kexec: don't invoke OOM-killer for control page allocation
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / kexec_core.c
CommitLineData
2965faa5
DY
1/*
2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
de90a6bc 9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2965faa5
DY
10
11#include <linux/capability.h>
12#include <linux/mm.h>
13#include <linux/file.h>
14#include <linux/slab.h>
15#include <linux/fs.h>
16#include <linux/kexec.h>
17#include <linux/mutex.h>
18#include <linux/list.h>
19#include <linux/highmem.h>
20#include <linux/syscalls.h>
21#include <linux/reboot.h>
22#include <linux/ioport.h>
23#include <linux/hardirq.h>
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/utsname.h>
27#include <linux/numa.h>
28#include <linux/suspend.h>
29#include <linux/device.h>
30#include <linux/freezer.h>
31#include <linux/pm.h>
32#include <linux/cpu.h>
33#include <linux/uaccess.h>
34#include <linux/io.h>
35#include <linux/console.h>
36#include <linux/vmalloc.h>
37#include <linux/swap.h>
38#include <linux/syscore_ops.h>
39#include <linux/compiler.h>
40#include <linux/hugetlb.h>
41
42#include <asm/page.h>
43#include <asm/sections.h>
44
45#include <crypto/hash.h>
46#include <crypto/sha.h>
47#include "kexec_internal.h"
48
49DEFINE_MUTEX(kexec_mutex);
50
51/* Per cpu memory for storing cpu states in case of system crash. */
52note_buf_t __percpu *crash_notes;
53
54/* vmcoreinfo stuff */
55static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
56u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
57size_t vmcoreinfo_size;
58size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
59
60/* Flag to indicate we are going to kexec a new kernel */
61bool kexec_in_progress = false;
62
63
64/* Location of the reserved area for the crash kernel */
65struct resource crashk_res = {
66 .name = "Crash kernel",
67 .start = 0,
68 .end = 0,
1a085d07
TK
69 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
70 .desc = IORES_DESC_CRASH_KERNEL
2965faa5
DY
71};
72struct resource crashk_low_res = {
73 .name = "Crash kernel",
74 .start = 0,
75 .end = 0,
1a085d07
TK
76 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
77 .desc = IORES_DESC_CRASH_KERNEL
2965faa5
DY
78};
79
80int kexec_should_crash(struct task_struct *p)
81{
82 /*
83 * If crash_kexec_post_notifiers is enabled, don't run
84 * crash_kexec() here yet, which must be run after panic
85 * notifiers in panic().
86 */
87 if (crash_kexec_post_notifiers)
88 return 0;
89 /*
90 * There are 4 panic() calls in do_exit() path, each of which
91 * corresponds to each of these 4 conditions.
92 */
93 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
94 return 1;
95 return 0;
96}
97
98/*
99 * When kexec transitions to the new kernel there is a one-to-one
100 * mapping between physical and virtual addresses. On processors
101 * where you can disable the MMU this is trivial, and easy. For
102 * others it is still a simple predictable page table to setup.
103 *
104 * In that environment kexec copies the new kernel to its final
105 * resting place. This means I can only support memory whose
106 * physical address can fit in an unsigned long. In particular
107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108 * If the assembly stub has more restrictive requirements
109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110 * defined more restrictively in <asm/kexec.h>.
111 *
112 * The code for the transition from the current kernel to the
113 * the new kernel is placed in the control_code_buffer, whose size
114 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
115 * page of memory is necessary, but some architectures require more.
116 * Because this memory must be identity mapped in the transition from
117 * virtual to physical addresses it must live in the range
118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119 * modifiable.
120 *
121 * The assembly stub in the control code buffer is passed a linked list
122 * of descriptor pages detailing the source pages of the new kernel,
123 * and the destination addresses of those source pages. As this data
124 * structure is not used in the context of the current OS, it must
125 * be self-contained.
126 *
127 * The code has been made to work with highmem pages and will use a
128 * destination page in its final resting place (if it happens
129 * to allocate it). The end product of this is that most of the
130 * physical address space, and most of RAM can be used.
131 *
132 * Future directions include:
133 * - allocating a page table with the control code buffer identity
134 * mapped, to simplify machine_kexec and make kexec_on_panic more
135 * reliable.
136 */
137
138/*
139 * KIMAGE_NO_DEST is an impossible destination address..., for
140 * allocating pages whose destination address we do not care about.
141 */
142#define KIMAGE_NO_DEST (-1UL)
143
144static struct page *kimage_alloc_page(struct kimage *image,
145 gfp_t gfp_mask,
146 unsigned long dest);
147
148int sanity_check_segment_list(struct kimage *image)
149{
4caf9615 150 int i;
2965faa5
DY
151 unsigned long nr_segments = image->nr_segments;
152
153 /*
154 * Verify we have good destination addresses. The caller is
155 * responsible for making certain we don't attempt to load
156 * the new image into invalid or reserved areas of RAM. This
157 * just verifies it is an address we can use.
158 *
159 * Since the kernel does everything in page size chunks ensure
160 * the destination addresses are page aligned. Too many
161 * special cases crop of when we don't do this. The most
162 * insidious is getting overlapping destination addresses
163 * simply because addresses are changed to page size
164 * granularity.
165 */
2965faa5
DY
166 for (i = 0; i < nr_segments; i++) {
167 unsigned long mstart, mend;
168
169 mstart = image->segment[i].mem;
170 mend = mstart + image->segment[i].memsz;
171 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
4caf9615 172 return -EADDRNOTAVAIL;
2965faa5 173 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
4caf9615 174 return -EADDRNOTAVAIL;
2965faa5
DY
175 }
176
177 /* Verify our destination addresses do not overlap.
178 * If we alloed overlapping destination addresses
179 * through very weird things can happen with no
180 * easy explanation as one segment stops on another.
181 */
2965faa5
DY
182 for (i = 0; i < nr_segments; i++) {
183 unsigned long mstart, mend;
184 unsigned long j;
185
186 mstart = image->segment[i].mem;
187 mend = mstart + image->segment[i].memsz;
188 for (j = 0; j < i; j++) {
189 unsigned long pstart, pend;
190
191 pstart = image->segment[j].mem;
192 pend = pstart + image->segment[j].memsz;
193 /* Do the segments overlap ? */
194 if ((mend > pstart) && (mstart < pend))
4caf9615 195 return -EINVAL;
2965faa5
DY
196 }
197 }
198
199 /* Ensure our buffer sizes are strictly less than
200 * our memory sizes. This should always be the case,
201 * and it is easier to check up front than to be surprised
202 * later on.
203 */
2965faa5
DY
204 for (i = 0; i < nr_segments; i++) {
205 if (image->segment[i].bufsz > image->segment[i].memsz)
4caf9615 206 return -EINVAL;
2965faa5
DY
207 }
208
209 /*
210 * Verify we have good destination addresses. Normally
211 * the caller is responsible for making certain we don't
212 * attempt to load the new image into invalid or reserved
213 * areas of RAM. But crash kernels are preloaded into a
214 * reserved area of ram. We must ensure the addresses
215 * are in the reserved area otherwise preloading the
216 * kernel could corrupt things.
217 */
218
219 if (image->type == KEXEC_TYPE_CRASH) {
2965faa5
DY
220 for (i = 0; i < nr_segments; i++) {
221 unsigned long mstart, mend;
222
223 mstart = image->segment[i].mem;
224 mend = mstart + image->segment[i].memsz - 1;
225 /* Ensure we are within the crash kernel limits */
226 if ((mstart < crashk_res.start) ||
227 (mend > crashk_res.end))
4caf9615 228 return -EADDRNOTAVAIL;
2965faa5
DY
229 }
230 }
231
232 return 0;
233}
234
235struct kimage *do_kimage_alloc_init(void)
236{
237 struct kimage *image;
238
239 /* Allocate a controlling structure */
240 image = kzalloc(sizeof(*image), GFP_KERNEL);
241 if (!image)
242 return NULL;
243
244 image->head = 0;
245 image->entry = &image->head;
246 image->last_entry = &image->head;
247 image->control_page = ~0; /* By default this does not apply */
248 image->type = KEXEC_TYPE_DEFAULT;
249
250 /* Initialize the list of control pages */
251 INIT_LIST_HEAD(&image->control_pages);
252
253 /* Initialize the list of destination pages */
254 INIT_LIST_HEAD(&image->dest_pages);
255
256 /* Initialize the list of unusable pages */
257 INIT_LIST_HEAD(&image->unusable_pages);
258
259 return image;
260}
261
262int kimage_is_destination_range(struct kimage *image,
263 unsigned long start,
264 unsigned long end)
265{
266 unsigned long i;
267
268 for (i = 0; i < image->nr_segments; i++) {
269 unsigned long mstart, mend;
270
271 mstart = image->segment[i].mem;
272 mend = mstart + image->segment[i].memsz;
273 if ((end > mstart) && (start < mend))
274 return 1;
275 }
276
277 return 0;
278}
279
280static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
281{
282 struct page *pages;
283
284 pages = alloc_pages(gfp_mask, order);
285 if (pages) {
286 unsigned int count, i;
287
288 pages->mapping = NULL;
289 set_page_private(pages, order);
290 count = 1 << order;
291 for (i = 0; i < count; i++)
292 SetPageReserved(pages + i);
293 }
294
295 return pages;
296}
297
298static void kimage_free_pages(struct page *page)
299{
300 unsigned int order, count, i;
301
302 order = page_private(page);
303 count = 1 << order;
304 for (i = 0; i < count; i++)
305 ClearPageReserved(page + i);
306 __free_pages(page, order);
307}
308
309void kimage_free_page_list(struct list_head *list)
310{
2b24692b 311 struct page *page, *next;
2965faa5 312
2b24692b 313 list_for_each_entry_safe(page, next, list, lru) {
2965faa5
DY
314 list_del(&page->lru);
315 kimage_free_pages(page);
316 }
317}
318
319static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
320 unsigned int order)
321{
322 /* Control pages are special, they are the intermediaries
323 * that are needed while we copy the rest of the pages
324 * to their final resting place. As such they must
325 * not conflict with either the destination addresses
326 * or memory the kernel is already using.
327 *
328 * The only case where we really need more than one of
329 * these are for architectures where we cannot disable
330 * the MMU and must instead generate an identity mapped
331 * page table for all of the memory.
332 *
333 * At worst this runs in O(N) of the image size.
334 */
335 struct list_head extra_pages;
336 struct page *pages;
337 unsigned int count;
338
339 count = 1 << order;
340 INIT_LIST_HEAD(&extra_pages);
341
342 /* Loop while I can allocate a page and the page allocated
343 * is a destination page.
344 */
345 do {
346 unsigned long pfn, epfn, addr, eaddr;
347
348 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
349 if (!pages)
350 break;
351 pfn = page_to_pfn(pages);
352 epfn = pfn + count;
353 addr = pfn << PAGE_SHIFT;
354 eaddr = epfn << PAGE_SHIFT;
355 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
356 kimage_is_destination_range(image, addr, eaddr)) {
357 list_add(&pages->lru, &extra_pages);
358 pages = NULL;
359 }
360 } while (!pages);
361
362 if (pages) {
363 /* Remember the allocated page... */
364 list_add(&pages->lru, &image->control_pages);
365
366 /* Because the page is already in it's destination
367 * location we will never allocate another page at
368 * that address. Therefore kimage_alloc_pages
369 * will not return it (again) and we don't need
370 * to give it an entry in image->segment[].
371 */
372 }
373 /* Deal with the destination pages I have inadvertently allocated.
374 *
375 * Ideally I would convert multi-page allocations into single
376 * page allocations, and add everything to image->dest_pages.
377 *
378 * For now it is simpler to just free the pages.
379 */
380 kimage_free_page_list(&extra_pages);
381
382 return pages;
383}
384
385static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
386 unsigned int order)
387{
388 /* Control pages are special, they are the intermediaries
389 * that are needed while we copy the rest of the pages
390 * to their final resting place. As such they must
391 * not conflict with either the destination addresses
392 * or memory the kernel is already using.
393 *
394 * Control pages are also the only pags we must allocate
395 * when loading a crash kernel. All of the other pages
396 * are specified by the segments and we just memcpy
397 * into them directly.
398 *
399 * The only case where we really need more than one of
400 * these are for architectures where we cannot disable
401 * the MMU and must instead generate an identity mapped
402 * page table for all of the memory.
403 *
404 * Given the low demand this implements a very simple
405 * allocator that finds the first hole of the appropriate
406 * size in the reserved memory region, and allocates all
407 * of the memory up to and including the hole.
408 */
409 unsigned long hole_start, hole_end, size;
410 struct page *pages;
411
412 pages = NULL;
413 size = (1 << order) << PAGE_SHIFT;
414 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
415 hole_end = hole_start + size - 1;
416 while (hole_end <= crashk_res.end) {
417 unsigned long i;
418
419 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
420 break;
421 /* See if I overlap any of the segments */
422 for (i = 0; i < image->nr_segments; i++) {
423 unsigned long mstart, mend;
424
425 mstart = image->segment[i].mem;
426 mend = mstart + image->segment[i].memsz - 1;
427 if ((hole_end >= mstart) && (hole_start <= mend)) {
428 /* Advance the hole to the end of the segment */
429 hole_start = (mend + (size - 1)) & ~(size - 1);
430 hole_end = hole_start + size - 1;
431 break;
432 }
433 }
434 /* If I don't overlap any segments I have found my hole! */
435 if (i == image->nr_segments) {
436 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
04e9949b 437 image->control_page = hole_end;
2965faa5
DY
438 break;
439 }
440 }
2965faa5
DY
441
442 return pages;
443}
444
445
446struct page *kimage_alloc_control_pages(struct kimage *image,
447 unsigned int order)
448{
449 struct page *pages = NULL;
450
451 switch (image->type) {
452 case KEXEC_TYPE_DEFAULT:
453 pages = kimage_alloc_normal_control_pages(image, order);
454 break;
455 case KEXEC_TYPE_CRASH:
456 pages = kimage_alloc_crash_control_pages(image, order);
457 break;
458 }
459
460 return pages;
461}
462
463static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
464{
465 if (*image->entry != 0)
466 image->entry++;
467
468 if (image->entry == image->last_entry) {
469 kimage_entry_t *ind_page;
470 struct page *page;
471
472 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
473 if (!page)
474 return -ENOMEM;
475
476 ind_page = page_address(page);
477 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
478 image->entry = ind_page;
479 image->last_entry = ind_page +
480 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
481 }
482 *image->entry = entry;
483 image->entry++;
484 *image->entry = 0;
485
486 return 0;
487}
488
489static int kimage_set_destination(struct kimage *image,
490 unsigned long destination)
491{
492 int result;
493
494 destination &= PAGE_MASK;
495 result = kimage_add_entry(image, destination | IND_DESTINATION);
496
497 return result;
498}
499
500
501static int kimage_add_page(struct kimage *image, unsigned long page)
502{
503 int result;
504
505 page &= PAGE_MASK;
506 result = kimage_add_entry(image, page | IND_SOURCE);
507
508 return result;
509}
510
511
512static void kimage_free_extra_pages(struct kimage *image)
513{
514 /* Walk through and free any extra destination pages I may have */
515 kimage_free_page_list(&image->dest_pages);
516
517 /* Walk through and free any unusable pages I have cached */
518 kimage_free_page_list(&image->unusable_pages);
519
520}
521void kimage_terminate(struct kimage *image)
522{
523 if (*image->entry != 0)
524 image->entry++;
525
526 *image->entry = IND_DONE;
527}
528
529#define for_each_kimage_entry(image, ptr, entry) \
530 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
531 ptr = (entry & IND_INDIRECTION) ? \
532 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
533
534static void kimage_free_entry(kimage_entry_t entry)
535{
536 struct page *page;
537
538 page = pfn_to_page(entry >> PAGE_SHIFT);
539 kimage_free_pages(page);
540}
541
542void kimage_free(struct kimage *image)
543{
544 kimage_entry_t *ptr, entry;
545 kimage_entry_t ind = 0;
546
547 if (!image)
548 return;
549
550 kimage_free_extra_pages(image);
551 for_each_kimage_entry(image, ptr, entry) {
552 if (entry & IND_INDIRECTION) {
553 /* Free the previous indirection page */
554 if (ind & IND_INDIRECTION)
555 kimage_free_entry(ind);
556 /* Save this indirection page until we are
557 * done with it.
558 */
559 ind = entry;
560 } else if (entry & IND_SOURCE)
561 kimage_free_entry(entry);
562 }
563 /* Free the final indirection page */
564 if (ind & IND_INDIRECTION)
565 kimage_free_entry(ind);
566
567 /* Handle any machine specific cleanup */
568 machine_kexec_cleanup(image);
569
570 /* Free the kexec control pages... */
571 kimage_free_page_list(&image->control_pages);
572
573 /*
574 * Free up any temporary buffers allocated. This might hit if
575 * error occurred much later after buffer allocation.
576 */
577 if (image->file_mode)
578 kimage_file_post_load_cleanup(image);
579
580 kfree(image);
581}
582
583static kimage_entry_t *kimage_dst_used(struct kimage *image,
584 unsigned long page)
585{
586 kimage_entry_t *ptr, entry;
587 unsigned long destination = 0;
588
589 for_each_kimage_entry(image, ptr, entry) {
590 if (entry & IND_DESTINATION)
591 destination = entry & PAGE_MASK;
592 else if (entry & IND_SOURCE) {
593 if (page == destination)
594 return ptr;
595 destination += PAGE_SIZE;
596 }
597 }
598
599 return NULL;
600}
601
602static struct page *kimage_alloc_page(struct kimage *image,
603 gfp_t gfp_mask,
604 unsigned long destination)
605{
606 /*
607 * Here we implement safeguards to ensure that a source page
608 * is not copied to its destination page before the data on
609 * the destination page is no longer useful.
610 *
611 * To do this we maintain the invariant that a source page is
612 * either its own destination page, or it is not a
613 * destination page at all.
614 *
615 * That is slightly stronger than required, but the proof
616 * that no problems will not occur is trivial, and the
617 * implementation is simply to verify.
618 *
619 * When allocating all pages normally this algorithm will run
620 * in O(N) time, but in the worst case it will run in O(N^2)
621 * time. If the runtime is a problem the data structures can
622 * be fixed.
623 */
624 struct page *page;
625 unsigned long addr;
626
627 /*
628 * Walk through the list of destination pages, and see if I
629 * have a match.
630 */
631 list_for_each_entry(page, &image->dest_pages, lru) {
632 addr = page_to_pfn(page) << PAGE_SHIFT;
633 if (addr == destination) {
634 list_del(&page->lru);
635 return page;
636 }
637 }
638 page = NULL;
639 while (1) {
640 kimage_entry_t *old;
641
642 /* Allocate a page, if we run out of memory give up */
643 page = kimage_alloc_pages(gfp_mask, 0);
644 if (!page)
645 return NULL;
646 /* If the page cannot be used file it away */
647 if (page_to_pfn(page) >
648 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
649 list_add(&page->lru, &image->unusable_pages);
650 continue;
651 }
652 addr = page_to_pfn(page) << PAGE_SHIFT;
653
654 /* If it is the destination page we want use it */
655 if (addr == destination)
656 break;
657
658 /* If the page is not a destination page use it */
659 if (!kimage_is_destination_range(image, addr,
660 addr + PAGE_SIZE))
661 break;
662
663 /*
664 * I know that the page is someones destination page.
665 * See if there is already a source page for this
666 * destination page. And if so swap the source pages.
667 */
668 old = kimage_dst_used(image, addr);
669 if (old) {
670 /* If so move it */
671 unsigned long old_addr;
672 struct page *old_page;
673
674 old_addr = *old & PAGE_MASK;
675 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
676 copy_highpage(page, old_page);
677 *old = addr | (*old & ~PAGE_MASK);
678
679 /* The old page I have found cannot be a
680 * destination page, so return it if it's
681 * gfp_flags honor the ones passed in.
682 */
683 if (!(gfp_mask & __GFP_HIGHMEM) &&
684 PageHighMem(old_page)) {
685 kimage_free_pages(old_page);
686 continue;
687 }
688 addr = old_addr;
689 page = old_page;
690 break;
691 }
692 /* Place the page on the destination list, to be used later */
693 list_add(&page->lru, &image->dest_pages);
694 }
695
696 return page;
697}
698
699static int kimage_load_normal_segment(struct kimage *image,
700 struct kexec_segment *segment)
701{
702 unsigned long maddr;
703 size_t ubytes, mbytes;
704 int result;
705 unsigned char __user *buf = NULL;
706 unsigned char *kbuf = NULL;
707
708 result = 0;
709 if (image->file_mode)
710 kbuf = segment->kbuf;
711 else
712 buf = segment->buf;
713 ubytes = segment->bufsz;
714 mbytes = segment->memsz;
715 maddr = segment->mem;
716
717 result = kimage_set_destination(image, maddr);
718 if (result < 0)
719 goto out;
720
721 while (mbytes) {
722 struct page *page;
723 char *ptr;
724 size_t uchunk, mchunk;
725
726 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
727 if (!page) {
728 result = -ENOMEM;
729 goto out;
730 }
731 result = kimage_add_page(image, page_to_pfn(page)
732 << PAGE_SHIFT);
733 if (result < 0)
734 goto out;
735
736 ptr = kmap(page);
737 /* Start with a clear page */
738 clear_page(ptr);
739 ptr += maddr & ~PAGE_MASK;
740 mchunk = min_t(size_t, mbytes,
741 PAGE_SIZE - (maddr & ~PAGE_MASK));
742 uchunk = min(ubytes, mchunk);
743
744 /* For file based kexec, source pages are in kernel memory */
745 if (image->file_mode)
746 memcpy(ptr, kbuf, uchunk);
747 else
748 result = copy_from_user(ptr, buf, uchunk);
749 kunmap(page);
750 if (result) {
751 result = -EFAULT;
752 goto out;
753 }
754 ubytes -= uchunk;
755 maddr += mchunk;
756 if (image->file_mode)
757 kbuf += mchunk;
758 else
759 buf += mchunk;
760 mbytes -= mchunk;
761 }
762out:
763 return result;
764}
765
766static int kimage_load_crash_segment(struct kimage *image,
767 struct kexec_segment *segment)
768{
769 /* For crash dumps kernels we simply copy the data from
770 * user space to it's destination.
771 * We do things a page at a time for the sake of kmap.
772 */
773 unsigned long maddr;
774 size_t ubytes, mbytes;
775 int result;
776 unsigned char __user *buf = NULL;
777 unsigned char *kbuf = NULL;
778
779 result = 0;
780 if (image->file_mode)
781 kbuf = segment->kbuf;
782 else
783 buf = segment->buf;
784 ubytes = segment->bufsz;
785 mbytes = segment->memsz;
786 maddr = segment->mem;
787 while (mbytes) {
788 struct page *page;
789 char *ptr;
790 size_t uchunk, mchunk;
791
792 page = pfn_to_page(maddr >> PAGE_SHIFT);
793 if (!page) {
794 result = -ENOMEM;
795 goto out;
796 }
797 ptr = kmap(page);
798 ptr += maddr & ~PAGE_MASK;
799 mchunk = min_t(size_t, mbytes,
800 PAGE_SIZE - (maddr & ~PAGE_MASK));
801 uchunk = min(ubytes, mchunk);
802 if (mchunk > uchunk) {
803 /* Zero the trailing part of the page */
804 memset(ptr + uchunk, 0, mchunk - uchunk);
805 }
806
807 /* For file based kexec, source pages are in kernel memory */
808 if (image->file_mode)
809 memcpy(ptr, kbuf, uchunk);
810 else
811 result = copy_from_user(ptr, buf, uchunk);
812 kexec_flush_icache_page(page);
813 kunmap(page);
814 if (result) {
815 result = -EFAULT;
816 goto out;
817 }
818 ubytes -= uchunk;
819 maddr += mchunk;
820 if (image->file_mode)
821 kbuf += mchunk;
822 else
823 buf += mchunk;
824 mbytes -= mchunk;
825 }
826out:
827 return result;
828}
829
830int kimage_load_segment(struct kimage *image,
831 struct kexec_segment *segment)
832{
833 int result = -ENOMEM;
834
835 switch (image->type) {
836 case KEXEC_TYPE_DEFAULT:
837 result = kimage_load_normal_segment(image, segment);
838 break;
839 case KEXEC_TYPE_CRASH:
840 result = kimage_load_crash_segment(image, segment);
841 break;
842 }
843
844 return result;
845}
846
847struct kimage *kexec_image;
848struct kimage *kexec_crash_image;
849int kexec_load_disabled;
850
7bbee5ca
HK
851/*
852 * No panic_cpu check version of crash_kexec(). This function is called
853 * only when panic_cpu holds the current CPU number; this is the only CPU
854 * which processes crash_kexec routines.
855 */
856void __crash_kexec(struct pt_regs *regs)
2965faa5
DY
857{
858 /* Take the kexec_mutex here to prevent sys_kexec_load
859 * running on one cpu from replacing the crash kernel
860 * we are using after a panic on a different cpu.
861 *
862 * If the crash kernel was not located in a fixed area
863 * of memory the xchg(&kexec_crash_image) would be
864 * sufficient. But since I reuse the memory...
865 */
866 if (mutex_trylock(&kexec_mutex)) {
867 if (kexec_crash_image) {
868 struct pt_regs fixed_regs;
869
870 crash_setup_regs(&fixed_regs, regs);
871 crash_save_vmcoreinfo();
872 machine_crash_shutdown(&fixed_regs);
873 machine_kexec(kexec_crash_image);
874 }
875 mutex_unlock(&kexec_mutex);
876 }
877}
878
7bbee5ca
HK
879void crash_kexec(struct pt_regs *regs)
880{
881 int old_cpu, this_cpu;
882
883 /*
884 * Only one CPU is allowed to execute the crash_kexec() code as with
885 * panic(). Otherwise parallel calls of panic() and crash_kexec()
886 * may stop each other. To exclude them, we use panic_cpu here too.
887 */
888 this_cpu = raw_smp_processor_id();
889 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
890 if (old_cpu == PANIC_CPU_INVALID) {
891 /* This is the 1st CPU which comes here, so go ahead. */
cf9b1106 892 printk_nmi_flush_on_panic();
7bbee5ca
HK
893 __crash_kexec(regs);
894
895 /*
896 * Reset panic_cpu to allow another panic()/crash_kexec()
897 * call.
898 */
899 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
900 }
901}
902
2965faa5
DY
903size_t crash_get_memory_size(void)
904{
905 size_t size = 0;
906
907 mutex_lock(&kexec_mutex);
908 if (crashk_res.end != crashk_res.start)
909 size = resource_size(&crashk_res);
910 mutex_unlock(&kexec_mutex);
911 return size;
912}
913
914void __weak crash_free_reserved_phys_range(unsigned long begin,
915 unsigned long end)
916{
917 unsigned long addr;
918
919 for (addr = begin; addr < end; addr += PAGE_SIZE)
920 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
921}
922
923int crash_shrink_memory(unsigned long new_size)
924{
925 int ret = 0;
926 unsigned long start, end;
927 unsigned long old_size;
928 struct resource *ram_res;
929
930 mutex_lock(&kexec_mutex);
931
932 if (kexec_crash_image) {
933 ret = -ENOENT;
934 goto unlock;
935 }
936 start = crashk_res.start;
937 end = crashk_res.end;
938 old_size = (end == 0) ? 0 : end - start + 1;
939 if (new_size >= old_size) {
940 ret = (new_size == old_size) ? 0 : -EINVAL;
941 goto unlock;
942 }
943
944 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
945 if (!ram_res) {
946 ret = -ENOMEM;
947 goto unlock;
948 }
949
950 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
951 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
952
2965faa5
DY
953 crash_free_reserved_phys_range(end, crashk_res.end);
954
955 if ((start == end) && (crashk_res.parent != NULL))
956 release_resource(&crashk_res);
957
958 ram_res->start = end;
959 ram_res->end = crashk_res.end;
1a085d07 960 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2965faa5
DY
961 ram_res->name = "System RAM";
962
963 crashk_res.end = end - 1;
964
965 insert_resource(&iomem_resource, ram_res);
2965faa5
DY
966
967unlock:
968 mutex_unlock(&kexec_mutex);
969 return ret;
970}
971
972static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
973 size_t data_len)
974{
975 struct elf_note note;
976
977 note.n_namesz = strlen(name) + 1;
978 note.n_descsz = data_len;
979 note.n_type = type;
980 memcpy(buf, &note, sizeof(note));
981 buf += (sizeof(note) + 3)/4;
982 memcpy(buf, name, note.n_namesz);
983 buf += (note.n_namesz + 3)/4;
984 memcpy(buf, data, note.n_descsz);
985 buf += (note.n_descsz + 3)/4;
986
987 return buf;
988}
989
990static void final_note(u32 *buf)
991{
992 struct elf_note note;
993
994 note.n_namesz = 0;
995 note.n_descsz = 0;
996 note.n_type = 0;
997 memcpy(buf, &note, sizeof(note));
998}
999
1000void crash_save_cpu(struct pt_regs *regs, int cpu)
1001{
1002 struct elf_prstatus prstatus;
1003 u32 *buf;
1004
1005 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1006 return;
1007
1008 /* Using ELF notes here is opportunistic.
1009 * I need a well defined structure format
1010 * for the data I pass, and I need tags
1011 * on the data to indicate what information I have
1012 * squirrelled away. ELF notes happen to provide
1013 * all of that, so there is no need to invent something new.
1014 */
1015 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1016 if (!buf)
1017 return;
1018 memset(&prstatus, 0, sizeof(prstatus));
1019 prstatus.pr_pid = current->pid;
1020 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1021 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1022 &prstatus, sizeof(prstatus));
1023 final_note(buf);
1024}
1025
1026static int __init crash_notes_memory_init(void)
1027{
1028 /* Allocate memory for saving cpu registers. */
bbb78b8f
BH
1029 size_t size, align;
1030
1031 /*
1032 * crash_notes could be allocated across 2 vmalloc pages when percpu
1033 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1034 * pages are also on 2 continuous physical pages. In this case the
1035 * 2nd part of crash_notes in 2nd page could be lost since only the
1036 * starting address and size of crash_notes are exported through sysfs.
1037 * Here round up the size of crash_notes to the nearest power of two
1038 * and pass it to __alloc_percpu as align value. This can make sure
1039 * crash_notes is allocated inside one physical page.
1040 */
1041 size = sizeof(note_buf_t);
1042 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1043
1044 /*
1045 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1046 * definitely will be in 2 pages with that.
1047 */
1048 BUILD_BUG_ON(size > PAGE_SIZE);
1049
1050 crash_notes = __alloc_percpu(size, align);
2965faa5 1051 if (!crash_notes) {
de90a6bc 1052 pr_warn("Memory allocation for saving cpu register states failed\n");
2965faa5
DY
1053 return -ENOMEM;
1054 }
1055 return 0;
1056}
1057subsys_initcall(crash_notes_memory_init);
1058
1059
1060/*
1061 * parsing the "crashkernel" commandline
1062 *
1063 * this code is intended to be called from architecture specific code
1064 */
1065
1066
1067/*
1068 * This function parses command lines in the format
1069 *
1070 * crashkernel=ramsize-range:size[,...][@offset]
1071 *
1072 * The function returns 0 on success and -EINVAL on failure.
1073 */
1074static int __init parse_crashkernel_mem(char *cmdline,
1075 unsigned long long system_ram,
1076 unsigned long long *crash_size,
1077 unsigned long long *crash_base)
1078{
1079 char *cur = cmdline, *tmp;
1080
1081 /* for each entry of the comma-separated list */
1082 do {
1083 unsigned long long start, end = ULLONG_MAX, size;
1084
1085 /* get the start of the range */
1086 start = memparse(cur, &tmp);
1087 if (cur == tmp) {
1088 pr_warn("crashkernel: Memory value expected\n");
1089 return -EINVAL;
1090 }
1091 cur = tmp;
1092 if (*cur != '-') {
1093 pr_warn("crashkernel: '-' expected\n");
1094 return -EINVAL;
1095 }
1096 cur++;
1097
1098 /* if no ':' is here, than we read the end */
1099 if (*cur != ':') {
1100 end = memparse(cur, &tmp);
1101 if (cur == tmp) {
1102 pr_warn("crashkernel: Memory value expected\n");
1103 return -EINVAL;
1104 }
1105 cur = tmp;
1106 if (end <= start) {
1107 pr_warn("crashkernel: end <= start\n");
1108 return -EINVAL;
1109 }
1110 }
1111
1112 if (*cur != ':') {
1113 pr_warn("crashkernel: ':' expected\n");
1114 return -EINVAL;
1115 }
1116 cur++;
1117
1118 size = memparse(cur, &tmp);
1119 if (cur == tmp) {
1120 pr_warn("Memory value expected\n");
1121 return -EINVAL;
1122 }
1123 cur = tmp;
1124 if (size >= system_ram) {
1125 pr_warn("crashkernel: invalid size\n");
1126 return -EINVAL;
1127 }
1128
1129 /* match ? */
1130 if (system_ram >= start && system_ram < end) {
1131 *crash_size = size;
1132 break;
1133 }
1134 } while (*cur++ == ',');
1135
1136 if (*crash_size > 0) {
1137 while (*cur && *cur != ' ' && *cur != '@')
1138 cur++;
1139 if (*cur == '@') {
1140 cur++;
1141 *crash_base = memparse(cur, &tmp);
1142 if (cur == tmp) {
1143 pr_warn("Memory value expected after '@'\n");
1144 return -EINVAL;
1145 }
1146 }
1147 }
1148
1149 return 0;
1150}
1151
1152/*
1153 * That function parses "simple" (old) crashkernel command lines like
1154 *
1155 * crashkernel=size[@offset]
1156 *
1157 * It returns 0 on success and -EINVAL on failure.
1158 */
1159static int __init parse_crashkernel_simple(char *cmdline,
1160 unsigned long long *crash_size,
1161 unsigned long long *crash_base)
1162{
1163 char *cur = cmdline;
1164
1165 *crash_size = memparse(cmdline, &cur);
1166 if (cmdline == cur) {
1167 pr_warn("crashkernel: memory value expected\n");
1168 return -EINVAL;
1169 }
1170
1171 if (*cur == '@')
1172 *crash_base = memparse(cur+1, &cur);
1173 else if (*cur != ' ' && *cur != '\0') {
53b90c0c 1174 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
2965faa5
DY
1175 return -EINVAL;
1176 }
1177
1178 return 0;
1179}
1180
1181#define SUFFIX_HIGH 0
1182#define SUFFIX_LOW 1
1183#define SUFFIX_NULL 2
1184static __initdata char *suffix_tbl[] = {
1185 [SUFFIX_HIGH] = ",high",
1186 [SUFFIX_LOW] = ",low",
1187 [SUFFIX_NULL] = NULL,
1188};
1189
1190/*
1191 * That function parses "suffix" crashkernel command lines like
1192 *
1193 * crashkernel=size,[high|low]
1194 *
1195 * It returns 0 on success and -EINVAL on failure.
1196 */
1197static int __init parse_crashkernel_suffix(char *cmdline,
1198 unsigned long long *crash_size,
1199 const char *suffix)
1200{
1201 char *cur = cmdline;
1202
1203 *crash_size = memparse(cmdline, &cur);
1204 if (cmdline == cur) {
1205 pr_warn("crashkernel: memory value expected\n");
1206 return -EINVAL;
1207 }
1208
1209 /* check with suffix */
1210 if (strncmp(cur, suffix, strlen(suffix))) {
53b90c0c 1211 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
2965faa5
DY
1212 return -EINVAL;
1213 }
1214 cur += strlen(suffix);
1215 if (*cur != ' ' && *cur != '\0') {
53b90c0c 1216 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
2965faa5
DY
1217 return -EINVAL;
1218 }
1219
1220 return 0;
1221}
1222
1223static __init char *get_last_crashkernel(char *cmdline,
1224 const char *name,
1225 const char *suffix)
1226{
1227 char *p = cmdline, *ck_cmdline = NULL;
1228
1229 /* find crashkernel and use the last one if there are more */
1230 p = strstr(p, name);
1231 while (p) {
1232 char *end_p = strchr(p, ' ');
1233 char *q;
1234
1235 if (!end_p)
1236 end_p = p + strlen(p);
1237
1238 if (!suffix) {
1239 int i;
1240
1241 /* skip the one with any known suffix */
1242 for (i = 0; suffix_tbl[i]; i++) {
1243 q = end_p - strlen(suffix_tbl[i]);
1244 if (!strncmp(q, suffix_tbl[i],
1245 strlen(suffix_tbl[i])))
1246 goto next;
1247 }
1248 ck_cmdline = p;
1249 } else {
1250 q = end_p - strlen(suffix);
1251 if (!strncmp(q, suffix, strlen(suffix)))
1252 ck_cmdline = p;
1253 }
1254next:
1255 p = strstr(p+1, name);
1256 }
1257
1258 if (!ck_cmdline)
1259 return NULL;
1260
1261 return ck_cmdline;
1262}
1263
1264static int __init __parse_crashkernel(char *cmdline,
1265 unsigned long long system_ram,
1266 unsigned long long *crash_size,
1267 unsigned long long *crash_base,
1268 const char *name,
1269 const char *suffix)
1270{
1271 char *first_colon, *first_space;
1272 char *ck_cmdline;
1273
1274 BUG_ON(!crash_size || !crash_base);
1275 *crash_size = 0;
1276 *crash_base = 0;
1277
1278 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1279
1280 if (!ck_cmdline)
1281 return -EINVAL;
1282
1283 ck_cmdline += strlen(name);
1284
1285 if (suffix)
1286 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1287 suffix);
1288 /*
1289 * if the commandline contains a ':', then that's the extended
1290 * syntax -- if not, it must be the classic syntax
1291 */
1292 first_colon = strchr(ck_cmdline, ':');
1293 first_space = strchr(ck_cmdline, ' ');
1294 if (first_colon && (!first_space || first_colon < first_space))
1295 return parse_crashkernel_mem(ck_cmdline, system_ram,
1296 crash_size, crash_base);
1297
1298 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1299}
1300
1301/*
1302 * That function is the entry point for command line parsing and should be
1303 * called from the arch-specific code.
1304 */
1305int __init parse_crashkernel(char *cmdline,
1306 unsigned long long system_ram,
1307 unsigned long long *crash_size,
1308 unsigned long long *crash_base)
1309{
1310 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1311 "crashkernel=", NULL);
1312}
1313
1314int __init parse_crashkernel_high(char *cmdline,
1315 unsigned long long system_ram,
1316 unsigned long long *crash_size,
1317 unsigned long long *crash_base)
1318{
1319 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1320 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1321}
1322
1323int __init parse_crashkernel_low(char *cmdline,
1324 unsigned long long system_ram,
1325 unsigned long long *crash_size,
1326 unsigned long long *crash_base)
1327{
1328 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1329 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1330}
1331
1332static void update_vmcoreinfo_note(void)
1333{
1334 u32 *buf = vmcoreinfo_note;
1335
1336 if (!vmcoreinfo_size)
1337 return;
1338 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1339 vmcoreinfo_size);
1340 final_note(buf);
1341}
1342
1343void crash_save_vmcoreinfo(void)
1344{
1345 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1346 update_vmcoreinfo_note();
1347}
1348
1349void vmcoreinfo_append_str(const char *fmt, ...)
1350{
1351 va_list args;
1352 char buf[0x50];
1353 size_t r;
1354
1355 va_start(args, fmt);
1356 r = vscnprintf(buf, sizeof(buf), fmt, args);
1357 va_end(args);
1358
1359 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1360
1361 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1362
1363 vmcoreinfo_size += r;
1364}
1365
1366/*
1367 * provide an empty default implementation here -- architecture
1368 * code may override this
1369 */
1370void __weak arch_crash_save_vmcoreinfo(void)
1371{}
1372
1373unsigned long __weak paddr_vmcoreinfo_note(void)
1374{
1375 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1376}
1377
1378static int __init crash_save_vmcoreinfo_init(void)
1379{
1380 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1381 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1382
1383 VMCOREINFO_SYMBOL(init_uts_ns);
1384 VMCOREINFO_SYMBOL(node_online_map);
1385#ifdef CONFIG_MMU
1386 VMCOREINFO_SYMBOL(swapper_pg_dir);
1387#endif
1388 VMCOREINFO_SYMBOL(_stext);
1389 VMCOREINFO_SYMBOL(vmap_area_list);
1390
1391#ifndef CONFIG_NEED_MULTIPLE_NODES
1392 VMCOREINFO_SYMBOL(mem_map);
1393 VMCOREINFO_SYMBOL(contig_page_data);
1394#endif
1395#ifdef CONFIG_SPARSEMEM
1396 VMCOREINFO_SYMBOL(mem_section);
1397 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1398 VMCOREINFO_STRUCT_SIZE(mem_section);
1399 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1400#endif
1401 VMCOREINFO_STRUCT_SIZE(page);
1402 VMCOREINFO_STRUCT_SIZE(pglist_data);
1403 VMCOREINFO_STRUCT_SIZE(zone);
1404 VMCOREINFO_STRUCT_SIZE(free_area);
1405 VMCOREINFO_STRUCT_SIZE(list_head);
1406 VMCOREINFO_SIZE(nodemask_t);
1407 VMCOREINFO_OFFSET(page, flags);
0139aa7b 1408 VMCOREINFO_OFFSET(page, _refcount);
2965faa5
DY
1409 VMCOREINFO_OFFSET(page, mapping);
1410 VMCOREINFO_OFFSET(page, lru);
1411 VMCOREINFO_OFFSET(page, _mapcount);
1412 VMCOREINFO_OFFSET(page, private);
8639a847
AK
1413 VMCOREINFO_OFFSET(page, compound_dtor);
1414 VMCOREINFO_OFFSET(page, compound_order);
d7f53518 1415 VMCOREINFO_OFFSET(page, compound_head);
2965faa5
DY
1416 VMCOREINFO_OFFSET(pglist_data, node_zones);
1417 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1418#ifdef CONFIG_FLAT_NODE_MEM_MAP
1419 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1420#endif
1421 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1422 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1423 VMCOREINFO_OFFSET(pglist_data, node_id);
1424 VMCOREINFO_OFFSET(zone, free_area);
1425 VMCOREINFO_OFFSET(zone, vm_stat);
1426 VMCOREINFO_OFFSET(zone, spanned_pages);
1427 VMCOREINFO_OFFSET(free_area, free_list);
1428 VMCOREINFO_OFFSET(list_head, next);
1429 VMCOREINFO_OFFSET(list_head, prev);
1430 VMCOREINFO_OFFSET(vmap_area, va_start);
1431 VMCOREINFO_OFFSET(vmap_area, list);
1432 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1433 log_buf_kexec_setup();
1434 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1435 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1436 VMCOREINFO_NUMBER(PG_lru);
1437 VMCOREINFO_NUMBER(PG_private);
1438 VMCOREINFO_NUMBER(PG_swapcache);
1439 VMCOREINFO_NUMBER(PG_slab);
1440#ifdef CONFIG_MEMORY_FAILURE
1441 VMCOREINFO_NUMBER(PG_hwpoison);
1442#endif
1443 VMCOREINFO_NUMBER(PG_head_mask);
1444 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1303a27c
BH
1445#ifdef CONFIG_X86
1446 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
1447#endif
8639a847
AK
1448#ifdef CONFIG_HUGETLB_PAGE
1449 VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR);
2965faa5
DY
1450#endif
1451
1452 arch_crash_save_vmcoreinfo();
1453 update_vmcoreinfo_note();
1454
1455 return 0;
1456}
1457
1458subsys_initcall(crash_save_vmcoreinfo_init);
1459
1460/*
1461 * Move into place and start executing a preloaded standalone
1462 * executable. If nothing was preloaded return an error.
1463 */
1464int kernel_kexec(void)
1465{
1466 int error = 0;
1467
1468 if (!mutex_trylock(&kexec_mutex))
1469 return -EBUSY;
1470 if (!kexec_image) {
1471 error = -EINVAL;
1472 goto Unlock;
1473 }
1474
1475#ifdef CONFIG_KEXEC_JUMP
1476 if (kexec_image->preserve_context) {
1477 lock_system_sleep();
1478 pm_prepare_console();
1479 error = freeze_processes();
1480 if (error) {
1481 error = -EBUSY;
1482 goto Restore_console;
1483 }
1484 suspend_console();
1485 error = dpm_suspend_start(PMSG_FREEZE);
1486 if (error)
1487 goto Resume_console;
1488 /* At this point, dpm_suspend_start() has been called,
1489 * but *not* dpm_suspend_end(). We *must* call
1490 * dpm_suspend_end() now. Otherwise, drivers for
1491 * some devices (e.g. interrupt controllers) become
1492 * desynchronized with the actual state of the
1493 * hardware at resume time, and evil weirdness ensues.
1494 */
1495 error = dpm_suspend_end(PMSG_FREEZE);
1496 if (error)
1497 goto Resume_devices;
1498 error = disable_nonboot_cpus();
1499 if (error)
1500 goto Enable_cpus;
1501 local_irq_disable();
1502 error = syscore_suspend();
1503 if (error)
1504 goto Enable_irqs;
1505 } else
1506#endif
1507 {
1508 kexec_in_progress = true;
1509 kernel_restart_prepare(NULL);
1510 migrate_to_reboot_cpu();
1511
1512 /*
1513 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1514 * no further code needs to use CPU hotplug (which is true in
1515 * the reboot case). However, the kexec path depends on using
1516 * CPU hotplug again; so re-enable it here.
1517 */
1518 cpu_hotplug_enable();
1519 pr_emerg("Starting new kernel\n");
1520 machine_shutdown();
1521 }
1522
1523 machine_kexec(kexec_image);
1524
1525#ifdef CONFIG_KEXEC_JUMP
1526 if (kexec_image->preserve_context) {
1527 syscore_resume();
1528 Enable_irqs:
1529 local_irq_enable();
1530 Enable_cpus:
1531 enable_nonboot_cpus();
1532 dpm_resume_start(PMSG_RESTORE);
1533 Resume_devices:
1534 dpm_resume_end(PMSG_RESTORE);
1535 Resume_console:
1536 resume_console();
1537 thaw_processes();
1538 Restore_console:
1539 pm_restore_console();
1540 unlock_system_sleep();
1541 }
1542#endif
1543
1544 Unlock:
1545 mutex_unlock(&kexec_mutex);
1546 return error;
1547}
1548
1549/*
7a0058ec
XP
1550 * Protection mechanism for crashkernel reserved memory after
1551 * the kdump kernel is loaded.
2965faa5
DY
1552 *
1553 * Provide an empty default implementation here -- architecture
1554 * code may override this
1555 */
9b492cf5
XP
1556void __weak arch_kexec_protect_crashkres(void)
1557{}
1558
1559void __weak arch_kexec_unprotect_crashkres(void)
1560{}