lockstat: human readability tweaks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / mutex.c
CommitLineData
6053ee3b
IM
1/*
2 * kernel/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * Also see Documentation/mutex-design.txt.
14 */
15#include <linux/mutex.h>
16#include <linux/sched.h>
17#include <linux/module.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
9a11b49a 20#include <linux/debug_locks.h>
6053ee3b
IM
21
22/*
23 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
24 * which forces all calls into the slowpath:
25 */
26#ifdef CONFIG_DEBUG_MUTEXES
27# include "mutex-debug.h"
28# include <asm-generic/mutex-null.h>
29#else
30# include "mutex.h"
31# include <asm/mutex.h>
32#endif
33
34/***
35 * mutex_init - initialize the mutex
36 * @lock: the mutex to be initialized
37 *
38 * Initialize the mutex to unlocked state.
39 *
40 * It is not allowed to initialize an already locked mutex.
41 */
ef5d4707
IM
42void
43__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b
IM
44{
45 atomic_set(&lock->count, 1);
46 spin_lock_init(&lock->wait_lock);
47 INIT_LIST_HEAD(&lock->wait_list);
48
ef5d4707 49 debug_mutex_init(lock, name, key);
6053ee3b
IM
50}
51
52EXPORT_SYMBOL(__mutex_init);
53
54/*
55 * We split the mutex lock/unlock logic into separate fastpath and
56 * slowpath functions, to reduce the register pressure on the fastpath.
57 * We also put the fastpath first in the kernel image, to make sure the
58 * branch is predicted by the CPU as default-untaken.
59 */
60static void fastcall noinline __sched
9a11b49a 61__mutex_lock_slowpath(atomic_t *lock_count);
6053ee3b
IM
62
63/***
64 * mutex_lock - acquire the mutex
65 * @lock: the mutex to be acquired
66 *
67 * Lock the mutex exclusively for this task. If the mutex is not
68 * available right now, it will sleep until it can get it.
69 *
70 * The mutex must later on be released by the same task that
71 * acquired it. Recursive locking is not allowed. The task
72 * may not exit without first unlocking the mutex. Also, kernel
73 * memory where the mutex resides mutex must not be freed with
74 * the mutex still locked. The mutex must first be initialized
75 * (or statically defined) before it can be locked. memset()-ing
76 * the mutex to 0 is not allowed.
77 *
78 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
79 * checks that will enforce the restrictions and will also do
80 * deadlock debugging. )
81 *
82 * This function is similar to (but not equivalent to) down().
83 */
9a11b49a 84void inline fastcall __sched mutex_lock(struct mutex *lock)
6053ee3b 85{
c544bdb1 86 might_sleep();
6053ee3b
IM
87 /*
88 * The locking fastpath is the 1->0 transition from
89 * 'unlocked' into 'locked' state.
6053ee3b
IM
90 */
91 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
92}
93
94EXPORT_SYMBOL(mutex_lock);
95
96static void fastcall noinline __sched
9a11b49a 97__mutex_unlock_slowpath(atomic_t *lock_count);
6053ee3b
IM
98
99/***
100 * mutex_unlock - release the mutex
101 * @lock: the mutex to be released
102 *
103 * Unlock a mutex that has been locked by this task previously.
104 *
105 * This function must not be used in interrupt context. Unlocking
106 * of a not locked mutex is not allowed.
107 *
108 * This function is similar to (but not equivalent to) up().
109 */
110void fastcall __sched mutex_unlock(struct mutex *lock)
111{
112 /*
113 * The unlocking fastpath is the 0->1 transition from 'locked'
114 * into 'unlocked' state:
6053ee3b
IM
115 */
116 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
117}
118
119EXPORT_SYMBOL(mutex_unlock);
120
121/*
122 * Lock a mutex (possibly interruptible), slowpath:
123 */
124static inline int __sched
9a11b49a 125__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass)
6053ee3b
IM
126{
127 struct task_struct *task = current;
128 struct mutex_waiter waiter;
129 unsigned int old_val;
1fb00c6c 130 unsigned long flags;
6053ee3b 131
1fb00c6c 132 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 133
9a11b49a 134 debug_mutex_lock_common(lock, &waiter);
ef5d4707 135 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
c9f4f06d 136 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
6053ee3b
IM
137
138 /* add waiting tasks to the end of the waitqueue (FIFO): */
139 list_add_tail(&waiter.list, &lock->wait_list);
140 waiter.task = task;
141
142 for (;;) {
143 /*
144 * Lets try to take the lock again - this is needed even if
145 * we get here for the first time (shortly after failing to
146 * acquire the lock), to make sure that we get a wakeup once
147 * it's unlocked. Later on, if we sleep, this is the
148 * operation that gives us the lock. We xchg it to -1, so
149 * that when we release the lock, we properly wake up the
150 * other waiters:
151 */
152 old_val = atomic_xchg(&lock->count, -1);
153 if (old_val == 1)
154 break;
155
156 /*
157 * got a signal? (This code gets eliminated in the
158 * TASK_UNINTERRUPTIBLE case.)
159 */
160 if (unlikely(state == TASK_INTERRUPTIBLE &&
161 signal_pending(task))) {
c9f4f06d 162 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
ef5d4707 163 mutex_release(&lock->dep_map, 1, _RET_IP_);
1fb00c6c 164 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
165
166 debug_mutex_free_waiter(&waiter);
167 return -EINTR;
168 }
169 __set_task_state(task, state);
170
171 /* didnt get the lock, go to sleep: */
1fb00c6c 172 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b 173 schedule();
1fb00c6c 174 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
175 }
176
177 /* got the lock - rejoice! */
c9f4f06d
RZ
178 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
179 debug_mutex_set_owner(lock, task_thread_info(task));
6053ee3b
IM
180
181 /* set it to 0 if there are no waiters left: */
182 if (likely(list_empty(&lock->wait_list)))
183 atomic_set(&lock->count, 0);
184
1fb00c6c 185 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
186
187 debug_mutex_free_waiter(&waiter);
188
6053ee3b
IM
189 return 0;
190}
191
192static void fastcall noinline __sched
9a11b49a 193__mutex_lock_slowpath(atomic_t *lock_count)
6053ee3b
IM
194{
195 struct mutex *lock = container_of(lock_count, struct mutex, count);
196
9a11b49a 197 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0);
6053ee3b
IM
198}
199
ef5d4707
IM
200#ifdef CONFIG_DEBUG_LOCK_ALLOC
201void __sched
202mutex_lock_nested(struct mutex *lock, unsigned int subclass)
203{
204 might_sleep();
205 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass);
206}
207
208EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74
N
209
210int __sched
211mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
212{
213 might_sleep();
214 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass);
215}
216
217EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
ef5d4707
IM
218#endif
219
6053ee3b
IM
220/*
221 * Release the lock, slowpath:
222 */
9a11b49a 223static fastcall inline void
ef5d4707 224__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
6053ee3b 225{
02706647 226 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 227 unsigned long flags;
6053ee3b 228
1fb00c6c 229 spin_lock_mutex(&lock->wait_lock, flags);
ef5d4707 230 mutex_release(&lock->dep_map, nested, _RET_IP_);
9a11b49a 231 debug_mutex_unlock(lock);
6053ee3b
IM
232
233 /*
234 * some architectures leave the lock unlocked in the fastpath failure
235 * case, others need to leave it locked. In the later case we have to
236 * unlock it here
237 */
238 if (__mutex_slowpath_needs_to_unlock())
239 atomic_set(&lock->count, 1);
240
6053ee3b
IM
241 if (!list_empty(&lock->wait_list)) {
242 /* get the first entry from the wait-list: */
243 struct mutex_waiter *waiter =
244 list_entry(lock->wait_list.next,
245 struct mutex_waiter, list);
246
247 debug_mutex_wake_waiter(lock, waiter);
248
249 wake_up_process(waiter->task);
250 }
251
252 debug_mutex_clear_owner(lock);
253
1fb00c6c 254 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
255}
256
9a11b49a
IM
257/*
258 * Release the lock, slowpath:
259 */
260static fastcall noinline void
261__mutex_unlock_slowpath(atomic_t *lock_count)
262{
ef5d4707 263 __mutex_unlock_common_slowpath(lock_count, 1);
9a11b49a
IM
264}
265
6053ee3b
IM
266/*
267 * Here come the less common (and hence less performance-critical) APIs:
268 * mutex_lock_interruptible() and mutex_trylock().
269 */
270static int fastcall noinline __sched
9a11b49a 271__mutex_lock_interruptible_slowpath(atomic_t *lock_count);
6053ee3b
IM
272
273/***
274 * mutex_lock_interruptible - acquire the mutex, interruptable
275 * @lock: the mutex to be acquired
276 *
277 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
278 * been acquired or sleep until the mutex becomes available. If a
279 * signal arrives while waiting for the lock then this function
280 * returns -EINTR.
281 *
282 * This function is similar to (but not equivalent to) down_interruptible().
283 */
284int fastcall __sched mutex_lock_interruptible(struct mutex *lock)
285{
c544bdb1 286 might_sleep();
6053ee3b
IM
287 return __mutex_fastpath_lock_retval
288 (&lock->count, __mutex_lock_interruptible_slowpath);
289}
290
291EXPORT_SYMBOL(mutex_lock_interruptible);
292
293static int fastcall noinline __sched
9a11b49a 294__mutex_lock_interruptible_slowpath(atomic_t *lock_count)
6053ee3b
IM
295{
296 struct mutex *lock = container_of(lock_count, struct mutex, count);
297
9a11b49a 298 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0);
6053ee3b
IM
299}
300
301/*
302 * Spinlock based trylock, we take the spinlock and check whether we
303 * can get the lock:
304 */
305static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
306{
307 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 308 unsigned long flags;
6053ee3b
IM
309 int prev;
310
1fb00c6c 311 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
312
313 prev = atomic_xchg(&lock->count, -1);
ef5d4707 314 if (likely(prev == 1)) {
9a11b49a 315 debug_mutex_set_owner(lock, current_thread_info());
ef5d4707
IM
316 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
317 }
6053ee3b
IM
318 /* Set it back to 0 if there are no waiters: */
319 if (likely(list_empty(&lock->wait_list)))
320 atomic_set(&lock->count, 0);
321
1fb00c6c 322 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
323
324 return prev == 1;
325}
326
327/***
328 * mutex_trylock - try acquire the mutex, without waiting
329 * @lock: the mutex to be acquired
330 *
331 * Try to acquire the mutex atomically. Returns 1 if the mutex
332 * has been acquired successfully, and 0 on contention.
333 *
334 * NOTE: this function follows the spin_trylock() convention, so
335 * it is negated to the down_trylock() return values! Be careful
336 * about this when converting semaphore users to mutexes.
337 *
338 * This function must not be used in interrupt context. The
339 * mutex must be released by the same task that acquired it.
340 */
9cebb552 341int fastcall __sched mutex_trylock(struct mutex *lock)
6053ee3b
IM
342{
343 return __mutex_fastpath_trylock(&lock->count,
344 __mutex_trylock_slowpath);
345}
346
347EXPORT_SYMBOL(mutex_trylock);