hrtimer: check relative timeouts for overflow
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
c0a31329
TG
46
47#include <asm/uaccess.h>
48
49/**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
d316c57f 54ktime_t ktime_get(void)
c0a31329
TG
55{
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61}
641b9e0e 62EXPORT_SYMBOL_GPL(ktime_get);
c0a31329
TG
63
64/**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
66 *
67 * returns the time in ktime_t format
68 */
d316c57f 69ktime_t ktime_get_real(void)
c0a31329
TG
70{
71 struct timespec now;
72
73 getnstimeofday(&now);
74
75 return timespec_to_ktime(now);
76}
77
78EXPORT_SYMBOL_GPL(ktime_get_real);
79
80/*
81 * The timer bases:
7978672c
GA
82 *
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
c0a31329 88 */
54cdfdb4 89DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 90{
3c8aa39d
TG
91
92 .clock_base =
c0a31329 93 {
3c8aa39d
TG
94 {
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
54cdfdb4 97 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
98 },
99 {
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
54cdfdb4 102 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
103 },
104 }
c0a31329
TG
105};
106
107/**
108 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
109 * @ts: pointer to timespec variable
110 *
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 113 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
114 */
115void ktime_get_ts(struct timespec *ts)
116{
117 struct timespec tomono;
118 unsigned long seq;
119
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
124
125 } while (read_seqretry(&xtime_lock, seq));
126
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
129}
69778e32 130EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 131
92127c7a
TG
132/*
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
135 */
3c8aa39d 136static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
137{
138 ktime_t xtim, tomono;
ad28d94a 139 struct timespec xts, tom;
92127c7a
TG
140 unsigned long seq;
141
142 do {
143 seq = read_seqbegin(&xtime_lock);
2c6b47de 144 xts = current_kernel_time();
ad28d94a 145 tom = wall_to_monotonic;
92127c7a
TG
146 } while (read_seqretry(&xtime_lock, seq));
147
f4304ab2 148 xtim = timespec_to_ktime(xts);
ad28d94a 149 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
92127c7a
TG
153}
154
303e967f
TG
155/*
156 * Helper function to check, whether the timer is running the callback
157 * function
158 */
159static inline int hrtimer_callback_running(struct hrtimer *timer)
160{
161 return timer->state & HRTIMER_STATE_CALLBACK;
162}
163
c0a31329
TG
164/*
165 * Functions and macros which are different for UP/SMP systems are kept in a
166 * single place
167 */
168#ifdef CONFIG_SMP
169
c0a31329
TG
170/*
171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
172 * means that all timers which are tied to this base via timer->base are
173 * locked, and the base itself is locked too.
174 *
175 * So __run_timers/migrate_timers can safely modify all timers which could
176 * be found on the lists/queues.
177 *
178 * When the timer's base is locked, and the timer removed from list, it is
179 * possible to set timer->base = NULL and drop the lock: the timer remains
180 * locked.
181 */
3c8aa39d
TG
182static
183struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
184 unsigned long *flags)
c0a31329 185{
3c8aa39d 186 struct hrtimer_clock_base *base;
c0a31329
TG
187
188 for (;;) {
189 base = timer->base;
190 if (likely(base != NULL)) {
3c8aa39d 191 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
192 if (likely(base == timer->base))
193 return base;
194 /* The timer has migrated to another CPU: */
3c8aa39d 195 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
196 }
197 cpu_relax();
198 }
199}
200
201/*
202 * Switch the timer base to the current CPU when possible.
203 */
3c8aa39d
TG
204static inline struct hrtimer_clock_base *
205switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 206{
3c8aa39d
TG
207 struct hrtimer_clock_base *new_base;
208 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 209
3c8aa39d
TG
210 new_cpu_base = &__get_cpu_var(hrtimer_bases);
211 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
212
213 if (base != new_base) {
214 /*
215 * We are trying to schedule the timer on the local CPU.
216 * However we can't change timer's base while it is running,
217 * so we keep it on the same CPU. No hassle vs. reprogramming
218 * the event source in the high resolution case. The softirq
219 * code will take care of this when the timer function has
220 * completed. There is no conflict as we hold the lock until
221 * the timer is enqueued.
222 */
54cdfdb4 223 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
224 return base;
225
226 /* See the comment in lock_timer_base() */
227 timer->base = NULL;
3c8aa39d
TG
228 spin_unlock(&base->cpu_base->lock);
229 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
230 timer->base = new_base;
231 }
232 return new_base;
233}
234
235#else /* CONFIG_SMP */
236
3c8aa39d 237static inline struct hrtimer_clock_base *
c0a31329
TG
238lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
239{
3c8aa39d 240 struct hrtimer_clock_base *base = timer->base;
c0a31329 241
3c8aa39d 242 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
243
244 return base;
245}
246
54cdfdb4 247# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
248
249#endif /* !CONFIG_SMP */
250
251/*
252 * Functions for the union type storage format of ktime_t which are
253 * too large for inlining:
254 */
255#if BITS_PER_LONG < 64
256# ifndef CONFIG_KTIME_SCALAR
257/**
258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
259 * @kt: addend
260 * @nsec: the scalar nsec value to add
261 *
262 * Returns the sum of kt and nsec in ktime_t format
263 */
264ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
265{
266 ktime_t tmp;
267
268 if (likely(nsec < NSEC_PER_SEC)) {
269 tmp.tv64 = nsec;
270 } else {
271 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
272
273 tmp = ktime_set((long)nsec, rem);
274 }
275
276 return ktime_add(kt, tmp);
277}
b8b8fd2d
DH
278
279EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
280
281/**
282 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
283 * @kt: minuend
284 * @nsec: the scalar nsec value to subtract
285 *
286 * Returns the subtraction of @nsec from @kt in ktime_t format
287 */
288ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
289{
290 ktime_t tmp;
291
292 if (likely(nsec < NSEC_PER_SEC)) {
293 tmp.tv64 = nsec;
294 } else {
295 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
296
297 tmp = ktime_set((long)nsec, rem);
298 }
299
300 return ktime_sub(kt, tmp);
301}
302
303EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
304# endif /* !CONFIG_KTIME_SCALAR */
305
306/*
307 * Divide a ktime value by a nanosecond value
308 */
4d672e7a 309u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329
TG
310{
311 u64 dclc, inc, dns;
312 int sft = 0;
313
314 dclc = dns = ktime_to_ns(kt);
315 inc = div;
316 /* Make sure the divisor is less than 2^32: */
317 while (div >> 32) {
318 sft++;
319 div >>= 1;
320 }
321 dclc >>= sft;
322 do_div(dclc, (unsigned long) div);
323
4d672e7a 324 return dclc;
c0a31329 325}
c0a31329
TG
326#endif /* BITS_PER_LONG >= 64 */
327
5a7780e7
TG
328/*
329 * Add two ktime values and do a safety check for overflow:
330 */
331ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
332{
333 ktime_t res = ktime_add(lhs, rhs);
334
335 /*
336 * We use KTIME_SEC_MAX here, the maximum timeout which we can
337 * return to user space in a timespec:
338 */
339 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
340 res = ktime_set(KTIME_SEC_MAX, 0);
341
342 return res;
343}
344
d3d74453
PZ
345/*
346 * Check, whether the timer is on the callback pending list
347 */
348static inline int hrtimer_cb_pending(const struct hrtimer *timer)
349{
350 return timer->state & HRTIMER_STATE_PENDING;
351}
352
353/*
354 * Remove a timer from the callback pending list
355 */
356static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
357{
358 list_del_init(&timer->cb_entry);
359}
360
54cdfdb4
TG
361/* High resolution timer related functions */
362#ifdef CONFIG_HIGH_RES_TIMERS
363
364/*
365 * High resolution timer enabled ?
366 */
367static int hrtimer_hres_enabled __read_mostly = 1;
368
369/*
370 * Enable / Disable high resolution mode
371 */
372static int __init setup_hrtimer_hres(char *str)
373{
374 if (!strcmp(str, "off"))
375 hrtimer_hres_enabled = 0;
376 else if (!strcmp(str, "on"))
377 hrtimer_hres_enabled = 1;
378 else
379 return 0;
380 return 1;
381}
382
383__setup("highres=", setup_hrtimer_hres);
384
385/*
386 * hrtimer_high_res_enabled - query, if the highres mode is enabled
387 */
388static inline int hrtimer_is_hres_enabled(void)
389{
390 return hrtimer_hres_enabled;
391}
392
393/*
394 * Is the high resolution mode active ?
395 */
396static inline int hrtimer_hres_active(void)
397{
398 return __get_cpu_var(hrtimer_bases).hres_active;
399}
400
401/*
402 * Reprogram the event source with checking both queues for the
403 * next event
404 * Called with interrupts disabled and base->lock held
405 */
406static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
407{
408 int i;
409 struct hrtimer_clock_base *base = cpu_base->clock_base;
410 ktime_t expires;
411
412 cpu_base->expires_next.tv64 = KTIME_MAX;
413
414 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
415 struct hrtimer *timer;
416
417 if (!base->first)
418 continue;
419 timer = rb_entry(base->first, struct hrtimer, node);
420 expires = ktime_sub(timer->expires, base->offset);
421 if (expires.tv64 < cpu_base->expires_next.tv64)
422 cpu_base->expires_next = expires;
423 }
424
425 if (cpu_base->expires_next.tv64 != KTIME_MAX)
426 tick_program_event(cpu_base->expires_next, 1);
427}
428
429/*
430 * Shared reprogramming for clock_realtime and clock_monotonic
431 *
432 * When a timer is enqueued and expires earlier than the already enqueued
433 * timers, we have to check, whether it expires earlier than the timer for
434 * which the clock event device was armed.
435 *
436 * Called with interrupts disabled and base->cpu_base.lock held
437 */
438static int hrtimer_reprogram(struct hrtimer *timer,
439 struct hrtimer_clock_base *base)
440{
441 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
442 ktime_t expires = ktime_sub(timer->expires, base->offset);
443 int res;
444
445 /*
446 * When the callback is running, we do not reprogram the clock event
447 * device. The timer callback is either running on a different CPU or
3a4fa0a2 448 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
449 * reprogramming is handled either by the softirq, which called the
450 * callback or at the end of the hrtimer_interrupt.
451 */
452 if (hrtimer_callback_running(timer))
453 return 0;
454
455 if (expires.tv64 >= expires_next->tv64)
456 return 0;
457
458 /*
459 * Clockevents returns -ETIME, when the event was in the past.
460 */
461 res = tick_program_event(expires, 0);
462 if (!IS_ERR_VALUE(res))
463 *expires_next = expires;
464 return res;
465}
466
467
468/*
469 * Retrigger next event is called after clock was set
470 *
471 * Called with interrupts disabled via on_each_cpu()
472 */
473static void retrigger_next_event(void *arg)
474{
475 struct hrtimer_cpu_base *base;
476 struct timespec realtime_offset;
477 unsigned long seq;
478
479 if (!hrtimer_hres_active())
480 return;
481
482 do {
483 seq = read_seqbegin(&xtime_lock);
484 set_normalized_timespec(&realtime_offset,
485 -wall_to_monotonic.tv_sec,
486 -wall_to_monotonic.tv_nsec);
487 } while (read_seqretry(&xtime_lock, seq));
488
489 base = &__get_cpu_var(hrtimer_bases);
490
491 /* Adjust CLOCK_REALTIME offset */
492 spin_lock(&base->lock);
493 base->clock_base[CLOCK_REALTIME].offset =
494 timespec_to_ktime(realtime_offset);
495
496 hrtimer_force_reprogram(base);
497 spin_unlock(&base->lock);
498}
499
500/*
501 * Clock realtime was set
502 *
503 * Change the offset of the realtime clock vs. the monotonic
504 * clock.
505 *
506 * We might have to reprogram the high resolution timer interrupt. On
507 * SMP we call the architecture specific code to retrigger _all_ high
508 * resolution timer interrupts. On UP we just disable interrupts and
509 * call the high resolution interrupt code.
510 */
511void clock_was_set(void)
512{
513 /* Retrigger the CPU local events everywhere */
514 on_each_cpu(retrigger_next_event, NULL, 0, 1);
515}
516
995f054f
IM
517/*
518 * During resume we might have to reprogram the high resolution timer
519 * interrupt (on the local CPU):
520 */
521void hres_timers_resume(void)
522{
523 WARN_ON_ONCE(num_online_cpus() > 1);
524
525 /* Retrigger the CPU local events: */
526 retrigger_next_event(NULL);
527}
528
54cdfdb4
TG
529/*
530 * Initialize the high resolution related parts of cpu_base
531 */
532static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
533{
534 base->expires_next.tv64 = KTIME_MAX;
535 base->hres_active = 0;
54cdfdb4
TG
536}
537
538/*
539 * Initialize the high resolution related parts of a hrtimer
540 */
541static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
542{
54cdfdb4
TG
543}
544
545/*
546 * When High resolution timers are active, try to reprogram. Note, that in case
547 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
548 * check happens. The timer gets enqueued into the rbtree. The reprogramming
549 * and expiry check is done in the hrtimer_interrupt or in the softirq.
550 */
551static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
552 struct hrtimer_clock_base *base)
553{
554 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
555
556 /* Timer is expired, act upon the callback mode */
557 switch(timer->cb_mode) {
558 case HRTIMER_CB_IRQSAFE_NO_RESTART:
559 /*
560 * We can call the callback from here. No restart
561 * happens, so no danger of recursion
562 */
563 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
564 return 1;
565 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
566 /*
567 * This is solely for the sched tick emulation with
568 * dynamic tick support to ensure that we do not
569 * restart the tick right on the edge and end up with
570 * the tick timer in the softirq ! The calling site
571 * takes care of this.
572 */
573 return 1;
574 case HRTIMER_CB_IRQSAFE:
575 case HRTIMER_CB_SOFTIRQ:
576 /*
577 * Move everything else into the softirq pending list !
578 */
579 list_add_tail(&timer->cb_entry,
580 &base->cpu_base->cb_pending);
581 timer->state = HRTIMER_STATE_PENDING;
582 raise_softirq(HRTIMER_SOFTIRQ);
583 return 1;
584 default:
585 BUG();
586 }
587 }
588 return 0;
589}
590
591/*
592 * Switch to high resolution mode
593 */
f8953856 594static int hrtimer_switch_to_hres(void)
54cdfdb4 595{
820de5c3
IM
596 int cpu = smp_processor_id();
597 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
598 unsigned long flags;
599
600 if (base->hres_active)
f8953856 601 return 1;
54cdfdb4
TG
602
603 local_irq_save(flags);
604
605 if (tick_init_highres()) {
606 local_irq_restore(flags);
820de5c3
IM
607 printk(KERN_WARNING "Could not switch to high resolution "
608 "mode on CPU %d\n", cpu);
f8953856 609 return 0;
54cdfdb4
TG
610 }
611 base->hres_active = 1;
612 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
613 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
614
615 tick_setup_sched_timer();
616
617 /* "Retrigger" the interrupt to get things going */
618 retrigger_next_event(NULL);
619 local_irq_restore(flags);
edfed66e 620 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 621 smp_processor_id());
f8953856 622 return 1;
54cdfdb4
TG
623}
624
625#else
626
627static inline int hrtimer_hres_active(void) { return 0; }
628static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 629static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
630static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
631static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
632 struct hrtimer_clock_base *base)
633{
634 return 0;
635}
54cdfdb4
TG
636static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
637static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
d3d74453
PZ
638static inline int hrtimer_reprogram(struct hrtimer *timer,
639 struct hrtimer_clock_base *base)
640{
641 return 0;
642}
54cdfdb4
TG
643
644#endif /* CONFIG_HIGH_RES_TIMERS */
645
82f67cd9
IM
646#ifdef CONFIG_TIMER_STATS
647void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
648{
649 if (timer->start_site)
650 return;
651
652 timer->start_site = addr;
653 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
654 timer->start_pid = current->pid;
655}
656#endif
657
c0a31329 658/*
6506f2aa 659 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
660 */
661static inline
662void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
663{
3c8aa39d 664 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
665}
666
667/**
668 * hrtimer_forward - forward the timer expiry
c0a31329 669 * @timer: hrtimer to forward
44f21475 670 * @now: forward past this time
c0a31329
TG
671 * @interval: the interval to forward
672 *
673 * Forward the timer expiry so it will expire in the future.
8dca6f33 674 * Returns the number of overruns.
c0a31329 675 */
4d672e7a 676u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 677{
4d672e7a 678 u64 orun = 1;
44f21475 679 ktime_t delta;
c0a31329
TG
680
681 delta = ktime_sub(now, timer->expires);
682
683 if (delta.tv64 < 0)
684 return 0;
685
c9db4fa1
TG
686 if (interval.tv64 < timer->base->resolution.tv64)
687 interval.tv64 = timer->base->resolution.tv64;
688
c0a31329 689 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 690 s64 incr = ktime_to_ns(interval);
c0a31329
TG
691
692 orun = ktime_divns(delta, incr);
693 timer->expires = ktime_add_ns(timer->expires, incr * orun);
694 if (timer->expires.tv64 > now.tv64)
695 return orun;
696 /*
697 * This (and the ktime_add() below) is the
698 * correction for exact:
699 */
700 orun++;
701 }
5a7780e7 702 timer->expires = ktime_add_safe(timer->expires, interval);
c0a31329
TG
703
704 return orun;
705}
6bdb6b62 706EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
707
708/*
709 * enqueue_hrtimer - internal function to (re)start a timer
710 *
711 * The timer is inserted in expiry order. Insertion into the
712 * red black tree is O(log(n)). Must hold the base lock.
713 */
3c8aa39d 714static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 715 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
716{
717 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
718 struct rb_node *parent = NULL;
719 struct hrtimer *entry;
99bc2fcb 720 int leftmost = 1;
c0a31329
TG
721
722 /*
723 * Find the right place in the rbtree:
724 */
725 while (*link) {
726 parent = *link;
727 entry = rb_entry(parent, struct hrtimer, node);
728 /*
729 * We dont care about collisions. Nodes with
730 * the same expiry time stay together.
731 */
99bc2fcb 732 if (timer->expires.tv64 < entry->expires.tv64) {
c0a31329 733 link = &(*link)->rb_left;
99bc2fcb 734 } else {
c0a31329 735 link = &(*link)->rb_right;
99bc2fcb
IM
736 leftmost = 0;
737 }
c0a31329
TG
738 }
739
740 /*
288867ec
TG
741 * Insert the timer to the rbtree and check whether it
742 * replaces the first pending timer
c0a31329 743 */
99bc2fcb 744 if (leftmost) {
54cdfdb4
TG
745 /*
746 * Reprogram the clock event device. When the timer is already
747 * expired hrtimer_enqueue_reprogram has either called the
748 * callback or added it to the pending list and raised the
749 * softirq.
750 *
751 * This is a NOP for !HIGHRES
752 */
753 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
754 return;
755
756 base->first = &timer->node;
757 }
758
c0a31329
TG
759 rb_link_node(&timer->node, parent, link);
760 rb_insert_color(&timer->node, &base->active);
303e967f
TG
761 /*
762 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
763 * state of a possibly running callback.
764 */
765 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 766}
c0a31329
TG
767
768/*
769 * __remove_hrtimer - internal function to remove a timer
770 *
771 * Caller must hold the base lock.
54cdfdb4
TG
772 *
773 * High resolution timer mode reprograms the clock event device when the
774 * timer is the one which expires next. The caller can disable this by setting
775 * reprogram to zero. This is useful, when the context does a reprogramming
776 * anyway (e.g. timer interrupt)
c0a31329 777 */
3c8aa39d 778static void __remove_hrtimer(struct hrtimer *timer,
303e967f 779 struct hrtimer_clock_base *base,
54cdfdb4 780 unsigned long newstate, int reprogram)
c0a31329 781{
54cdfdb4
TG
782 /* High res. callback list. NOP for !HIGHRES */
783 if (hrtimer_cb_pending(timer))
784 hrtimer_remove_cb_pending(timer);
785 else {
786 /*
787 * Remove the timer from the rbtree and replace the
788 * first entry pointer if necessary.
789 */
790 if (base->first == &timer->node) {
791 base->first = rb_next(&timer->node);
792 /* Reprogram the clock event device. if enabled */
793 if (reprogram && hrtimer_hres_active())
794 hrtimer_force_reprogram(base->cpu_base);
795 }
796 rb_erase(&timer->node, &base->active);
797 }
303e967f 798 timer->state = newstate;
c0a31329
TG
799}
800
801/*
802 * remove hrtimer, called with base lock held
803 */
804static inline int
3c8aa39d 805remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 806{
303e967f 807 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
808 int reprogram;
809
810 /*
811 * Remove the timer and force reprogramming when high
812 * resolution mode is active and the timer is on the current
813 * CPU. If we remove a timer on another CPU, reprogramming is
814 * skipped. The interrupt event on this CPU is fired and
815 * reprogramming happens in the interrupt handler. This is a
816 * rare case and less expensive than a smp call.
817 */
82f67cd9 818 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
819 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
820 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
821 reprogram);
c0a31329
TG
822 return 1;
823 }
824 return 0;
825}
826
827/**
828 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
829 * @timer: the timer to be added
830 * @tim: expiry time
831 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
832 *
833 * Returns:
834 * 0 on success
835 * 1 when the timer was active
836 */
837int
838hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
839{
3c8aa39d 840 struct hrtimer_clock_base *base, *new_base;
c0a31329
TG
841 unsigned long flags;
842 int ret;
843
844 base = lock_hrtimer_base(timer, &flags);
845
846 /* Remove an active timer from the queue: */
847 ret = remove_hrtimer(timer, base);
848
849 /* Switch the timer base, if necessary: */
850 new_base = switch_hrtimer_base(timer, base);
851
c9cb2e3d 852 if (mode == HRTIMER_MODE_REL) {
5a7780e7 853 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
854 /*
855 * CONFIG_TIME_LOW_RES is a temporary way for architectures
856 * to signal that they simply return xtime in
857 * do_gettimeoffset(). In this case we want to round up by
858 * resolution when starting a relative timer, to avoid short
859 * timeouts. This will go away with the GTOD framework.
860 */
861#ifdef CONFIG_TIME_LOW_RES
5a7780e7 862 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
863#endif
864 }
c0a31329
TG
865 timer->expires = tim;
866
82f67cd9
IM
867 timer_stats_hrtimer_set_start_info(timer);
868
935c631d
IM
869 /*
870 * Only allow reprogramming if the new base is on this CPU.
871 * (it might still be on another CPU if the timer was pending)
872 */
873 enqueue_hrtimer(timer, new_base,
874 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
c0a31329
TG
875
876 unlock_hrtimer_base(timer, &flags);
877
878 return ret;
879}
8d16b764 880EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
881
882/**
883 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
884 * @timer: hrtimer to stop
885 *
886 * Returns:
887 * 0 when the timer was not active
888 * 1 when the timer was active
889 * -1 when the timer is currently excuting the callback function and
fa9799e3 890 * cannot be stopped
c0a31329
TG
891 */
892int hrtimer_try_to_cancel(struct hrtimer *timer)
893{
3c8aa39d 894 struct hrtimer_clock_base *base;
c0a31329
TG
895 unsigned long flags;
896 int ret = -1;
897
898 base = lock_hrtimer_base(timer, &flags);
899
303e967f 900 if (!hrtimer_callback_running(timer))
c0a31329
TG
901 ret = remove_hrtimer(timer, base);
902
903 unlock_hrtimer_base(timer, &flags);
904
905 return ret;
906
907}
8d16b764 908EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
909
910/**
911 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
912 * @timer: the timer to be cancelled
913 *
914 * Returns:
915 * 0 when the timer was not active
916 * 1 when the timer was active
917 */
918int hrtimer_cancel(struct hrtimer *timer)
919{
920 for (;;) {
921 int ret = hrtimer_try_to_cancel(timer);
922
923 if (ret >= 0)
924 return ret;
5ef37b19 925 cpu_relax();
c0a31329
TG
926 }
927}
8d16b764 928EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
929
930/**
931 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
932 * @timer: the timer to read
933 */
934ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
935{
3c8aa39d 936 struct hrtimer_clock_base *base;
c0a31329
TG
937 unsigned long flags;
938 ktime_t rem;
939
940 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 941 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
942 unlock_hrtimer_base(timer, &flags);
943
944 return rem;
945}
8d16b764 946EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 947
fd064b9b 948#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
69239749
TL
949/**
950 * hrtimer_get_next_event - get the time until next expiry event
951 *
952 * Returns the delta to the next expiry event or KTIME_MAX if no timer
953 * is pending.
954 */
955ktime_t hrtimer_get_next_event(void)
956{
3c8aa39d
TG
957 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
958 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
959 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
960 unsigned long flags;
961 int i;
962
3c8aa39d
TG
963 spin_lock_irqsave(&cpu_base->lock, flags);
964
54cdfdb4
TG
965 if (!hrtimer_hres_active()) {
966 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
967 struct hrtimer *timer;
69239749 968
54cdfdb4
TG
969 if (!base->first)
970 continue;
3c8aa39d 971
54cdfdb4
TG
972 timer = rb_entry(base->first, struct hrtimer, node);
973 delta.tv64 = timer->expires.tv64;
974 delta = ktime_sub(delta, base->get_time());
975 if (delta.tv64 < mindelta.tv64)
976 mindelta.tv64 = delta.tv64;
977 }
69239749 978 }
3c8aa39d
TG
979
980 spin_unlock_irqrestore(&cpu_base->lock, flags);
981
69239749
TL
982 if (mindelta.tv64 < 0)
983 mindelta.tv64 = 0;
984 return mindelta;
985}
986#endif
987
c0a31329 988/**
7978672c 989 * hrtimer_init - initialize a timer to the given clock
7978672c 990 * @timer: the timer to be initialized
c0a31329 991 * @clock_id: the clock to be used
7978672c 992 * @mode: timer mode abs/rel
c0a31329 993 */
7978672c
GA
994void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
995 enum hrtimer_mode mode)
c0a31329 996{
3c8aa39d 997 struct hrtimer_cpu_base *cpu_base;
c0a31329 998
7978672c
GA
999 memset(timer, 0, sizeof(struct hrtimer));
1000
3c8aa39d 1001 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1002
c9cb2e3d 1003 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1004 clock_id = CLOCK_MONOTONIC;
1005
3c8aa39d 1006 timer->base = &cpu_base->clock_base[clock_id];
d3d74453 1007 INIT_LIST_HEAD(&timer->cb_entry);
54cdfdb4 1008 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1009
1010#ifdef CONFIG_TIMER_STATS
1011 timer->start_site = NULL;
1012 timer->start_pid = -1;
1013 memset(timer->start_comm, 0, TASK_COMM_LEN);
1014#endif
c0a31329 1015}
8d16b764 1016EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1017
1018/**
1019 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1020 * @which_clock: which clock to query
1021 * @tp: pointer to timespec variable to store the resolution
1022 *
72fd4a35
RD
1023 * Store the resolution of the clock selected by @which_clock in the
1024 * variable pointed to by @tp.
c0a31329
TG
1025 */
1026int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1027{
3c8aa39d 1028 struct hrtimer_cpu_base *cpu_base;
c0a31329 1029
3c8aa39d
TG
1030 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1031 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1032
1033 return 0;
1034}
8d16b764 1035EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1036
d3d74453
PZ
1037static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
1038{
1039 spin_lock_irq(&cpu_base->lock);
1040
1041 while (!list_empty(&cpu_base->cb_pending)) {
1042 enum hrtimer_restart (*fn)(struct hrtimer *);
1043 struct hrtimer *timer;
1044 int restart;
1045
1046 timer = list_entry(cpu_base->cb_pending.next,
1047 struct hrtimer, cb_entry);
1048
1049 timer_stats_account_hrtimer(timer);
1050
1051 fn = timer->function;
1052 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1053 spin_unlock_irq(&cpu_base->lock);
1054
1055 restart = fn(timer);
1056
1057 spin_lock_irq(&cpu_base->lock);
1058
1059 timer->state &= ~HRTIMER_STATE_CALLBACK;
1060 if (restart == HRTIMER_RESTART) {
1061 BUG_ON(hrtimer_active(timer));
1062 /*
1063 * Enqueue the timer, allow reprogramming of the event
1064 * device
1065 */
1066 enqueue_hrtimer(timer, timer->base, 1);
1067 } else if (hrtimer_active(timer)) {
1068 /*
1069 * If the timer was rearmed on another CPU, reprogram
1070 * the event device.
1071 */
1072 if (timer->base->first == &timer->node)
1073 hrtimer_reprogram(timer, timer->base);
1074 }
1075 }
1076 spin_unlock_irq(&cpu_base->lock);
1077}
1078
1079static void __run_hrtimer(struct hrtimer *timer)
1080{
1081 struct hrtimer_clock_base *base = timer->base;
1082 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1083 enum hrtimer_restart (*fn)(struct hrtimer *);
1084 int restart;
1085
1086 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1087 timer_stats_account_hrtimer(timer);
1088
1089 fn = timer->function;
1090 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
1091 /*
1092 * Used for scheduler timers, avoid lock inversion with
1093 * rq->lock and tasklist_lock.
1094 *
1095 * These timers are required to deal with enqueue expiry
1096 * themselves and are not allowed to migrate.
1097 */
1098 spin_unlock(&cpu_base->lock);
1099 restart = fn(timer);
1100 spin_lock(&cpu_base->lock);
1101 } else
1102 restart = fn(timer);
1103
1104 /*
1105 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1106 * reprogramming of the event hardware. This happens at the end of this
1107 * function anyway.
1108 */
1109 if (restart != HRTIMER_NORESTART) {
1110 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1111 enqueue_hrtimer(timer, base, 0);
1112 }
1113 timer->state &= ~HRTIMER_STATE_CALLBACK;
1114}
1115
54cdfdb4
TG
1116#ifdef CONFIG_HIGH_RES_TIMERS
1117
1118/*
1119 * High resolution timer interrupt
1120 * Called with interrupts disabled
1121 */
1122void hrtimer_interrupt(struct clock_event_device *dev)
1123{
1124 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1125 struct hrtimer_clock_base *base;
1126 ktime_t expires_next, now;
1127 int i, raise = 0;
1128
1129 BUG_ON(!cpu_base->hres_active);
1130 cpu_base->nr_events++;
1131 dev->next_event.tv64 = KTIME_MAX;
1132
1133 retry:
1134 now = ktime_get();
1135
1136 expires_next.tv64 = KTIME_MAX;
1137
1138 base = cpu_base->clock_base;
1139
1140 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1141 ktime_t basenow;
1142 struct rb_node *node;
1143
1144 spin_lock(&cpu_base->lock);
1145
1146 basenow = ktime_add(now, base->offset);
1147
1148 while ((node = base->first)) {
1149 struct hrtimer *timer;
1150
1151 timer = rb_entry(node, struct hrtimer, node);
1152
1153 if (basenow.tv64 < timer->expires.tv64) {
1154 ktime_t expires;
1155
1156 expires = ktime_sub(timer->expires,
1157 base->offset);
1158 if (expires.tv64 < expires_next.tv64)
1159 expires_next = expires;
1160 break;
1161 }
1162
1163 /* Move softirq callbacks to the pending list */
1164 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1165 __remove_hrtimer(timer, base,
1166 HRTIMER_STATE_PENDING, 0);
1167 list_add_tail(&timer->cb_entry,
1168 &base->cpu_base->cb_pending);
1169 raise = 1;
1170 continue;
1171 }
1172
d3d74453 1173 __run_hrtimer(timer);
54cdfdb4
TG
1174 }
1175 spin_unlock(&cpu_base->lock);
1176 base++;
1177 }
1178
1179 cpu_base->expires_next = expires_next;
1180
1181 /* Reprogramming necessary ? */
1182 if (expires_next.tv64 != KTIME_MAX) {
1183 if (tick_program_event(expires_next, 0))
1184 goto retry;
1185 }
1186
1187 /* Raise softirq ? */
1188 if (raise)
1189 raise_softirq(HRTIMER_SOFTIRQ);
1190}
1191
1192static void run_hrtimer_softirq(struct softirq_action *h)
1193{
d3d74453
PZ
1194 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
1195}
54cdfdb4 1196
d3d74453 1197#endif /* CONFIG_HIGH_RES_TIMERS */
82f67cd9 1198
d3d74453
PZ
1199/*
1200 * Called from timer softirq every jiffy, expire hrtimers:
1201 *
1202 * For HRT its the fall back code to run the softirq in the timer
1203 * softirq context in case the hrtimer initialization failed or has
1204 * not been done yet.
1205 */
1206void hrtimer_run_pending(void)
1207{
1208 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
54cdfdb4 1209
d3d74453
PZ
1210 if (hrtimer_hres_active())
1211 return;
54cdfdb4 1212
d3d74453
PZ
1213 /*
1214 * This _is_ ugly: We have to check in the softirq context,
1215 * whether we can switch to highres and / or nohz mode. The
1216 * clocksource switch happens in the timer interrupt with
1217 * xtime_lock held. Notification from there only sets the
1218 * check bit in the tick_oneshot code, otherwise we might
1219 * deadlock vs. xtime_lock.
1220 */
1221 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1222 hrtimer_switch_to_hres();
54cdfdb4 1223
d3d74453 1224 run_hrtimer_pending(cpu_base);
54cdfdb4
TG
1225}
1226
c0a31329 1227/*
d3d74453 1228 * Called from hardirq context every jiffy
c0a31329 1229 */
3c8aa39d
TG
1230static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1231 int index)
c0a31329 1232{
288867ec 1233 struct rb_node *node;
3c8aa39d 1234 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
c0a31329 1235
3055adda
DS
1236 if (!base->first)
1237 return;
1238
92127c7a
TG
1239 if (base->get_softirq_time)
1240 base->softirq_time = base->get_softirq_time();
1241
d3d74453 1242 spin_lock(&cpu_base->lock);
c0a31329 1243
288867ec 1244 while ((node = base->first)) {
c0a31329 1245 struct hrtimer *timer;
c0a31329 1246
288867ec 1247 timer = rb_entry(node, struct hrtimer, node);
92127c7a 1248 if (base->softirq_time.tv64 <= timer->expires.tv64)
c0a31329
TG
1249 break;
1250
d3d74453
PZ
1251 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1252 __remove_hrtimer(timer, base, HRTIMER_STATE_PENDING, 0);
1253 list_add_tail(&timer->cb_entry,
1254 &base->cpu_base->cb_pending);
1255 continue;
b75f7a51 1256 }
d3d74453
PZ
1257
1258 __run_hrtimer(timer);
c0a31329 1259 }
d3d74453 1260 spin_unlock(&cpu_base->lock);
c0a31329
TG
1261}
1262
c0a31329
TG
1263void hrtimer_run_queues(void)
1264{
3c8aa39d 1265 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
c0a31329
TG
1266 int i;
1267
54cdfdb4
TG
1268 if (hrtimer_hres_active())
1269 return;
1270
3c8aa39d 1271 hrtimer_get_softirq_time(cpu_base);
92127c7a 1272
3c8aa39d
TG
1273 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1274 run_hrtimer_queue(cpu_base, i);
c0a31329
TG
1275}
1276
10c94ec1
TG
1277/*
1278 * Sleep related functions:
1279 */
c9cb2e3d 1280static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1281{
1282 struct hrtimer_sleeper *t =
1283 container_of(timer, struct hrtimer_sleeper, timer);
1284 struct task_struct *task = t->task;
1285
1286 t->task = NULL;
1287 if (task)
1288 wake_up_process(task);
1289
1290 return HRTIMER_NORESTART;
1291}
1292
36c8b586 1293void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1294{
1295 sl->timer.function = hrtimer_wakeup;
1296 sl->task = task;
54cdfdb4 1297#ifdef CONFIG_HIGH_RES_TIMERS
37bb6cb4 1298 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
54cdfdb4 1299#endif
00362e33
TG
1300}
1301
669d7868 1302static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1303{
669d7868 1304 hrtimer_init_sleeper(t, current);
10c94ec1 1305
432569bb
RZ
1306 do {
1307 set_current_state(TASK_INTERRUPTIBLE);
1308 hrtimer_start(&t->timer, t->timer.expires, mode);
37bb6cb4
PZ
1309 if (!hrtimer_active(&t->timer))
1310 t->task = NULL;
432569bb 1311
54cdfdb4
TG
1312 if (likely(t->task))
1313 schedule();
432569bb 1314
669d7868 1315 hrtimer_cancel(&t->timer);
c9cb2e3d 1316 mode = HRTIMER_MODE_ABS;
669d7868
TG
1317
1318 } while (t->task && !signal_pending(current));
432569bb 1319
3588a085
PZ
1320 __set_current_state(TASK_RUNNING);
1321
669d7868 1322 return t->task == NULL;
10c94ec1
TG
1323}
1324
080344b9
ON
1325static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1326{
1327 struct timespec rmt;
1328 ktime_t rem;
1329
1330 rem = ktime_sub(timer->expires, timer->base->get_time());
1331 if (rem.tv64 <= 0)
1332 return 0;
1333 rmt = ktime_to_timespec(rem);
1334
1335 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1336 return -EFAULT;
1337
1338 return 1;
1339}
1340
1711ef38 1341long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1342{
669d7868 1343 struct hrtimer_sleeper t;
080344b9 1344 struct timespec __user *rmtp;
10c94ec1 1345
c9cb2e3d 1346 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1711ef38 1347 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
10c94ec1 1348
c9cb2e3d 1349 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
10c94ec1
TG
1350 return 0;
1351
080344b9 1352 rmtp = (struct timespec __user *)restart->arg1;
432569bb 1353 if (rmtp) {
080344b9
ON
1354 int ret = update_rmtp(&t.timer, rmtp);
1355 if (ret <= 0)
1356 return ret;
432569bb 1357 }
10c94ec1 1358
10c94ec1
TG
1359 /* The other values in restart are already filled in */
1360 return -ERESTART_RESTARTBLOCK;
1361}
1362
080344b9 1363long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1364 const enum hrtimer_mode mode, const clockid_t clockid)
1365{
1366 struct restart_block *restart;
669d7868 1367 struct hrtimer_sleeper t;
10c94ec1 1368
432569bb
RZ
1369 hrtimer_init(&t.timer, clockid, mode);
1370 t.timer.expires = timespec_to_ktime(*rqtp);
1371 if (do_nanosleep(&t, mode))
10c94ec1
TG
1372 return 0;
1373
7978672c 1374 /* Absolute timers do not update the rmtp value and restart: */
c9cb2e3d 1375 if (mode == HRTIMER_MODE_ABS)
10c94ec1
TG
1376 return -ERESTARTNOHAND;
1377
432569bb 1378 if (rmtp) {
080344b9
ON
1379 int ret = update_rmtp(&t.timer, rmtp);
1380 if (ret <= 0)
1381 return ret;
432569bb 1382 }
10c94ec1
TG
1383
1384 restart = &current_thread_info()->restart_block;
1711ef38
TA
1385 restart->fn = hrtimer_nanosleep_restart;
1386 restart->arg0 = (unsigned long) t.timer.base->index;
1387 restart->arg1 = (unsigned long) rmtp;
1388 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1389 restart->arg3 = t.timer.expires.tv64 >> 32;
10c94ec1
TG
1390
1391 return -ERESTART_RESTARTBLOCK;
1392}
1393
6ba1b912
TG
1394asmlinkage long
1395sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1396{
080344b9 1397 struct timespec tu;
6ba1b912
TG
1398
1399 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1400 return -EFAULT;
1401
1402 if (!timespec_valid(&tu))
1403 return -EINVAL;
1404
080344b9 1405 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1406}
1407
c0a31329
TG
1408/*
1409 * Functions related to boot-time initialization:
1410 */
0ec160dd 1411static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1412{
3c8aa39d 1413 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1414 int i;
1415
3c8aa39d
TG
1416 spin_lock_init(&cpu_base->lock);
1417 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1418
1419 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1420 cpu_base->clock_base[i].cpu_base = cpu_base;
1421
d3d74453 1422 INIT_LIST_HEAD(&cpu_base->cb_pending);
54cdfdb4 1423 hrtimer_init_hres(cpu_base);
c0a31329
TG
1424}
1425
1426#ifdef CONFIG_HOTPLUG_CPU
1427
3c8aa39d
TG
1428static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1429 struct hrtimer_clock_base *new_base)
c0a31329
TG
1430{
1431 struct hrtimer *timer;
1432 struct rb_node *node;
1433
1434 while ((node = rb_first(&old_base->active))) {
1435 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4
TG
1436 BUG_ON(hrtimer_callback_running(timer));
1437 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
c0a31329 1438 timer->base = new_base;
54cdfdb4
TG
1439 /*
1440 * Enqueue the timer. Allow reprogramming of the event device
1441 */
1442 enqueue_hrtimer(timer, new_base, 1);
c0a31329
TG
1443 }
1444}
1445
1446static void migrate_hrtimers(int cpu)
1447{
3c8aa39d 1448 struct hrtimer_cpu_base *old_base, *new_base;
c0a31329
TG
1449 int i;
1450
1451 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1452 old_base = &per_cpu(hrtimer_bases, cpu);
1453 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1454
54cdfdb4
TG
1455 tick_cancel_sched_timer(cpu);
1456
c0a31329 1457 local_irq_disable();
e81ce1f7
HC
1458 double_spin_lock(&new_base->lock, &old_base->lock,
1459 smp_processor_id() < cpu);
c0a31329 1460
3c8aa39d 1461 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d
TG
1462 migrate_hrtimer_list(&old_base->clock_base[i],
1463 &new_base->clock_base[i]);
c0a31329
TG
1464 }
1465
e81ce1f7
HC
1466 double_spin_unlock(&new_base->lock, &old_base->lock,
1467 smp_processor_id() < cpu);
c0a31329
TG
1468 local_irq_enable();
1469 put_cpu_var(hrtimer_bases);
1470}
1471#endif /* CONFIG_HOTPLUG_CPU */
1472
8c78f307 1473static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1474 unsigned long action, void *hcpu)
1475{
7713a7d1 1476 unsigned int cpu = (long)hcpu;
c0a31329
TG
1477
1478 switch (action) {
1479
1480 case CPU_UP_PREPARE:
8bb78442 1481 case CPU_UP_PREPARE_FROZEN:
c0a31329
TG
1482 init_hrtimers_cpu(cpu);
1483 break;
1484
1485#ifdef CONFIG_HOTPLUG_CPU
1486 case CPU_DEAD:
8bb78442 1487 case CPU_DEAD_FROZEN:
d316c57f 1488 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1489 migrate_hrtimers(cpu);
1490 break;
1491#endif
1492
1493 default:
1494 break;
1495 }
1496
1497 return NOTIFY_OK;
1498}
1499
8c78f307 1500static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1501 .notifier_call = hrtimer_cpu_notify,
1502};
1503
1504void __init hrtimers_init(void)
1505{
1506 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1507 (void *)(long)smp_processor_id());
1508 register_cpu_notifier(&hrtimers_nb);
54cdfdb4
TG
1509#ifdef CONFIG_HIGH_RES_TIMERS
1510 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1511#endif
c0a31329
TG
1512}
1513