futex: Correct futex_wait_requeue_pi() commentary
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9adef58b 58#include <linux/module.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
4732efbe 63#include <asm/futex.h>
1da177e4 64
c87e2837
IM
65#include "rtmutex_common.h"
66
a0c1e907
TG
67int __read_mostly futex_cmpxchg_enabled;
68
1da177e4
LT
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
c87e2837
IM
71/*
72 * Priority Inheritance state:
73 */
74struct futex_pi_state {
75 /*
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
78 */
79 struct list_head list;
80
81 /*
82 * The PI object:
83 */
84 struct rt_mutex pi_mutex;
85
86 struct task_struct *owner;
87 atomic_t refcount;
88
89 union futex_key key;
90};
91
1da177e4
LT
92/*
93 * We use this hashed waitqueue instead of a normal wait_queue_t, so
94 * we can wake only the relevant ones (hashed queues may be shared).
95 *
96 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 97 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 98 * The order of wakup is always to make the first condition true, then
73500ac5 99 * wake up q->waiter, then make the second condition true.
1da177e4
LT
100 */
101struct futex_q {
ec92d082 102 struct plist_node list;
f1a11e05
TG
103 /* Waiter reference */
104 struct task_struct *task;
1da177e4 105
e2970f2f 106 /* Which hash list lock to use: */
1da177e4
LT
107 spinlock_t *lock_ptr;
108
e2970f2f 109 /* Key which the futex is hashed on: */
1da177e4
LT
110 union futex_key key;
111
c87e2837
IM
112 /* Optional priority inheritance state: */
113 struct futex_pi_state *pi_state;
cd689985 114
52400ba9
DH
115 /* rt_waiter storage for requeue_pi: */
116 struct rt_mutex_waiter *rt_waiter;
117
cd689985
TG
118 /* Bitset for the optional bitmasked wakeup */
119 u32 bitset;
1da177e4
LT
120};
121
122/*
b2d0994b
DH
123 * Hash buckets are shared by all the futex_keys that hash to the same
124 * location. Each key may have multiple futex_q structures, one for each task
125 * waiting on a futex.
1da177e4
LT
126 */
127struct futex_hash_bucket {
ec92d082
PP
128 spinlock_t lock;
129 struct plist_head chain;
1da177e4
LT
130};
131
132static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
133
1da177e4
LT
134/*
135 * We hash on the keys returned from get_futex_key (see below).
136 */
137static struct futex_hash_bucket *hash_futex(union futex_key *key)
138{
139 u32 hash = jhash2((u32*)&key->both.word,
140 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
141 key->both.offset);
142 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
143}
144
145/*
146 * Return 1 if two futex_keys are equal, 0 otherwise.
147 */
148static inline int match_futex(union futex_key *key1, union futex_key *key2)
149{
150 return (key1->both.word == key2->both.word
151 && key1->both.ptr == key2->both.ptr
152 && key1->both.offset == key2->both.offset);
153}
154
38d47c1b
PZ
155/*
156 * Take a reference to the resource addressed by a key.
157 * Can be called while holding spinlocks.
158 *
159 */
160static void get_futex_key_refs(union futex_key *key)
161{
162 if (!key->both.ptr)
163 return;
164
165 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
166 case FUT_OFF_INODE:
167 atomic_inc(&key->shared.inode->i_count);
168 break;
169 case FUT_OFF_MMSHARED:
170 atomic_inc(&key->private.mm->mm_count);
171 break;
172 }
173}
174
175/*
176 * Drop a reference to the resource addressed by a key.
177 * The hash bucket spinlock must not be held.
178 */
179static void drop_futex_key_refs(union futex_key *key)
180{
90621c40
DH
181 if (!key->both.ptr) {
182 /* If we're here then we tried to put a key we failed to get */
183 WARN_ON_ONCE(1);
38d47c1b 184 return;
90621c40 185 }
38d47c1b
PZ
186
187 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
188 case FUT_OFF_INODE:
189 iput(key->shared.inode);
190 break;
191 case FUT_OFF_MMSHARED:
192 mmdrop(key->private.mm);
193 break;
194 }
195}
196
34f01cc1
ED
197/**
198 * get_futex_key - Get parameters which are the keys for a futex.
199 * @uaddr: virtual address of the futex
b2d0994b 200 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
34f01cc1 201 * @key: address where result is stored.
64d1304a 202 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
34f01cc1
ED
203 *
204 * Returns a negative error code or 0
205 * The key words are stored in *key on success.
1da177e4 206 *
f3a43f3f 207 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
208 * offset_within_page). For private mappings, it's (uaddr, current->mm).
209 * We can usually work out the index without swapping in the page.
210 *
b2d0994b 211 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 212 */
64d1304a
TG
213static int
214get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 215{
e2970f2f 216 unsigned long address = (unsigned long)uaddr;
1da177e4 217 struct mm_struct *mm = current->mm;
1da177e4
LT
218 struct page *page;
219 int err;
220
221 /*
222 * The futex address must be "naturally" aligned.
223 */
e2970f2f 224 key->both.offset = address % PAGE_SIZE;
34f01cc1 225 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 226 return -EINVAL;
e2970f2f 227 address -= key->both.offset;
1da177e4 228
34f01cc1
ED
229 /*
230 * PROCESS_PRIVATE futexes are fast.
231 * As the mm cannot disappear under us and the 'key' only needs
232 * virtual address, we dont even have to find the underlying vma.
233 * Note : We do have to check 'uaddr' is a valid user address,
234 * but access_ok() should be faster than find_vma()
235 */
236 if (!fshared) {
64d1304a 237 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
34f01cc1
ED
238 return -EFAULT;
239 key->private.mm = mm;
240 key->private.address = address;
42569c39 241 get_futex_key_refs(key);
34f01cc1
ED
242 return 0;
243 }
1da177e4 244
38d47c1b 245again:
64d1304a 246 err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
38d47c1b
PZ
247 if (err < 0)
248 return err;
249
ce2ae53b 250 page = compound_head(page);
38d47c1b
PZ
251 lock_page(page);
252 if (!page->mapping) {
253 unlock_page(page);
254 put_page(page);
255 goto again;
256 }
1da177e4
LT
257
258 /*
259 * Private mappings are handled in a simple way.
260 *
261 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
262 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 263 * the object not the particular process.
1da177e4 264 */
38d47c1b
PZ
265 if (PageAnon(page)) {
266 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 267 key->private.mm = mm;
e2970f2f 268 key->private.address = address;
38d47c1b
PZ
269 } else {
270 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
271 key->shared.inode = page->mapping->host;
272 key->shared.pgoff = page->index;
1da177e4
LT
273 }
274
38d47c1b 275 get_futex_key_refs(key);
1da177e4 276
38d47c1b
PZ
277 unlock_page(page);
278 put_page(page);
279 return 0;
1da177e4
LT
280}
281
38d47c1b 282static inline
c2f9f201 283void put_futex_key(int fshared, union futex_key *key)
1da177e4 284{
38d47c1b 285 drop_futex_key_refs(key);
1da177e4
LT
286}
287
d0725992
TG
288/*
289 * fault_in_user_writeable - fault in user address and verify RW access
290 * @uaddr: pointer to faulting user space address
291 *
292 * Slow path to fixup the fault we just took in the atomic write
293 * access to @uaddr.
294 *
295 * We have no generic implementation of a non destructive write to the
296 * user address. We know that we faulted in the atomic pagefault
297 * disabled section so we can as well avoid the #PF overhead by
298 * calling get_user_pages() right away.
299 */
300static int fault_in_user_writeable(u32 __user *uaddr)
301{
302 int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
aa715284 303 1, 1, 0, NULL, NULL);
d0725992
TG
304 return ret < 0 ? ret : 0;
305}
306
4b1c486b
DH
307/**
308 * futex_top_waiter() - Return the highest priority waiter on a futex
309 * @hb: the hash bucket the futex_q's reside in
310 * @key: the futex key (to distinguish it from other futex futex_q's)
311 *
312 * Must be called with the hb lock held.
313 */
314static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
315 union futex_key *key)
316{
317 struct futex_q *this;
318
319 plist_for_each_entry(this, &hb->chain, list) {
320 if (match_futex(&this->key, key))
321 return this;
322 }
323 return NULL;
324}
325
36cf3b5c
TG
326static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
327{
328 u32 curval;
329
330 pagefault_disable();
331 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
332 pagefault_enable();
333
334 return curval;
335}
336
337static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
338{
339 int ret;
340
a866374a 341 pagefault_disable();
e2970f2f 342 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 343 pagefault_enable();
1da177e4
LT
344
345 return ret ? -EFAULT : 0;
346}
347
c87e2837
IM
348
349/*
350 * PI code:
351 */
352static int refill_pi_state_cache(void)
353{
354 struct futex_pi_state *pi_state;
355
356 if (likely(current->pi_state_cache))
357 return 0;
358
4668edc3 359 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
360
361 if (!pi_state)
362 return -ENOMEM;
363
c87e2837
IM
364 INIT_LIST_HEAD(&pi_state->list);
365 /* pi_mutex gets initialized later */
366 pi_state->owner = NULL;
367 atomic_set(&pi_state->refcount, 1);
38d47c1b 368 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
369
370 current->pi_state_cache = pi_state;
371
372 return 0;
373}
374
375static struct futex_pi_state * alloc_pi_state(void)
376{
377 struct futex_pi_state *pi_state = current->pi_state_cache;
378
379 WARN_ON(!pi_state);
380 current->pi_state_cache = NULL;
381
382 return pi_state;
383}
384
385static void free_pi_state(struct futex_pi_state *pi_state)
386{
387 if (!atomic_dec_and_test(&pi_state->refcount))
388 return;
389
390 /*
391 * If pi_state->owner is NULL, the owner is most probably dying
392 * and has cleaned up the pi_state already
393 */
394 if (pi_state->owner) {
395 spin_lock_irq(&pi_state->owner->pi_lock);
396 list_del_init(&pi_state->list);
397 spin_unlock_irq(&pi_state->owner->pi_lock);
398
399 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
400 }
401
402 if (current->pi_state_cache)
403 kfree(pi_state);
404 else {
405 /*
406 * pi_state->list is already empty.
407 * clear pi_state->owner.
408 * refcount is at 0 - put it back to 1.
409 */
410 pi_state->owner = NULL;
411 atomic_set(&pi_state->refcount, 1);
412 current->pi_state_cache = pi_state;
413 }
414}
415
416/*
417 * Look up the task based on what TID userspace gave us.
418 * We dont trust it.
419 */
420static struct task_struct * futex_find_get_task(pid_t pid)
421{
422 struct task_struct *p;
c69e8d9c 423 const struct cred *cred = current_cred(), *pcred;
c87e2837 424
d359b549 425 rcu_read_lock();
228ebcbe 426 p = find_task_by_vpid(pid);
c69e8d9c 427 if (!p) {
a06381fe 428 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
429 } else {
430 pcred = __task_cred(p);
431 if (cred->euid != pcred->euid &&
432 cred->euid != pcred->uid)
433 p = ERR_PTR(-ESRCH);
434 else
435 get_task_struct(p);
436 }
a06381fe 437
d359b549 438 rcu_read_unlock();
c87e2837
IM
439
440 return p;
441}
442
443/*
444 * This task is holding PI mutexes at exit time => bad.
445 * Kernel cleans up PI-state, but userspace is likely hosed.
446 * (Robust-futex cleanup is separate and might save the day for userspace.)
447 */
448void exit_pi_state_list(struct task_struct *curr)
449{
c87e2837
IM
450 struct list_head *next, *head = &curr->pi_state_list;
451 struct futex_pi_state *pi_state;
627371d7 452 struct futex_hash_bucket *hb;
38d47c1b 453 union futex_key key = FUTEX_KEY_INIT;
c87e2837 454
a0c1e907
TG
455 if (!futex_cmpxchg_enabled)
456 return;
c87e2837
IM
457 /*
458 * We are a ZOMBIE and nobody can enqueue itself on
459 * pi_state_list anymore, but we have to be careful
627371d7 460 * versus waiters unqueueing themselves:
c87e2837
IM
461 */
462 spin_lock_irq(&curr->pi_lock);
463 while (!list_empty(head)) {
464
465 next = head->next;
466 pi_state = list_entry(next, struct futex_pi_state, list);
467 key = pi_state->key;
627371d7 468 hb = hash_futex(&key);
c87e2837
IM
469 spin_unlock_irq(&curr->pi_lock);
470
c87e2837
IM
471 spin_lock(&hb->lock);
472
473 spin_lock_irq(&curr->pi_lock);
627371d7
IM
474 /*
475 * We dropped the pi-lock, so re-check whether this
476 * task still owns the PI-state:
477 */
c87e2837
IM
478 if (head->next != next) {
479 spin_unlock(&hb->lock);
480 continue;
481 }
482
c87e2837 483 WARN_ON(pi_state->owner != curr);
627371d7
IM
484 WARN_ON(list_empty(&pi_state->list));
485 list_del_init(&pi_state->list);
c87e2837
IM
486 pi_state->owner = NULL;
487 spin_unlock_irq(&curr->pi_lock);
488
489 rt_mutex_unlock(&pi_state->pi_mutex);
490
491 spin_unlock(&hb->lock);
492
493 spin_lock_irq(&curr->pi_lock);
494 }
495 spin_unlock_irq(&curr->pi_lock);
496}
497
498static int
d0aa7a70
PP
499lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
500 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
501{
502 struct futex_pi_state *pi_state = NULL;
503 struct futex_q *this, *next;
ec92d082 504 struct plist_head *head;
c87e2837 505 struct task_struct *p;
778e9a9c 506 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
507
508 head = &hb->chain;
509
ec92d082 510 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 511 if (match_futex(&this->key, key)) {
c87e2837
IM
512 /*
513 * Another waiter already exists - bump up
514 * the refcount and return its pi_state:
515 */
516 pi_state = this->pi_state;
06a9ec29
TG
517 /*
518 * Userspace might have messed up non PI and PI futexes
519 */
520 if (unlikely(!pi_state))
521 return -EINVAL;
522
627371d7 523 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
524 WARN_ON(pid && pi_state->owner &&
525 pi_state->owner->pid != pid);
627371d7 526
c87e2837 527 atomic_inc(&pi_state->refcount);
d0aa7a70 528 *ps = pi_state;
c87e2837
IM
529
530 return 0;
531 }
532 }
533
534 /*
e3f2ddea 535 * We are the first waiter - try to look up the real owner and attach
778e9a9c 536 * the new pi_state to it, but bail out when TID = 0
c87e2837 537 */
778e9a9c 538 if (!pid)
e3f2ddea 539 return -ESRCH;
c87e2837 540 p = futex_find_get_task(pid);
778e9a9c
AK
541 if (IS_ERR(p))
542 return PTR_ERR(p);
543
544 /*
545 * We need to look at the task state flags to figure out,
546 * whether the task is exiting. To protect against the do_exit
547 * change of the task flags, we do this protected by
548 * p->pi_lock:
549 */
550 spin_lock_irq(&p->pi_lock);
551 if (unlikely(p->flags & PF_EXITING)) {
552 /*
553 * The task is on the way out. When PF_EXITPIDONE is
554 * set, we know that the task has finished the
555 * cleanup:
556 */
557 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
558
559 spin_unlock_irq(&p->pi_lock);
560 put_task_struct(p);
561 return ret;
562 }
c87e2837
IM
563
564 pi_state = alloc_pi_state();
565
566 /*
567 * Initialize the pi_mutex in locked state and make 'p'
568 * the owner of it:
569 */
570 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
571
572 /* Store the key for possible exit cleanups: */
d0aa7a70 573 pi_state->key = *key;
c87e2837 574
627371d7 575 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
576 list_add(&pi_state->list, &p->pi_state_list);
577 pi_state->owner = p;
578 spin_unlock_irq(&p->pi_lock);
579
580 put_task_struct(p);
581
d0aa7a70 582 *ps = pi_state;
c87e2837
IM
583
584 return 0;
585}
586
1a52084d
DH
587/**
588 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
bab5bc9e
DH
589 * @uaddr: the pi futex user address
590 * @hb: the pi futex hash bucket
591 * @key: the futex key associated with uaddr and hb
592 * @ps: the pi_state pointer where we store the result of the
593 * lookup
594 * @task: the task to perform the atomic lock work for. This will
595 * be "current" except in the case of requeue pi.
596 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d
DH
597 *
598 * Returns:
599 * 0 - ready to wait
600 * 1 - acquired the lock
601 * <0 - error
602 *
603 * The hb->lock and futex_key refs shall be held by the caller.
604 */
605static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
606 union futex_key *key,
607 struct futex_pi_state **ps,
bab5bc9e 608 struct task_struct *task, int set_waiters)
1a52084d
DH
609{
610 int lock_taken, ret, ownerdied = 0;
611 u32 uval, newval, curval;
612
613retry:
614 ret = lock_taken = 0;
615
616 /*
617 * To avoid races, we attempt to take the lock here again
618 * (by doing a 0 -> TID atomic cmpxchg), while holding all
619 * the locks. It will most likely not succeed.
620 */
621 newval = task_pid_vnr(task);
bab5bc9e
DH
622 if (set_waiters)
623 newval |= FUTEX_WAITERS;
1a52084d
DH
624
625 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
626
627 if (unlikely(curval == -EFAULT))
628 return -EFAULT;
629
630 /*
631 * Detect deadlocks.
632 */
633 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
634 return -EDEADLK;
635
636 /*
637 * Surprise - we got the lock. Just return to userspace:
638 */
639 if (unlikely(!curval))
640 return 1;
641
642 uval = curval;
643
644 /*
645 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
646 * to wake at the next unlock.
647 */
648 newval = curval | FUTEX_WAITERS;
649
650 /*
651 * There are two cases, where a futex might have no owner (the
652 * owner TID is 0): OWNER_DIED. We take over the futex in this
653 * case. We also do an unconditional take over, when the owner
654 * of the futex died.
655 *
656 * This is safe as we are protected by the hash bucket lock !
657 */
658 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
659 /* Keep the OWNER_DIED bit */
660 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
661 ownerdied = 0;
662 lock_taken = 1;
663 }
664
665 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
666
667 if (unlikely(curval == -EFAULT))
668 return -EFAULT;
669 if (unlikely(curval != uval))
670 goto retry;
671
672 /*
673 * We took the lock due to owner died take over.
674 */
675 if (unlikely(lock_taken))
676 return 1;
677
678 /*
679 * We dont have the lock. Look up the PI state (or create it if
680 * we are the first waiter):
681 */
682 ret = lookup_pi_state(uval, hb, key, ps);
683
684 if (unlikely(ret)) {
685 switch (ret) {
686 case -ESRCH:
687 /*
688 * No owner found for this futex. Check if the
689 * OWNER_DIED bit is set to figure out whether
690 * this is a robust futex or not.
691 */
692 if (get_futex_value_locked(&curval, uaddr))
693 return -EFAULT;
694
695 /*
696 * We simply start over in case of a robust
697 * futex. The code above will take the futex
698 * and return happy.
699 */
700 if (curval & FUTEX_OWNER_DIED) {
701 ownerdied = 1;
702 goto retry;
703 }
704 default:
705 break;
706 }
707 }
708
709 return ret;
710}
711
1da177e4
LT
712/*
713 * The hash bucket lock must be held when this is called.
714 * Afterwards, the futex_q must not be accessed.
715 */
716static void wake_futex(struct futex_q *q)
717{
f1a11e05
TG
718 struct task_struct *p = q->task;
719
1da177e4 720 /*
f1a11e05
TG
721 * We set q->lock_ptr = NULL _before_ we wake up the task. If
722 * a non futex wake up happens on another CPU then the task
723 * might exit and p would dereference a non existing task
724 * struct. Prevent this by holding a reference on p across the
725 * wake up.
1da177e4 726 */
f1a11e05
TG
727 get_task_struct(p);
728
729 plist_del(&q->list, &q->list.plist);
1da177e4 730 /*
f1a11e05
TG
731 * The waiting task can free the futex_q as soon as
732 * q->lock_ptr = NULL is written, without taking any locks. A
733 * memory barrier is required here to prevent the following
734 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 735 */
ccdea2f8 736 smp_wmb();
1da177e4 737 q->lock_ptr = NULL;
f1a11e05
TG
738
739 wake_up_state(p, TASK_NORMAL);
740 put_task_struct(p);
1da177e4
LT
741}
742
c87e2837
IM
743static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
744{
745 struct task_struct *new_owner;
746 struct futex_pi_state *pi_state = this->pi_state;
747 u32 curval, newval;
748
749 if (!pi_state)
750 return -EINVAL;
751
21778867 752 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
753 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
754
755 /*
756 * This happens when we have stolen the lock and the original
757 * pending owner did not enqueue itself back on the rt_mutex.
758 * Thats not a tragedy. We know that way, that a lock waiter
759 * is on the fly. We make the futex_q waiter the pending owner.
760 */
761 if (!new_owner)
762 new_owner = this->task;
763
764 /*
765 * We pass it to the next owner. (The WAITERS bit is always
766 * kept enabled while there is PI state around. We must also
767 * preserve the owner died bit.)
768 */
e3f2ddea 769 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
770 int ret = 0;
771
b488893a 772 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 773
36cf3b5c 774 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 775
e3f2ddea 776 if (curval == -EFAULT)
778e9a9c 777 ret = -EFAULT;
cde898fa 778 else if (curval != uval)
778e9a9c
AK
779 ret = -EINVAL;
780 if (ret) {
781 spin_unlock(&pi_state->pi_mutex.wait_lock);
782 return ret;
783 }
e3f2ddea 784 }
c87e2837 785
627371d7
IM
786 spin_lock_irq(&pi_state->owner->pi_lock);
787 WARN_ON(list_empty(&pi_state->list));
788 list_del_init(&pi_state->list);
789 spin_unlock_irq(&pi_state->owner->pi_lock);
790
791 spin_lock_irq(&new_owner->pi_lock);
792 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
793 list_add(&pi_state->list, &new_owner->pi_state_list);
794 pi_state->owner = new_owner;
627371d7
IM
795 spin_unlock_irq(&new_owner->pi_lock);
796
21778867 797 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
798 rt_mutex_unlock(&pi_state->pi_mutex);
799
800 return 0;
801}
802
803static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
804{
805 u32 oldval;
806
807 /*
808 * There is no waiter, so we unlock the futex. The owner died
809 * bit has not to be preserved here. We are the owner:
810 */
36cf3b5c 811 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
812
813 if (oldval == -EFAULT)
814 return oldval;
815 if (oldval != uval)
816 return -EAGAIN;
817
818 return 0;
819}
820
8b8f319f
IM
821/*
822 * Express the locking dependencies for lockdep:
823 */
824static inline void
825double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
826{
827 if (hb1 <= hb2) {
828 spin_lock(&hb1->lock);
829 if (hb1 < hb2)
830 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
831 } else { /* hb1 > hb2 */
832 spin_lock(&hb2->lock);
833 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
834 }
835}
836
5eb3dc62
DH
837static inline void
838double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
839{
f061d351 840 spin_unlock(&hb1->lock);
88f502fe
IM
841 if (hb1 != hb2)
842 spin_unlock(&hb2->lock);
5eb3dc62
DH
843}
844
1da177e4 845/*
b2d0994b 846 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 847 */
c2f9f201 848static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 849{
e2970f2f 850 struct futex_hash_bucket *hb;
1da177e4 851 struct futex_q *this, *next;
ec92d082 852 struct plist_head *head;
38d47c1b 853 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
854 int ret;
855
cd689985
TG
856 if (!bitset)
857 return -EINVAL;
858
64d1304a 859 ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
1da177e4
LT
860 if (unlikely(ret != 0))
861 goto out;
862
e2970f2f
IM
863 hb = hash_futex(&key);
864 spin_lock(&hb->lock);
865 head = &hb->chain;
1da177e4 866
ec92d082 867 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 868 if (match_futex (&this->key, &key)) {
52400ba9 869 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
870 ret = -EINVAL;
871 break;
872 }
cd689985
TG
873
874 /* Check if one of the bits is set in both bitsets */
875 if (!(this->bitset & bitset))
876 continue;
877
1da177e4
LT
878 wake_futex(this);
879 if (++ret >= nr_wake)
880 break;
881 }
882 }
883
e2970f2f 884 spin_unlock(&hb->lock);
38d47c1b 885 put_futex_key(fshared, &key);
42d35d48 886out:
1da177e4
LT
887 return ret;
888}
889
4732efbe
JJ
890/*
891 * Wake up all waiters hashed on the physical page that is mapped
892 * to this virtual address:
893 */
e2970f2f 894static int
c2f9f201 895futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 896 int nr_wake, int nr_wake2, int op)
4732efbe 897{
38d47c1b 898 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 899 struct futex_hash_bucket *hb1, *hb2;
ec92d082 900 struct plist_head *head;
4732efbe 901 struct futex_q *this, *next;
e4dc5b7a 902 int ret, op_ret;
4732efbe 903
e4dc5b7a 904retry:
64d1304a 905 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
4732efbe
JJ
906 if (unlikely(ret != 0))
907 goto out;
64d1304a 908 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
4732efbe 909 if (unlikely(ret != 0))
42d35d48 910 goto out_put_key1;
4732efbe 911
e2970f2f
IM
912 hb1 = hash_futex(&key1);
913 hb2 = hash_futex(&key2);
4732efbe 914
8b8f319f 915 double_lock_hb(hb1, hb2);
e4dc5b7a 916retry_private:
e2970f2f 917 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 918 if (unlikely(op_ret < 0)) {
4732efbe 919
5eb3dc62 920 double_unlock_hb(hb1, hb2);
4732efbe 921
7ee1dd3f 922#ifndef CONFIG_MMU
e2970f2f
IM
923 /*
924 * we don't get EFAULT from MMU faults if we don't have an MMU,
925 * but we might get them from range checking
926 */
7ee1dd3f 927 ret = op_ret;
42d35d48 928 goto out_put_keys;
7ee1dd3f
DH
929#endif
930
796f8d9b
DG
931 if (unlikely(op_ret != -EFAULT)) {
932 ret = op_ret;
42d35d48 933 goto out_put_keys;
796f8d9b
DG
934 }
935
d0725992 936 ret = fault_in_user_writeable(uaddr2);
4732efbe 937 if (ret)
de87fcc1 938 goto out_put_keys;
4732efbe 939
e4dc5b7a
DH
940 if (!fshared)
941 goto retry_private;
942
de87fcc1
DH
943 put_futex_key(fshared, &key2);
944 put_futex_key(fshared, &key1);
e4dc5b7a 945 goto retry;
4732efbe
JJ
946 }
947
e2970f2f 948 head = &hb1->chain;
4732efbe 949
ec92d082 950 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
951 if (match_futex (&this->key, &key1)) {
952 wake_futex(this);
953 if (++ret >= nr_wake)
954 break;
955 }
956 }
957
958 if (op_ret > 0) {
e2970f2f 959 head = &hb2->chain;
4732efbe
JJ
960
961 op_ret = 0;
ec92d082 962 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
963 if (match_futex (&this->key, &key2)) {
964 wake_futex(this);
965 if (++op_ret >= nr_wake2)
966 break;
967 }
968 }
969 ret += op_ret;
970 }
971
5eb3dc62 972 double_unlock_hb(hb1, hb2);
42d35d48 973out_put_keys:
38d47c1b 974 put_futex_key(fshared, &key2);
42d35d48 975out_put_key1:
38d47c1b 976 put_futex_key(fshared, &key1);
42d35d48 977out:
4732efbe
JJ
978 return ret;
979}
980
9121e478
DH
981/**
982 * requeue_futex() - Requeue a futex_q from one hb to another
983 * @q: the futex_q to requeue
984 * @hb1: the source hash_bucket
985 * @hb2: the target hash_bucket
986 * @key2: the new key for the requeued futex_q
987 */
988static inline
989void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
990 struct futex_hash_bucket *hb2, union futex_key *key2)
991{
992
993 /*
994 * If key1 and key2 hash to the same bucket, no need to
995 * requeue.
996 */
997 if (likely(&hb1->chain != &hb2->chain)) {
998 plist_del(&q->list, &hb1->chain);
999 plist_add(&q->list, &hb2->chain);
1000 q->lock_ptr = &hb2->lock;
1001#ifdef CONFIG_DEBUG_PI_LIST
1002 q->list.plist.lock = &hb2->lock;
1003#endif
1004 }
1005 get_futex_key_refs(key2);
1006 q->key = *key2;
1007}
1008
52400ba9
DH
1009/**
1010 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1011 * q: the futex_q
1012 * key: the key of the requeue target futex
1013 *
1014 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1015 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1016 * to the requeue target futex so the waiter can detect the wakeup on the right
1017 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1018 * atomic lock acquisition. Must be called with the q->lock_ptr held.
1019 */
1020static inline
1021void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
1022{
1023 drop_futex_key_refs(&q->key);
1024 get_futex_key_refs(key);
1025 q->key = *key;
1026
1027 WARN_ON(plist_node_empty(&q->list));
1028 plist_del(&q->list, &q->list.plist);
1029
1030 WARN_ON(!q->rt_waiter);
1031 q->rt_waiter = NULL;
1032
f1a11e05 1033 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1034}
1035
1036/**
1037 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1038 * @pifutex: the user address of the to futex
1039 * @hb1: the from futex hash bucket, must be locked by the caller
1040 * @hb2: the to futex hash bucket, must be locked by the caller
1041 * @key1: the from futex key
1042 * @key2: the to futex key
1043 * @ps: address to store the pi_state pointer
1044 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1045 *
1046 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1047 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1048 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1049 * hb1 and hb2 must be held by the caller.
52400ba9
DH
1050 *
1051 * Returns:
1052 * 0 - failed to acquire the lock atomicly
1053 * 1 - acquired the lock
1054 * <0 - error
1055 */
1056static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1057 struct futex_hash_bucket *hb1,
1058 struct futex_hash_bucket *hb2,
1059 union futex_key *key1, union futex_key *key2,
bab5bc9e 1060 struct futex_pi_state **ps, int set_waiters)
52400ba9 1061{
bab5bc9e 1062 struct futex_q *top_waiter = NULL;
52400ba9
DH
1063 u32 curval;
1064 int ret;
1065
1066 if (get_futex_value_locked(&curval, pifutex))
1067 return -EFAULT;
1068
bab5bc9e
DH
1069 /*
1070 * Find the top_waiter and determine if there are additional waiters.
1071 * If the caller intends to requeue more than 1 waiter to pifutex,
1072 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1073 * as we have means to handle the possible fault. If not, don't set
1074 * the bit unecessarily as it will force the subsequent unlock to enter
1075 * the kernel.
1076 */
52400ba9
DH
1077 top_waiter = futex_top_waiter(hb1, key1);
1078
1079 /* There are no waiters, nothing for us to do. */
1080 if (!top_waiter)
1081 return 0;
1082
1083 /*
bab5bc9e
DH
1084 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1085 * the contended case or if set_waiters is 1. The pi_state is returned
1086 * in ps in contended cases.
52400ba9 1087 */
bab5bc9e
DH
1088 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1089 set_waiters);
52400ba9
DH
1090 if (ret == 1)
1091 requeue_pi_wake_futex(top_waiter, key2);
1092
1093 return ret;
1094}
1095
1096/**
1097 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1098 * uaddr1: source futex user address
1099 * uaddr2: target futex user address
1100 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1101 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1102 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1103 * pi futex (pi to pi requeue is not supported)
1104 *
1105 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1106 * uaddr2 atomically on behalf of the top waiter.
1107 *
1108 * Returns:
1109 * >=0 - on success, the number of tasks requeued or woken
1110 * <0 - on error
1da177e4 1111 */
c2f9f201 1112static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
52400ba9
DH
1113 int nr_wake, int nr_requeue, u32 *cmpval,
1114 int requeue_pi)
1da177e4 1115{
38d47c1b 1116 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1117 int drop_count = 0, task_count = 0, ret;
1118 struct futex_pi_state *pi_state = NULL;
e2970f2f 1119 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1120 struct plist_head *head1;
1da177e4 1121 struct futex_q *this, *next;
52400ba9
DH
1122 u32 curval2;
1123
1124 if (requeue_pi) {
1125 /*
1126 * requeue_pi requires a pi_state, try to allocate it now
1127 * without any locks in case it fails.
1128 */
1129 if (refill_pi_state_cache())
1130 return -ENOMEM;
1131 /*
1132 * requeue_pi must wake as many tasks as it can, up to nr_wake
1133 * + nr_requeue, since it acquires the rt_mutex prior to
1134 * returning to userspace, so as to not leave the rt_mutex with
1135 * waiters and no owner. However, second and third wake-ups
1136 * cannot be predicted as they involve race conditions with the
1137 * first wake and a fault while looking up the pi_state. Both
1138 * pthread_cond_signal() and pthread_cond_broadcast() should
1139 * use nr_wake=1.
1140 */
1141 if (nr_wake != 1)
1142 return -EINVAL;
1143 }
1da177e4 1144
42d35d48 1145retry:
52400ba9
DH
1146 if (pi_state != NULL) {
1147 /*
1148 * We will have to lookup the pi_state again, so free this one
1149 * to keep the accounting correct.
1150 */
1151 free_pi_state(pi_state);
1152 pi_state = NULL;
1153 }
1154
64d1304a 1155 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1da177e4
LT
1156 if (unlikely(ret != 0))
1157 goto out;
521c1808
TG
1158 ret = get_futex_key(uaddr2, fshared, &key2,
1159 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1160 if (unlikely(ret != 0))
42d35d48 1161 goto out_put_key1;
1da177e4 1162
e2970f2f
IM
1163 hb1 = hash_futex(&key1);
1164 hb2 = hash_futex(&key2);
1da177e4 1165
e4dc5b7a 1166retry_private:
8b8f319f 1167 double_lock_hb(hb1, hb2);
1da177e4 1168
e2970f2f
IM
1169 if (likely(cmpval != NULL)) {
1170 u32 curval;
1da177e4 1171
e2970f2f 1172 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1173
1174 if (unlikely(ret)) {
5eb3dc62 1175 double_unlock_hb(hb1, hb2);
1da177e4 1176
e2970f2f 1177 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1178 if (ret)
1179 goto out_put_keys;
1da177e4 1180
e4dc5b7a
DH
1181 if (!fshared)
1182 goto retry_private;
1da177e4 1183
e4dc5b7a
DH
1184 put_futex_key(fshared, &key2);
1185 put_futex_key(fshared, &key1);
1186 goto retry;
1da177e4 1187 }
e2970f2f 1188 if (curval != *cmpval) {
1da177e4
LT
1189 ret = -EAGAIN;
1190 goto out_unlock;
1191 }
1192 }
1193
52400ba9 1194 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1195 /*
1196 * Attempt to acquire uaddr2 and wake the top waiter. If we
1197 * intend to requeue waiters, force setting the FUTEX_WAITERS
1198 * bit. We force this here where we are able to easily handle
1199 * faults rather in the requeue loop below.
1200 */
52400ba9 1201 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1202 &key2, &pi_state, nr_requeue);
52400ba9
DH
1203
1204 /*
1205 * At this point the top_waiter has either taken uaddr2 or is
1206 * waiting on it. If the former, then the pi_state will not
1207 * exist yet, look it up one more time to ensure we have a
1208 * reference to it.
1209 */
1210 if (ret == 1) {
1211 WARN_ON(pi_state);
1212 task_count++;
1213 ret = get_futex_value_locked(&curval2, uaddr2);
1214 if (!ret)
1215 ret = lookup_pi_state(curval2, hb2, &key2,
1216 &pi_state);
1217 }
1218
1219 switch (ret) {
1220 case 0:
1221 break;
1222 case -EFAULT:
1223 double_unlock_hb(hb1, hb2);
1224 put_futex_key(fshared, &key2);
1225 put_futex_key(fshared, &key1);
d0725992 1226 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1227 if (!ret)
1228 goto retry;
1229 goto out;
1230 case -EAGAIN:
1231 /* The owner was exiting, try again. */
1232 double_unlock_hb(hb1, hb2);
1233 put_futex_key(fshared, &key2);
1234 put_futex_key(fshared, &key1);
1235 cond_resched();
1236 goto retry;
1237 default:
1238 goto out_unlock;
1239 }
1240 }
1241
e2970f2f 1242 head1 = &hb1->chain;
ec92d082 1243 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1244 if (task_count - nr_wake >= nr_requeue)
1245 break;
1246
1247 if (!match_futex(&this->key, &key1))
1da177e4 1248 continue;
52400ba9
DH
1249
1250 WARN_ON(!requeue_pi && this->rt_waiter);
1251 WARN_ON(requeue_pi && !this->rt_waiter);
1252
1253 /*
1254 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1255 * lock, we already woke the top_waiter. If not, it will be
1256 * woken by futex_unlock_pi().
1257 */
1258 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1259 wake_futex(this);
52400ba9
DH
1260 continue;
1261 }
1da177e4 1262
52400ba9
DH
1263 /*
1264 * Requeue nr_requeue waiters and possibly one more in the case
1265 * of requeue_pi if we couldn't acquire the lock atomically.
1266 */
1267 if (requeue_pi) {
1268 /* Prepare the waiter to take the rt_mutex. */
1269 atomic_inc(&pi_state->refcount);
1270 this->pi_state = pi_state;
1271 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1272 this->rt_waiter,
1273 this->task, 1);
1274 if (ret == 1) {
1275 /* We got the lock. */
1276 requeue_pi_wake_futex(this, &key2);
1277 continue;
1278 } else if (ret) {
1279 /* -EDEADLK */
1280 this->pi_state = NULL;
1281 free_pi_state(pi_state);
1282 goto out_unlock;
1283 }
1da177e4 1284 }
52400ba9
DH
1285 requeue_futex(this, hb1, hb2, &key2);
1286 drop_count++;
1da177e4
LT
1287 }
1288
1289out_unlock:
5eb3dc62 1290 double_unlock_hb(hb1, hb2);
1da177e4 1291
cd84a42f
DH
1292 /*
1293 * drop_futex_key_refs() must be called outside the spinlocks. During
1294 * the requeue we moved futex_q's from the hash bucket at key1 to the
1295 * one at key2 and updated their key pointer. We no longer need to
1296 * hold the references to key1.
1297 */
1da177e4 1298 while (--drop_count >= 0)
9adef58b 1299 drop_futex_key_refs(&key1);
1da177e4 1300
42d35d48 1301out_put_keys:
38d47c1b 1302 put_futex_key(fshared, &key2);
42d35d48 1303out_put_key1:
38d47c1b 1304 put_futex_key(fshared, &key1);
42d35d48 1305out:
52400ba9
DH
1306 if (pi_state != NULL)
1307 free_pi_state(pi_state);
1308 return ret ? ret : task_count;
1da177e4
LT
1309}
1310
1311/* The key must be already stored in q->key. */
82af7aca 1312static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 1313{
e2970f2f 1314 struct futex_hash_bucket *hb;
1da177e4 1315
9adef58b 1316 get_futex_key_refs(&q->key);
e2970f2f
IM
1317 hb = hash_futex(&q->key);
1318 q->lock_ptr = &hb->lock;
1da177e4 1319
e2970f2f
IM
1320 spin_lock(&hb->lock);
1321 return hb;
1da177e4
LT
1322}
1323
82af7aca 1324static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1325{
ec92d082
PP
1326 int prio;
1327
1328 /*
1329 * The priority used to register this element is
1330 * - either the real thread-priority for the real-time threads
1331 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1332 * - or MAX_RT_PRIO for non-RT threads.
1333 * Thus, all RT-threads are woken first in priority order, and
1334 * the others are woken last, in FIFO order.
1335 */
1336 prio = min(current->normal_prio, MAX_RT_PRIO);
1337
1338 plist_node_init(&q->list, prio);
1339#ifdef CONFIG_DEBUG_PI_LIST
1340 q->list.plist.lock = &hb->lock;
1341#endif
1342 plist_add(&q->list, &hb->chain);
c87e2837 1343 q->task = current;
e2970f2f 1344 spin_unlock(&hb->lock);
1da177e4
LT
1345}
1346
1347static inline void
e2970f2f 1348queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1349{
e2970f2f 1350 spin_unlock(&hb->lock);
9adef58b 1351 drop_futex_key_refs(&q->key);
1da177e4
LT
1352}
1353
1354/*
1355 * queue_me and unqueue_me must be called as a pair, each
1356 * exactly once. They are called with the hashed spinlock held.
1357 */
1358
1da177e4
LT
1359/* Return 1 if we were still queued (ie. 0 means we were woken) */
1360static int unqueue_me(struct futex_q *q)
1361{
1da177e4 1362 spinlock_t *lock_ptr;
e2970f2f 1363 int ret = 0;
1da177e4
LT
1364
1365 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1366retry:
1da177e4 1367 lock_ptr = q->lock_ptr;
e91467ec 1368 barrier();
c80544dc 1369 if (lock_ptr != NULL) {
1da177e4
LT
1370 spin_lock(lock_ptr);
1371 /*
1372 * q->lock_ptr can change between reading it and
1373 * spin_lock(), causing us to take the wrong lock. This
1374 * corrects the race condition.
1375 *
1376 * Reasoning goes like this: if we have the wrong lock,
1377 * q->lock_ptr must have changed (maybe several times)
1378 * between reading it and the spin_lock(). It can
1379 * change again after the spin_lock() but only if it was
1380 * already changed before the spin_lock(). It cannot,
1381 * however, change back to the original value. Therefore
1382 * we can detect whether we acquired the correct lock.
1383 */
1384 if (unlikely(lock_ptr != q->lock_ptr)) {
1385 spin_unlock(lock_ptr);
1386 goto retry;
1387 }
ec92d082
PP
1388 WARN_ON(plist_node_empty(&q->list));
1389 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1390
1391 BUG_ON(q->pi_state);
1392
1da177e4
LT
1393 spin_unlock(lock_ptr);
1394 ret = 1;
1395 }
1396
9adef58b 1397 drop_futex_key_refs(&q->key);
1da177e4
LT
1398 return ret;
1399}
1400
c87e2837
IM
1401/*
1402 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1403 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1404 * and dropped here.
c87e2837 1405 */
d0aa7a70 1406static void unqueue_me_pi(struct futex_q *q)
c87e2837 1407{
ec92d082
PP
1408 WARN_ON(plist_node_empty(&q->list));
1409 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1410
1411 BUG_ON(!q->pi_state);
1412 free_pi_state(q->pi_state);
1413 q->pi_state = NULL;
1414
d0aa7a70 1415 spin_unlock(q->lock_ptr);
c87e2837 1416
9adef58b 1417 drop_futex_key_refs(&q->key);
c87e2837
IM
1418}
1419
d0aa7a70 1420/*
cdf71a10 1421 * Fixup the pi_state owner with the new owner.
d0aa7a70 1422 *
778e9a9c
AK
1423 * Must be called with hash bucket lock held and mm->sem held for non
1424 * private futexes.
d0aa7a70 1425 */
778e9a9c 1426static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1427 struct task_struct *newowner, int fshared)
d0aa7a70 1428{
cdf71a10 1429 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1430 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1431 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1432 u32 uval, curval, newval;
e4dc5b7a 1433 int ret;
d0aa7a70
PP
1434
1435 /* Owner died? */
1b7558e4
TG
1436 if (!pi_state->owner)
1437 newtid |= FUTEX_OWNER_DIED;
1438
1439 /*
1440 * We are here either because we stole the rtmutex from the
1441 * pending owner or we are the pending owner which failed to
1442 * get the rtmutex. We have to replace the pending owner TID
1443 * in the user space variable. This must be atomic as we have
1444 * to preserve the owner died bit here.
1445 *
b2d0994b
DH
1446 * Note: We write the user space value _before_ changing the pi_state
1447 * because we can fault here. Imagine swapped out pages or a fork
1448 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1449 *
1450 * Modifying pi_state _before_ the user space value would
1451 * leave the pi_state in an inconsistent state when we fault
1452 * here, because we need to drop the hash bucket lock to
1453 * handle the fault. This might be observed in the PID check
1454 * in lookup_pi_state.
1455 */
1456retry:
1457 if (get_futex_value_locked(&uval, uaddr))
1458 goto handle_fault;
1459
1460 while (1) {
1461 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1462
1463 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1464
1465 if (curval == -EFAULT)
1466 goto handle_fault;
1467 if (curval == uval)
1468 break;
1469 uval = curval;
1470 }
1471
1472 /*
1473 * We fixed up user space. Now we need to fix the pi_state
1474 * itself.
1475 */
d0aa7a70
PP
1476 if (pi_state->owner != NULL) {
1477 spin_lock_irq(&pi_state->owner->pi_lock);
1478 WARN_ON(list_empty(&pi_state->list));
1479 list_del_init(&pi_state->list);
1480 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1481 }
d0aa7a70 1482
cdf71a10 1483 pi_state->owner = newowner;
d0aa7a70 1484
cdf71a10 1485 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1486 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1487 list_add(&pi_state->list, &newowner->pi_state_list);
1488 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1489 return 0;
d0aa7a70 1490
d0aa7a70 1491 /*
1b7558e4
TG
1492 * To handle the page fault we need to drop the hash bucket
1493 * lock here. That gives the other task (either the pending
1494 * owner itself or the task which stole the rtmutex) the
1495 * chance to try the fixup of the pi_state. So once we are
1496 * back from handling the fault we need to check the pi_state
1497 * after reacquiring the hash bucket lock and before trying to
1498 * do another fixup. When the fixup has been done already we
1499 * simply return.
d0aa7a70 1500 */
1b7558e4
TG
1501handle_fault:
1502 spin_unlock(q->lock_ptr);
778e9a9c 1503
d0725992 1504 ret = fault_in_user_writeable(uaddr);
778e9a9c 1505
1b7558e4 1506 spin_lock(q->lock_ptr);
778e9a9c 1507
1b7558e4
TG
1508 /*
1509 * Check if someone else fixed it for us:
1510 */
1511 if (pi_state->owner != oldowner)
1512 return 0;
1513
1514 if (ret)
1515 return ret;
1516
1517 goto retry;
d0aa7a70
PP
1518}
1519
34f01cc1
ED
1520/*
1521 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1522 * we encode in the 'flags' shared capability
34f01cc1 1523 */
1acdac10
TG
1524#define FLAGS_SHARED 0x01
1525#define FLAGS_CLOCKRT 0x02
a72188d8 1526#define FLAGS_HAS_TIMEOUT 0x04
34f01cc1 1527
72c1bbf3 1528static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1529
dd973998
DH
1530/**
1531 * fixup_owner() - Post lock pi_state and corner case management
1532 * @uaddr: user address of the futex
1533 * @fshared: whether the futex is shared (1) or not (0)
1534 * @q: futex_q (contains pi_state and access to the rt_mutex)
1535 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1536 *
1537 * After attempting to lock an rt_mutex, this function is called to cleanup
1538 * the pi_state owner as well as handle race conditions that may allow us to
1539 * acquire the lock. Must be called with the hb lock held.
1540 *
1541 * Returns:
1542 * 1 - success, lock taken
1543 * 0 - success, lock not taken
1544 * <0 - on error (-EFAULT)
1545 */
1546static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1547 int locked)
1548{
1549 struct task_struct *owner;
1550 int ret = 0;
1551
1552 if (locked) {
1553 /*
1554 * Got the lock. We might not be the anticipated owner if we
1555 * did a lock-steal - fix up the PI-state in that case:
1556 */
1557 if (q->pi_state->owner != current)
1558 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1559 goto out;
1560 }
1561
1562 /*
1563 * Catch the rare case, where the lock was released when we were on the
1564 * way back before we locked the hash bucket.
1565 */
1566 if (q->pi_state->owner == current) {
1567 /*
1568 * Try to get the rt_mutex now. This might fail as some other
1569 * task acquired the rt_mutex after we removed ourself from the
1570 * rt_mutex waiters list.
1571 */
1572 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1573 locked = 1;
1574 goto out;
1575 }
1576
1577 /*
1578 * pi_state is incorrect, some other task did a lock steal and
1579 * we returned due to timeout or signal without taking the
1580 * rt_mutex. Too late. We can access the rt_mutex_owner without
1581 * locking, as the other task is now blocked on the hash bucket
1582 * lock. Fix the state up.
1583 */
1584 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1585 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1586 goto out;
1587 }
1588
1589 /*
1590 * Paranoia check. If we did not take the lock, then we should not be
1591 * the owner, nor the pending owner, of the rt_mutex.
1592 */
1593 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1594 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1595 "pi-state %p\n", ret,
1596 q->pi_state->pi_mutex.owner,
1597 q->pi_state->owner);
1598
1599out:
1600 return ret ? ret : locked;
1601}
1602
ca5f9524
DH
1603/**
1604 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1605 * @hb: the futex hash bucket, must be locked by the caller
1606 * @q: the futex_q to queue up on
1607 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1608 */
1609static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1610 struct hrtimer_sleeper *timeout)
ca5f9524
DH
1611{
1612 queue_me(q, hb);
1613
1614 /*
1615 * There might have been scheduling since the queue_me(), as we
1616 * cannot hold a spinlock across the get_user() in case it
1617 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
f1a11e05 1618 * queueing ourselves into the futex hash. This code thus has to
ca5f9524
DH
1619 * rely on the futex_wake() code removing us from hash when it
1620 * wakes us up.
1621 */
f1a11e05 1622 set_current_state(TASK_INTERRUPTIBLE);
ca5f9524
DH
1623
1624 /* Arm the timer */
1625 if (timeout) {
1626 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1627 if (!hrtimer_active(&timeout->timer))
1628 timeout->task = NULL;
1629 }
1630
1631 /*
1632 * !plist_node_empty() is safe here without any lock.
1633 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1634 */
1635 if (likely(!plist_node_empty(&q->list))) {
1636 /*
1637 * If the timer has already expired, current will already be
1638 * flagged for rescheduling. Only call schedule if there
1639 * is no timeout, or if it has yet to expire.
1640 */
1641 if (!timeout || timeout->task)
1642 schedule();
1643 }
1644 __set_current_state(TASK_RUNNING);
1645}
1646
f801073f
DH
1647/**
1648 * futex_wait_setup() - Prepare to wait on a futex
1649 * @uaddr: the futex userspace address
1650 * @val: the expected value
1651 * @fshared: whether the futex is shared (1) or not (0)
1652 * @q: the associated futex_q
1653 * @hb: storage for hash_bucket pointer to be returned to caller
1654 *
1655 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1656 * compare it with the expected value. Handle atomic faults internally.
1657 * Return with the hb lock held and a q.key reference on success, and unlocked
1658 * with no q.key reference on failure.
1659 *
1660 * Returns:
1661 * 0 - uaddr contains val and hb has been locked
1662 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1663 */
1664static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1665 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1666{
e2970f2f
IM
1667 u32 uval;
1668 int ret;
1da177e4 1669
1da177e4 1670 /*
b2d0994b 1671 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1672 * Order is important:
1673 *
1674 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1675 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1676 *
1677 * The basic logical guarantee of a futex is that it blocks ONLY
1678 * if cond(var) is known to be true at the time of blocking, for
1679 * any cond. If we queued after testing *uaddr, that would open
1680 * a race condition where we could block indefinitely with
1681 * cond(var) false, which would violate the guarantee.
1682 *
1683 * A consequence is that futex_wait() can return zero and absorb
1684 * a wakeup when *uaddr != val on entry to the syscall. This is
1685 * rare, but normal.
1da177e4 1686 */
f801073f
DH
1687retry:
1688 q->key = FUTEX_KEY_INIT;
521c1808 1689 ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
f801073f 1690 if (unlikely(ret != 0))
a5a2a0c7 1691 return ret;
f801073f
DH
1692
1693retry_private:
1694 *hb = queue_lock(q);
1695
e2970f2f 1696 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1697
f801073f
DH
1698 if (ret) {
1699 queue_unlock(q, *hb);
1da177e4 1700
e2970f2f 1701 ret = get_user(uval, uaddr);
e4dc5b7a 1702 if (ret)
f801073f 1703 goto out;
1da177e4 1704
e4dc5b7a
DH
1705 if (!fshared)
1706 goto retry_private;
1707
f801073f 1708 put_futex_key(fshared, &q->key);
e4dc5b7a 1709 goto retry;
1da177e4 1710 }
ca5f9524 1711
f801073f
DH
1712 if (uval != val) {
1713 queue_unlock(q, *hb);
1714 ret = -EWOULDBLOCK;
2fff78c7 1715 }
1da177e4 1716
f801073f
DH
1717out:
1718 if (ret)
1719 put_futex_key(fshared, &q->key);
1720 return ret;
1721}
1722
1723static int futex_wait(u32 __user *uaddr, int fshared,
1724 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1725{
1726 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1727 struct restart_block *restart;
1728 struct futex_hash_bucket *hb;
1729 struct futex_q q;
1730 int ret;
1731
1732 if (!bitset)
1733 return -EINVAL;
1734
1735 q.pi_state = NULL;
1736 q.bitset = bitset;
52400ba9 1737 q.rt_waiter = NULL;
f801073f
DH
1738
1739 if (abs_time) {
1740 to = &timeout;
1741
1742 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1743 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1744 hrtimer_init_sleeper(to, current);
1745 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1746 current->timer_slack_ns);
1747 }
1748
1749 /* Prepare to wait on uaddr. */
1750 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1751 if (ret)
1752 goto out;
1753
ca5f9524 1754 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1755 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1756
1757 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1758 ret = 0;
1da177e4 1759 if (!unqueue_me(&q))
2fff78c7
PZ
1760 goto out_put_key;
1761 ret = -ETIMEDOUT;
ca5f9524 1762 if (to && !to->task)
2fff78c7 1763 goto out_put_key;
72c1bbf3 1764
e2970f2f
IM
1765 /*
1766 * We expect signal_pending(current), but another thread may
1767 * have handled it for us already.
1768 */
2fff78c7 1769 ret = -ERESTARTSYS;
c19384b5 1770 if (!abs_time)
2fff78c7 1771 goto out_put_key;
1da177e4 1772
2fff78c7
PZ
1773 restart = &current_thread_info()->restart_block;
1774 restart->fn = futex_wait_restart;
1775 restart->futex.uaddr = (u32 *)uaddr;
1776 restart->futex.val = val;
1777 restart->futex.time = abs_time->tv64;
1778 restart->futex.bitset = bitset;
a72188d8 1779 restart->futex.flags = FLAGS_HAS_TIMEOUT;
2fff78c7
PZ
1780
1781 if (fshared)
1782 restart->futex.flags |= FLAGS_SHARED;
1783 if (clockrt)
1784 restart->futex.flags |= FLAGS_CLOCKRT;
42d35d48 1785
2fff78c7
PZ
1786 ret = -ERESTART_RESTARTBLOCK;
1787
1788out_put_key:
1789 put_futex_key(fshared, &q.key);
42d35d48 1790out:
ca5f9524
DH
1791 if (to) {
1792 hrtimer_cancel(&to->timer);
1793 destroy_hrtimer_on_stack(&to->timer);
1794 }
c87e2837
IM
1795 return ret;
1796}
1797
72c1bbf3
NP
1798
1799static long futex_wait_restart(struct restart_block *restart)
1800{
ce6bd420 1801 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1802 int fshared = 0;
a72188d8 1803 ktime_t t, *tp = NULL;
72c1bbf3 1804
a72188d8
DH
1805 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1806 t.tv64 = restart->futex.time;
1807 tp = &t;
1808 }
72c1bbf3 1809 restart->fn = do_no_restart_syscall;
ce6bd420 1810 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1811 fshared = 1;
a72188d8 1812 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1acdac10
TG
1813 restart->futex.bitset,
1814 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1815}
1816
1817
c87e2837
IM
1818/*
1819 * Userspace tried a 0 -> TID atomic transition of the futex value
1820 * and failed. The kernel side here does the whole locking operation:
1821 * if there are waiters then it will block, it does PI, etc. (Due to
1822 * races the kernel might see a 0 value of the futex too.)
1823 */
c2f9f201 1824static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1825 int detect, ktime_t *time, int trylock)
c87e2837 1826{
c5780e97 1827 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1828 struct futex_hash_bucket *hb;
c87e2837 1829 struct futex_q q;
dd973998 1830 int res, ret;
c87e2837
IM
1831
1832 if (refill_pi_state_cache())
1833 return -ENOMEM;
1834
c19384b5 1835 if (time) {
c5780e97 1836 to = &timeout;
237fc6e7
TG
1837 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1838 HRTIMER_MODE_ABS);
c5780e97 1839 hrtimer_init_sleeper(to, current);
cc584b21 1840 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1841 }
1842
c87e2837 1843 q.pi_state = NULL;
52400ba9 1844 q.rt_waiter = NULL;
42d35d48 1845retry:
38d47c1b 1846 q.key = FUTEX_KEY_INIT;
64d1304a 1847 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
c87e2837 1848 if (unlikely(ret != 0))
42d35d48 1849 goto out;
c87e2837 1850
e4dc5b7a 1851retry_private:
82af7aca 1852 hb = queue_lock(&q);
c87e2837 1853
bab5bc9e 1854 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 1855 if (unlikely(ret)) {
778e9a9c 1856 switch (ret) {
1a52084d
DH
1857 case 1:
1858 /* We got the lock. */
1859 ret = 0;
1860 goto out_unlock_put_key;
1861 case -EFAULT:
1862 goto uaddr_faulted;
778e9a9c
AK
1863 case -EAGAIN:
1864 /*
1865 * Task is exiting and we just wait for the
1866 * exit to complete.
1867 */
1868 queue_unlock(&q, hb);
de87fcc1 1869 put_futex_key(fshared, &q.key);
778e9a9c
AK
1870 cond_resched();
1871 goto retry;
778e9a9c 1872 default:
42d35d48 1873 goto out_unlock_put_key;
c87e2837 1874 }
c87e2837
IM
1875 }
1876
1877 /*
1878 * Only actually queue now that the atomic ops are done:
1879 */
82af7aca 1880 queue_me(&q, hb);
c87e2837 1881
c87e2837
IM
1882 WARN_ON(!q.pi_state);
1883 /*
1884 * Block on the PI mutex:
1885 */
1886 if (!trylock)
1887 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1888 else {
1889 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1890 /* Fixup the trylock return value: */
1891 ret = ret ? 0 : -EWOULDBLOCK;
1892 }
1893
a99e4e41 1894 spin_lock(q.lock_ptr);
dd973998
DH
1895 /*
1896 * Fixup the pi_state owner and possibly acquire the lock if we
1897 * haven't already.
1898 */
1899 res = fixup_owner(uaddr, fshared, &q, !ret);
1900 /*
1901 * If fixup_owner() returned an error, proprogate that. If it acquired
1902 * the lock, clear our -ETIMEDOUT or -EINTR.
1903 */
1904 if (res)
1905 ret = (res < 0) ? res : 0;
c87e2837 1906
e8f6386c 1907 /*
dd973998
DH
1908 * If fixup_owner() faulted and was unable to handle the fault, unlock
1909 * it and return the fault to userspace.
e8f6386c
DH
1910 */
1911 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1912 rt_mutex_unlock(&q.pi_state->pi_mutex);
1913
778e9a9c
AK
1914 /* Unqueue and drop the lock */
1915 unqueue_me_pi(&q);
c87e2837 1916
dd973998 1917 goto out;
c87e2837 1918
42d35d48 1919out_unlock_put_key:
c87e2837
IM
1920 queue_unlock(&q, hb);
1921
42d35d48 1922out_put_key:
38d47c1b 1923 put_futex_key(fshared, &q.key);
42d35d48 1924out:
237fc6e7
TG
1925 if (to)
1926 destroy_hrtimer_on_stack(&to->timer);
dd973998 1927 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1928
42d35d48 1929uaddr_faulted:
778e9a9c
AK
1930 queue_unlock(&q, hb);
1931
d0725992 1932 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
1933 if (ret)
1934 goto out_put_key;
c87e2837 1935
e4dc5b7a
DH
1936 if (!fshared)
1937 goto retry_private;
1938
1939 put_futex_key(fshared, &q.key);
1940 goto retry;
c87e2837
IM
1941}
1942
c87e2837
IM
1943/*
1944 * Userspace attempted a TID -> 0 atomic transition, and failed.
1945 * This is the in-kernel slowpath: we look up the PI state (if any),
1946 * and do the rt-mutex unlock.
1947 */
c2f9f201 1948static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1949{
1950 struct futex_hash_bucket *hb;
1951 struct futex_q *this, *next;
1952 u32 uval;
ec92d082 1953 struct plist_head *head;
38d47c1b 1954 union futex_key key = FUTEX_KEY_INIT;
e4dc5b7a 1955 int ret;
c87e2837
IM
1956
1957retry:
1958 if (get_user(uval, uaddr))
1959 return -EFAULT;
1960 /*
1961 * We release only a lock we actually own:
1962 */
b488893a 1963 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1964 return -EPERM;
c87e2837 1965
64d1304a 1966 ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
c87e2837
IM
1967 if (unlikely(ret != 0))
1968 goto out;
1969
1970 hb = hash_futex(&key);
1971 spin_lock(&hb->lock);
1972
c87e2837
IM
1973 /*
1974 * To avoid races, try to do the TID -> 0 atomic transition
1975 * again. If it succeeds then we can return without waking
1976 * anyone else up:
1977 */
36cf3b5c 1978 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1979 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1980
c87e2837
IM
1981
1982 if (unlikely(uval == -EFAULT))
1983 goto pi_faulted;
1984 /*
1985 * Rare case: we managed to release the lock atomically,
1986 * no need to wake anyone else up:
1987 */
b488893a 1988 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1989 goto out_unlock;
1990
1991 /*
1992 * Ok, other tasks may need to be woken up - check waiters
1993 * and do the wakeup if necessary:
1994 */
1995 head = &hb->chain;
1996
ec92d082 1997 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1998 if (!match_futex (&this->key, &key))
1999 continue;
2000 ret = wake_futex_pi(uaddr, uval, this);
2001 /*
2002 * The atomic access to the futex value
2003 * generated a pagefault, so retry the
2004 * user-access and the wakeup:
2005 */
2006 if (ret == -EFAULT)
2007 goto pi_faulted;
2008 goto out_unlock;
2009 }
2010 /*
2011 * No waiters - kernel unlocks the futex:
2012 */
e3f2ddea
IM
2013 if (!(uval & FUTEX_OWNER_DIED)) {
2014 ret = unlock_futex_pi(uaddr, uval);
2015 if (ret == -EFAULT)
2016 goto pi_faulted;
2017 }
c87e2837
IM
2018
2019out_unlock:
2020 spin_unlock(&hb->lock);
38d47c1b 2021 put_futex_key(fshared, &key);
c87e2837 2022
42d35d48 2023out:
c87e2837
IM
2024 return ret;
2025
2026pi_faulted:
778e9a9c 2027 spin_unlock(&hb->lock);
e4dc5b7a 2028 put_futex_key(fshared, &key);
c87e2837 2029
d0725992 2030 ret = fault_in_user_writeable(uaddr);
b5686363 2031 if (!ret)
c87e2837
IM
2032 goto retry;
2033
1da177e4
LT
2034 return ret;
2035}
2036
52400ba9
DH
2037/**
2038 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2039 * @hb: the hash_bucket futex_q was original enqueued on
2040 * @q: the futex_q woken while waiting to be requeued
2041 * @key2: the futex_key of the requeue target futex
2042 * @timeout: the timeout associated with the wait (NULL if none)
2043 *
2044 * Detect if the task was woken on the initial futex as opposed to the requeue
2045 * target futex. If so, determine if it was a timeout or a signal that caused
2046 * the wakeup and return the appropriate error code to the caller. Must be
2047 * called with the hb lock held.
2048 *
2049 * Returns
2050 * 0 - no early wakeup detected
1c840c14 2051 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2052 */
2053static inline
2054int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2055 struct futex_q *q, union futex_key *key2,
2056 struct hrtimer_sleeper *timeout)
2057{
2058 int ret = 0;
2059
2060 /*
2061 * With the hb lock held, we avoid races while we process the wakeup.
2062 * We only need to hold hb (and not hb2) to ensure atomicity as the
2063 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2064 * It can't be requeued from uaddr2 to something else since we don't
2065 * support a PI aware source futex for requeue.
2066 */
2067 if (!match_futex(&q->key, key2)) {
2068 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2069 /*
2070 * We were woken prior to requeue by a timeout or a signal.
2071 * Unqueue the futex_q and determine which it was.
2072 */
2073 plist_del(&q->list, &q->list.plist);
2074 drop_futex_key_refs(&q->key);
2075
2076 if (timeout && !timeout->task)
2077 ret = -ETIMEDOUT;
1c840c14
TG
2078 else
2079 ret = -ERESTARTNOINTR;
52400ba9
DH
2080 }
2081 return ret;
2082}
2083
2084/**
2085 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2086 * @uaddr: the futex we initialyl wait on (non-pi)
2087 * @fshared: whether the futexes are shared (1) or not (0). They must be
2088 * the same type, no requeueing from private to shared, etc.
2089 * @val: the expected value of uaddr
2090 * @abs_time: absolute timeout
2091 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all.
2092 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2093 * @uaddr2: the pi futex we will take prior to returning to user-space
2094 *
2095 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2096 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2097 * complete the acquisition of the rt_mutex prior to returning to userspace.
2098 * This ensures the rt_mutex maintains an owner when it has waiters; without
2099 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2100 * need to.
2101 *
2102 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2103 * via the following:
2104 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2105 * 2) wakeup on uaddr2 after a requeue
2106 * 3) signal
2107 * 4) timeout
52400ba9 2108 *
cc6db4e6 2109 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2110 *
2111 * If 2, we may then block on trying to take the rt_mutex and return via:
2112 * 5) successful lock
2113 * 6) signal
2114 * 7) timeout
2115 * 8) other lock acquisition failure
2116 *
cc6db4e6 2117 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2118 *
2119 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2120 *
2121 * Returns:
2122 * 0 - On success
2123 * <0 - On error
2124 */
2125static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2126 u32 val, ktime_t *abs_time, u32 bitset,
2127 int clockrt, u32 __user *uaddr2)
2128{
2129 struct hrtimer_sleeper timeout, *to = NULL;
2130 struct rt_mutex_waiter rt_waiter;
2131 struct rt_mutex *pi_mutex = NULL;
52400ba9
DH
2132 struct futex_hash_bucket *hb;
2133 union futex_key key2;
2134 struct futex_q q;
2135 int res, ret;
52400ba9
DH
2136
2137 if (!bitset)
2138 return -EINVAL;
2139
2140 if (abs_time) {
2141 to = &timeout;
2142 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2143 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2144 hrtimer_init_sleeper(to, current);
2145 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2146 current->timer_slack_ns);
2147 }
2148
2149 /*
2150 * The waiter is allocated on our stack, manipulated by the requeue
2151 * code while we sleep on uaddr.
2152 */
2153 debug_rt_mutex_init_waiter(&rt_waiter);
2154 rt_waiter.task = NULL;
2155
2156 q.pi_state = NULL;
2157 q.bitset = bitset;
2158 q.rt_waiter = &rt_waiter;
2159
2160 key2 = FUTEX_KEY_INIT;
521c1808 2161 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
52400ba9
DH
2162 if (unlikely(ret != 0))
2163 goto out;
2164
2165 /* Prepare to wait on uaddr. */
2166 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
c8b15a70
TG
2167 if (ret)
2168 goto out_key2;
52400ba9
DH
2169
2170 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2171 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2172
2173 spin_lock(&hb->lock);
2174 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2175 spin_unlock(&hb->lock);
2176 if (ret)
2177 goto out_put_keys;
2178
2179 /*
2180 * In order for us to be here, we know our q.key == key2, and since
2181 * we took the hb->lock above, we also know that futex_requeue() has
2182 * completed and we no longer have to concern ourselves with a wakeup
2183 * race with the atomic proxy lock acquition by the requeue code.
2184 */
2185
2186 /* Check if the requeue code acquired the second futex for us. */
2187 if (!q.rt_waiter) {
2188 /*
2189 * Got the lock. We might not be the anticipated owner if we
2190 * did a lock-steal - fix up the PI-state in that case.
2191 */
2192 if (q.pi_state && (q.pi_state->owner != current)) {
2193 spin_lock(q.lock_ptr);
2194 ret = fixup_pi_state_owner(uaddr2, &q, current,
2195 fshared);
2196 spin_unlock(q.lock_ptr);
2197 }
2198 } else {
2199 /*
2200 * We have been woken up by futex_unlock_pi(), a timeout, or a
2201 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2202 * the pi_state.
2203 */
2204 WARN_ON(!&q.pi_state);
2205 pi_mutex = &q.pi_state->pi_mutex;
2206 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2207 debug_rt_mutex_free_waiter(&rt_waiter);
2208
2209 spin_lock(q.lock_ptr);
2210 /*
2211 * Fixup the pi_state owner and possibly acquire the lock if we
2212 * haven't already.
2213 */
2214 res = fixup_owner(uaddr2, fshared, &q, !ret);
2215 /*
2216 * If fixup_owner() returned an error, proprogate that. If it
2217 * acquired the lock, clear our -ETIMEDOUT or -EINTR.
2218 */
2219 if (res)
2220 ret = (res < 0) ? res : 0;
2221
2222 /* Unqueue and drop the lock. */
2223 unqueue_me_pi(&q);
2224 }
2225
2226 /*
2227 * If fixup_pi_state_owner() faulted and was unable to handle the
2228 * fault, unlock the rt_mutex and return the fault to userspace.
2229 */
2230 if (ret == -EFAULT) {
2231 if (rt_mutex_owner(pi_mutex) == current)
2232 rt_mutex_unlock(pi_mutex);
2233 } else if (ret == -EINTR) {
52400ba9 2234 /*
cc6db4e6
DH
2235 * We've already been requeued, but cannot restart by calling
2236 * futex_lock_pi() directly. We could restart this syscall, but
2237 * it would detect that the user space "val" changed and return
2238 * -EWOULDBLOCK. Save the overhead of the restart and return
2239 * -EWOULDBLOCK directly.
52400ba9 2240 */
2070887f 2241 ret = -EWOULDBLOCK;
52400ba9
DH
2242 }
2243
2244out_put_keys:
2245 put_futex_key(fshared, &q.key);
c8b15a70 2246out_key2:
52400ba9
DH
2247 put_futex_key(fshared, &key2);
2248
2249out:
2250 if (to) {
2251 hrtimer_cancel(&to->timer);
2252 destroy_hrtimer_on_stack(&to->timer);
2253 }
2254 return ret;
2255}
2256
0771dfef
IM
2257/*
2258 * Support for robust futexes: the kernel cleans up held futexes at
2259 * thread exit time.
2260 *
2261 * Implementation: user-space maintains a per-thread list of locks it
2262 * is holding. Upon do_exit(), the kernel carefully walks this list,
2263 * and marks all locks that are owned by this thread with the
c87e2837 2264 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2265 * always manipulated with the lock held, so the list is private and
2266 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2267 * field, to allow the kernel to clean up if the thread dies after
2268 * acquiring the lock, but just before it could have added itself to
2269 * the list. There can only be one such pending lock.
2270 */
2271
2272/**
2273 * sys_set_robust_list - set the robust-futex list head of a task
2274 * @head: pointer to the list-head
2275 * @len: length of the list-head, as userspace expects
2276 */
836f92ad
HC
2277SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2278 size_t, len)
0771dfef 2279{
a0c1e907
TG
2280 if (!futex_cmpxchg_enabled)
2281 return -ENOSYS;
0771dfef
IM
2282 /*
2283 * The kernel knows only one size for now:
2284 */
2285 if (unlikely(len != sizeof(*head)))
2286 return -EINVAL;
2287
2288 current->robust_list = head;
2289
2290 return 0;
2291}
2292
2293/**
2294 * sys_get_robust_list - get the robust-futex list head of a task
2295 * @pid: pid of the process [zero for current task]
2296 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2297 * @len_ptr: pointer to a length field, the kernel fills in the header size
2298 */
836f92ad
HC
2299SYSCALL_DEFINE3(get_robust_list, int, pid,
2300 struct robust_list_head __user * __user *, head_ptr,
2301 size_t __user *, len_ptr)
0771dfef 2302{
ba46df98 2303 struct robust_list_head __user *head;
0771dfef 2304 unsigned long ret;
c69e8d9c 2305 const struct cred *cred = current_cred(), *pcred;
0771dfef 2306
a0c1e907
TG
2307 if (!futex_cmpxchg_enabled)
2308 return -ENOSYS;
2309
0771dfef
IM
2310 if (!pid)
2311 head = current->robust_list;
2312 else {
2313 struct task_struct *p;
2314
2315 ret = -ESRCH;
aaa2a97e 2316 rcu_read_lock();
228ebcbe 2317 p = find_task_by_vpid(pid);
0771dfef
IM
2318 if (!p)
2319 goto err_unlock;
2320 ret = -EPERM;
c69e8d9c
DH
2321 pcred = __task_cred(p);
2322 if (cred->euid != pcred->euid &&
2323 cred->euid != pcred->uid &&
76aac0e9 2324 !capable(CAP_SYS_PTRACE))
0771dfef
IM
2325 goto err_unlock;
2326 head = p->robust_list;
aaa2a97e 2327 rcu_read_unlock();
0771dfef
IM
2328 }
2329
2330 if (put_user(sizeof(*head), len_ptr))
2331 return -EFAULT;
2332 return put_user(head, head_ptr);
2333
2334err_unlock:
aaa2a97e 2335 rcu_read_unlock();
0771dfef
IM
2336
2337 return ret;
2338}
2339
2340/*
2341 * Process a futex-list entry, check whether it's owned by the
2342 * dying task, and do notification if so:
2343 */
e3f2ddea 2344int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2345{
e3f2ddea 2346 u32 uval, nval, mval;
0771dfef 2347
8f17d3a5
IM
2348retry:
2349 if (get_user(uval, uaddr))
0771dfef
IM
2350 return -1;
2351
b488893a 2352 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2353 /*
2354 * Ok, this dying thread is truly holding a futex
2355 * of interest. Set the OWNER_DIED bit atomically
2356 * via cmpxchg, and if the value had FUTEX_WAITERS
2357 * set, wake up a waiter (if any). (We have to do a
2358 * futex_wake() even if OWNER_DIED is already set -
2359 * to handle the rare but possible case of recursive
2360 * thread-death.) The rest of the cleanup is done in
2361 * userspace.
2362 */
e3f2ddea
IM
2363 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2364 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2365
c87e2837
IM
2366 if (nval == -EFAULT)
2367 return -1;
2368
2369 if (nval != uval)
8f17d3a5 2370 goto retry;
0771dfef 2371
e3f2ddea
IM
2372 /*
2373 * Wake robust non-PI futexes here. The wakeup of
2374 * PI futexes happens in exit_pi_state():
2375 */
36cf3b5c 2376 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2377 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2378 }
2379 return 0;
2380}
2381
e3f2ddea
IM
2382/*
2383 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2384 */
2385static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
2386 struct robust_list __user * __user *head,
2387 int *pi)
e3f2ddea
IM
2388{
2389 unsigned long uentry;
2390
ba46df98 2391 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2392 return -EFAULT;
2393
ba46df98 2394 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2395 *pi = uentry & 1;
2396
2397 return 0;
2398}
2399
0771dfef
IM
2400/*
2401 * Walk curr->robust_list (very carefully, it's a userspace list!)
2402 * and mark any locks found there dead, and notify any waiters.
2403 *
2404 * We silently return on any sign of list-walking problem.
2405 */
2406void exit_robust_list(struct task_struct *curr)
2407{
2408 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
2409 struct robust_list __user *entry, *next_entry, *pending;
2410 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 2411 unsigned long futex_offset;
9f96cb1e 2412 int rc;
0771dfef 2413
a0c1e907
TG
2414 if (!futex_cmpxchg_enabled)
2415 return;
2416
0771dfef
IM
2417 /*
2418 * Fetch the list head (which was registered earlier, via
2419 * sys_set_robust_list()):
2420 */
e3f2ddea 2421 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2422 return;
2423 /*
2424 * Fetch the relative futex offset:
2425 */
2426 if (get_user(futex_offset, &head->futex_offset))
2427 return;
2428 /*
2429 * Fetch any possibly pending lock-add first, and handle it
2430 * if it exists:
2431 */
e3f2ddea 2432 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2433 return;
e3f2ddea 2434
9f96cb1e 2435 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2436 while (entry != &head->list) {
9f96cb1e
MS
2437 /*
2438 * Fetch the next entry in the list before calling
2439 * handle_futex_death:
2440 */
2441 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2442 /*
2443 * A pending lock might already be on the list, so
c87e2837 2444 * don't process it twice:
0771dfef
IM
2445 */
2446 if (entry != pending)
ba46df98 2447 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2448 curr, pi))
0771dfef 2449 return;
9f96cb1e 2450 if (rc)
0771dfef 2451 return;
9f96cb1e
MS
2452 entry = next_entry;
2453 pi = next_pi;
0771dfef
IM
2454 /*
2455 * Avoid excessively long or circular lists:
2456 */
2457 if (!--limit)
2458 break;
2459
2460 cond_resched();
2461 }
9f96cb1e
MS
2462
2463 if (pending)
2464 handle_futex_death((void __user *)pending + futex_offset,
2465 curr, pip);
0771dfef
IM
2466}
2467
c19384b5 2468long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2469 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2470{
1acdac10 2471 int clockrt, ret = -ENOSYS;
34f01cc1 2472 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 2473 int fshared = 0;
34f01cc1
ED
2474
2475 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 2476 fshared = 1;
1da177e4 2477
1acdac10 2478 clockrt = op & FUTEX_CLOCK_REALTIME;
52400ba9 2479 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
1acdac10 2480 return -ENOSYS;
1da177e4 2481
34f01cc1 2482 switch (cmd) {
1da177e4 2483 case FUTEX_WAIT:
cd689985
TG
2484 val3 = FUTEX_BITSET_MATCH_ANY;
2485 case FUTEX_WAIT_BITSET:
1acdac10 2486 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
2487 break;
2488 case FUTEX_WAKE:
cd689985
TG
2489 val3 = FUTEX_BITSET_MATCH_ANY;
2490 case FUTEX_WAKE_BITSET:
2491 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 2492 break;
1da177e4 2493 case FUTEX_REQUEUE:
52400ba9 2494 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
1da177e4
LT
2495 break;
2496 case FUTEX_CMP_REQUEUE:
52400ba9
DH
2497 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2498 0);
1da177e4 2499 break;
4732efbe 2500 case FUTEX_WAKE_OP:
34f01cc1 2501 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2502 break;
c87e2837 2503 case FUTEX_LOCK_PI:
a0c1e907
TG
2504 if (futex_cmpxchg_enabled)
2505 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2506 break;
2507 case FUTEX_UNLOCK_PI:
a0c1e907
TG
2508 if (futex_cmpxchg_enabled)
2509 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2510 break;
2511 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
2512 if (futex_cmpxchg_enabled)
2513 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2514 break;
52400ba9
DH
2515 case FUTEX_WAIT_REQUEUE_PI:
2516 val3 = FUTEX_BITSET_MATCH_ANY;
2517 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2518 clockrt, uaddr2);
2519 break;
52400ba9
DH
2520 case FUTEX_CMP_REQUEUE_PI:
2521 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2522 1);
2523 break;
1da177e4
LT
2524 default:
2525 ret = -ENOSYS;
2526 }
2527 return ret;
2528}
2529
2530
17da2bd9
HC
2531SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2532 struct timespec __user *, utime, u32 __user *, uaddr2,
2533 u32, val3)
1da177e4 2534{
c19384b5
PP
2535 struct timespec ts;
2536 ktime_t t, *tp = NULL;
e2970f2f 2537 u32 val2 = 0;
34f01cc1 2538 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2539
cd689985 2540 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2541 cmd == FUTEX_WAIT_BITSET ||
2542 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2543 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2544 return -EFAULT;
c19384b5 2545 if (!timespec_valid(&ts))
9741ef96 2546 return -EINVAL;
c19384b5
PP
2547
2548 t = timespec_to_ktime(ts);
34f01cc1 2549 if (cmd == FUTEX_WAIT)
5a7780e7 2550 t = ktime_add_safe(ktime_get(), t);
c19384b5 2551 tp = &t;
1da177e4
LT
2552 }
2553 /*
52400ba9 2554 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2555 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2556 */
f54f0986 2557 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2558 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2559 val2 = (u32) (unsigned long) utime;
1da177e4 2560
c19384b5 2561 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2562}
2563
f6d107fb 2564static int __init futex_init(void)
1da177e4 2565{
a0c1e907 2566 u32 curval;
3e4ab747 2567 int i;
95362fa9 2568
a0c1e907
TG
2569 /*
2570 * This will fail and we want it. Some arch implementations do
2571 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2572 * functionality. We want to know that before we call in any
2573 * of the complex code paths. Also we want to prevent
2574 * registration of robust lists in that case. NULL is
2575 * guaranteed to fault and we get -EFAULT on functional
2576 * implementation, the non functional ones will return
2577 * -ENOSYS.
2578 */
2579 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2580 if (curval == -EFAULT)
2581 futex_cmpxchg_enabled = 1;
2582
3e4ab747
TG
2583 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2584 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2585 spin_lock_init(&futex_queues[i].lock);
2586 }
2587
1da177e4
LT
2588 return 0;
2589}
f6d107fb 2590__initcall(futex_init);