
1259 cputime_eq(cputime->stime, cputime_zero) &&
1260 cputime->sum_exec_runtime == 0)
1261 return 1;
1262 return 0;
1263}
1264
1265/**
1266 * task_cputime_expired - Compare two task_cputime entities.
1267 *
1268 * @sample: The task_cputime structure to be checked for expiration.
1269 * @expires: Expiration times, against which @sample will be checked.
1270 *
1271 * Checks @sample against @expires to see if any field of @sample has expired.
1272 * Returns true if any field of the former is greater than the corresponding
1273 * field of the latter if the latter field is set. Otherwise returns false.
1274 */
1275static inline int task_cputime_expired(const struct task_cputime *sample,
1276 const struct task_cputime *expires)
1277{
1278 if (!cputime_eq(expires->utime, cputime_zero) &&
1279 cputime_ge(sample->utime, expires->utime))
1280 return 1;
1281 if (!cputime_eq(expires->stime, cputime_zero) &&
1282 cputime_ge(cputime_add(sample->utime, sample->stime),
1283 expires->stime))
1284 return 1;
1285 if (expires->sum_exec_runtime != 0 &&
1286 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1287 return 1;
1288 return 0;
1289}
1290
1291/**
1292 * fastpath_timer_check - POSIX CPU timers fast path.
1293 *
1294 * @tsk: The task (thread) being checked.
f06febc9 1295 *
bb34d92f
FM
1296 * Check the task and thread group timers. If both are zero (there are no
1297 * timers set) return false. Otherwise snapshot the task and thread group
1298 * timers and compare them with the corresponding expiration times. Return
1299 * true if a timer has expired, else return false.
f06febc9 1300 */
bb34d92f 1301static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1302{
ad133ba3 1303 struct signal_struct *sig;
bb34d92f 1304
ad133ba3
ON
1305 /* tsk == current, ensure it is safe to use ->signal/sighand */
1306 if (unlikely(tsk->exit_state))
f06febc9 1307 return 0;
bb34d92f
FM
1308
1309 if (!task_cputime_zero(&tsk->cputime_expires)) {
1310 struct task_cputime task_sample = {
1311 .utime = tsk->utime,
1312 .stime = tsk->stime,
1313 .sum_exec_runtime = tsk->se.sum_exec_runtime
1314 };
1315
1316 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1317 return 1;
1318 }
ad133ba3
ON
1319
1320 sig = tsk->signal;
bb34d92f
FM
1321 if (!task_cputime_zero(&sig->cputime_expires)) {
1322 struct task_cputime group_sample;
1323
4cd4c1b4 1324 thread_group_cputimer(tsk, &group_sample);
bb34d92f
FM
1325 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1326 return 1;
1327 }
37bebc70 1328
f55db609 1329 return 0;
f06febc9
FM
1330}
1331
1da177e4
LT
1332/*
1333 * This is called from the timer interrupt handler. The irq handler has
1334 * already updated our counts. We need to check if any timers fire now.
1335 * Interrupts are disabled.
1336 */
1337void run_posix_cpu_timers(struct task_struct *tsk)
1338{
1339 LIST_HEAD(firing);
1340 struct k_itimer *timer, *next;
1341
1342 BUG_ON(!irqs_disabled());
1343
1da177e4 1344 /*
f06febc9 1345 * The fast path checks that there are no expired thread or thread
bb34d92f 1346 * group timers. If that's so, just return.
1da177e4 1347 */
bb34d92f 1348 if (!fastpath_timer_check(tsk))
f06febc9 1349 return;
5ce73a4a 1350
bb34d92f
FM
1351 spin_lock(&tsk->sighand->siglock);
1352 /*
1353 * Here we take off tsk->signal->cpu_timers[N] and
1354 * tsk->cpu_timers[N] all the timers that are firing, and
1355 * put them on the firing list.
1356 */
1357 check_thread_timers(tsk, &firing);
1358 check_process_timers(tsk, &firing);
1da177e4 1359
bb34d92f
FM
1360 /*
1361 * We must release these locks before taking any timer's lock.
1362 * There is a potential race with timer deletion here, as the
1363 * siglock now protects our private firing list. We have set
1364 * the firing flag in each timer, so that a deletion attempt
1365 * that gets the timer lock before we do will give it up and
1366 * spin until we've taken care of that timer below.
1367 */
1368 spin_unlock(&tsk->sighand->siglock);
1da177e4
LT
1369
1370 /*
1371 * Now that all the timers on our list have the firing flag,
1372 * noone will touch their list entries but us. We'll take
1373 * each timer's lock before clearing its firing flag, so no
1374 * timer call will interfere.
1375 */
1376 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1377 int cpu_firing;
1378
1da177e4
LT
1379 spin_lock(&timer->it_lock);
1380 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1381 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1382 timer->it.cpu.firing = 0;
1383 /*
1384 * The firing flag is -1 if we collided with a reset
1385 * of the timer, which already reported this
1386 * almost-firing as an overrun. So don't generate an event.
1387 */
6e85c5ba 1388 if (likely(cpu_firing >= 0))
1da177e4 1389 cpu_timer_fire(timer);
1da177e4
LT
1390 spin_unlock(&timer->it_lock);
1391 }
1392}
1393
1394/*
f55db609 1395 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1396 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1397 */
1398void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1399 cputime_t *newval, cputime_t *oldval)
1400{
1401 union cpu_time_count now;
1da177e4
LT
1402
1403 BUG_ON(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1404 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1405
1406 if (oldval) {
f55db609
SG
1407 /*
1408 * We are setting itimer. The *oldval is absolute and we update
1409 * it to be relative, *newval argument is relative and we update
1410 * it to be absolute.
1411 */
1da177e4
LT
1412 if (!cputime_eq(*oldval, cputime_zero)) {
1413 if (cputime_le(*oldval, now.cpu)) {
1414 /* Just about to fire. */
a42548a1 1415 *oldval = cputime_one_jiffy;
1da177e4
LT
1416 } else {
1417 *oldval = cputime_sub(*oldval, now.cpu);
1418 }
1419 }
1420
1421 if (cputime_eq(*newval, cputime_zero))
1422 return;
1423 *newval = cputime_add(*newval, now.cpu);
1da177e4
LT
1424 }
1425
1426 /*
f55db609
SG
1427 * Update expiration cache if we are the earliest timer, or eventually
1428 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1429 */
f55db609
SG
1430 switch (clock_idx) {
1431 case CPUCLOCK_PROF:
1432 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
f06febc9 1433 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1434 break;
1435 case CPUCLOCK_VIRT:
1436 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
f06febc9 1437 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1438 break;
1da177e4
LT
1439 }
1440}
1441
e4b76555
TA
1442static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1443 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1444{
1da177e4
LT
1445 struct k_itimer timer;
1446 int error;
1447
1da177e4
LT
1448 /*
1449 * Set up a temporary timer and then wait for it to go off.
1450 */
1451 memset(&timer, 0, sizeof timer);
1452 spin_lock_init(&timer.it_lock);
1453 timer.it_clock = which_clock;
1454 timer.it_overrun = -1;
1455 error = posix_cpu_timer_create(&timer);
1456 timer.it_process = current;
1457 if (!error) {
1da177e4 1458 static struct itimerspec zero_it;
e4b76555
TA
1459
1460 memset(it, 0, sizeof *it);
1461 it->it_value = *rqtp;
1da177e4
LT
1462
1463 spin_lock_irq(&timer.it_lock);
e4b76555 1464 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1465 if (error) {
1466 spin_unlock_irq(&timer.it_lock);
1467 return error;
1468 }
1469
1470 while (!signal_pending(current)) {
1471 if (timer.it.cpu.expires.sched == 0) {
1472 /*
1473 * Our timer fired and was reset.
1474 */
1475 spin_unlock_irq(&timer.it_lock);
1476 return 0;
1477 }
1478
1479 /*
1480 * Block until cpu_timer_fire (or a signal) wakes us.
1481 */
1482 __set_current_state(TASK_INTERRUPTIBLE);
1483 spin_unlock_irq(&timer.it_lock);
1484 schedule();
1485 spin_lock_irq(&timer.it_lock);
1486 }
1487
1488 /*
1489 * We were interrupted by a signal.
1490 */
1491 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
e4b76555 1492 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1da177e4
LT
1493 spin_unlock_irq(&timer.it_lock);
1494
e4b76555 1495 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1496 /*
1497 * It actually did fire already.
1498 */
1499 return 0;
1500 }
1501
e4b76555
TA
1502 error = -ERESTART_RESTARTBLOCK;
1503 }
1504
1505 return error;
1506}
1507
1508int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1509 struct timespec *rqtp, struct timespec __user *rmtp)
1510{
1511 struct restart_block *restart_block =
1512 &current_thread_info()->restart_block;
1513 struct itimerspec it;
1514 int error;
1515
1516 /*
1517 * Diagnose required errors first.
1518 */
1519 if (CPUCLOCK_PERTHREAD(which_clock) &&
1520 (CPUCLOCK_PID(which_clock) == 0 ||
1521 CPUCLOCK_PID(which_clock) == current->pid))
1522 return -EINVAL;
1523
1524 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1525
1526 if (error == -ERESTART_RESTARTBLOCK) {
1527
1528 if (flags & TIMER_ABSTIME)
1529 return -ERESTARTNOHAND;
1da177e4 1530 /*
e4b76555
TA
1531 * Report back to the user the time still remaining.
1532 */
1533 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1534 return -EFAULT;
1535
1711ef38 1536 restart_block->fn = posix_cpu_nsleep_restart;
1da177e4 1537 restart_block->arg0 = which_clock;
97735f25 1538 restart_block->arg1 = (unsigned long) rmtp;
1da177e4
LT
1539 restart_block->arg2 = rqtp->tv_sec;
1540 restart_block->arg3 = rqtp->tv_nsec;
1da177e4 1541 }
1da177e4
LT
1542 return error;
1543}
1544
1711ef38 1545long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4
LT
1546{
1547 clockid_t which_clock = restart_block->arg0;
97735f25
TG
1548 struct timespec __user *rmtp;
1549 struct timespec t;
e4b76555
TA
1550 struct itimerspec it;
1551 int error;
97735f25
TG
1552
1553 rmtp = (struct timespec __user *) restart_block->arg1;
1554 t.tv_sec = restart_block->arg2;
1555 t.tv_nsec = restart_block->arg3;
1556
1da177e4 1557 restart_block->fn = do_no_restart_syscall;
e4b76555
TA
1558 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1559
1560 if (error == -ERESTART_RESTARTBLOCK) {
1561 /*
1562 * Report back to the user the time still remaining.
1563 */
1564 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1565 return -EFAULT;
1566
1567 restart_block->fn = posix_cpu_nsleep_restart;
1568 restart_block->arg0 = which_clock;
1569 restart_block->arg1 = (unsigned long) rmtp;
1570 restart_block->arg2 = t.tv_sec;
1571 restart_block->arg3 = t.tv_nsec;
1572 }
1573 return error;
1574
1da177e4
LT
1575}
1576
1577
1578#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1579#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1580
a924b04d
TG
1581static int process_cpu_clock_getres(const clockid_t which_clock,
1582 struct timespec *tp)
1da177e4
LT
1583{
1584 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1585}
a924b04d
TG
1586static int process_cpu_clock_get(const clockid_t which_clock,
1587 struct timespec *tp)
1da177e4
LT
1588{
1589 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1590}
1591static int process_cpu_timer_create(struct k_itimer *timer)
1592{
1593 timer->it_clock = PROCESS_CLOCK;
1594 return posix_cpu_timer_create(timer);
1595}
a924b04d 1596static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1597 struct timespec *rqtp,
1598 struct timespec __user *rmtp)
1da177e4 1599{
97735f25 1600 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1601}
1711ef38
TA
1602static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1603{
1604 return -EINVAL;
1605}
a924b04d
TG
1606static int thread_cpu_clock_getres(const clockid_t which_clock,
1607 struct timespec *tp)
1da177e4
LT
1608{
1609 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1610}
a924b04d
TG
1611static int thread_cpu_clock_get(const clockid_t which_clock,
1612 struct timespec *tp)
1da177e4
LT
1613{
1614 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1615}
1616static int thread_cpu_timer_create(struct k_itimer *timer)
1617{
1618 timer->it_clock = THREAD_CLOCK;
1619 return posix_cpu_timer_create(timer);
1620}
a924b04d 1621static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25 1622 struct timespec *rqtp, struct timespec __user *rmtp)
1da177e4
LT
1623{
1624 return -EINVAL;
1625}
1711ef38
TA
1626static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1627{
1628 return -EINVAL;
1629}
1da177e4
LT
1630
1631static __init int init_posix_cpu_timers(void)
1632{
1633 struct k_clock process = {
1634 .clock_getres = process_cpu_clock_getres,
1635 .clock_get = process_cpu_clock_get,
1636 .clock_set = do_posix_clock_nosettime,
1637 .timer_create = process_cpu_timer_create,
1638 .nsleep = process_cpu_nsleep,
1711ef38 1639 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1640 };
1641 struct k_clock thread = {
1642 .clock_getres = thread_cpu_clock_getres,
1643 .clock_get = thread_cpu_clock_get,
1644 .clock_set = do_posix_clock_nosettime,
1645 .timer_create = thread_cpu_timer_create,
1646 .nsleep = thread_cpu_nsleep,
1711ef38 1647 .nsleep_restart = thread_cpu_nsleep_restart,
1da177e4 1648 };
8356b5f9 1649 struct timespec ts;
1da177e4
LT
1650
1651 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1652 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1653
a42548a1 1654 cputime_to_timespec(cputime_one_jiffy, &ts);
8356b5f9
SG
1655 onecputick = ts.tv_nsec;
1656 WARN_ON(ts.tv_sec != 0);
1657
1da177e4
LT
1658 return 0;
1659}
1660__initcall(init_posix_cpu_timers);