[PATCH] cpufreq: fix pending powernow timer stuck condition
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
7#include <asm/uaccess.h>
8#include <linux/errno.h>
9
10static int check_clock(clockid_t which_clock)
11{
12 int error = 0;
13 struct task_struct *p;
14 const pid_t pid = CPUCLOCK_PID(which_clock);
15
16 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
17 return -EINVAL;
18
19 if (pid == 0)
20 return 0;
21
22 read_lock(&tasklist_lock);
23 p = find_task_by_pid(pid);
24 if (!p || (CPUCLOCK_PERTHREAD(which_clock) ?
25 p->tgid != current->tgid : p->tgid != pid)) {
26 error = -EINVAL;
27 }
28 read_unlock(&tasklist_lock);
29
30 return error;
31}
32
33static inline union cpu_time_count
34timespec_to_sample(clockid_t which_clock, const struct timespec *tp)
35{
36 union cpu_time_count ret;
37 ret.sched = 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
39 ret.sched = tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
40 } else {
41 ret.cpu = timespec_to_cputime(tp);
42 }
43 return ret;
44}
45
46static void sample_to_timespec(clockid_t which_clock,
47 union cpu_time_count cpu,
48 struct timespec *tp)
49{
50 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
51 tp->tv_sec = div_long_long_rem(cpu.sched,
52 NSEC_PER_SEC, &tp->tv_nsec);
53 } else {
54 cputime_to_timespec(cpu.cpu, tp);
55 }
56}
57
58static inline int cpu_time_before(clockid_t which_clock,
59 union cpu_time_count now,
60 union cpu_time_count then)
61{
62 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
63 return now.sched < then.sched;
64 } else {
65 return cputime_lt(now.cpu, then.cpu);
66 }
67}
68static inline void cpu_time_add(clockid_t which_clock,
69 union cpu_time_count *acc,
70 union cpu_time_count val)
71{
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
73 acc->sched += val.sched;
74 } else {
75 acc->cpu = cputime_add(acc->cpu, val.cpu);
76 }
77}
78static inline union cpu_time_count cpu_time_sub(clockid_t which_clock,
79 union cpu_time_count a,
80 union cpu_time_count b)
81{
82 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
83 a.sched -= b.sched;
84 } else {
85 a.cpu = cputime_sub(a.cpu, b.cpu);
86 }
87 return a;
88}
89
90/*
91 * Update expiry time from increment, and increase overrun count,
92 * given the current clock sample.
93 */
94static inline void bump_cpu_timer(struct k_itimer *timer,
95 union cpu_time_count now)
96{
97 int i;
98
99 if (timer->it.cpu.incr.sched == 0)
100 return;
101
102 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
103 unsigned long long delta, incr;
104
105 if (now.sched < timer->it.cpu.expires.sched)
106 return;
107 incr = timer->it.cpu.incr.sched;
108 delta = now.sched + incr - timer->it.cpu.expires.sched;
109 /* Don't use (incr*2 < delta), incr*2 might overflow. */
110 for (i = 0; incr < delta - incr; i++)
111 incr = incr << 1;
112 for (; i >= 0; incr >>= 1, i--) {
113 if (delta <= incr)
114 continue;
115 timer->it.cpu.expires.sched += incr;
116 timer->it_overrun += 1 << i;
117 delta -= incr;
118 }
119 } else {
120 cputime_t delta, incr;
121
122 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
123 return;
124 incr = timer->it.cpu.incr.cpu;
125 delta = cputime_sub(cputime_add(now.cpu, incr),
126 timer->it.cpu.expires.cpu);
127 /* Don't use (incr*2 < delta), incr*2 might overflow. */
128 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
129 incr = cputime_add(incr, incr);
130 for (; i >= 0; incr = cputime_halve(incr), i--) {
131 if (cputime_le(delta, incr))
132 continue;
133 timer->it.cpu.expires.cpu =
134 cputime_add(timer->it.cpu.expires.cpu, incr);
135 timer->it_overrun += 1 << i;
136 delta = cputime_sub(delta, incr);
137 }
138 }
139}
140
141static inline cputime_t prof_ticks(struct task_struct *p)
142{
143 return cputime_add(p->utime, p->stime);
144}
145static inline cputime_t virt_ticks(struct task_struct *p)
146{
147 return p->utime;
148}
149static inline unsigned long long sched_ns(struct task_struct *p)
150{
151 return (p == current) ? current_sched_time(p) : p->sched_time;
152}
153
154int posix_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
155{
156 int error = check_clock(which_clock);
157 if (!error) {
158 tp->tv_sec = 0;
159 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
160 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
161 /*
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
165 */
166 tp->tv_nsec = 1;
167 }
168 }
169 return error;
170}
171
172int posix_cpu_clock_set(clockid_t which_clock, const struct timespec *tp)
173{
174 /*
175 * You can never reset a CPU clock, but we check for other errors
176 * in the call before failing with EPERM.
177 */
178 int error = check_clock(which_clock);
179 if (error == 0) {
180 error = -EPERM;
181 }
182 return error;
183}
184
185
186/*
187 * Sample a per-thread clock for the given task.
188 */
189static int cpu_clock_sample(clockid_t which_clock, struct task_struct *p,
190 union cpu_time_count *cpu)
191{
192 switch (CPUCLOCK_WHICH(which_clock)) {
193 default:
194 return -EINVAL;
195 case CPUCLOCK_PROF:
196 cpu->cpu = prof_ticks(p);
197 break;
198 case CPUCLOCK_VIRT:
199 cpu->cpu = virt_ticks(p);
200 break;
201 case CPUCLOCK_SCHED:
202 cpu->sched = sched_ns(p);
203 break;
204 }
205 return 0;
206}
207
208/*
209 * Sample a process (thread group) clock for the given group_leader task.
210 * Must be called with tasklist_lock held for reading.
211 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
212 */
213static int cpu_clock_sample_group_locked(unsigned int clock_idx,
214 struct task_struct *p,
215 union cpu_time_count *cpu)
216{
217 struct task_struct *t = p;
218 switch (clock_idx) {
219 default:
220 return -EINVAL;
221 case CPUCLOCK_PROF:
222 cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
223 do {
224 cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
225 t = next_thread(t);
226 } while (t != p);
227 break;
228 case CPUCLOCK_VIRT:
229 cpu->cpu = p->signal->utime;
230 do {
231 cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
232 t = next_thread(t);
233 } while (t != p);
234 break;
235 case CPUCLOCK_SCHED:
236 cpu->sched = p->signal->sched_time;
237 /* Add in each other live thread. */
238 while ((t = next_thread(t)) != p) {
239 cpu->sched += t->sched_time;
240 }
241 if (p->tgid == current->tgid) {
242 /*
243 * We're sampling ourselves, so include the
244 * cycles not yet banked. We still omit
245 * other threads running on other CPUs,
246 * so the total can always be behind as
247 * much as max(nthreads-1,ncpus) * (NSEC_PER_SEC/HZ).
248 */
249 cpu->sched += current_sched_time(current);
250 } else {
251 cpu->sched += p->sched_time;
252 }
253 break;
254 }
255 return 0;
256}
257
258/*
259 * Sample a process (thread group) clock for the given group_leader task.
260 * Must be called with tasklist_lock held for reading.
261 */
262static int cpu_clock_sample_group(clockid_t which_clock,
263 struct task_struct *p,
264 union cpu_time_count *cpu)
265{
266 int ret;
267 unsigned long flags;
268 spin_lock_irqsave(&p->sighand->siglock, flags);
269 ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
270 cpu);
271 spin_unlock_irqrestore(&p->sighand->siglock, flags);
272 return ret;
273}
274
275
276int posix_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
277{
278 const pid_t pid = CPUCLOCK_PID(which_clock);
279 int error = -EINVAL;
280 union cpu_time_count rtn;
281
282 if (pid == 0) {
283 /*
284 * Special case constant value for our own clocks.
285 * We don't have to do any lookup to find ourselves.
286 */
287 if (CPUCLOCK_PERTHREAD(which_clock)) {
288 /*
289 * Sampling just ourselves we can do with no locking.
290 */
291 error = cpu_clock_sample(which_clock,
292 current, &rtn);
293 } else {
294 read_lock(&tasklist_lock);
295 error = cpu_clock_sample_group(which_clock,
296 current, &rtn);
297 read_unlock(&tasklist_lock);
298 }
299 } else {
300 /*
301 * Find the given PID, and validate that the caller
302 * should be able to see it.
303 */
304 struct task_struct *p;
305 read_lock(&tasklist_lock);
306 p = find_task_by_pid(pid);
307 if (p) {
308 if (CPUCLOCK_PERTHREAD(which_clock)) {
309 if (p->tgid == current->tgid) {
310 error = cpu_clock_sample(which_clock,
311 p, &rtn);
312 }
313 } else if (p->tgid == pid && p->signal) {
314 error = cpu_clock_sample_group(which_clock,
315 p, &rtn);
316 }
317 }
318 read_unlock(&tasklist_lock);
319 }
320
321 if (error)
322 return error;
323 sample_to_timespec(which_clock, rtn, tp);
324 return 0;
325}
326
327
328/*
329 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
330 * This is called from sys_timer_create with the new timer already locked.
331 */
332int posix_cpu_timer_create(struct k_itimer *new_timer)
333{
334 int ret = 0;
335 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
336 struct task_struct *p;
337
338 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
339 return -EINVAL;
340
341 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
342 new_timer->it.cpu.incr.sched = 0;
343 new_timer->it.cpu.expires.sched = 0;
344
345 read_lock(&tasklist_lock);
346 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
347 if (pid == 0) {
348 p = current;
349 } else {
350 p = find_task_by_pid(pid);
351 if (p && p->tgid != current->tgid)
352 p = NULL;
353 }
354 } else {
355 if (pid == 0) {
356 p = current->group_leader;
357 } else {
358 p = find_task_by_pid(pid);
359 if (p && p->tgid != pid)
360 p = NULL;
361 }
362 }
363 new_timer->it.cpu.task = p;
364 if (p) {
365 get_task_struct(p);
366 } else {
367 ret = -EINVAL;
368 }
369 read_unlock(&tasklist_lock);
370
371 return ret;
372}
373
374/*
375 * Clean up a CPU-clock timer that is about to be destroyed.
376 * This is called from timer deletion with the timer already locked.
377 * If we return TIMER_RETRY, it's necessary to release the timer's lock
378 * and try again. (This happens when the timer is in the middle of firing.)
379 */
380int posix_cpu_timer_del(struct k_itimer *timer)
381{
382 struct task_struct *p = timer->it.cpu.task;
383
384 if (timer->it.cpu.firing)
385 return TIMER_RETRY;
386
387 if (unlikely(p == NULL))
388 return 0;
389
e03d13e9 390 spin_lock(&p->sighand->siglock);
1da177e4 391 if (!list_empty(&timer->it.cpu.entry)) {
e03d13e9
RM
392 /*
393 * Take us off the task's timer list. We don't need to
394 * take tasklist_lock and check for the task being reaped.
395 * If it was reaped, it already called posix_cpu_timers_exit
396 * and posix_cpu_timers_exit_group to clear all the timers
397 * that pointed to it.
398 */
399 list_del(&timer->it.cpu.entry);
400 put_task_struct(p);
1da177e4 401 }
e03d13e9 402 spin_unlock(&p->sighand->siglock);
1da177e4
LT
403
404 return 0;
405}
406
407/*
408 * Clean out CPU timers still ticking when a thread exited. The task
409 * pointer is cleared, and the expiry time is replaced with the residual
410 * time for later timer_gettime calls to return.
411 * This must be called with the siglock held.
412 */
413static void cleanup_timers(struct list_head *head,
414 cputime_t utime, cputime_t stime,
415 unsigned long long sched_time)
416{
417 struct cpu_timer_list *timer, *next;
418 cputime_t ptime = cputime_add(utime, stime);
419
420 list_for_each_entry_safe(timer, next, head, entry) {
47d6b083 421 put_task_struct(timer->task);
1da177e4
LT
422 timer->task = NULL;
423 list_del_init(&timer->entry);
424 if (cputime_lt(timer->expires.cpu, ptime)) {
425 timer->expires.cpu = cputime_zero;
426 } else {
427 timer->expires.cpu = cputime_sub(timer->expires.cpu,
428 ptime);
429 }
430 }
431
432 ++head;
433 list_for_each_entry_safe(timer, next, head, entry) {
47d6b083 434 put_task_struct(timer->task);
1da177e4
LT
435 timer->task = NULL;
436 list_del_init(&timer->entry);
437 if (cputime_lt(timer->expires.cpu, utime)) {
438 timer->expires.cpu = cputime_zero;
439 } else {
440 timer->expires.cpu = cputime_sub(timer->expires.cpu,
441 utime);
442 }
443 }
444
445 ++head;
446 list_for_each_entry_safe(timer, next, head, entry) {
47d6b083 447 put_task_struct(timer->task);
1da177e4
LT
448 timer->task = NULL;
449 list_del_init(&timer->entry);
450 if (timer->expires.sched < sched_time) {
451 timer->expires.sched = 0;
452 } else {
453 timer->expires.sched -= sched_time;
454 }
455 }
456}
457
458/*
459 * These are both called with the siglock held, when the current thread
460 * is being reaped. When the final (leader) thread in the group is reaped,
461 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
462 */
463void posix_cpu_timers_exit(struct task_struct *tsk)
464{
465 cleanup_timers(tsk->cpu_timers,
466 tsk->utime, tsk->stime, tsk->sched_time);
467
468}
469void posix_cpu_timers_exit_group(struct task_struct *tsk)
470{
471 cleanup_timers(tsk->signal->cpu_timers,
472 cputime_add(tsk->utime, tsk->signal->utime),
473 cputime_add(tsk->stime, tsk->signal->stime),
474 tsk->sched_time + tsk->signal->sched_time);
475}
476
477
478/*
479 * Set the expiry times of all the threads in the process so one of them
480 * will go off before the process cumulative expiry total is reached.
481 */
482static void process_timer_rebalance(struct task_struct *p,
483 unsigned int clock_idx,
484 union cpu_time_count expires,
485 union cpu_time_count val)
486{
487 cputime_t ticks, left;
488 unsigned long long ns, nsleft;
489 struct task_struct *t = p;
490 unsigned int nthreads = atomic_read(&p->signal->live);
491
492 switch (clock_idx) {
493 default:
494 BUG();
495 break;
496 case CPUCLOCK_PROF:
497 left = cputime_div(cputime_sub(expires.cpu, val.cpu),
498 nthreads);
499 do {
500 if (!unlikely(t->exit_state)) {
501 ticks = cputime_add(prof_ticks(t), left);
502 if (cputime_eq(t->it_prof_expires,
503 cputime_zero) ||
504 cputime_gt(t->it_prof_expires, ticks)) {
505 t->it_prof_expires = ticks;
506 }
507 }
508 t = next_thread(t);
509 } while (t != p);
510 break;
511 case CPUCLOCK_VIRT:
512 left = cputime_div(cputime_sub(expires.cpu, val.cpu),
513 nthreads);
514 do {
515 if (!unlikely(t->exit_state)) {
516 ticks = cputime_add(virt_ticks(t), left);
517 if (cputime_eq(t->it_virt_expires,
518 cputime_zero) ||
519 cputime_gt(t->it_virt_expires, ticks)) {
520 t->it_virt_expires = ticks;
521 }
522 }
523 t = next_thread(t);
524 } while (t != p);
525 break;
526 case CPUCLOCK_SCHED:
527 nsleft = expires.sched - val.sched;
528 do_div(nsleft, nthreads);
529 do {
530 if (!unlikely(t->exit_state)) {
531 ns = t->sched_time + nsleft;
532 if (t->it_sched_expires == 0 ||
533 t->it_sched_expires > ns) {
534 t->it_sched_expires = ns;
535 }
536 }
537 t = next_thread(t);
538 } while (t != p);
539 break;
540 }
541}
542
543static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
544{
545 /*
546 * That's all for this thread or process.
547 * We leave our residual in expires to be reported.
548 */
549 put_task_struct(timer->it.cpu.task);
550 timer->it.cpu.task = NULL;
551 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
552 timer->it.cpu.expires,
553 now);
554}
555
556/*
557 * Insert the timer on the appropriate list before any timers that
558 * expire later. This must be called with the tasklist_lock held
559 * for reading, and interrupts disabled.
560 */
561static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
562{
563 struct task_struct *p = timer->it.cpu.task;
564 struct list_head *head, *listpos;
565 struct cpu_timer_list *const nt = &timer->it.cpu;
566 struct cpu_timer_list *next;
567 unsigned long i;
568
569 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
570 p->cpu_timers : p->signal->cpu_timers);
571 head += CPUCLOCK_WHICH(timer->it_clock);
572
573 BUG_ON(!irqs_disabled());
574 spin_lock(&p->sighand->siglock);
575
576 listpos = head;
577 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
578 list_for_each_entry(next, head, entry) {
579 if (next->expires.sched > nt->expires.sched) {
580 listpos = &next->entry;
581 break;
582 }
583 }
584 } else {
585 list_for_each_entry(next, head, entry) {
586 if (cputime_gt(next->expires.cpu, nt->expires.cpu)) {
587 listpos = &next->entry;
588 break;
589 }
590 }
591 }
592 list_add(&nt->entry, listpos);
593
594 if (listpos == head) {
595 /*
596 * We are the new earliest-expiring timer.
597 * If we are a thread timer, there can always
598 * be a process timer telling us to stop earlier.
599 */
600
601 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
602 switch (CPUCLOCK_WHICH(timer->it_clock)) {
603 default:
604 BUG();
605 case CPUCLOCK_PROF:
606 if (cputime_eq(p->it_prof_expires,
607 cputime_zero) ||
608 cputime_gt(p->it_prof_expires,
609 nt->expires.cpu))
610 p->it_prof_expires = nt->expires.cpu;
611 break;
612 case CPUCLOCK_VIRT:
613 if (cputime_eq(p->it_virt_expires,
614 cputime_zero) ||
615 cputime_gt(p->it_virt_expires,
616 nt->expires.cpu))
617 p->it_virt_expires = nt->expires.cpu;
618 break;
619 case CPUCLOCK_SCHED:
620 if (p->it_sched_expires == 0 ||
621 p->it_sched_expires > nt->expires.sched)
622 p->it_sched_expires = nt->expires.sched;
623 break;
624 }
625 } else {
626 /*
627 * For a process timer, we must balance
628 * all the live threads' expirations.
629 */
630 switch (CPUCLOCK_WHICH(timer->it_clock)) {
631 default:
632 BUG();
633 case CPUCLOCK_VIRT:
634 if (!cputime_eq(p->signal->it_virt_expires,
635 cputime_zero) &&
636 cputime_lt(p->signal->it_virt_expires,
637 timer->it.cpu.expires.cpu))
638 break;
639 goto rebalance;
640 case CPUCLOCK_PROF:
641 if (!cputime_eq(p->signal->it_prof_expires,
642 cputime_zero) &&
643 cputime_lt(p->signal->it_prof_expires,
644 timer->it.cpu.expires.cpu))
645 break;
646 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
647 if (i != RLIM_INFINITY &&
648 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
649 break;
650 goto rebalance;
651 case CPUCLOCK_SCHED:
652 rebalance:
653 process_timer_rebalance(
654 timer->it.cpu.task,
655 CPUCLOCK_WHICH(timer->it_clock),
656 timer->it.cpu.expires, now);
657 break;
658 }
659 }
660 }
661
662 spin_unlock(&p->sighand->siglock);
663}
664
665/*
666 * The timer is locked, fire it and arrange for its reload.
667 */
668static void cpu_timer_fire(struct k_itimer *timer)
669{
670 if (unlikely(timer->sigq == NULL)) {
671 /*
672 * This a special case for clock_nanosleep,
673 * not a normal timer from sys_timer_create.
674 */
675 wake_up_process(timer->it_process);
676 timer->it.cpu.expires.sched = 0;
677 } else if (timer->it.cpu.incr.sched == 0) {
678 /*
679 * One-shot timer. Clear it as soon as it's fired.
680 */
681 posix_timer_event(timer, 0);
682 timer->it.cpu.expires.sched = 0;
683 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
684 /*
685 * The signal did not get queued because the signal
686 * was ignored, so we won't get any callback to
687 * reload the timer. But we need to keep it
688 * ticking in case the signal is deliverable next time.
689 */
690 posix_cpu_timer_schedule(timer);
691 }
692}
693
694/*
695 * Guts of sys_timer_settime for CPU timers.
696 * This is called with the timer locked and interrupts disabled.
697 * If we return TIMER_RETRY, it's necessary to release the timer's lock
698 * and try again. (This happens when the timer is in the middle of firing.)
699 */
700int posix_cpu_timer_set(struct k_itimer *timer, int flags,
701 struct itimerspec *new, struct itimerspec *old)
702{
703 struct task_struct *p = timer->it.cpu.task;
704 union cpu_time_count old_expires, new_expires, val;
705 int ret;
706
707 if (unlikely(p == NULL)) {
708 /*
709 * Timer refers to a dead task's clock.
710 */
711 return -ESRCH;
712 }
713
714 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
715
716 read_lock(&tasklist_lock);
717 /*
718 * We need the tasklist_lock to protect against reaping that
719 * clears p->signal. If p has just been reaped, we can no
720 * longer get any information about it at all.
721 */
722 if (unlikely(p->signal == NULL)) {
723 read_unlock(&tasklist_lock);
724 put_task_struct(p);
725 timer->it.cpu.task = NULL;
726 return -ESRCH;
727 }
728
729 /*
730 * Disarm any old timer after extracting its expiry time.
731 */
732 BUG_ON(!irqs_disabled());
733 spin_lock(&p->sighand->siglock);
734 old_expires = timer->it.cpu.expires;
735 list_del_init(&timer->it.cpu.entry);
736 spin_unlock(&p->sighand->siglock);
737
738 /*
739 * We need to sample the current value to convert the new
740 * value from to relative and absolute, and to convert the
741 * old value from absolute to relative. To set a process
742 * timer, we need a sample to balance the thread expiry
743 * times (in arm_timer). With an absolute time, we must
744 * check if it's already passed. In short, we need a sample.
745 */
746 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
747 cpu_clock_sample(timer->it_clock, p, &val);
748 } else {
749 cpu_clock_sample_group(timer->it_clock, p, &val);
750 }
751
752 if (old) {
753 if (old_expires.sched == 0) {
754 old->it_value.tv_sec = 0;
755 old->it_value.tv_nsec = 0;
756 } else {
757 /*
758 * Update the timer in case it has
759 * overrun already. If it has,
760 * we'll report it as having overrun
761 * and with the next reloaded timer
762 * already ticking, though we are
763 * swallowing that pending
764 * notification here to install the
765 * new setting.
766 */
767 bump_cpu_timer(timer, val);
768 if (cpu_time_before(timer->it_clock, val,
769 timer->it.cpu.expires)) {
770 old_expires = cpu_time_sub(
771 timer->it_clock,
772 timer->it.cpu.expires, val);
773 sample_to_timespec(timer->it_clock,
774 old_expires,
775 &old->it_value);
776 } else {
777 old->it_value.tv_nsec = 1;
778 old->it_value.tv_sec = 0;
779 }
780 }
781 }
782
783 if (unlikely(timer->it.cpu.firing)) {
784 /*
785 * We are colliding with the timer actually firing.
786 * Punt after filling in the timer's old value, and
787 * disable this firing since we are already reporting
788 * it as an overrun (thanks to bump_cpu_timer above).
789 */
790 read_unlock(&tasklist_lock);
791 timer->it.cpu.firing = -1;
792 ret = TIMER_RETRY;
793 goto out;
794 }
795
796 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
797 cpu_time_add(timer->it_clock, &new_expires, val);
798 }
799
800 /*
801 * Install the new expiry time (or zero).
802 * For a timer with no notification action, we don't actually
803 * arm the timer (we'll just fake it for timer_gettime).
804 */
805 timer->it.cpu.expires = new_expires;
806 if (new_expires.sched != 0 &&
807 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
808 cpu_time_before(timer->it_clock, val, new_expires)) {
809 arm_timer(timer, val);
810 }
811
812 read_unlock(&tasklist_lock);
813
814 /*
815 * Install the new reload setting, and
816 * set up the signal and overrun bookkeeping.
817 */
818 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
819 &new->it_interval);
820
821 /*
822 * This acts as a modification timestamp for the timer,
823 * so any automatic reload attempt will punt on seeing
824 * that we have reset the timer manually.
825 */
826 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
827 ~REQUEUE_PENDING;
828 timer->it_overrun_last = 0;
829 timer->it_overrun = -1;
830
831 if (new_expires.sched != 0 &&
832 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
833 !cpu_time_before(timer->it_clock, val, new_expires)) {
834 /*
835 * The designated time already passed, so we notify
836 * immediately, even if the thread never runs to
837 * accumulate more time on this clock.
838 */
839 cpu_timer_fire(timer);
840 }
841
842 ret = 0;
843 out:
844 if (old) {
845 sample_to_timespec(timer->it_clock,
846 timer->it.cpu.incr, &old->it_interval);
847 }
848 return ret;
849}
850
851void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
852{
853 union cpu_time_count now;
854 struct task_struct *p = timer->it.cpu.task;
855 int clear_dead;
856
857 /*
858 * Easy part: convert the reload time.
859 */
860 sample_to_timespec(timer->it_clock,
861 timer->it.cpu.incr, &itp->it_interval);
862
863 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
864 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
865 return;
866 }
867
868 if (unlikely(p == NULL)) {
869 /*
870 * This task already died and the timer will never fire.
871 * In this case, expires is actually the dead value.
872 */
873 dead:
874 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
875 &itp->it_value);
876 return;
877 }
878
879 /*
880 * Sample the clock to take the difference with the expiry time.
881 */
882 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
883 cpu_clock_sample(timer->it_clock, p, &now);
884 clear_dead = p->exit_state;
885 } else {
886 read_lock(&tasklist_lock);
887 if (unlikely(p->signal == NULL)) {
888 /*
889 * The process has been reaped.
890 * We can't even collect a sample any more.
891 * Call the timer disarmed, nothing else to do.
892 */
893 put_task_struct(p);
894 timer->it.cpu.task = NULL;
895 timer->it.cpu.expires.sched = 0;
896 read_unlock(&tasklist_lock);
897 goto dead;
898 } else {
899 cpu_clock_sample_group(timer->it_clock, p, &now);
900 clear_dead = (unlikely(p->exit_state) &&
901 thread_group_empty(p));
902 }
903 read_unlock(&tasklist_lock);
904 }
905
906 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
907 if (timer->it.cpu.incr.sched == 0 &&
908 cpu_time_before(timer->it_clock,
909 timer->it.cpu.expires, now)) {
910 /*
911 * Do-nothing timer expired and has no reload,
912 * so it's as if it was never set.
913 */
914 timer->it.cpu.expires.sched = 0;
915 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
916 return;
917 }
918 /*
919 * Account for any expirations and reloads that should
920 * have happened.
921 */
922 bump_cpu_timer(timer, now);
923 }
924
925 if (unlikely(clear_dead)) {
926 /*
927 * We've noticed that the thread is dead, but
928 * not yet reaped. Take this opportunity to
929 * drop our task ref.
930 */
931 clear_dead_task(timer, now);
932 goto dead;
933 }
934
935 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
936 sample_to_timespec(timer->it_clock,
937 cpu_time_sub(timer->it_clock,
938 timer->it.cpu.expires, now),
939 &itp->it_value);
940 } else {
941 /*
942 * The timer should have expired already, but the firing
943 * hasn't taken place yet. Say it's just about to expire.
944 */
945 itp->it_value.tv_nsec = 1;
946 itp->it_value.tv_sec = 0;
947 }
948}
949
950/*
951 * Check for any per-thread CPU timers that have fired and move them off
952 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
953 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
954 */
955static void check_thread_timers(struct task_struct *tsk,
956 struct list_head *firing)
957{
958 struct list_head *timers = tsk->cpu_timers;
959
960 tsk->it_prof_expires = cputime_zero;
961 while (!list_empty(timers)) {
962 struct cpu_timer_list *t = list_entry(timers->next,
963 struct cpu_timer_list,
964 entry);
965 if (cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
966 tsk->it_prof_expires = t->expires.cpu;
967 break;
968 }
969 t->firing = 1;
970 list_move_tail(&t->entry, firing);
971 }
972
973 ++timers;
974 tsk->it_virt_expires = cputime_zero;
975 while (!list_empty(timers)) {
976 struct cpu_timer_list *t = list_entry(timers->next,
977 struct cpu_timer_list,
978 entry);
979 if (cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
980 tsk->it_virt_expires = t->expires.cpu;
981 break;
982 }
983 t->firing = 1;
984 list_move_tail(&t->entry, firing);
985 }
986
987 ++timers;
988 tsk->it_sched_expires = 0;
989 while (!list_empty(timers)) {
990 struct cpu_timer_list *t = list_entry(timers->next,
991 struct cpu_timer_list,
992 entry);
993 if (tsk->sched_time < t->expires.sched) {
994 tsk->it_sched_expires = t->expires.sched;
995 break;
996 }
997 t->firing = 1;
998 list_move_tail(&t->entry, firing);
999 }
1000}
1001
1002/*
1003 * Check for any per-thread CPU timers that have fired and move them
1004 * off the tsk->*_timers list onto the firing list. Per-thread timers
1005 * have already been taken off.
1006 */
1007static void check_process_timers(struct task_struct *tsk,
1008 struct list_head *firing)
1009{
1010 struct signal_struct *const sig = tsk->signal;
1011 cputime_t utime, stime, ptime, virt_expires, prof_expires;
1012 unsigned long long sched_time, sched_expires;
1013 struct task_struct *t;
1014 struct list_head *timers = sig->cpu_timers;
1015
1016 /*
1017 * Don't sample the current process CPU clocks if there are no timers.
1018 */
1019 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1020 cputime_eq(sig->it_prof_expires, cputime_zero) &&
1021 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1022 list_empty(&timers[CPUCLOCK_VIRT]) &&
1023 cputime_eq(sig->it_virt_expires, cputime_zero) &&
1024 list_empty(&timers[CPUCLOCK_SCHED]))
1025 return;
1026
1027 /*
1028 * Collect the current process totals.
1029 */
1030 utime = sig->utime;
1031 stime = sig->stime;
1032 sched_time = sig->sched_time;
1033 t = tsk;
1034 do {
1035 utime = cputime_add(utime, t->utime);
1036 stime = cputime_add(stime, t->stime);
1037 sched_time += t->sched_time;
1038 t = next_thread(t);
1039 } while (t != tsk);
1040 ptime = cputime_add(utime, stime);
1041
1042 prof_expires = cputime_zero;
1043 while (!list_empty(timers)) {
1044 struct cpu_timer_list *t = list_entry(timers->next,
1045 struct cpu_timer_list,
1046 entry);
1047 if (cputime_lt(ptime, t->expires.cpu)) {
1048 prof_expires = t->expires.cpu;
1049 break;
1050 }
1051 t->firing = 1;
1052 list_move_tail(&t->entry, firing);
1053 }
1054
1055 ++timers;
1056 virt_expires = cputime_zero;
1057 while (!list_empty(timers)) {
1058 struct cpu_timer_list *t = list_entry(timers->next,
1059 struct cpu_timer_list,
1060 entry);
1061 if (cputime_lt(utime, t->expires.cpu)) {
1062 virt_expires = t->expires.cpu;
1063 break;
1064 }
1065 t->firing = 1;
1066 list_move_tail(&t->entry, firing);
1067 }
1068
1069 ++timers;
1070 sched_expires = 0;
1071 while (!list_empty(timers)) {
1072 struct cpu_timer_list *t = list_entry(timers->next,
1073 struct cpu_timer_list,
1074 entry);
1075 if (sched_time < t->expires.sched) {
1076 sched_expires = t->expires.sched;
1077 break;
1078 }
1079 t->firing = 1;
1080 list_move_tail(&t->entry, firing);
1081 }
1082
1083 /*
1084 * Check for the special case process timers.
1085 */
1086 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1087 if (cputime_ge(ptime, sig->it_prof_expires)) {
1088 /* ITIMER_PROF fires and reloads. */
1089 sig->it_prof_expires = sig->it_prof_incr;
1090 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1091 sig->it_prof_expires = cputime_add(
1092 sig->it_prof_expires, ptime);
1093 }
1094 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1095 }
1096 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1097 (cputime_eq(prof_expires, cputime_zero) ||
1098 cputime_lt(sig->it_prof_expires, prof_expires))) {
1099 prof_expires = sig->it_prof_expires;
1100 }
1101 }
1102 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1103 if (cputime_ge(utime, sig->it_virt_expires)) {
1104 /* ITIMER_VIRTUAL fires and reloads. */
1105 sig->it_virt_expires = sig->it_virt_incr;
1106 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1107 sig->it_virt_expires = cputime_add(
1108 sig->it_virt_expires, utime);
1109 }
1110 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1111 }
1112 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1113 (cputime_eq(virt_expires, cputime_zero) ||
1114 cputime_lt(sig->it_virt_expires, virt_expires))) {
1115 virt_expires = sig->it_virt_expires;
1116 }
1117 }
1118 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1119 unsigned long psecs = cputime_to_secs(ptime);
1120 cputime_t x;
1121 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1122 /*
1123 * At the hard limit, we just die.
1124 * No need to calculate anything else now.
1125 */
1126 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1127 return;
1128 }
1129 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1130 /*
1131 * At the soft limit, send a SIGXCPU every second.
1132 */
1133 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1134 if (sig->rlim[RLIMIT_CPU].rlim_cur
1135 < sig->rlim[RLIMIT_CPU].rlim_max) {
1136 sig->rlim[RLIMIT_CPU].rlim_cur++;
1137 }
1138 }
1139 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1140 if (cputime_eq(prof_expires, cputime_zero) ||
1141 cputime_lt(x, prof_expires)) {
1142 prof_expires = x;
1143 }
1144 }
1145
1146 if (!cputime_eq(prof_expires, cputime_zero) ||
1147 !cputime_eq(virt_expires, cputime_zero) ||
1148 sched_expires != 0) {
1149 /*
1150 * Rebalance the threads' expiry times for the remaining
1151 * process CPU timers.
1152 */
1153
1154 cputime_t prof_left, virt_left, ticks;
1155 unsigned long long sched_left, sched;
1156 const unsigned int nthreads = atomic_read(&sig->live);
1157
1158 prof_left = cputime_sub(prof_expires, utime);
1159 prof_left = cputime_sub(prof_left, stime);
1160 prof_left = cputime_div(prof_left, nthreads);
1161 virt_left = cputime_sub(virt_expires, utime);
1162 virt_left = cputime_div(virt_left, nthreads);
1163 if (sched_expires) {
1164 sched_left = sched_expires - sched_time;
1165 do_div(sched_left, nthreads);
1166 } else {
1167 sched_left = 0;
1168 }
1169 t = tsk;
1170 do {
1171 ticks = cputime_add(cputime_add(t->utime, t->stime),
1172 prof_left);
1173 if (!cputime_eq(prof_expires, cputime_zero) &&
1174 (cputime_eq(t->it_prof_expires, cputime_zero) ||
1175 cputime_gt(t->it_prof_expires, ticks))) {
1176 t->it_prof_expires = ticks;
1177 }
1178
1179 ticks = cputime_add(t->utime, virt_left);
1180 if (!cputime_eq(virt_expires, cputime_zero) &&
1181 (cputime_eq(t->it_virt_expires, cputime_zero) ||
1182 cputime_gt(t->it_virt_expires, ticks))) {
1183 t->it_virt_expires = ticks;
1184 }
1185
1186 sched = t->sched_time + sched_left;
1187 if (sched_expires && (t->it_sched_expires == 0 ||
1188 t->it_sched_expires > sched)) {
1189 t->it_sched_expires = sched;
1190 }
1191
1192 do {
1193 t = next_thread(t);
1194 } while (unlikely(t->exit_state));
1195 } while (t != tsk);
1196 }
1197}
1198
1199/*
1200 * This is called from the signal code (via do_schedule_next_timer)
1201 * when the last timer signal was delivered and we have to reload the timer.
1202 */
1203void posix_cpu_timer_schedule(struct k_itimer *timer)
1204{
1205 struct task_struct *p = timer->it.cpu.task;
1206 union cpu_time_count now;
1207
1208 if (unlikely(p == NULL))
1209 /*
1210 * The task was cleaned up already, no future firings.
1211 */
1212 return;
1213
1214 /*
1215 * Fetch the current sample and update the timer's expiry time.
1216 */
1217 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1218 cpu_clock_sample(timer->it_clock, p, &now);
1219 bump_cpu_timer(timer, now);
1220 if (unlikely(p->exit_state)) {
1221 clear_dead_task(timer, now);
1222 return;
1223 }
1224 read_lock(&tasklist_lock); /* arm_timer needs it. */
1225 } else {
1226 read_lock(&tasklist_lock);
1227 if (unlikely(p->signal == NULL)) {
1228 /*
1229 * The process has been reaped.
1230 * We can't even collect a sample any more.
1231 */
1232 put_task_struct(p);
1233 timer->it.cpu.task = p = NULL;
1234 timer->it.cpu.expires.sched = 0;
1235 read_unlock(&tasklist_lock);
1236 return;
1237 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1238 /*
1239 * We've noticed that the thread is dead, but
1240 * not yet reaped. Take this opportunity to
1241 * drop our task ref.
1242 */
1243 clear_dead_task(timer, now);
1244 read_unlock(&tasklist_lock);
1245 return;
1246 }
1247 cpu_clock_sample_group(timer->it_clock, p, &now);
1248 bump_cpu_timer(timer, now);
1249 /* Leave the tasklist_lock locked for the call below. */
1250 }
1251
1252 /*
1253 * Now re-arm for the new expiry time.
1254 */
1255 arm_timer(timer, now);
1256
1257 read_unlock(&tasklist_lock);
1258}
1259
1260/*
1261 * This is called from the timer interrupt handler. The irq handler has
1262 * already updated our counts. We need to check if any timers fire now.
1263 * Interrupts are disabled.
1264 */
1265void run_posix_cpu_timers(struct task_struct *tsk)
1266{
1267 LIST_HEAD(firing);
1268 struct k_itimer *timer, *next;
1269
1270 BUG_ON(!irqs_disabled());
1271
1272#define UNEXPIRED(clock) \
1273 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1274 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1275
1276 if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1277 (tsk->it_sched_expires == 0 ||
1278 tsk->sched_time < tsk->it_sched_expires))
1279 return;
1280
1281#undef UNEXPIRED
1282
1283 BUG_ON(tsk->exit_state);
1284
1285 /*
1286 * Double-check with locks held.
1287 */
1288 read_lock(&tasklist_lock);
1289 spin_lock(&tsk->sighand->siglock);
1290
1291 /*
1292 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1293 * all the timers that are firing, and put them on the firing list.
1294 */
1295 check_thread_timers(tsk, &firing);
1296 check_process_timers(tsk, &firing);
1297
1298 /*
1299 * We must release these locks before taking any timer's lock.
1300 * There is a potential race with timer deletion here, as the
1301 * siglock now protects our private firing list. We have set
1302 * the firing flag in each timer, so that a deletion attempt
1303 * that gets the timer lock before we do will give it up and
1304 * spin until we've taken care of that timer below.
1305 */
1306 spin_unlock(&tsk->sighand->siglock);
1307 read_unlock(&tasklist_lock);
1308
1309 /*
1310 * Now that all the timers on our list have the firing flag,
1311 * noone will touch their list entries but us. We'll take
1312 * each timer's lock before clearing its firing flag, so no
1313 * timer call will interfere.
1314 */
1315 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1316 int firing;
1317 spin_lock(&timer->it_lock);
1318 list_del_init(&timer->it.cpu.entry);
1319 firing = timer->it.cpu.firing;
1320 timer->it.cpu.firing = 0;
1321 /*
1322 * The firing flag is -1 if we collided with a reset
1323 * of the timer, which already reported this
1324 * almost-firing as an overrun. So don't generate an event.
1325 */
1326 if (likely(firing >= 0)) {
1327 cpu_timer_fire(timer);
1328 }
1329 spin_unlock(&timer->it_lock);
1330 }
1331}
1332
1333/*
1334 * Set one of the process-wide special case CPU timers.
1335 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1336 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1337 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1338 * it to be absolute, *oldval is absolute and we update it to be relative.
1339 */
1340void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1341 cputime_t *newval, cputime_t *oldval)
1342{
1343 union cpu_time_count now;
1344 struct list_head *head;
1345
1346 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1347 cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1348
1349 if (oldval) {
1350 if (!cputime_eq(*oldval, cputime_zero)) {
1351 if (cputime_le(*oldval, now.cpu)) {
1352 /* Just about to fire. */
1353 *oldval = jiffies_to_cputime(1);
1354 } else {
1355 *oldval = cputime_sub(*oldval, now.cpu);
1356 }
1357 }
1358
1359 if (cputime_eq(*newval, cputime_zero))
1360 return;
1361 *newval = cputime_add(*newval, now.cpu);
1362
1363 /*
1364 * If the RLIMIT_CPU timer will expire before the
1365 * ITIMER_PROF timer, we have nothing else to do.
1366 */
1367 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1368 < cputime_to_secs(*newval))
1369 return;
1370 }
1371
1372 /*
1373 * Check whether there are any process timers already set to fire
1374 * before this one. If so, we don't have anything more to do.
1375 */
1376 head = &tsk->signal->cpu_timers[clock_idx];
1377 if (list_empty(head) ||
1378 cputime_ge(list_entry(head->next,
1379 struct cpu_timer_list, entry)->expires.cpu,
1380 *newval)) {
1381 /*
1382 * Rejigger each thread's expiry time so that one will
1383 * notice before we hit the process-cumulative expiry time.
1384 */
1385 union cpu_time_count expires = { .sched = 0 };
1386 expires.cpu = *newval;
1387 process_timer_rebalance(tsk, clock_idx, expires, now);
1388 }
1389}
1390
1391static long posix_cpu_clock_nanosleep_restart(struct restart_block *);
1392
1393int posix_cpu_nsleep(clockid_t which_clock, int flags,
1394 struct timespec *rqtp)
1395{
1396 struct restart_block *restart_block =
1397 &current_thread_info()->restart_block;
1398 struct k_itimer timer;
1399 int error;
1400
1401 /*
1402 * Diagnose required errors first.
1403 */
1404 if (CPUCLOCK_PERTHREAD(which_clock) &&
1405 (CPUCLOCK_PID(which_clock) == 0 ||
1406 CPUCLOCK_PID(which_clock) == current->pid))
1407 return -EINVAL;
1408
1409 /*
1410 * Set up a temporary timer and then wait for it to go off.
1411 */
1412 memset(&timer, 0, sizeof timer);
1413 spin_lock_init(&timer.it_lock);
1414 timer.it_clock = which_clock;
1415 timer.it_overrun = -1;
1416 error = posix_cpu_timer_create(&timer);
1417 timer.it_process = current;
1418 if (!error) {
1419 struct timespec __user *rmtp;
1420 static struct itimerspec zero_it;
1421 struct itimerspec it = { .it_value = *rqtp,
1422 .it_interval = {} };
1423
1424 spin_lock_irq(&timer.it_lock);
1425 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1426 if (error) {
1427 spin_unlock_irq(&timer.it_lock);
1428 return error;
1429 }
1430
1431 while (!signal_pending(current)) {
1432 if (timer.it.cpu.expires.sched == 0) {
1433 /*
1434 * Our timer fired and was reset.
1435 */
1436 spin_unlock_irq(&timer.it_lock);
1437 return 0;
1438 }
1439
1440 /*
1441 * Block until cpu_timer_fire (or a signal) wakes us.
1442 */
1443 __set_current_state(TASK_INTERRUPTIBLE);
1444 spin_unlock_irq(&timer.it_lock);
1445 schedule();
1446 spin_lock_irq(&timer.it_lock);
1447 }
1448
1449 /*
1450 * We were interrupted by a signal.
1451 */
1452 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1453 posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1454 spin_unlock_irq(&timer.it_lock);
1455
1456 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1457 /*
1458 * It actually did fire already.
1459 */
1460 return 0;
1461 }
1462
1463 /*
1464 * Report back to the user the time still remaining.
1465 */
1466 rmtp = (struct timespec __user *) restart_block->arg1;
1467 if (rmtp != NULL && !(flags & TIMER_ABSTIME) &&
1468 copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1469 return -EFAULT;
1470
1471 restart_block->fn = posix_cpu_clock_nanosleep_restart;
1472 /* Caller already set restart_block->arg1 */
1473 restart_block->arg0 = which_clock;
1474 restart_block->arg2 = rqtp->tv_sec;
1475 restart_block->arg3 = rqtp->tv_nsec;
1476
1477 error = -ERESTART_RESTARTBLOCK;
1478 }
1479
1480 return error;
1481}
1482
1483static long
1484posix_cpu_clock_nanosleep_restart(struct restart_block *restart_block)
1485{
1486 clockid_t which_clock = restart_block->arg0;
1487 struct timespec t = { .tv_sec = restart_block->arg2,
1488 .tv_nsec = restart_block->arg3 };
1489 restart_block->fn = do_no_restart_syscall;
1490 return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t);
1491}
1492
1493
1494#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1495#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1496
1497static int process_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
1498{
1499 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1500}
1501static int process_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
1502{
1503 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1504}
1505static int process_cpu_timer_create(struct k_itimer *timer)
1506{
1507 timer->it_clock = PROCESS_CLOCK;
1508 return posix_cpu_timer_create(timer);
1509}
1510static int process_cpu_nsleep(clockid_t which_clock, int flags,
1511 struct timespec *rqtp)
1512{
1513 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1514}
1515static int thread_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
1516{
1517 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1518}
1519static int thread_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
1520{
1521 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1522}
1523static int thread_cpu_timer_create(struct k_itimer *timer)
1524{
1525 timer->it_clock = THREAD_CLOCK;
1526 return posix_cpu_timer_create(timer);
1527}
1528static int thread_cpu_nsleep(clockid_t which_clock, int flags,
1529 struct timespec *rqtp)
1530{
1531 return -EINVAL;
1532}
1533
1534static __init int init_posix_cpu_timers(void)
1535{
1536 struct k_clock process = {
1537 .clock_getres = process_cpu_clock_getres,
1538 .clock_get = process_cpu_clock_get,
1539 .clock_set = do_posix_clock_nosettime,
1540 .timer_create = process_cpu_timer_create,
1541 .nsleep = process_cpu_nsleep,
1542 };
1543 struct k_clock thread = {
1544 .clock_getres = thread_cpu_clock_getres,
1545 .clock_get = thread_cpu_clock_get,
1546 .clock_set = do_posix_clock_nosettime,
1547 .timer_create = thread_cpu_timer_create,
1548 .nsleep = thread_cpu_nsleep,
1549 };
1550
1551 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1552 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1553
1554 return 0;
1555}
1556__initcall(init_posix_cpu_timers);