uprobes: Introduce MMF_RECALC_UPROBES
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
7b2d81d4 36
2b144498
SD
37#include <linux/uprobes.h>
38
d4b3b638
SD
39#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
2b144498 42static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 43
2b144498
SD
44static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46#define UPROBES_HASH_SZ 13
7b2d81d4 47
c5784de2
PZ
48/*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
2b144498
SD
65/* serialize (un)register */
66static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
67
68#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
69
70/* serialize uprobe->pending_list */
71static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 72#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
73
74/*
7b2d81d4 75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79static atomic_t uprobe_events = ATOMIC_INIT(0);
80
3ff54efd
SD
81struct uprobe {
82 struct rb_node rb_node; /* node in the rb tree */
83 atomic_t ref;
84 struct rw_semaphore consumer_rwsem;
85 struct list_head pending_list;
86 struct uprobe_consumer *consumers;
87 struct inode *inode; /* Also hold a ref to inode */
88 loff_t offset;
89 int flags;
90 struct arch_uprobe arch;
91};
92
2b144498
SD
93/*
94 * valid_vma: Verify if the specified vma is an executable vma
95 * Relax restrictions while unregistering: vm_flags might have
96 * changed after breakpoint was inserted.
97 * - is_register: indicates if we are in register context.
98 * - Return 1 if the specified virtual address is in an
99 * executable vma.
100 */
101static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102{
103 if (!vma->vm_file)
104 return false;
105
106 if (!is_register)
107 return true;
108
ea131377
ON
109 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
110 == (VM_READ|VM_EXEC))
2b144498
SD
111 return true;
112
113 return false;
114}
115
57683f72 116static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 117{
57683f72 118 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
119}
120
cb113b47
ON
121static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
122{
123 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
124}
125
2b144498
SD
126/**
127 * __replace_page - replace page in vma by new page.
128 * based on replace_page in mm/ksm.c
129 *
130 * @vma: vma that holds the pte pointing to page
c517ee74 131 * @addr: address the old @page is mapped at
2b144498
SD
132 * @page: the cowed page we are replacing by kpage
133 * @kpage: the modified page we replace page by
134 *
135 * Returns 0 on success, -EFAULT on failure.
136 */
c517ee74
ON
137static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
138 struct page *page, struct page *kpage)
2b144498
SD
139{
140 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
141 spinlock_t *ptl;
142 pte_t *ptep;
9f92448c 143 int err;
2b144498 144
194f8dcb 145 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
146 lock_page(page);
147
148 err = -EAGAIN;
5323ce71 149 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 150 if (!ptep)
9f92448c 151 goto unlock;
2b144498
SD
152
153 get_page(kpage);
154 page_add_new_anon_rmap(kpage, vma, addr);
155
7396fa81
SD
156 if (!PageAnon(page)) {
157 dec_mm_counter(mm, MM_FILEPAGES);
158 inc_mm_counter(mm, MM_ANONPAGES);
159 }
160
2b144498
SD
161 flush_cache_page(vma, addr, pte_pfn(*ptep));
162 ptep_clear_flush(vma, addr, ptep);
163 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
164
165 page_remove_rmap(page);
166 if (!page_mapped(page))
167 try_to_free_swap(page);
2b144498 168 pte_unmap_unlock(ptep, ptl);
2b144498 169
194f8dcb
ON
170 if (vma->vm_flags & VM_LOCKED)
171 munlock_vma_page(page);
172 put_page(page);
173
9f92448c
ON
174 err = 0;
175 unlock:
176 unlock_page(page);
177 return err;
2b144498
SD
178}
179
180/**
5cb4ac3a 181 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 182 * @insn: instruction to be checked.
5cb4ac3a 183 * Default implementation of is_swbp_insn
2b144498
SD
184 * Returns true if @insn is a breakpoint instruction.
185 */
5cb4ac3a 186bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 187{
5cb4ac3a 188 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
189}
190
191/*
192 * NOTE:
193 * Expect the breakpoint instruction to be the smallest size instruction for
194 * the architecture. If an arch has variable length instruction and the
195 * breakpoint instruction is not of the smallest length instruction
196 * supported by that architecture then we need to modify read_opcode /
197 * write_opcode accordingly. This would never be a problem for archs that
198 * have fixed length instructions.
199 */
200
201/*
202 * write_opcode - write the opcode at a given virtual address.
e3343e6a 203 * @auprobe: arch breakpointing information.
2b144498 204 * @mm: the probed process address space.
2b144498
SD
205 * @vaddr: the virtual address to store the opcode.
206 * @opcode: opcode to be written at @vaddr.
207 *
208 * Called with mm->mmap_sem held (for read and with a reference to
209 * mm).
210 *
211 * For mm @mm, write the opcode at @vaddr.
212 * Return 0 (success) or a negative errno.
213 */
e3343e6a 214static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
2b144498
SD
215 unsigned long vaddr, uprobe_opcode_t opcode)
216{
217 struct page *old_page, *new_page;
2b144498
SD
218 void *vaddr_old, *vaddr_new;
219 struct vm_area_struct *vma;
2b144498 220 int ret;
f403072c 221
5323ce71 222retry:
2b144498
SD
223 /* Read the page with vaddr into memory */
224 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
225 if (ret <= 0)
226 return ret;
7b2d81d4 227
2b144498
SD
228 ret = -ENOMEM;
229 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
230 if (!new_page)
9f92448c 231 goto put_old;
2b144498
SD
232
233 __SetPageUptodate(new_page);
234
2b144498
SD
235 /* copy the page now that we've got it stable */
236 vaddr_old = kmap_atomic(old_page);
237 vaddr_new = kmap_atomic(new_page);
238
239 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 240 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
241
242 kunmap_atomic(vaddr_new);
243 kunmap_atomic(vaddr_old);
244
245 ret = anon_vma_prepare(vma);
246 if (ret)
9f92448c 247 goto put_new;
2b144498 248
c517ee74 249 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 250
9f92448c 251put_new:
2b144498 252 page_cache_release(new_page);
9f92448c 253put_old:
7b2d81d4
IM
254 put_page(old_page);
255
5323ce71
ON
256 if (unlikely(ret == -EAGAIN))
257 goto retry;
2b144498
SD
258 return ret;
259}
260
261/**
262 * read_opcode - read the opcode at a given virtual address.
263 * @mm: the probed process address space.
264 * @vaddr: the virtual address to read the opcode.
265 * @opcode: location to store the read opcode.
266 *
267 * Called with mm->mmap_sem held (for read and with a reference to
268 * mm.
269 *
270 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
271 * Return 0 (success) or a negative errno.
272 */
7b2d81d4 273static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
2b144498
SD
274{
275 struct page *page;
276 void *vaddr_new;
277 int ret;
278
a3d7bb47 279 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
2b144498
SD
280 if (ret <= 0)
281 return ret;
282
2b144498
SD
283 vaddr_new = kmap_atomic(page);
284 vaddr &= ~PAGE_MASK;
5cb4ac3a 285 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
2b144498 286 kunmap_atomic(vaddr_new);
7b2d81d4
IM
287
288 put_page(page);
289
2b144498
SD
290 return 0;
291}
292
5cb4ac3a 293static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498
SD
294{
295 uprobe_opcode_t opcode;
7b2d81d4 296 int result;
2b144498 297
c00b2750
ON
298 if (current->mm == mm) {
299 pagefault_disable();
300 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
301 sizeof(opcode));
302 pagefault_enable();
303
304 if (likely(result == 0))
305 goto out;
306 }
307
7b2d81d4 308 result = read_opcode(mm, vaddr, &opcode);
2b144498
SD
309 if (result)
310 return result;
c00b2750 311out:
5cb4ac3a 312 if (is_swbp_insn(&opcode))
2b144498
SD
313 return 1;
314
315 return 0;
316}
317
318/**
5cb4ac3a 319 * set_swbp - store breakpoint at a given address.
e3343e6a 320 * @auprobe: arch specific probepoint information.
2b144498 321 * @mm: the probed process address space.
2b144498
SD
322 * @vaddr: the virtual address to insert the opcode.
323 *
324 * For mm @mm, store the breakpoint instruction at @vaddr.
325 * Return 0 (success) or a negative errno.
326 */
5cb4ac3a 327int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 328{
7b2d81d4 329 int result;
c5784de2
PZ
330 /*
331 * See the comment near uprobes_hash().
332 */
5cb4ac3a 333 result = is_swbp_at_addr(mm, vaddr);
2b144498 334 if (result == 1)
78f74116 335 return 0;
2b144498
SD
336
337 if (result)
338 return result;
339
5cb4ac3a 340 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
341}
342
343/**
344 * set_orig_insn - Restore the original instruction.
345 * @mm: the probed process address space.
e3343e6a 346 * @auprobe: arch specific probepoint information.
2b144498 347 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
348 *
349 * For mm @mm, restore the original opcode (opcode) at @vaddr.
350 * Return 0 (success) or a negative errno.
351 */
7b2d81d4 352int __weak
ded86e7c 353set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 354{
ded86e7c
ON
355 int result;
356
357 result = is_swbp_at_addr(mm, vaddr);
358 if (!result)
359 return -EINVAL;
2b144498 360
ded86e7c
ON
361 if (result != 1)
362 return result;
2b144498 363
e3343e6a 364 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
365}
366
367static int match_uprobe(struct uprobe *l, struct uprobe *r)
368{
369 if (l->inode < r->inode)
370 return -1;
7b2d81d4 371
2b144498
SD
372 if (l->inode > r->inode)
373 return 1;
2b144498 374
7b2d81d4
IM
375 if (l->offset < r->offset)
376 return -1;
377
378 if (l->offset > r->offset)
379 return 1;
2b144498
SD
380
381 return 0;
382}
383
384static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
385{
386 struct uprobe u = { .inode = inode, .offset = offset };
387 struct rb_node *n = uprobes_tree.rb_node;
388 struct uprobe *uprobe;
389 int match;
390
391 while (n) {
392 uprobe = rb_entry(n, struct uprobe, rb_node);
393 match = match_uprobe(&u, uprobe);
394 if (!match) {
395 atomic_inc(&uprobe->ref);
396 return uprobe;
397 }
7b2d81d4 398
2b144498
SD
399 if (match < 0)
400 n = n->rb_left;
401 else
402 n = n->rb_right;
403 }
404 return NULL;
405}
406
407/*
408 * Find a uprobe corresponding to a given inode:offset
409 * Acquires uprobes_treelock
410 */
411static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
412{
413 struct uprobe *uprobe;
2b144498 414
6f47caa0 415 spin_lock(&uprobes_treelock);
2b144498 416 uprobe = __find_uprobe(inode, offset);
6f47caa0 417 spin_unlock(&uprobes_treelock);
7b2d81d4 418
2b144498
SD
419 return uprobe;
420}
421
422static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
423{
424 struct rb_node **p = &uprobes_tree.rb_node;
425 struct rb_node *parent = NULL;
426 struct uprobe *u;
427 int match;
428
429 while (*p) {
430 parent = *p;
431 u = rb_entry(parent, struct uprobe, rb_node);
432 match = match_uprobe(uprobe, u);
433 if (!match) {
434 atomic_inc(&u->ref);
435 return u;
436 }
437
438 if (match < 0)
439 p = &parent->rb_left;
440 else
441 p = &parent->rb_right;
442
443 }
7b2d81d4 444
2b144498
SD
445 u = NULL;
446 rb_link_node(&uprobe->rb_node, parent, p);
447 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
448 /* get access + creation ref */
449 atomic_set(&uprobe->ref, 2);
7b2d81d4 450
2b144498
SD
451 return u;
452}
453
454/*
7b2d81d4 455 * Acquire uprobes_treelock.
2b144498
SD
456 * Matching uprobe already exists in rbtree;
457 * increment (access refcount) and return the matching uprobe.
458 *
459 * No matching uprobe; insert the uprobe in rb_tree;
460 * get a double refcount (access + creation) and return NULL.
461 */
462static struct uprobe *insert_uprobe(struct uprobe *uprobe)
463{
2b144498
SD
464 struct uprobe *u;
465
6f47caa0 466 spin_lock(&uprobes_treelock);
2b144498 467 u = __insert_uprobe(uprobe);
6f47caa0 468 spin_unlock(&uprobes_treelock);
7b2d81d4 469
0326f5a9
SD
470 /* For now assume that the instruction need not be single-stepped */
471 uprobe->flags |= UPROBE_SKIP_SSTEP;
472
2b144498
SD
473 return u;
474}
475
476static void put_uprobe(struct uprobe *uprobe)
477{
478 if (atomic_dec_and_test(&uprobe->ref))
479 kfree(uprobe);
480}
481
482static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
483{
484 struct uprobe *uprobe, *cur_uprobe;
485
486 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
487 if (!uprobe)
488 return NULL;
489
490 uprobe->inode = igrab(inode);
491 uprobe->offset = offset;
492 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
493
494 /* add to uprobes_tree, sorted on inode:offset */
495 cur_uprobe = insert_uprobe(uprobe);
496
497 /* a uprobe exists for this inode:offset combination */
498 if (cur_uprobe) {
499 kfree(uprobe);
500 uprobe = cur_uprobe;
501 iput(inode);
7b2d81d4 502 } else {
2b144498 503 atomic_inc(&uprobe_events);
7b2d81d4
IM
504 }
505
2b144498
SD
506 return uprobe;
507}
508
0326f5a9
SD
509static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
510{
511 struct uprobe_consumer *uc;
512
513 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
514 return;
515
516 down_read(&uprobe->consumer_rwsem);
517 for (uc = uprobe->consumers; uc; uc = uc->next) {
518 if (!uc->filter || uc->filter(uc, current))
519 uc->handler(uc, regs);
520 }
521 up_read(&uprobe->consumer_rwsem);
522}
523
2b144498 524/* Returns the previous consumer */
7b2d81d4 525static struct uprobe_consumer *
e3343e6a 526consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
527{
528 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
529 uc->next = uprobe->consumers;
530 uprobe->consumers = uc;
2b144498 531 up_write(&uprobe->consumer_rwsem);
7b2d81d4 532
e3343e6a 533 return uc->next;
2b144498
SD
534}
535
536/*
e3343e6a
SD
537 * For uprobe @uprobe, delete the consumer @uc.
538 * Return true if the @uc is deleted successfully
2b144498
SD
539 * or return false.
540 */
e3343e6a 541static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
542{
543 struct uprobe_consumer **con;
544 bool ret = false;
545
546 down_write(&uprobe->consumer_rwsem);
547 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
548 if (*con == uc) {
549 *con = uc->next;
2b144498
SD
550 ret = true;
551 break;
552 }
553 }
554 up_write(&uprobe->consumer_rwsem);
7b2d81d4 555
2b144498
SD
556 return ret;
557}
558
e3343e6a 559static int
d436615e 560__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 561 unsigned long nbytes, loff_t offset)
2b144498 562{
2b144498
SD
563 struct page *page;
564 void *vaddr;
593609a5
ON
565 unsigned long off;
566 pgoff_t idx;
2b144498
SD
567
568 if (!filp)
569 return -EINVAL;
570
cc359d18
ON
571 if (!mapping->a_ops->readpage)
572 return -EIO;
573
593609a5
ON
574 idx = offset >> PAGE_CACHE_SHIFT;
575 off = offset & ~PAGE_MASK;
2b144498
SD
576
577 /*
578 * Ensure that the page that has the original instruction is
579 * populated and in page-cache.
580 */
581 page = read_mapping_page(mapping, idx, filp);
582 if (IS_ERR(page))
583 return PTR_ERR(page);
584
585 vaddr = kmap_atomic(page);
593609a5 586 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
587 kunmap_atomic(vaddr);
588 page_cache_release(page);
7b2d81d4 589
2b144498
SD
590 return 0;
591}
592
d436615e 593static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
594{
595 struct address_space *mapping;
2b144498 596 unsigned long nbytes;
7b2d81d4 597 int bytes;
2b144498 598
d436615e 599 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
600 mapping = uprobe->inode->i_mapping;
601
602 /* Instruction at end of binary; copy only available bytes */
603 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
604 bytes = uprobe->inode->i_size - uprobe->offset;
605 else
606 bytes = MAX_UINSN_BYTES;
607
608 /* Instruction at the page-boundary; copy bytes in second page */
609 if (nbytes < bytes) {
fc36f595
ON
610 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
611 bytes - nbytes, uprobe->offset + nbytes);
612 if (err)
613 return err;
2b144498
SD
614 bytes = nbytes;
615 }
d436615e 616 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
617}
618
682968e0
SD
619/*
620 * How mm->uprobes_state.count gets updated
621 * uprobe_mmap() increments the count if
622 * - it successfully adds a breakpoint.
623 * - it cannot add a breakpoint, but sees that there is a underlying
624 * breakpoint (via a is_swbp_at_addr()).
625 *
626 * uprobe_munmap() decrements the count if
627 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
628 * (Subsequent uprobe_unregister wouldnt find the breakpoint
629 * unless a uprobe_mmap kicks in, since the old vma would be
630 * dropped just after uprobe_munmap.)
631 *
632 * uprobe_register increments the count if:
633 * - it successfully adds a breakpoint.
634 *
635 * uprobe_unregister decrements the count if:
636 * - it sees a underlying breakpoint and removes successfully.
637 * (via is_swbp_at_addr)
638 * (Subsequent uprobe_munmap wouldnt find the breakpoint
639 * since there is no underlying breakpoint after the
640 * breakpoint removal.)
641 */
e3343e6a
SD
642static int
643install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 644 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 645{
f8ac4ec9 646 bool first_uprobe;
2b144498
SD
647 int ret;
648
649 /*
650 * If probe is being deleted, unregister thread could be done with
651 * the vma-rmap-walk through. Adding a probe now can be fatal since
652 * nobody will be able to cleanup. Also we could be from fork or
653 * mremap path, where the probe might have already been inserted.
654 * Hence behave as if probe already existed.
655 */
656 if (!uprobe->consumers)
78f74116 657 return 0;
2b144498 658
900771a4 659 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
d436615e 660 ret = copy_insn(uprobe, vma->vm_file);
2b144498
SD
661 if (ret)
662 return ret;
663
5cb4ac3a 664 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 665 return -ENOTSUPP;
2b144498 666
816c03fb 667 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
668 if (ret)
669 return ret;
670
d9c4a30e
ON
671 /* write_opcode() assumes we don't cross page boundary */
672 BUG_ON((uprobe->offset & ~PAGE_MASK) +
673 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
674
900771a4 675 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 676 }
682968e0 677
f8ac4ec9
ON
678 /*
679 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
680 * the task can hit this breakpoint right after __replace_page().
681 */
682 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
683 if (first_uprobe)
684 set_bit(MMF_HAS_UPROBES, &mm->flags);
685
816c03fb 686 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
687 if (!ret)
688 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
689 else if (first_uprobe)
f8ac4ec9 690 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
691
692 return ret;
693}
694
e3343e6a 695static void
816c03fb 696remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 697{
9f68f672
ON
698 /* can happen if uprobe_register() fails */
699 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
700 return;
701
702 set_bit(MMF_RECALC_UPROBES, &mm->flags);
ded86e7c 703 set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
704}
705
0326f5a9 706/*
778b032d
ON
707 * There could be threads that have already hit the breakpoint. They
708 * will recheck the current insn and restart if find_uprobe() fails.
709 * See find_active_uprobe().
0326f5a9 710 */
2b144498
SD
711static void delete_uprobe(struct uprobe *uprobe)
712{
6f47caa0 713 spin_lock(&uprobes_treelock);
2b144498 714 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 715 spin_unlock(&uprobes_treelock);
2b144498
SD
716 iput(uprobe->inode);
717 put_uprobe(uprobe);
718 atomic_dec(&uprobe_events);
719}
720
26872090
ON
721struct map_info {
722 struct map_info *next;
723 struct mm_struct *mm;
816c03fb 724 unsigned long vaddr;
26872090
ON
725};
726
727static inline struct map_info *free_map_info(struct map_info *info)
2b144498 728{
26872090
ON
729 struct map_info *next = info->next;
730 kfree(info);
731 return next;
732}
733
734static struct map_info *
735build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
736{
737 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
738 struct prio_tree_iter iter;
739 struct vm_area_struct *vma;
26872090
ON
740 struct map_info *curr = NULL;
741 struct map_info *prev = NULL;
742 struct map_info *info;
743 int more = 0;
2b144498 744
26872090
ON
745 again:
746 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
747 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
748 if (!valid_vma(vma, is_register))
749 continue;
750
7a5bfb66
ON
751 if (!prev && !more) {
752 /*
753 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
754 * reclaim. This is optimistic, no harm done if it fails.
755 */
756 prev = kmalloc(sizeof(struct map_info),
757 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
758 if (prev)
759 prev->next = NULL;
760 }
26872090
ON
761 if (!prev) {
762 more++;
763 continue;
2b144498 764 }
2b144498 765
26872090
ON
766 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
767 continue;
7b2d81d4 768
26872090
ON
769 info = prev;
770 prev = prev->next;
771 info->next = curr;
772 curr = info;
2b144498 773
26872090 774 info->mm = vma->vm_mm;
57683f72 775 info->vaddr = offset_to_vaddr(vma, offset);
26872090 776 }
2b144498
SD
777 mutex_unlock(&mapping->i_mmap_mutex);
778
26872090
ON
779 if (!more)
780 goto out;
781
782 prev = curr;
783 while (curr) {
784 mmput(curr->mm);
785 curr = curr->next;
786 }
7b2d81d4 787
26872090
ON
788 do {
789 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
790 if (!info) {
791 curr = ERR_PTR(-ENOMEM);
792 goto out;
793 }
794 info->next = prev;
795 prev = info;
796 } while (--more);
797
798 goto again;
799 out:
800 while (prev)
801 prev = free_map_info(prev);
802 return curr;
2b144498
SD
803}
804
805static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
806{
26872090
ON
807 struct map_info *info;
808 int err = 0;
2b144498 809
26872090
ON
810 info = build_map_info(uprobe->inode->i_mapping,
811 uprobe->offset, is_register);
812 if (IS_ERR(info))
813 return PTR_ERR(info);
7b2d81d4 814
26872090
ON
815 while (info) {
816 struct mm_struct *mm = info->mm;
817 struct vm_area_struct *vma;
7b2d81d4 818
26872090
ON
819 if (err)
820 goto free;
7b2d81d4 821
77fc4af1 822 down_write(&mm->mmap_sem);
f4d6dfe5
ON
823 vma = find_vma(mm, info->vaddr);
824 if (!vma || !valid_vma(vma, is_register) ||
825 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
826 goto unlock;
827
f4d6dfe5
ON
828 if (vma->vm_start > info->vaddr ||
829 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 830 goto unlock;
2b144498 831
78f74116 832 if (is_register)
26872090 833 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 834 else
26872090 835 remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 836
26872090
ON
837 unlock:
838 up_write(&mm->mmap_sem);
839 free:
840 mmput(mm);
841 info = free_map_info(info);
2b144498 842 }
7b2d81d4 843
26872090 844 return err;
2b144498
SD
845}
846
7b2d81d4 847static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
848{
849 return register_for_each_vma(uprobe, true);
850}
851
7b2d81d4 852static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
853{
854 if (!register_for_each_vma(uprobe, false))
855 delete_uprobe(uprobe);
856
857 /* TODO : cant unregister? schedule a worker thread */
858}
859
860/*
7b2d81d4 861 * uprobe_register - register a probe
2b144498
SD
862 * @inode: the file in which the probe has to be placed.
863 * @offset: offset from the start of the file.
e3343e6a 864 * @uc: information on howto handle the probe..
2b144498 865 *
7b2d81d4 866 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
867 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
868 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 869 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 870 * @uprobe even before the register operation is complete. Creation
e3343e6a 871 * refcount is released when the last @uc for the @uprobe
2b144498
SD
872 * unregisters.
873 *
874 * Return errno if it cannot successully install probes
875 * else return 0 (success)
876 */
e3343e6a 877int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
878{
879 struct uprobe *uprobe;
7b2d81d4 880 int ret;
2b144498 881
e3343e6a 882 if (!inode || !uc || uc->next)
7b2d81d4 883 return -EINVAL;
2b144498
SD
884
885 if (offset > i_size_read(inode))
7b2d81d4 886 return -EINVAL;
2b144498
SD
887
888 ret = 0;
889 mutex_lock(uprobes_hash(inode));
890 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 891
e3343e6a 892 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 893 ret = __uprobe_register(uprobe);
2b144498
SD
894 if (ret) {
895 uprobe->consumers = NULL;
7b2d81d4
IM
896 __uprobe_unregister(uprobe);
897 } else {
900771a4 898 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 899 }
2b144498
SD
900 }
901
902 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
903 if (uprobe)
904 put_uprobe(uprobe);
2b144498
SD
905
906 return ret;
907}
908
909/*
7b2d81d4 910 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
911 * @inode: the file in which the probe has to be removed.
912 * @offset: offset from the start of the file.
e3343e6a 913 * @uc: identify which probe if multiple probes are colocated.
2b144498 914 */
e3343e6a 915void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 916{
7b2d81d4 917 struct uprobe *uprobe;
2b144498 918
e3343e6a 919 if (!inode || !uc)
2b144498
SD
920 return;
921
922 uprobe = find_uprobe(inode, offset);
923 if (!uprobe)
924 return;
925
926 mutex_lock(uprobes_hash(inode));
2b144498 927
e3343e6a 928 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
929 if (!uprobe->consumers) {
930 __uprobe_unregister(uprobe);
900771a4 931 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 932 }
2b144498
SD
933 }
934
2b144498
SD
935 mutex_unlock(uprobes_hash(inode));
936 if (uprobe)
937 put_uprobe(uprobe);
938}
939
891c3970
ON
940static struct rb_node *
941find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 942{
2b144498 943 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
944
945 while (n) {
891c3970 946 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 947
891c3970 948 if (inode < u->inode) {
2b144498 949 n = n->rb_left;
891c3970 950 } else if (inode > u->inode) {
2b144498 951 n = n->rb_right;
891c3970
ON
952 } else {
953 if (max < u->offset)
954 n = n->rb_left;
955 else if (min > u->offset)
956 n = n->rb_right;
957 else
958 break;
959 }
2b144498 960 }
7b2d81d4 961
891c3970 962 return n;
2b144498
SD
963}
964
965/*
891c3970 966 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 967 */
891c3970
ON
968static void build_probe_list(struct inode *inode,
969 struct vm_area_struct *vma,
970 unsigned long start, unsigned long end,
971 struct list_head *head)
2b144498 972{
891c3970 973 loff_t min, max;
891c3970
ON
974 struct rb_node *n, *t;
975 struct uprobe *u;
7b2d81d4 976
891c3970 977 INIT_LIST_HEAD(head);
cb113b47 978 min = vaddr_to_offset(vma, start);
891c3970 979 max = min + (end - start) - 1;
2b144498 980
6f47caa0 981 spin_lock(&uprobes_treelock);
891c3970
ON
982 n = find_node_in_range(inode, min, max);
983 if (n) {
984 for (t = n; t; t = rb_prev(t)) {
985 u = rb_entry(t, struct uprobe, rb_node);
986 if (u->inode != inode || u->offset < min)
987 break;
988 list_add(&u->pending_list, head);
989 atomic_inc(&u->ref);
990 }
991 for (t = n; (t = rb_next(t)); ) {
992 u = rb_entry(t, struct uprobe, rb_node);
993 if (u->inode != inode || u->offset > max)
994 break;
995 list_add(&u->pending_list, head);
996 atomic_inc(&u->ref);
997 }
2b144498 998 }
6f47caa0 999 spin_unlock(&uprobes_treelock);
2b144498
SD
1000}
1001
1002/*
5e5be71a 1003 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 1004 *
5e5be71a
ON
1005 * Currently we ignore all errors and always return 0, the callers
1006 * can't handle the failure anyway.
2b144498 1007 */
7b2d81d4 1008int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1009{
1010 struct list_head tmp_list;
665605a2 1011 struct uprobe *uprobe, *u;
2b144498 1012 struct inode *inode;
2b144498
SD
1013
1014 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 1015 return 0;
2b144498
SD
1016
1017 inode = vma->vm_file->f_mapping->host;
1018 if (!inode)
7b2d81d4 1019 return 0;
2b144498 1020
2b144498 1021 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1022 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 1023
665605a2 1024 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 1025 if (!fatal_signal_pending(current)) {
57683f72 1026 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 1027 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
1028 }
1029 put_uprobe(uprobe);
1030 }
2b144498
SD
1031 mutex_unlock(uprobes_mmap_hash(inode));
1032
5e5be71a 1033 return 0;
2b144498
SD
1034}
1035
9f68f672
ON
1036static bool
1037vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1038{
1039 loff_t min, max;
1040 struct inode *inode;
1041 struct rb_node *n;
1042
1043 inode = vma->vm_file->f_mapping->host;
1044
1045 min = vaddr_to_offset(vma, start);
1046 max = min + (end - start) - 1;
1047
1048 spin_lock(&uprobes_treelock);
1049 n = find_node_in_range(inode, min, max);
1050 spin_unlock(&uprobes_treelock);
1051
1052 return !!n;
1053}
1054
682968e0
SD
1055/*
1056 * Called in context of a munmap of a vma.
1057 */
cbc91f71 1058void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1059{
682968e0
SD
1060 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1061 return;
1062
2fd611a9
ON
1063 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1064 return;
1065
9f68f672
ON
1066 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1067 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1068 return;
1069
9f68f672
ON
1070 if (vma_has_uprobes(vma, start, end))
1071 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1072}
1073
d4b3b638
SD
1074/* Slot allocation for XOL */
1075static int xol_add_vma(struct xol_area *area)
1076{
1077 struct mm_struct *mm;
1078 int ret;
1079
1080 area->page = alloc_page(GFP_HIGHUSER);
1081 if (!area->page)
1082 return -ENOMEM;
1083
1084 ret = -EALREADY;
1085 mm = current->mm;
1086
1087 down_write(&mm->mmap_sem);
1088 if (mm->uprobes_state.xol_area)
1089 goto fail;
1090
1091 ret = -ENOMEM;
1092
1093 /* Try to map as high as possible, this is only a hint. */
1094 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1095 if (area->vaddr & ~PAGE_MASK) {
1096 ret = area->vaddr;
1097 goto fail;
1098 }
1099
1100 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1101 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1102 if (ret)
1103 goto fail;
1104
1105 smp_wmb(); /* pairs with get_xol_area() */
1106 mm->uprobes_state.xol_area = area;
1107 ret = 0;
1108
1109fail:
1110 up_write(&mm->mmap_sem);
1111 if (ret)
1112 __free_page(area->page);
1113
1114 return ret;
1115}
1116
1117static struct xol_area *get_xol_area(struct mm_struct *mm)
1118{
1119 struct xol_area *area;
1120
1121 area = mm->uprobes_state.xol_area;
1122 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1123
1124 return area;
1125}
1126
1127/*
1128 * xol_alloc_area - Allocate process's xol_area.
1129 * This area will be used for storing instructions for execution out of
1130 * line.
1131 *
1132 * Returns the allocated area or NULL.
1133 */
1134static struct xol_area *xol_alloc_area(void)
1135{
1136 struct xol_area *area;
1137
1138 area = kzalloc(sizeof(*area), GFP_KERNEL);
1139 if (unlikely(!area))
1140 return NULL;
1141
1142 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1143
1144 if (!area->bitmap)
1145 goto fail;
1146
1147 init_waitqueue_head(&area->wq);
1148 if (!xol_add_vma(area))
1149 return area;
1150
1151fail:
1152 kfree(area->bitmap);
1153 kfree(area);
1154
1155 return get_xol_area(current->mm);
1156}
1157
1158/*
1159 * uprobe_clear_state - Free the area allocated for slots.
1160 */
1161void uprobe_clear_state(struct mm_struct *mm)
1162{
1163 struct xol_area *area = mm->uprobes_state.xol_area;
1164
1165 if (!area)
1166 return;
1167
1168 put_page(area->page);
1169 kfree(area->bitmap);
1170 kfree(area);
1171}
1172
f8ac4ec9
ON
1173void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1174{
61559a81
ON
1175 newmm->uprobes_state.xol_area = NULL;
1176
9f68f672 1177 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1178 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1179 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1180 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1181 }
f8ac4ec9
ON
1182}
1183
d4b3b638
SD
1184/*
1185 * - search for a free slot.
1186 */
1187static unsigned long xol_take_insn_slot(struct xol_area *area)
1188{
1189 unsigned long slot_addr;
1190 int slot_nr;
1191
1192 do {
1193 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1194 if (slot_nr < UINSNS_PER_PAGE) {
1195 if (!test_and_set_bit(slot_nr, area->bitmap))
1196 break;
1197
1198 slot_nr = UINSNS_PER_PAGE;
1199 continue;
1200 }
1201 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1202 } while (slot_nr >= UINSNS_PER_PAGE);
1203
1204 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1205 atomic_inc(&area->slot_count);
1206
1207 return slot_addr;
1208}
1209
1210/*
1211 * xol_get_insn_slot - If was not allocated a slot, then
1212 * allocate a slot.
1213 * Returns the allocated slot address or 0.
1214 */
1215static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1216{
1217 struct xol_area *area;
1218 unsigned long offset;
1219 void *vaddr;
1220
1221 area = get_xol_area(current->mm);
1222 if (!area) {
1223 area = xol_alloc_area();
1224 if (!area)
1225 return 0;
1226 }
1227 current->utask->xol_vaddr = xol_take_insn_slot(area);
1228
1229 /*
1230 * Initialize the slot if xol_vaddr points to valid
1231 * instruction slot.
1232 */
1233 if (unlikely(!current->utask->xol_vaddr))
1234 return 0;
1235
1236 current->utask->vaddr = slot_addr;
1237 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1238 vaddr = kmap_atomic(area->page);
1239 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1240 kunmap_atomic(vaddr);
1241
1242 return current->utask->xol_vaddr;
1243}
1244
1245/*
1246 * xol_free_insn_slot - If slot was earlier allocated by
1247 * @xol_get_insn_slot(), make the slot available for
1248 * subsequent requests.
1249 */
1250static void xol_free_insn_slot(struct task_struct *tsk)
1251{
1252 struct xol_area *area;
1253 unsigned long vma_end;
1254 unsigned long slot_addr;
1255
1256 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1257 return;
1258
1259 slot_addr = tsk->utask->xol_vaddr;
1260
1261 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1262 return;
1263
1264 area = tsk->mm->uprobes_state.xol_area;
1265 vma_end = area->vaddr + PAGE_SIZE;
1266 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1267 unsigned long offset;
1268 int slot_nr;
1269
1270 offset = slot_addr - area->vaddr;
1271 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1272 if (slot_nr >= UINSNS_PER_PAGE)
1273 return;
1274
1275 clear_bit(slot_nr, area->bitmap);
1276 atomic_dec(&area->slot_count);
1277 if (waitqueue_active(&area->wq))
1278 wake_up(&area->wq);
1279
1280 tsk->utask->xol_vaddr = 0;
1281 }
1282}
1283
0326f5a9
SD
1284/**
1285 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1286 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1287 * instruction.
1288 * Return the address of the breakpoint instruction.
1289 */
1290unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1291{
1292 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1293}
1294
1295/*
1296 * Called with no locks held.
1297 * Called in context of a exiting or a exec-ing thread.
1298 */
1299void uprobe_free_utask(struct task_struct *t)
1300{
1301 struct uprobe_task *utask = t->utask;
1302
0326f5a9
SD
1303 if (!utask)
1304 return;
1305
1306 if (utask->active_uprobe)
1307 put_uprobe(utask->active_uprobe);
1308
d4b3b638 1309 xol_free_insn_slot(t);
0326f5a9
SD
1310 kfree(utask);
1311 t->utask = NULL;
1312}
1313
1314/*
1315 * Called in context of a new clone/fork from copy_process.
1316 */
1317void uprobe_copy_process(struct task_struct *t)
1318{
1319 t->utask = NULL;
0326f5a9
SD
1320}
1321
1322/*
1323 * Allocate a uprobe_task object for the task.
1324 * Called when the thread hits a breakpoint for the first time.
1325 *
1326 * Returns:
1327 * - pointer to new uprobe_task on success
1328 * - NULL otherwise
1329 */
1330static struct uprobe_task *add_utask(void)
1331{
1332 struct uprobe_task *utask;
1333
1334 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1335 if (unlikely(!utask))
1336 return NULL;
1337
0326f5a9
SD
1338 current->utask = utask;
1339 return utask;
1340}
1341
1342/* Prepare to single-step probed instruction out of line. */
1343static int
1344pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1345{
d4b3b638
SD
1346 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1347 return 0;
1348
0326f5a9
SD
1349 return -EFAULT;
1350}
1351
1352/*
1353 * If we are singlestepping, then ensure this thread is not connected to
1354 * non-fatal signals until completion of singlestep. When xol insn itself
1355 * triggers the signal, restart the original insn even if the task is
1356 * already SIGKILL'ed (since coredump should report the correct ip). This
1357 * is even more important if the task has a handler for SIGSEGV/etc, The
1358 * _same_ instruction should be repeated again after return from the signal
1359 * handler, and SSTEP can never finish in this case.
1360 */
1361bool uprobe_deny_signal(void)
1362{
1363 struct task_struct *t = current;
1364 struct uprobe_task *utask = t->utask;
1365
1366 if (likely(!utask || !utask->active_uprobe))
1367 return false;
1368
1369 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1370
1371 if (signal_pending(t)) {
1372 spin_lock_irq(&t->sighand->siglock);
1373 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1374 spin_unlock_irq(&t->sighand->siglock);
1375
1376 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1377 utask->state = UTASK_SSTEP_TRAPPED;
1378 set_tsk_thread_flag(t, TIF_UPROBE);
1379 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1380 }
1381 }
1382
1383 return true;
1384}
1385
1386/*
1387 * Avoid singlestepping the original instruction if the original instruction
1388 * is a NOP or can be emulated.
1389 */
1390static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1391{
1392 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1393 return true;
1394
1395 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1396 return false;
1397}
1398
d790d346 1399static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1400{
3a9ea052
ON
1401 struct mm_struct *mm = current->mm;
1402 struct uprobe *uprobe = NULL;
0326f5a9 1403 struct vm_area_struct *vma;
0326f5a9 1404
0326f5a9
SD
1405 down_read(&mm->mmap_sem);
1406 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1407 if (vma && vma->vm_start <= bp_vaddr) {
1408 if (valid_vma(vma, false)) {
cb113b47
ON
1409 struct inode *inode = vma->vm_file->f_mapping->host;
1410 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1411
3a9ea052
ON
1412 uprobe = find_uprobe(inode, offset);
1413 }
d790d346
ON
1414
1415 if (!uprobe)
1416 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1417 } else {
1418 *is_swbp = -EFAULT;
0326f5a9 1419 }
0326f5a9
SD
1420 up_read(&mm->mmap_sem);
1421
3a9ea052
ON
1422 return uprobe;
1423}
1424
1425/*
1426 * Run handler and ask thread to singlestep.
1427 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1428 */
1429static void handle_swbp(struct pt_regs *regs)
1430{
1431 struct uprobe_task *utask;
1432 struct uprobe *uprobe;
1433 unsigned long bp_vaddr;
56bb4cf6 1434 int uninitialized_var(is_swbp);
3a9ea052
ON
1435
1436 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1437 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1438
0326f5a9 1439 if (!uprobe) {
56bb4cf6
ON
1440 if (is_swbp > 0) {
1441 /* No matching uprobe; signal SIGTRAP. */
1442 send_sig(SIGTRAP, current, 0);
1443 } else {
1444 /*
1445 * Either we raced with uprobe_unregister() or we can't
1446 * access this memory. The latter is only possible if
1447 * another thread plays with our ->mm. In both cases
1448 * we can simply restart. If this vma was unmapped we
1449 * can pretend this insn was not executed yet and get
1450 * the (correct) SIGSEGV after restart.
1451 */
1452 instruction_pointer_set(regs, bp_vaddr);
1453 }
0326f5a9
SD
1454 return;
1455 }
1456
1457 utask = current->utask;
1458 if (!utask) {
1459 utask = add_utask();
1460 /* Cannot allocate; re-execute the instruction. */
1461 if (!utask)
1462 goto cleanup_ret;
1463 }
1464 utask->active_uprobe = uprobe;
1465 handler_chain(uprobe, regs);
1466 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1467 goto cleanup_ret;
1468
1469 utask->state = UTASK_SSTEP;
1470 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1471 user_enable_single_step(current);
1472 return;
1473 }
1474
1475cleanup_ret:
1476 if (utask) {
1477 utask->active_uprobe = NULL;
1478 utask->state = UTASK_RUNNING;
1479 }
8bd87445 1480 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
0326f5a9 1481
8bd87445
SAS
1482 /*
1483 * cannot singlestep; cannot skip instruction;
1484 * re-execute the instruction.
1485 */
1486 instruction_pointer_set(regs, bp_vaddr);
0326f5a9 1487
8bd87445 1488 put_uprobe(uprobe);
0326f5a9
SD
1489}
1490
1491/*
1492 * Perform required fix-ups and disable singlestep.
1493 * Allow pending signals to take effect.
1494 */
1495static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1496{
1497 struct uprobe *uprobe;
1498
1499 uprobe = utask->active_uprobe;
1500 if (utask->state == UTASK_SSTEP_ACK)
1501 arch_uprobe_post_xol(&uprobe->arch, regs);
1502 else if (utask->state == UTASK_SSTEP_TRAPPED)
1503 arch_uprobe_abort_xol(&uprobe->arch, regs);
1504 else
1505 WARN_ON_ONCE(1);
1506
1507 put_uprobe(uprobe);
1508 utask->active_uprobe = NULL;
1509 utask->state = UTASK_RUNNING;
1510 user_disable_single_step(current);
d4b3b638 1511 xol_free_insn_slot(current);
0326f5a9
SD
1512
1513 spin_lock_irq(&current->sighand->siglock);
1514 recalc_sigpending(); /* see uprobe_deny_signal() */
1515 spin_unlock_irq(&current->sighand->siglock);
1516}
1517
1518/*
1519 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1520 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1521 * allows the thread to return from interrupt.
1522 *
1523 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1524 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1525 * interrupt.
1526 *
1527 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1528 * uprobe_notify_resume().
1529 */
1530void uprobe_notify_resume(struct pt_regs *regs)
1531{
1532 struct uprobe_task *utask;
1533
1534 utask = current->utask;
1535 if (!utask || utask->state == UTASK_BP_HIT)
1536 handle_swbp(regs);
1537 else
1538 handle_singlestep(utask, regs);
1539}
1540
1541/*
1542 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1543 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1544 */
1545int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1546{
1547 struct uprobe_task *utask;
1548
f8ac4ec9 1549 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1550 return 0;
1551
1552 utask = current->utask;
1553 if (utask)
1554 utask->state = UTASK_BP_HIT;
1555
1556 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1557
1558 return 1;
1559}
1560
1561/*
1562 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1563 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1564 */
1565int uprobe_post_sstep_notifier(struct pt_regs *regs)
1566{
1567 struct uprobe_task *utask = current->utask;
1568
1569 if (!current->mm || !utask || !utask->active_uprobe)
1570 /* task is currently not uprobed */
1571 return 0;
1572
1573 utask->state = UTASK_SSTEP_ACK;
1574 set_thread_flag(TIF_UPROBE);
1575 return 1;
1576}
1577
1578static struct notifier_block uprobe_exception_nb = {
1579 .notifier_call = arch_uprobe_exception_notify,
1580 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1581};
1582
2b144498
SD
1583static int __init init_uprobes(void)
1584{
1585 int i;
1586
1587 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1588 mutex_init(&uprobes_mutex[i]);
1589 mutex_init(&uprobes_mmap_mutex[i]);
1590 }
0326f5a9
SD
1591
1592 return register_die_notifier(&uprobe_exception_nb);
2b144498 1593}
0326f5a9 1594module_init(init_uprobes);
2b144498
SD
1595
1596static void __exit exit_uprobes(void)
1597{
1598}
2b144498 1599module_exit(exit_uprobes);