uprobes: Change read_opcode() to use FOLL_FORCE
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
7b2d81d4 35
2b144498
SD
36#include <linux/uprobes.h>
37
d4b3b638
SD
38#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
40
0326f5a9 41static struct srcu_struct uprobes_srcu;
2b144498 42static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 43
2b144498
SD
44static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46#define UPROBES_HASH_SZ 13
7b2d81d4 47
2b144498
SD
48/* serialize (un)register */
49static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
50
51#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
52
53/* serialize uprobe->pending_list */
54static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 55#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
56
57/*
7b2d81d4 58 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
59 * events active at this time. Probably a fine grained per inode count is
60 * better?
61 */
62static atomic_t uprobe_events = ATOMIC_INIT(0);
63
64/*
65 * Maintain a temporary per vma info that can be used to search if a vma
66 * has already been handled. This structure is introduced since extending
67 * vm_area_struct wasnt recommended.
68 */
69struct vma_info {
7b2d81d4
IM
70 struct list_head probe_list;
71 struct mm_struct *mm;
72 loff_t vaddr;
2b144498
SD
73};
74
3ff54efd
SD
75struct uprobe {
76 struct rb_node rb_node; /* node in the rb tree */
77 atomic_t ref;
78 struct rw_semaphore consumer_rwsem;
79 struct list_head pending_list;
80 struct uprobe_consumer *consumers;
81 struct inode *inode; /* Also hold a ref to inode */
82 loff_t offset;
83 int flags;
84 struct arch_uprobe arch;
85};
86
2b144498
SD
87/*
88 * valid_vma: Verify if the specified vma is an executable vma
89 * Relax restrictions while unregistering: vm_flags might have
90 * changed after breakpoint was inserted.
91 * - is_register: indicates if we are in register context.
92 * - Return 1 if the specified virtual address is in an
93 * executable vma.
94 */
95static bool valid_vma(struct vm_area_struct *vma, bool is_register)
96{
97 if (!vma->vm_file)
98 return false;
99
100 if (!is_register)
101 return true;
102
7b2d81d4 103 if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC))
2b144498
SD
104 return true;
105
106 return false;
107}
108
109static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
110{
111 loff_t vaddr;
112
113 vaddr = vma->vm_start + offset;
114 vaddr -= vma->vm_pgoff << PAGE_SHIFT;
7b2d81d4 115
2b144498
SD
116 return vaddr;
117}
118
119/**
120 * __replace_page - replace page in vma by new page.
121 * based on replace_page in mm/ksm.c
122 *
123 * @vma: vma that holds the pte pointing to page
124 * @page: the cowed page we are replacing by kpage
125 * @kpage: the modified page we replace page by
126 *
127 * Returns 0 on success, -EFAULT on failure.
128 */
7b2d81d4 129static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
2b144498
SD
130{
131 struct mm_struct *mm = vma->vm_mm;
132 pgd_t *pgd;
133 pud_t *pud;
134 pmd_t *pmd;
135 pte_t *ptep;
136 spinlock_t *ptl;
137 unsigned long addr;
138 int err = -EFAULT;
139
140 addr = page_address_in_vma(page, vma);
141 if (addr == -EFAULT)
142 goto out;
143
144 pgd = pgd_offset(mm, addr);
145 if (!pgd_present(*pgd))
146 goto out;
147
148 pud = pud_offset(pgd, addr);
149 if (!pud_present(*pud))
150 goto out;
151
152 pmd = pmd_offset(pud, addr);
153 if (!pmd_present(*pmd))
154 goto out;
155
156 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
157 if (!ptep)
158 goto out;
159
160 get_page(kpage);
161 page_add_new_anon_rmap(kpage, vma, addr);
162
7396fa81
SD
163 if (!PageAnon(page)) {
164 dec_mm_counter(mm, MM_FILEPAGES);
165 inc_mm_counter(mm, MM_ANONPAGES);
166 }
167
2b144498
SD
168 flush_cache_page(vma, addr, pte_pfn(*ptep));
169 ptep_clear_flush(vma, addr, ptep);
170 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
171
172 page_remove_rmap(page);
173 if (!page_mapped(page))
174 try_to_free_swap(page);
175 put_page(page);
176 pte_unmap_unlock(ptep, ptl);
177 err = 0;
178
179out:
180 return err;
181}
182
183/**
5cb4ac3a 184 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 185 * @insn: instruction to be checked.
5cb4ac3a 186 * Default implementation of is_swbp_insn
2b144498
SD
187 * Returns true if @insn is a breakpoint instruction.
188 */
5cb4ac3a 189bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 190{
5cb4ac3a 191 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
192}
193
194/*
195 * NOTE:
196 * Expect the breakpoint instruction to be the smallest size instruction for
197 * the architecture. If an arch has variable length instruction and the
198 * breakpoint instruction is not of the smallest length instruction
199 * supported by that architecture then we need to modify read_opcode /
200 * write_opcode accordingly. This would never be a problem for archs that
201 * have fixed length instructions.
202 */
203
204/*
205 * write_opcode - write the opcode at a given virtual address.
e3343e6a 206 * @auprobe: arch breakpointing information.
2b144498 207 * @mm: the probed process address space.
2b144498
SD
208 * @vaddr: the virtual address to store the opcode.
209 * @opcode: opcode to be written at @vaddr.
210 *
211 * Called with mm->mmap_sem held (for read and with a reference to
212 * mm).
213 *
214 * For mm @mm, write the opcode at @vaddr.
215 * Return 0 (success) or a negative errno.
216 */
e3343e6a 217static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
2b144498
SD
218 unsigned long vaddr, uprobe_opcode_t opcode)
219{
220 struct page *old_page, *new_page;
221 struct address_space *mapping;
222 void *vaddr_old, *vaddr_new;
223 struct vm_area_struct *vma;
3ff54efd 224 struct uprobe *uprobe;
2b144498
SD
225 loff_t addr;
226 int ret;
227
228 /* Read the page with vaddr into memory */
229 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
230 if (ret <= 0)
231 return ret;
7b2d81d4 232
2b144498
SD
233 ret = -EINVAL;
234
235 /*
236 * We are interested in text pages only. Our pages of interest
237 * should be mapped for read and execute only. We desist from
238 * adding probes in write mapped pages since the breakpoints
239 * might end up in the file copy.
240 */
5cb4ac3a 241 if (!valid_vma(vma, is_swbp_insn(&opcode)))
2b144498
SD
242 goto put_out;
243
3ff54efd 244 uprobe = container_of(auprobe, struct uprobe, arch);
2b144498
SD
245 mapping = uprobe->inode->i_mapping;
246 if (mapping != vma->vm_file->f_mapping)
247 goto put_out;
248
249 addr = vma_address(vma, uprobe->offset);
250 if (vaddr != (unsigned long)addr)
251 goto put_out;
252
253 ret = -ENOMEM;
254 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
255 if (!new_page)
256 goto put_out;
257
258 __SetPageUptodate(new_page);
259
260 /*
261 * lock page will serialize against do_wp_page()'s
262 * PageAnon() handling
263 */
264 lock_page(old_page);
265 /* copy the page now that we've got it stable */
266 vaddr_old = kmap_atomic(old_page);
267 vaddr_new = kmap_atomic(new_page);
268
269 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
7b2d81d4 270
2b144498
SD
271 /* poke the new insn in, ASSUMES we don't cross page boundary */
272 vaddr &= ~PAGE_MASK;
5cb4ac3a
SD
273 BUG_ON(vaddr + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
274 memcpy(vaddr_new + vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
275
276 kunmap_atomic(vaddr_new);
277 kunmap_atomic(vaddr_old);
278
279 ret = anon_vma_prepare(vma);
280 if (ret)
281 goto unlock_out;
282
283 lock_page(new_page);
284 ret = __replace_page(vma, old_page, new_page);
285 unlock_page(new_page);
286
287unlock_out:
288 unlock_page(old_page);
289 page_cache_release(new_page);
290
291put_out:
7b2d81d4
IM
292 put_page(old_page);
293
2b144498
SD
294 return ret;
295}
296
297/**
298 * read_opcode - read the opcode at a given virtual address.
299 * @mm: the probed process address space.
300 * @vaddr: the virtual address to read the opcode.
301 * @opcode: location to store the read opcode.
302 *
303 * Called with mm->mmap_sem held (for read and with a reference to
304 * mm.
305 *
306 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
307 * Return 0 (success) or a negative errno.
308 */
7b2d81d4 309static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
2b144498
SD
310{
311 struct page *page;
312 void *vaddr_new;
313 int ret;
314
a3d7bb47 315 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
2b144498
SD
316 if (ret <= 0)
317 return ret;
318
319 lock_page(page);
320 vaddr_new = kmap_atomic(page);
321 vaddr &= ~PAGE_MASK;
5cb4ac3a 322 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
323 kunmap_atomic(vaddr_new);
324 unlock_page(page);
7b2d81d4
IM
325
326 put_page(page);
327
2b144498
SD
328 return 0;
329}
330
5cb4ac3a 331static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498
SD
332{
333 uprobe_opcode_t opcode;
7b2d81d4 334 int result;
2b144498 335
c00b2750
ON
336 if (current->mm == mm) {
337 pagefault_disable();
338 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
339 sizeof(opcode));
340 pagefault_enable();
341
342 if (likely(result == 0))
343 goto out;
344 }
345
7b2d81d4 346 result = read_opcode(mm, vaddr, &opcode);
2b144498
SD
347 if (result)
348 return result;
c00b2750 349out:
5cb4ac3a 350 if (is_swbp_insn(&opcode))
2b144498
SD
351 return 1;
352
353 return 0;
354}
355
356/**
5cb4ac3a 357 * set_swbp - store breakpoint at a given address.
e3343e6a 358 * @auprobe: arch specific probepoint information.
2b144498 359 * @mm: the probed process address space.
2b144498
SD
360 * @vaddr: the virtual address to insert the opcode.
361 *
362 * For mm @mm, store the breakpoint instruction at @vaddr.
363 * Return 0 (success) or a negative errno.
364 */
5cb4ac3a 365int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 366{
7b2d81d4 367 int result;
2b144498 368
5cb4ac3a 369 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
370 if (result == 1)
371 return -EEXIST;
372
373 if (result)
374 return result;
375
5cb4ac3a 376 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
377}
378
379/**
380 * set_orig_insn - Restore the original instruction.
381 * @mm: the probed process address space.
e3343e6a 382 * @auprobe: arch specific probepoint information.
2b144498
SD
383 * @vaddr: the virtual address to insert the opcode.
384 * @verify: if true, verify existance of breakpoint instruction.
385 *
386 * For mm @mm, restore the original opcode (opcode) at @vaddr.
387 * Return 0 (success) or a negative errno.
388 */
7b2d81d4 389int __weak
e3343e6a 390set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
2b144498
SD
391{
392 if (verify) {
7b2d81d4 393 int result;
2b144498 394
5cb4ac3a 395 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
396 if (!result)
397 return -EINVAL;
398
399 if (result != 1)
400 return result;
401 }
e3343e6a 402 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
403}
404
405static int match_uprobe(struct uprobe *l, struct uprobe *r)
406{
407 if (l->inode < r->inode)
408 return -1;
7b2d81d4 409
2b144498
SD
410 if (l->inode > r->inode)
411 return 1;
2b144498 412
7b2d81d4
IM
413 if (l->offset < r->offset)
414 return -1;
415
416 if (l->offset > r->offset)
417 return 1;
2b144498
SD
418
419 return 0;
420}
421
422static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
423{
424 struct uprobe u = { .inode = inode, .offset = offset };
425 struct rb_node *n = uprobes_tree.rb_node;
426 struct uprobe *uprobe;
427 int match;
428
429 while (n) {
430 uprobe = rb_entry(n, struct uprobe, rb_node);
431 match = match_uprobe(&u, uprobe);
432 if (!match) {
433 atomic_inc(&uprobe->ref);
434 return uprobe;
435 }
7b2d81d4 436
2b144498
SD
437 if (match < 0)
438 n = n->rb_left;
439 else
440 n = n->rb_right;
441 }
442 return NULL;
443}
444
445/*
446 * Find a uprobe corresponding to a given inode:offset
447 * Acquires uprobes_treelock
448 */
449static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
450{
451 struct uprobe *uprobe;
452 unsigned long flags;
453
454 spin_lock_irqsave(&uprobes_treelock, flags);
455 uprobe = __find_uprobe(inode, offset);
456 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 457
2b144498
SD
458 return uprobe;
459}
460
461static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
462{
463 struct rb_node **p = &uprobes_tree.rb_node;
464 struct rb_node *parent = NULL;
465 struct uprobe *u;
466 int match;
467
468 while (*p) {
469 parent = *p;
470 u = rb_entry(parent, struct uprobe, rb_node);
471 match = match_uprobe(uprobe, u);
472 if (!match) {
473 atomic_inc(&u->ref);
474 return u;
475 }
476
477 if (match < 0)
478 p = &parent->rb_left;
479 else
480 p = &parent->rb_right;
481
482 }
7b2d81d4 483
2b144498
SD
484 u = NULL;
485 rb_link_node(&uprobe->rb_node, parent, p);
486 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
487 /* get access + creation ref */
488 atomic_set(&uprobe->ref, 2);
7b2d81d4 489
2b144498
SD
490 return u;
491}
492
493/*
7b2d81d4 494 * Acquire uprobes_treelock.
2b144498
SD
495 * Matching uprobe already exists in rbtree;
496 * increment (access refcount) and return the matching uprobe.
497 *
498 * No matching uprobe; insert the uprobe in rb_tree;
499 * get a double refcount (access + creation) and return NULL.
500 */
501static struct uprobe *insert_uprobe(struct uprobe *uprobe)
502{
503 unsigned long flags;
504 struct uprobe *u;
505
506 spin_lock_irqsave(&uprobes_treelock, flags);
507 u = __insert_uprobe(uprobe);
508 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 509
0326f5a9
SD
510 /* For now assume that the instruction need not be single-stepped */
511 uprobe->flags |= UPROBE_SKIP_SSTEP;
512
2b144498
SD
513 return u;
514}
515
516static void put_uprobe(struct uprobe *uprobe)
517{
518 if (atomic_dec_and_test(&uprobe->ref))
519 kfree(uprobe);
520}
521
522static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
523{
524 struct uprobe *uprobe, *cur_uprobe;
525
526 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
527 if (!uprobe)
528 return NULL;
529
530 uprobe->inode = igrab(inode);
531 uprobe->offset = offset;
532 init_rwsem(&uprobe->consumer_rwsem);
533 INIT_LIST_HEAD(&uprobe->pending_list);
534
535 /* add to uprobes_tree, sorted on inode:offset */
536 cur_uprobe = insert_uprobe(uprobe);
537
538 /* a uprobe exists for this inode:offset combination */
539 if (cur_uprobe) {
540 kfree(uprobe);
541 uprobe = cur_uprobe;
542 iput(inode);
7b2d81d4 543 } else {
2b144498 544 atomic_inc(&uprobe_events);
7b2d81d4
IM
545 }
546
2b144498
SD
547 return uprobe;
548}
549
0326f5a9
SD
550static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
551{
552 struct uprobe_consumer *uc;
553
554 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
555 return;
556
557 down_read(&uprobe->consumer_rwsem);
558 for (uc = uprobe->consumers; uc; uc = uc->next) {
559 if (!uc->filter || uc->filter(uc, current))
560 uc->handler(uc, regs);
561 }
562 up_read(&uprobe->consumer_rwsem);
563}
564
2b144498 565/* Returns the previous consumer */
7b2d81d4 566static struct uprobe_consumer *
e3343e6a 567consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
568{
569 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
570 uc->next = uprobe->consumers;
571 uprobe->consumers = uc;
2b144498 572 up_write(&uprobe->consumer_rwsem);
7b2d81d4 573
e3343e6a 574 return uc->next;
2b144498
SD
575}
576
577/*
e3343e6a
SD
578 * For uprobe @uprobe, delete the consumer @uc.
579 * Return true if the @uc is deleted successfully
2b144498
SD
580 * or return false.
581 */
e3343e6a 582static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
583{
584 struct uprobe_consumer **con;
585 bool ret = false;
586
587 down_write(&uprobe->consumer_rwsem);
588 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
589 if (*con == uc) {
590 *con = uc->next;
2b144498
SD
591 ret = true;
592 break;
593 }
594 }
595 up_write(&uprobe->consumer_rwsem);
7b2d81d4 596
2b144498
SD
597 return ret;
598}
599
e3343e6a
SD
600static int
601__copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
2b144498
SD
602 unsigned long nbytes, unsigned long offset)
603{
604 struct file *filp = vma->vm_file;
605 struct page *page;
606 void *vaddr;
607 unsigned long off1;
608 unsigned long idx;
609
610 if (!filp)
611 return -EINVAL;
612
613 idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
614 off1 = offset &= ~PAGE_MASK;
615
616 /*
617 * Ensure that the page that has the original instruction is
618 * populated and in page-cache.
619 */
620 page = read_mapping_page(mapping, idx, filp);
621 if (IS_ERR(page))
622 return PTR_ERR(page);
623
624 vaddr = kmap_atomic(page);
625 memcpy(insn, vaddr + off1, nbytes);
626 kunmap_atomic(vaddr);
627 page_cache_release(page);
7b2d81d4 628
2b144498
SD
629 return 0;
630}
631
e3343e6a
SD
632static int
633copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
2b144498
SD
634{
635 struct address_space *mapping;
2b144498 636 unsigned long nbytes;
7b2d81d4 637 int bytes;
2b144498
SD
638
639 addr &= ~PAGE_MASK;
640 nbytes = PAGE_SIZE - addr;
641 mapping = uprobe->inode->i_mapping;
642
643 /* Instruction at end of binary; copy only available bytes */
644 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
645 bytes = uprobe->inode->i_size - uprobe->offset;
646 else
647 bytes = MAX_UINSN_BYTES;
648
649 /* Instruction at the page-boundary; copy bytes in second page */
650 if (nbytes < bytes) {
3ff54efd 651 if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
2b144498
SD
652 bytes - nbytes, uprobe->offset + nbytes))
653 return -ENOMEM;
654
655 bytes = nbytes;
656 }
3ff54efd 657 return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
658}
659
682968e0
SD
660/*
661 * How mm->uprobes_state.count gets updated
662 * uprobe_mmap() increments the count if
663 * - it successfully adds a breakpoint.
664 * - it cannot add a breakpoint, but sees that there is a underlying
665 * breakpoint (via a is_swbp_at_addr()).
666 *
667 * uprobe_munmap() decrements the count if
668 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
669 * (Subsequent uprobe_unregister wouldnt find the breakpoint
670 * unless a uprobe_mmap kicks in, since the old vma would be
671 * dropped just after uprobe_munmap.)
672 *
673 * uprobe_register increments the count if:
674 * - it successfully adds a breakpoint.
675 *
676 * uprobe_unregister decrements the count if:
677 * - it sees a underlying breakpoint and removes successfully.
678 * (via is_swbp_at_addr)
679 * (Subsequent uprobe_munmap wouldnt find the breakpoint
680 * since there is no underlying breakpoint after the
681 * breakpoint removal.)
682 */
e3343e6a
SD
683static int
684install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
685 struct vm_area_struct *vma, loff_t vaddr)
2b144498
SD
686{
687 unsigned long addr;
688 int ret;
689
690 /*
691 * If probe is being deleted, unregister thread could be done with
692 * the vma-rmap-walk through. Adding a probe now can be fatal since
693 * nobody will be able to cleanup. Also we could be from fork or
694 * mremap path, where the probe might have already been inserted.
695 * Hence behave as if probe already existed.
696 */
697 if (!uprobe->consumers)
698 return -EEXIST;
699
700 addr = (unsigned long)vaddr;
7b2d81d4 701
900771a4 702 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
2b144498
SD
703 ret = copy_insn(uprobe, vma, addr);
704 if (ret)
705 return ret;
706
5cb4ac3a 707 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
2b144498
SD
708 return -EEXIST;
709
0326f5a9 710 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm);
2b144498
SD
711 if (ret)
712 return ret;
713
900771a4 714 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 715 }
682968e0
SD
716
717 /*
718 * Ideally, should be updating the probe count after the breakpoint
719 * has been successfully inserted. However a thread could hit the
720 * breakpoint we just inserted even before the probe count is
721 * incremented. If this is the first breakpoint placed, breakpoint
722 * notifier might ignore uprobes and pass the trap to the thread.
723 * Hence increment before and decrement on failure.
724 */
725 atomic_inc(&mm->uprobes_state.count);
5cb4ac3a 726 ret = set_swbp(&uprobe->arch, mm, addr);
682968e0
SD
727 if (ret)
728 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
729
730 return ret;
731}
732
e3343e6a
SD
733static void
734remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
2b144498 735{
682968e0
SD
736 if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
737 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
738}
739
0326f5a9
SD
740/*
741 * There could be threads that have hit the breakpoint and are entering the
742 * notifier code and trying to acquire the uprobes_treelock. The thread
743 * calling delete_uprobe() that is removing the uprobe from the rb_tree can
744 * race with these threads and might acquire the uprobes_treelock compared
745 * to some of the breakpoint hit threads. In such a case, the breakpoint
746 * hit threads will not find the uprobe. The current unregistering thread
747 * waits till all other threads have hit a breakpoint, to acquire the
748 * uprobes_treelock before the uprobe is removed from the rbtree.
749 */
2b144498
SD
750static void delete_uprobe(struct uprobe *uprobe)
751{
752 unsigned long flags;
753
0326f5a9 754 synchronize_srcu(&uprobes_srcu);
2b144498
SD
755 spin_lock_irqsave(&uprobes_treelock, flags);
756 rb_erase(&uprobe->rb_node, &uprobes_tree);
757 spin_unlock_irqrestore(&uprobes_treelock, flags);
758 iput(uprobe->inode);
759 put_uprobe(uprobe);
760 atomic_dec(&uprobe_events);
761}
762
e3343e6a
SD
763static struct vma_info *
764__find_next_vma_info(struct address_space *mapping, struct list_head *head,
765 struct vma_info *vi, loff_t offset, bool is_register)
2b144498
SD
766{
767 struct prio_tree_iter iter;
768 struct vm_area_struct *vma;
769 struct vma_info *tmpvi;
7b2d81d4 770 unsigned long pgoff;
2b144498 771 int existing_vma;
7b2d81d4
IM
772 loff_t vaddr;
773
774 pgoff = offset >> PAGE_SHIFT;
2b144498
SD
775
776 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
777 if (!valid_vma(vma, is_register))
778 continue;
779
780 existing_vma = 0;
781 vaddr = vma_address(vma, offset);
7b2d81d4 782
2b144498
SD
783 list_for_each_entry(tmpvi, head, probe_list) {
784 if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
785 existing_vma = 1;
786 break;
787 }
788 }
789
790 /*
791 * Another vma needs a probe to be installed. However skip
792 * installing the probe if the vma is about to be unlinked.
793 */
7b2d81d4 794 if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
2b144498
SD
795 vi->mm = vma->vm_mm;
796 vi->vaddr = vaddr;
797 list_add(&vi->probe_list, head);
7b2d81d4 798
2b144498
SD
799 return vi;
800 }
801 }
7b2d81d4 802
2b144498
SD
803 return NULL;
804}
805
806/*
807 * Iterate in the rmap prio tree and find a vma where a probe has not
808 * yet been inserted.
809 */
7b2d81d4 810static struct vma_info *
e3343e6a
SD
811find_next_vma_info(struct address_space *mapping, struct list_head *head,
812 loff_t offset, bool is_register)
2b144498
SD
813{
814 struct vma_info *vi, *retvi;
7b2d81d4 815
2b144498
SD
816 vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
817 if (!vi)
818 return ERR_PTR(-ENOMEM);
819
820 mutex_lock(&mapping->i_mmap_mutex);
e3343e6a 821 retvi = __find_next_vma_info(mapping, head, vi, offset, is_register);
2b144498
SD
822 mutex_unlock(&mapping->i_mmap_mutex);
823
824 if (!retvi)
825 kfree(vi);
7b2d81d4 826
2b144498
SD
827 return retvi;
828}
829
830static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
831{
832 struct list_head try_list;
833 struct vm_area_struct *vma;
834 struct address_space *mapping;
835 struct vma_info *vi, *tmpvi;
836 struct mm_struct *mm;
837 loff_t vaddr;
7b2d81d4 838 int ret;
2b144498
SD
839
840 mapping = uprobe->inode->i_mapping;
841 INIT_LIST_HEAD(&try_list);
7b2d81d4
IM
842
843 ret = 0;
844
845 for (;;) {
e3343e6a 846 vi = find_next_vma_info(mapping, &try_list, uprobe->offset, is_register);
7b2d81d4
IM
847 if (!vi)
848 break;
849
2b144498
SD
850 if (IS_ERR(vi)) {
851 ret = PTR_ERR(vi);
852 break;
853 }
7b2d81d4 854
2b144498
SD
855 mm = vi->mm;
856 down_read(&mm->mmap_sem);
857 vma = find_vma(mm, (unsigned long)vi->vaddr);
858 if (!vma || !valid_vma(vma, is_register)) {
859 list_del(&vi->probe_list);
860 kfree(vi);
861 up_read(&mm->mmap_sem);
862 mmput(mm);
863 continue;
864 }
865 vaddr = vma_address(vma, uprobe->offset);
866 if (vma->vm_file->f_mapping->host != uprobe->inode ||
867 vaddr != vi->vaddr) {
868 list_del(&vi->probe_list);
869 kfree(vi);
870 up_read(&mm->mmap_sem);
871 mmput(mm);
872 continue;
873 }
874
875 if (is_register)
e3343e6a 876 ret = install_breakpoint(uprobe, mm, vma, vi->vaddr);
2b144498 877 else
e3343e6a 878 remove_breakpoint(uprobe, mm, vi->vaddr);
2b144498
SD
879
880 up_read(&mm->mmap_sem);
881 mmput(mm);
882 if (is_register) {
883 if (ret && ret == -EEXIST)
884 ret = 0;
885 if (ret)
886 break;
887 }
888 }
7b2d81d4 889
2b144498
SD
890 list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
891 list_del(&vi->probe_list);
892 kfree(vi);
893 }
7b2d81d4 894
2b144498
SD
895 return ret;
896}
897
7b2d81d4 898static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
899{
900 return register_for_each_vma(uprobe, true);
901}
902
7b2d81d4 903static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
904{
905 if (!register_for_each_vma(uprobe, false))
906 delete_uprobe(uprobe);
907
908 /* TODO : cant unregister? schedule a worker thread */
909}
910
911/*
7b2d81d4 912 * uprobe_register - register a probe
2b144498
SD
913 * @inode: the file in which the probe has to be placed.
914 * @offset: offset from the start of the file.
e3343e6a 915 * @uc: information on howto handle the probe..
2b144498 916 *
7b2d81d4 917 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
918 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
919 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 920 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 921 * @uprobe even before the register operation is complete. Creation
e3343e6a 922 * refcount is released when the last @uc for the @uprobe
2b144498
SD
923 * unregisters.
924 *
925 * Return errno if it cannot successully install probes
926 * else return 0 (success)
927 */
e3343e6a 928int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
929{
930 struct uprobe *uprobe;
7b2d81d4 931 int ret;
2b144498 932
e3343e6a 933 if (!inode || !uc || uc->next)
7b2d81d4 934 return -EINVAL;
2b144498
SD
935
936 if (offset > i_size_read(inode))
7b2d81d4 937 return -EINVAL;
2b144498
SD
938
939 ret = 0;
940 mutex_lock(uprobes_hash(inode));
941 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 942
e3343e6a 943 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 944 ret = __uprobe_register(uprobe);
2b144498
SD
945 if (ret) {
946 uprobe->consumers = NULL;
7b2d81d4
IM
947 __uprobe_unregister(uprobe);
948 } else {
900771a4 949 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 950 }
2b144498
SD
951 }
952
953 mutex_unlock(uprobes_hash(inode));
954 put_uprobe(uprobe);
955
956 return ret;
957}
958
959/*
7b2d81d4 960 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
961 * @inode: the file in which the probe has to be removed.
962 * @offset: offset from the start of the file.
e3343e6a 963 * @uc: identify which probe if multiple probes are colocated.
2b144498 964 */
e3343e6a 965void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 966{
7b2d81d4 967 struct uprobe *uprobe;
2b144498 968
e3343e6a 969 if (!inode || !uc)
2b144498
SD
970 return;
971
972 uprobe = find_uprobe(inode, offset);
973 if (!uprobe)
974 return;
975
976 mutex_lock(uprobes_hash(inode));
2b144498 977
e3343e6a 978 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
979 if (!uprobe->consumers) {
980 __uprobe_unregister(uprobe);
900771a4 981 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 982 }
2b144498
SD
983 }
984
2b144498
SD
985 mutex_unlock(uprobes_hash(inode));
986 if (uprobe)
987 put_uprobe(uprobe);
988}
989
990/*
991 * Of all the nodes that correspond to the given inode, return the node
992 * with the least offset.
993 */
994static struct rb_node *find_least_offset_node(struct inode *inode)
995{
996 struct uprobe u = { .inode = inode, .offset = 0};
997 struct rb_node *n = uprobes_tree.rb_node;
998 struct rb_node *close_node = NULL;
999 struct uprobe *uprobe;
1000 int match;
1001
1002 while (n) {
1003 uprobe = rb_entry(n, struct uprobe, rb_node);
1004 match = match_uprobe(&u, uprobe);
7b2d81d4 1005
2b144498
SD
1006 if (uprobe->inode == inode)
1007 close_node = n;
1008
1009 if (!match)
1010 return close_node;
1011
1012 if (match < 0)
1013 n = n->rb_left;
1014 else
1015 n = n->rb_right;
1016 }
7b2d81d4 1017
2b144498
SD
1018 return close_node;
1019}
1020
1021/*
1022 * For a given inode, build a list of probes that need to be inserted.
1023 */
1024static void build_probe_list(struct inode *inode, struct list_head *head)
1025{
1026 struct uprobe *uprobe;
2b144498 1027 unsigned long flags;
7b2d81d4 1028 struct rb_node *n;
2b144498
SD
1029
1030 spin_lock_irqsave(&uprobes_treelock, flags);
7b2d81d4 1031
2b144498 1032 n = find_least_offset_node(inode);
7b2d81d4 1033
2b144498
SD
1034 for (; n; n = rb_next(n)) {
1035 uprobe = rb_entry(n, struct uprobe, rb_node);
1036 if (uprobe->inode != inode)
1037 break;
1038
1039 list_add(&uprobe->pending_list, head);
1040 atomic_inc(&uprobe->ref);
1041 }
7b2d81d4 1042
2b144498
SD
1043 spin_unlock_irqrestore(&uprobes_treelock, flags);
1044}
1045
1046/*
1047 * Called from mmap_region.
1048 * called with mm->mmap_sem acquired.
1049 *
1050 * Return -ve no if we fail to insert probes and we cannot
1051 * bail-out.
7b2d81d4
IM
1052 * Return 0 otherwise. i.e:
1053 *
2b144498
SD
1054 * - successful insertion of probes
1055 * - (or) no possible probes to be inserted.
1056 * - (or) insertion of probes failed but we can bail-out.
1057 */
7b2d81d4 1058int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1059{
1060 struct list_head tmp_list;
1061 struct uprobe *uprobe, *u;
1062 struct inode *inode;
682968e0 1063 int ret, count;
2b144498
SD
1064
1065 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 1066 return 0;
2b144498
SD
1067
1068 inode = vma->vm_file->f_mapping->host;
1069 if (!inode)
7b2d81d4 1070 return 0;
2b144498
SD
1071
1072 INIT_LIST_HEAD(&tmp_list);
1073 mutex_lock(uprobes_mmap_hash(inode));
1074 build_probe_list(inode, &tmp_list);
7b2d81d4
IM
1075
1076 ret = 0;
682968e0 1077 count = 0;
7b2d81d4 1078
2b144498
SD
1079 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1080 loff_t vaddr;
1081
1082 list_del(&uprobe->pending_list);
1083 if (!ret) {
1084 vaddr = vma_address(vma, uprobe->offset);
682968e0
SD
1085
1086 if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1087 put_uprobe(uprobe);
1088 continue;
2b144498 1089 }
682968e0
SD
1090
1091 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1092
1093 /* Ignore double add: */
1094 if (ret == -EEXIST) {
1095 ret = 0;
1096
1097 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1098 continue;
1099
1100 /*
1101 * Unable to insert a breakpoint, but
1102 * breakpoint lies underneath. Increment the
1103 * probe count.
1104 */
1105 atomic_inc(&vma->vm_mm->uprobes_state.count);
1106 }
1107
1108 if (!ret)
1109 count++;
2b144498
SD
1110 }
1111 put_uprobe(uprobe);
1112 }
1113
1114 mutex_unlock(uprobes_mmap_hash(inode));
1115
682968e0
SD
1116 if (ret)
1117 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1118
2b144498
SD
1119 return ret;
1120}
1121
682968e0
SD
1122/*
1123 * Called in context of a munmap of a vma.
1124 */
cbc91f71 1125void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0
SD
1126{
1127 struct list_head tmp_list;
1128 struct uprobe *uprobe, *u;
1129 struct inode *inode;
1130
1131 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1132 return;
1133
1134 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1135 return;
1136
1137 inode = vma->vm_file->f_mapping->host;
1138 if (!inode)
1139 return;
1140
1141 INIT_LIST_HEAD(&tmp_list);
1142 mutex_lock(uprobes_mmap_hash(inode));
1143 build_probe_list(inode, &tmp_list);
1144
1145 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1146 loff_t vaddr;
1147
1148 list_del(&uprobe->pending_list);
1149 vaddr = vma_address(vma, uprobe->offset);
1150
cbc91f71 1151 if (vaddr >= start && vaddr < end) {
682968e0
SD
1152 /*
1153 * An unregister could have removed the probe before
1154 * unmap. So check before we decrement the count.
1155 */
1156 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1157 atomic_dec(&vma->vm_mm->uprobes_state.count);
1158 }
1159 put_uprobe(uprobe);
1160 }
1161 mutex_unlock(uprobes_mmap_hash(inode));
1162}
1163
d4b3b638
SD
1164/* Slot allocation for XOL */
1165static int xol_add_vma(struct xol_area *area)
1166{
1167 struct mm_struct *mm;
1168 int ret;
1169
1170 area->page = alloc_page(GFP_HIGHUSER);
1171 if (!area->page)
1172 return -ENOMEM;
1173
1174 ret = -EALREADY;
1175 mm = current->mm;
1176
1177 down_write(&mm->mmap_sem);
1178 if (mm->uprobes_state.xol_area)
1179 goto fail;
1180
1181 ret = -ENOMEM;
1182
1183 /* Try to map as high as possible, this is only a hint. */
1184 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1185 if (area->vaddr & ~PAGE_MASK) {
1186 ret = area->vaddr;
1187 goto fail;
1188 }
1189
1190 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1191 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1192 if (ret)
1193 goto fail;
1194
1195 smp_wmb(); /* pairs with get_xol_area() */
1196 mm->uprobes_state.xol_area = area;
1197 ret = 0;
1198
1199fail:
1200 up_write(&mm->mmap_sem);
1201 if (ret)
1202 __free_page(area->page);
1203
1204 return ret;
1205}
1206
1207static struct xol_area *get_xol_area(struct mm_struct *mm)
1208{
1209 struct xol_area *area;
1210
1211 area = mm->uprobes_state.xol_area;
1212 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1213
1214 return area;
1215}
1216
1217/*
1218 * xol_alloc_area - Allocate process's xol_area.
1219 * This area will be used for storing instructions for execution out of
1220 * line.
1221 *
1222 * Returns the allocated area or NULL.
1223 */
1224static struct xol_area *xol_alloc_area(void)
1225{
1226 struct xol_area *area;
1227
1228 area = kzalloc(sizeof(*area), GFP_KERNEL);
1229 if (unlikely(!area))
1230 return NULL;
1231
1232 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1233
1234 if (!area->bitmap)
1235 goto fail;
1236
1237 init_waitqueue_head(&area->wq);
1238 if (!xol_add_vma(area))
1239 return area;
1240
1241fail:
1242 kfree(area->bitmap);
1243 kfree(area);
1244
1245 return get_xol_area(current->mm);
1246}
1247
1248/*
1249 * uprobe_clear_state - Free the area allocated for slots.
1250 */
1251void uprobe_clear_state(struct mm_struct *mm)
1252{
1253 struct xol_area *area = mm->uprobes_state.xol_area;
1254
1255 if (!area)
1256 return;
1257
1258 put_page(area->page);
1259 kfree(area->bitmap);
1260 kfree(area);
1261}
1262
1263/*
1264 * uprobe_reset_state - Free the area allocated for slots.
1265 */
1266void uprobe_reset_state(struct mm_struct *mm)
1267{
1268 mm->uprobes_state.xol_area = NULL;
682968e0 1269 atomic_set(&mm->uprobes_state.count, 0);
d4b3b638
SD
1270}
1271
1272/*
1273 * - search for a free slot.
1274 */
1275static unsigned long xol_take_insn_slot(struct xol_area *area)
1276{
1277 unsigned long slot_addr;
1278 int slot_nr;
1279
1280 do {
1281 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1282 if (slot_nr < UINSNS_PER_PAGE) {
1283 if (!test_and_set_bit(slot_nr, area->bitmap))
1284 break;
1285
1286 slot_nr = UINSNS_PER_PAGE;
1287 continue;
1288 }
1289 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1290 } while (slot_nr >= UINSNS_PER_PAGE);
1291
1292 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1293 atomic_inc(&area->slot_count);
1294
1295 return slot_addr;
1296}
1297
1298/*
1299 * xol_get_insn_slot - If was not allocated a slot, then
1300 * allocate a slot.
1301 * Returns the allocated slot address or 0.
1302 */
1303static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1304{
1305 struct xol_area *area;
1306 unsigned long offset;
1307 void *vaddr;
1308
1309 area = get_xol_area(current->mm);
1310 if (!area) {
1311 area = xol_alloc_area();
1312 if (!area)
1313 return 0;
1314 }
1315 current->utask->xol_vaddr = xol_take_insn_slot(area);
1316
1317 /*
1318 * Initialize the slot if xol_vaddr points to valid
1319 * instruction slot.
1320 */
1321 if (unlikely(!current->utask->xol_vaddr))
1322 return 0;
1323
1324 current->utask->vaddr = slot_addr;
1325 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1326 vaddr = kmap_atomic(area->page);
1327 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1328 kunmap_atomic(vaddr);
1329
1330 return current->utask->xol_vaddr;
1331}
1332
1333/*
1334 * xol_free_insn_slot - If slot was earlier allocated by
1335 * @xol_get_insn_slot(), make the slot available for
1336 * subsequent requests.
1337 */
1338static void xol_free_insn_slot(struct task_struct *tsk)
1339{
1340 struct xol_area *area;
1341 unsigned long vma_end;
1342 unsigned long slot_addr;
1343
1344 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1345 return;
1346
1347 slot_addr = tsk->utask->xol_vaddr;
1348
1349 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1350 return;
1351
1352 area = tsk->mm->uprobes_state.xol_area;
1353 vma_end = area->vaddr + PAGE_SIZE;
1354 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1355 unsigned long offset;
1356 int slot_nr;
1357
1358 offset = slot_addr - area->vaddr;
1359 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1360 if (slot_nr >= UINSNS_PER_PAGE)
1361 return;
1362
1363 clear_bit(slot_nr, area->bitmap);
1364 atomic_dec(&area->slot_count);
1365 if (waitqueue_active(&area->wq))
1366 wake_up(&area->wq);
1367
1368 tsk->utask->xol_vaddr = 0;
1369 }
1370}
1371
0326f5a9
SD
1372/**
1373 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1374 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1375 * instruction.
1376 * Return the address of the breakpoint instruction.
1377 */
1378unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1379{
1380 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1381}
1382
1383/*
1384 * Called with no locks held.
1385 * Called in context of a exiting or a exec-ing thread.
1386 */
1387void uprobe_free_utask(struct task_struct *t)
1388{
1389 struct uprobe_task *utask = t->utask;
1390
1391 if (t->uprobe_srcu_id != -1)
1392 srcu_read_unlock_raw(&uprobes_srcu, t->uprobe_srcu_id);
1393
1394 if (!utask)
1395 return;
1396
1397 if (utask->active_uprobe)
1398 put_uprobe(utask->active_uprobe);
1399
d4b3b638 1400 xol_free_insn_slot(t);
0326f5a9
SD
1401 kfree(utask);
1402 t->utask = NULL;
1403}
1404
1405/*
1406 * Called in context of a new clone/fork from copy_process.
1407 */
1408void uprobe_copy_process(struct task_struct *t)
1409{
1410 t->utask = NULL;
1411 t->uprobe_srcu_id = -1;
1412}
1413
1414/*
1415 * Allocate a uprobe_task object for the task.
1416 * Called when the thread hits a breakpoint for the first time.
1417 *
1418 * Returns:
1419 * - pointer to new uprobe_task on success
1420 * - NULL otherwise
1421 */
1422static struct uprobe_task *add_utask(void)
1423{
1424 struct uprobe_task *utask;
1425
1426 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1427 if (unlikely(!utask))
1428 return NULL;
1429
1430 utask->active_uprobe = NULL;
1431 current->utask = utask;
1432 return utask;
1433}
1434
1435/* Prepare to single-step probed instruction out of line. */
1436static int
1437pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1438{
d4b3b638
SD
1439 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1440 return 0;
1441
0326f5a9
SD
1442 return -EFAULT;
1443}
1444
1445/*
1446 * If we are singlestepping, then ensure this thread is not connected to
1447 * non-fatal signals until completion of singlestep. When xol insn itself
1448 * triggers the signal, restart the original insn even if the task is
1449 * already SIGKILL'ed (since coredump should report the correct ip). This
1450 * is even more important if the task has a handler for SIGSEGV/etc, The
1451 * _same_ instruction should be repeated again after return from the signal
1452 * handler, and SSTEP can never finish in this case.
1453 */
1454bool uprobe_deny_signal(void)
1455{
1456 struct task_struct *t = current;
1457 struct uprobe_task *utask = t->utask;
1458
1459 if (likely(!utask || !utask->active_uprobe))
1460 return false;
1461
1462 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1463
1464 if (signal_pending(t)) {
1465 spin_lock_irq(&t->sighand->siglock);
1466 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1467 spin_unlock_irq(&t->sighand->siglock);
1468
1469 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1470 utask->state = UTASK_SSTEP_TRAPPED;
1471 set_tsk_thread_flag(t, TIF_UPROBE);
1472 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1473 }
1474 }
1475
1476 return true;
1477}
1478
1479/*
1480 * Avoid singlestepping the original instruction if the original instruction
1481 * is a NOP or can be emulated.
1482 */
1483static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1484{
1485 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1486 return true;
1487
1488 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1489 return false;
1490}
1491
1492/*
1493 * Run handler and ask thread to singlestep.
1494 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1495 */
1496static void handle_swbp(struct pt_regs *regs)
1497{
1498 struct vm_area_struct *vma;
1499 struct uprobe_task *utask;
1500 struct uprobe *uprobe;
1501 struct mm_struct *mm;
1502 unsigned long bp_vaddr;
1503
1504 uprobe = NULL;
1505 bp_vaddr = uprobe_get_swbp_addr(regs);
1506 mm = current->mm;
1507 down_read(&mm->mmap_sem);
1508 vma = find_vma(mm, bp_vaddr);
1509
1510 if (vma && vma->vm_start <= bp_vaddr && valid_vma(vma, false)) {
1511 struct inode *inode;
1512 loff_t offset;
1513
1514 inode = vma->vm_file->f_mapping->host;
1515 offset = bp_vaddr - vma->vm_start;
1516 offset += (vma->vm_pgoff << PAGE_SHIFT);
1517 uprobe = find_uprobe(inode, offset);
1518 }
1519
1520 srcu_read_unlock_raw(&uprobes_srcu, current->uprobe_srcu_id);
1521 current->uprobe_srcu_id = -1;
1522 up_read(&mm->mmap_sem);
1523
1524 if (!uprobe) {
1525 /* No matching uprobe; signal SIGTRAP. */
1526 send_sig(SIGTRAP, current, 0);
1527 return;
1528 }
1529
1530 utask = current->utask;
1531 if (!utask) {
1532 utask = add_utask();
1533 /* Cannot allocate; re-execute the instruction. */
1534 if (!utask)
1535 goto cleanup_ret;
1536 }
1537 utask->active_uprobe = uprobe;
1538 handler_chain(uprobe, regs);
1539 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1540 goto cleanup_ret;
1541
1542 utask->state = UTASK_SSTEP;
1543 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1544 user_enable_single_step(current);
1545 return;
1546 }
1547
1548cleanup_ret:
1549 if (utask) {
1550 utask->active_uprobe = NULL;
1551 utask->state = UTASK_RUNNING;
1552 }
1553 if (uprobe) {
1554 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1555
1556 /*
1557 * cannot singlestep; cannot skip instruction;
1558 * re-execute the instruction.
1559 */
1560 instruction_pointer_set(regs, bp_vaddr);
1561
1562 put_uprobe(uprobe);
1563 }
1564}
1565
1566/*
1567 * Perform required fix-ups and disable singlestep.
1568 * Allow pending signals to take effect.
1569 */
1570static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1571{
1572 struct uprobe *uprobe;
1573
1574 uprobe = utask->active_uprobe;
1575 if (utask->state == UTASK_SSTEP_ACK)
1576 arch_uprobe_post_xol(&uprobe->arch, regs);
1577 else if (utask->state == UTASK_SSTEP_TRAPPED)
1578 arch_uprobe_abort_xol(&uprobe->arch, regs);
1579 else
1580 WARN_ON_ONCE(1);
1581
1582 put_uprobe(uprobe);
1583 utask->active_uprobe = NULL;
1584 utask->state = UTASK_RUNNING;
1585 user_disable_single_step(current);
d4b3b638 1586 xol_free_insn_slot(current);
0326f5a9
SD
1587
1588 spin_lock_irq(&current->sighand->siglock);
1589 recalc_sigpending(); /* see uprobe_deny_signal() */
1590 spin_unlock_irq(&current->sighand->siglock);
1591}
1592
1593/*
1594 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1595 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1596 * allows the thread to return from interrupt.
1597 *
1598 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1599 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1600 * interrupt.
1601 *
1602 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1603 * uprobe_notify_resume().
1604 */
1605void uprobe_notify_resume(struct pt_regs *regs)
1606{
1607 struct uprobe_task *utask;
1608
1609 utask = current->utask;
1610 if (!utask || utask->state == UTASK_BP_HIT)
1611 handle_swbp(regs);
1612 else
1613 handle_singlestep(utask, regs);
1614}
1615
1616/*
1617 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1618 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1619 */
1620int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1621{
1622 struct uprobe_task *utask;
1623
682968e0
SD
1624 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1625 /* task is currently not uprobed */
0326f5a9
SD
1626 return 0;
1627
1628 utask = current->utask;
1629 if (utask)
1630 utask->state = UTASK_BP_HIT;
1631
1632 set_thread_flag(TIF_UPROBE);
1633 current->uprobe_srcu_id = srcu_read_lock_raw(&uprobes_srcu);
1634
1635 return 1;
1636}
1637
1638/*
1639 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1640 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1641 */
1642int uprobe_post_sstep_notifier(struct pt_regs *regs)
1643{
1644 struct uprobe_task *utask = current->utask;
1645
1646 if (!current->mm || !utask || !utask->active_uprobe)
1647 /* task is currently not uprobed */
1648 return 0;
1649
1650 utask->state = UTASK_SSTEP_ACK;
1651 set_thread_flag(TIF_UPROBE);
1652 return 1;
1653}
1654
1655static struct notifier_block uprobe_exception_nb = {
1656 .notifier_call = arch_uprobe_exception_notify,
1657 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1658};
1659
2b144498
SD
1660static int __init init_uprobes(void)
1661{
1662 int i;
1663
1664 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1665 mutex_init(&uprobes_mutex[i]);
1666 mutex_init(&uprobes_mmap_mutex[i]);
1667 }
0326f5a9
SD
1668 init_srcu_struct(&uprobes_srcu);
1669
1670 return register_die_notifier(&uprobe_exception_nb);
2b144498 1671}
0326f5a9 1672module_init(init_uprobes);
2b144498
SD
1673
1674static void __exit exit_uprobes(void)
1675{
1676}
2b144498 1677module_exit(exit_uprobes);