perf script: use ARRAY_SIZE instead of reinventing it
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 36#include <linux/percpu-rwsem.h>
7b2d81d4 37
2b144498
SD
38#include <linux/uprobes.h>
39
d4b3b638
SD
40#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
41#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
42
2b144498 43static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 44
2b144498
SD
45static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
46
47#define UPROBES_HASH_SZ 13
7b2d81d4 48
c5784de2
PZ
49/*
50 * We need separate register/unregister and mmap/munmap lock hashes because
51 * of mmap_sem nesting.
52 *
53 * uprobe_register() needs to install probes on (potentially) all processes
54 * and thus needs to acquire multiple mmap_sems (consequtively, not
55 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
56 * for the particular process doing the mmap.
57 *
58 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
59 * because of lock order against i_mmap_mutex. This means there's a hole in
60 * the register vma iteration where a mmap() can happen.
61 *
62 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
63 * install a probe where one is already installed.
64 */
65
2b144498
SD
66/* serialize (un)register */
67static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
68
69#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
70
71/* serialize uprobe->pending_list */
72static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 73#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 74
32cdba1e
ON
75static struct percpu_rw_semaphore dup_mmap_sem;
76
2b144498 77/*
7b2d81d4 78 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
79 * events active at this time. Probably a fine grained per inode count is
80 * better?
81 */
82static atomic_t uprobe_events = ATOMIC_INIT(0);
83
cb9a19fe 84/* Have a copy of original instruction */
71434f2f 85#define UPROBE_COPY_INSN 0
cb9a19fe 86/* Dont run handlers when first register/ last unregister in progress*/
71434f2f 87#define UPROBE_RUN_HANDLER 1
cb9a19fe 88/* Can skip singlestep */
71434f2f 89#define UPROBE_SKIP_SSTEP 2
cb9a19fe 90
3ff54efd
SD
91struct uprobe {
92 struct rb_node rb_node; /* node in the rb tree */
93 atomic_t ref;
94 struct rw_semaphore consumer_rwsem;
4710f05f 95 struct mutex copy_mutex; /* TODO: kill me and UPROBE_COPY_INSN */
3ff54efd
SD
96 struct list_head pending_list;
97 struct uprobe_consumer *consumers;
98 struct inode *inode; /* Also hold a ref to inode */
99 loff_t offset;
71434f2f 100 unsigned long flags;
3ff54efd
SD
101 struct arch_uprobe arch;
102};
103
2b144498
SD
104/*
105 * valid_vma: Verify if the specified vma is an executable vma
106 * Relax restrictions while unregistering: vm_flags might have
107 * changed after breakpoint was inserted.
108 * - is_register: indicates if we are in register context.
109 * - Return 1 if the specified virtual address is in an
110 * executable vma.
111 */
112static bool valid_vma(struct vm_area_struct *vma, bool is_register)
113{
e40cfce6 114 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 115
e40cfce6
ON
116 if (is_register)
117 flags |= VM_WRITE;
2b144498 118
e40cfce6 119 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
120}
121
57683f72 122static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 123{
57683f72 124 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
125}
126
cb113b47
ON
127static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
128{
129 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
130}
131
2b144498
SD
132/**
133 * __replace_page - replace page in vma by new page.
134 * based on replace_page in mm/ksm.c
135 *
136 * @vma: vma that holds the pte pointing to page
c517ee74 137 * @addr: address the old @page is mapped at
2b144498
SD
138 * @page: the cowed page we are replacing by kpage
139 * @kpage: the modified page we replace page by
140 *
141 * Returns 0 on success, -EFAULT on failure.
142 */
c517ee74
ON
143static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
144 struct page *page, struct page *kpage)
2b144498
SD
145{
146 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
147 spinlock_t *ptl;
148 pte_t *ptep;
9f92448c 149 int err;
6bdb913f
HE
150 /* For mmu_notifiers */
151 const unsigned long mmun_start = addr;
152 const unsigned long mmun_end = addr + PAGE_SIZE;
2b144498 153
194f8dcb 154 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
155 lock_page(page);
156
6bdb913f 157 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 158 err = -EAGAIN;
5323ce71 159 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 160 if (!ptep)
9f92448c 161 goto unlock;
2b144498
SD
162
163 get_page(kpage);
164 page_add_new_anon_rmap(kpage, vma, addr);
165
7396fa81
SD
166 if (!PageAnon(page)) {
167 dec_mm_counter(mm, MM_FILEPAGES);
168 inc_mm_counter(mm, MM_ANONPAGES);
169 }
170
2b144498
SD
171 flush_cache_page(vma, addr, pte_pfn(*ptep));
172 ptep_clear_flush(vma, addr, ptep);
173 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
174
175 page_remove_rmap(page);
176 if (!page_mapped(page))
177 try_to_free_swap(page);
2b144498 178 pte_unmap_unlock(ptep, ptl);
2b144498 179
194f8dcb
ON
180 if (vma->vm_flags & VM_LOCKED)
181 munlock_vma_page(page);
182 put_page(page);
183
9f92448c
ON
184 err = 0;
185 unlock:
6bdb913f 186 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
187 unlock_page(page);
188 return err;
2b144498
SD
189}
190
191/**
5cb4ac3a 192 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 193 * @insn: instruction to be checked.
5cb4ac3a 194 * Default implementation of is_swbp_insn
2b144498
SD
195 * Returns true if @insn is a breakpoint instruction.
196 */
5cb4ac3a 197bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 198{
5cb4ac3a 199 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
200}
201
cceb55aa
ON
202static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
203{
204 void *kaddr = kmap_atomic(page);
205 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
206 kunmap_atomic(kaddr);
207}
208
ed6f6a50
ON
209static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
210{
211 uprobe_opcode_t old_opcode;
212 bool is_swbp;
213
214 copy_opcode(page, vaddr, &old_opcode);
215 is_swbp = is_swbp_insn(&old_opcode);
216
217 if (is_swbp_insn(new_opcode)) {
218 if (is_swbp) /* register: already installed? */
219 return 0;
220 } else {
221 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 222 return 0;
ed6f6a50
ON
223 }
224
225 return 1;
226}
227
2b144498
SD
228/*
229 * NOTE:
230 * Expect the breakpoint instruction to be the smallest size instruction for
231 * the architecture. If an arch has variable length instruction and the
232 * breakpoint instruction is not of the smallest length instruction
cceb55aa 233 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
234 * write_opcode accordingly. This would never be a problem for archs that
235 * have fixed length instructions.
236 */
237
238/*
239 * write_opcode - write the opcode at a given virtual address.
240 * @mm: the probed process address space.
2b144498
SD
241 * @vaddr: the virtual address to store the opcode.
242 * @opcode: opcode to be written at @vaddr.
243 *
244 * Called with mm->mmap_sem held (for read and with a reference to
245 * mm).
246 *
247 * For mm @mm, write the opcode at @vaddr.
248 * Return 0 (success) or a negative errno.
249 */
cceb55aa
ON
250static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
251 uprobe_opcode_t opcode)
2b144498
SD
252{
253 struct page *old_page, *new_page;
2b144498
SD
254 void *vaddr_old, *vaddr_new;
255 struct vm_area_struct *vma;
2b144498 256 int ret;
f403072c 257
5323ce71 258retry:
2b144498 259 /* Read the page with vaddr into memory */
75ed82ea 260 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
261 if (ret <= 0)
262 return ret;
7b2d81d4 263
ed6f6a50
ON
264 ret = verify_opcode(old_page, vaddr, &opcode);
265 if (ret <= 0)
266 goto put_old;
267
2b144498
SD
268 ret = -ENOMEM;
269 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
270 if (!new_page)
9f92448c 271 goto put_old;
2b144498
SD
272
273 __SetPageUptodate(new_page);
274
2b144498
SD
275 /* copy the page now that we've got it stable */
276 vaddr_old = kmap_atomic(old_page);
277 vaddr_new = kmap_atomic(new_page);
278
279 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 280 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
281
282 kunmap_atomic(vaddr_new);
283 kunmap_atomic(vaddr_old);
284
285 ret = anon_vma_prepare(vma);
286 if (ret)
9f92448c 287 goto put_new;
2b144498 288
c517ee74 289 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 290
9f92448c 291put_new:
2b144498 292 page_cache_release(new_page);
9f92448c 293put_old:
7b2d81d4
IM
294 put_page(old_page);
295
5323ce71
ON
296 if (unlikely(ret == -EAGAIN))
297 goto retry;
2b144498
SD
298 return ret;
299}
300
2b144498 301/**
5cb4ac3a 302 * set_swbp - store breakpoint at a given address.
e3343e6a 303 * @auprobe: arch specific probepoint information.
2b144498 304 * @mm: the probed process address space.
2b144498
SD
305 * @vaddr: the virtual address to insert the opcode.
306 *
307 * For mm @mm, store the breakpoint instruction at @vaddr.
308 * Return 0 (success) or a negative errno.
309 */
5cb4ac3a 310int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 311{
cceb55aa 312 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
313}
314
315/**
316 * set_orig_insn - Restore the original instruction.
317 * @mm: the probed process address space.
e3343e6a 318 * @auprobe: arch specific probepoint information.
2b144498 319 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
320 *
321 * For mm @mm, restore the original opcode (opcode) at @vaddr.
322 * Return 0 (success) or a negative errno.
323 */
7b2d81d4 324int __weak
ded86e7c 325set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 326{
cceb55aa 327 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
328}
329
330static int match_uprobe(struct uprobe *l, struct uprobe *r)
331{
332 if (l->inode < r->inode)
333 return -1;
7b2d81d4 334
2b144498
SD
335 if (l->inode > r->inode)
336 return 1;
2b144498 337
7b2d81d4
IM
338 if (l->offset < r->offset)
339 return -1;
340
341 if (l->offset > r->offset)
342 return 1;
2b144498
SD
343
344 return 0;
345}
346
347static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
348{
349 struct uprobe u = { .inode = inode, .offset = offset };
350 struct rb_node *n = uprobes_tree.rb_node;
351 struct uprobe *uprobe;
352 int match;
353
354 while (n) {
355 uprobe = rb_entry(n, struct uprobe, rb_node);
356 match = match_uprobe(&u, uprobe);
357 if (!match) {
358 atomic_inc(&uprobe->ref);
359 return uprobe;
360 }
7b2d81d4 361
2b144498
SD
362 if (match < 0)
363 n = n->rb_left;
364 else
365 n = n->rb_right;
366 }
367 return NULL;
368}
369
370/*
371 * Find a uprobe corresponding to a given inode:offset
372 * Acquires uprobes_treelock
373 */
374static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
375{
376 struct uprobe *uprobe;
2b144498 377
6f47caa0 378 spin_lock(&uprobes_treelock);
2b144498 379 uprobe = __find_uprobe(inode, offset);
6f47caa0 380 spin_unlock(&uprobes_treelock);
7b2d81d4 381
2b144498
SD
382 return uprobe;
383}
384
385static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
386{
387 struct rb_node **p = &uprobes_tree.rb_node;
388 struct rb_node *parent = NULL;
389 struct uprobe *u;
390 int match;
391
392 while (*p) {
393 parent = *p;
394 u = rb_entry(parent, struct uprobe, rb_node);
395 match = match_uprobe(uprobe, u);
396 if (!match) {
397 atomic_inc(&u->ref);
398 return u;
399 }
400
401 if (match < 0)
402 p = &parent->rb_left;
403 else
404 p = &parent->rb_right;
405
406 }
7b2d81d4 407
2b144498
SD
408 u = NULL;
409 rb_link_node(&uprobe->rb_node, parent, p);
410 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
411 /* get access + creation ref */
412 atomic_set(&uprobe->ref, 2);
7b2d81d4 413
2b144498
SD
414 return u;
415}
416
417/*
7b2d81d4 418 * Acquire uprobes_treelock.
2b144498
SD
419 * Matching uprobe already exists in rbtree;
420 * increment (access refcount) and return the matching uprobe.
421 *
422 * No matching uprobe; insert the uprobe in rb_tree;
423 * get a double refcount (access + creation) and return NULL.
424 */
425static struct uprobe *insert_uprobe(struct uprobe *uprobe)
426{
2b144498
SD
427 struct uprobe *u;
428
6f47caa0 429 spin_lock(&uprobes_treelock);
2b144498 430 u = __insert_uprobe(uprobe);
6f47caa0 431 spin_unlock(&uprobes_treelock);
7b2d81d4 432
0326f5a9 433 /* For now assume that the instruction need not be single-stepped */
71434f2f 434 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0326f5a9 435
2b144498
SD
436 return u;
437}
438
439static void put_uprobe(struct uprobe *uprobe)
440{
441 if (atomic_dec_and_test(&uprobe->ref))
442 kfree(uprobe);
443}
444
445static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
446{
447 struct uprobe *uprobe, *cur_uprobe;
448
449 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
450 if (!uprobe)
451 return NULL;
452
453 uprobe->inode = igrab(inode);
454 uprobe->offset = offset;
455 init_rwsem(&uprobe->consumer_rwsem);
4710f05f 456 mutex_init(&uprobe->copy_mutex);
2b144498
SD
457
458 /* add to uprobes_tree, sorted on inode:offset */
459 cur_uprobe = insert_uprobe(uprobe);
460
461 /* a uprobe exists for this inode:offset combination */
462 if (cur_uprobe) {
463 kfree(uprobe);
464 uprobe = cur_uprobe;
465 iput(inode);
7b2d81d4 466 } else {
2b144498 467 atomic_inc(&uprobe_events);
7b2d81d4
IM
468 }
469
2b144498
SD
470 return uprobe;
471}
472
0326f5a9
SD
473static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
474{
475 struct uprobe_consumer *uc;
476
71434f2f 477 if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
0326f5a9
SD
478 return;
479
480 down_read(&uprobe->consumer_rwsem);
481 for (uc = uprobe->consumers; uc; uc = uc->next) {
482 if (!uc->filter || uc->filter(uc, current))
483 uc->handler(uc, regs);
484 }
485 up_read(&uprobe->consumer_rwsem);
486}
487
2b144498 488/* Returns the previous consumer */
7b2d81d4 489static struct uprobe_consumer *
e3343e6a 490consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
491{
492 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
493 uc->next = uprobe->consumers;
494 uprobe->consumers = uc;
2b144498 495 up_write(&uprobe->consumer_rwsem);
7b2d81d4 496
e3343e6a 497 return uc->next;
2b144498
SD
498}
499
500/*
e3343e6a
SD
501 * For uprobe @uprobe, delete the consumer @uc.
502 * Return true if the @uc is deleted successfully
2b144498
SD
503 * or return false.
504 */
e3343e6a 505static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
506{
507 struct uprobe_consumer **con;
508 bool ret = false;
509
510 down_write(&uprobe->consumer_rwsem);
511 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
512 if (*con == uc) {
513 *con = uc->next;
2b144498
SD
514 ret = true;
515 break;
516 }
517 }
518 up_write(&uprobe->consumer_rwsem);
7b2d81d4 519
2b144498
SD
520 return ret;
521}
522
e3343e6a 523static int
d436615e 524__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 525 unsigned long nbytes, loff_t offset)
2b144498 526{
2b144498
SD
527 struct page *page;
528 void *vaddr;
593609a5
ON
529 unsigned long off;
530 pgoff_t idx;
2b144498
SD
531
532 if (!filp)
533 return -EINVAL;
534
cc359d18
ON
535 if (!mapping->a_ops->readpage)
536 return -EIO;
537
593609a5
ON
538 idx = offset >> PAGE_CACHE_SHIFT;
539 off = offset & ~PAGE_MASK;
2b144498
SD
540
541 /*
542 * Ensure that the page that has the original instruction is
543 * populated and in page-cache.
544 */
545 page = read_mapping_page(mapping, idx, filp);
546 if (IS_ERR(page))
547 return PTR_ERR(page);
548
549 vaddr = kmap_atomic(page);
593609a5 550 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
551 kunmap_atomic(vaddr);
552 page_cache_release(page);
7b2d81d4 553
2b144498
SD
554 return 0;
555}
556
d436615e 557static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
558{
559 struct address_space *mapping;
2b144498 560 unsigned long nbytes;
7b2d81d4 561 int bytes;
2b144498 562
d436615e 563 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
564 mapping = uprobe->inode->i_mapping;
565
566 /* Instruction at end of binary; copy only available bytes */
567 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
568 bytes = uprobe->inode->i_size - uprobe->offset;
569 else
570 bytes = MAX_UINSN_BYTES;
571
572 /* Instruction at the page-boundary; copy bytes in second page */
573 if (nbytes < bytes) {
fc36f595
ON
574 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
575 bytes - nbytes, uprobe->offset + nbytes);
576 if (err)
577 return err;
2b144498
SD
578 bytes = nbytes;
579 }
d436615e 580 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
581}
582
cb9a19fe
ON
583static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
584 struct mm_struct *mm, unsigned long vaddr)
585{
586 int ret = 0;
587
71434f2f 588 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
589 return ret;
590
4710f05f 591 mutex_lock(&uprobe->copy_mutex);
71434f2f 592 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
593 goto out;
594
cb9a19fe
ON
595 ret = copy_insn(uprobe, file);
596 if (ret)
597 goto out;
598
599 ret = -ENOTSUPP;
600 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
601 goto out;
602
603 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
604 if (ret)
605 goto out;
606
607 /* write_opcode() assumes we don't cross page boundary */
608 BUG_ON((uprobe->offset & ~PAGE_MASK) +
609 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
610
611 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 612 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
613
614 out:
4710f05f
ON
615 mutex_unlock(&uprobe->copy_mutex);
616
cb9a19fe
ON
617 return ret;
618}
619
e3343e6a
SD
620static int
621install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 622 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 623{
f8ac4ec9 624 bool first_uprobe;
2b144498
SD
625 int ret;
626
627 /*
628 * If probe is being deleted, unregister thread could be done with
629 * the vma-rmap-walk through. Adding a probe now can be fatal since
630 * nobody will be able to cleanup. Also we could be from fork or
631 * mremap path, where the probe might have already been inserted.
632 * Hence behave as if probe already existed.
633 */
634 if (!uprobe->consumers)
78f74116 635 return 0;
2b144498 636
cb9a19fe
ON
637 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
638 if (ret)
639 return ret;
682968e0 640
f8ac4ec9
ON
641 /*
642 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
643 * the task can hit this breakpoint right after __replace_page().
644 */
645 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
646 if (first_uprobe)
647 set_bit(MMF_HAS_UPROBES, &mm->flags);
648
816c03fb 649 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
650 if (!ret)
651 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
652 else if (first_uprobe)
f8ac4ec9 653 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
654
655 return ret;
656}
657
076a365b 658static int
816c03fb 659remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 660{
9f68f672
ON
661 /* can happen if uprobe_register() fails */
662 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
076a365b 663 return 0;
9f68f672
ON
664
665 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 666 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
667}
668
0326f5a9 669/*
778b032d
ON
670 * There could be threads that have already hit the breakpoint. They
671 * will recheck the current insn and restart if find_uprobe() fails.
672 * See find_active_uprobe().
0326f5a9 673 */
2b144498
SD
674static void delete_uprobe(struct uprobe *uprobe)
675{
6f47caa0 676 spin_lock(&uprobes_treelock);
2b144498 677 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 678 spin_unlock(&uprobes_treelock);
2b144498
SD
679 iput(uprobe->inode);
680 put_uprobe(uprobe);
681 atomic_dec(&uprobe_events);
682}
683
26872090
ON
684struct map_info {
685 struct map_info *next;
686 struct mm_struct *mm;
816c03fb 687 unsigned long vaddr;
26872090
ON
688};
689
690static inline struct map_info *free_map_info(struct map_info *info)
2b144498 691{
26872090
ON
692 struct map_info *next = info->next;
693 kfree(info);
694 return next;
695}
696
697static struct map_info *
698build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
699{
700 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 701 struct vm_area_struct *vma;
26872090
ON
702 struct map_info *curr = NULL;
703 struct map_info *prev = NULL;
704 struct map_info *info;
705 int more = 0;
2b144498 706
26872090
ON
707 again:
708 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 709 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
710 if (!valid_vma(vma, is_register))
711 continue;
712
7a5bfb66
ON
713 if (!prev && !more) {
714 /*
715 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
716 * reclaim. This is optimistic, no harm done if it fails.
717 */
718 prev = kmalloc(sizeof(struct map_info),
719 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
720 if (prev)
721 prev->next = NULL;
722 }
26872090
ON
723 if (!prev) {
724 more++;
725 continue;
2b144498 726 }
2b144498 727
26872090
ON
728 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
729 continue;
7b2d81d4 730
26872090
ON
731 info = prev;
732 prev = prev->next;
733 info->next = curr;
734 curr = info;
2b144498 735
26872090 736 info->mm = vma->vm_mm;
57683f72 737 info->vaddr = offset_to_vaddr(vma, offset);
26872090 738 }
2b144498
SD
739 mutex_unlock(&mapping->i_mmap_mutex);
740
26872090
ON
741 if (!more)
742 goto out;
743
744 prev = curr;
745 while (curr) {
746 mmput(curr->mm);
747 curr = curr->next;
748 }
7b2d81d4 749
26872090
ON
750 do {
751 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
752 if (!info) {
753 curr = ERR_PTR(-ENOMEM);
754 goto out;
755 }
756 info->next = prev;
757 prev = info;
758 } while (--more);
759
760 goto again;
761 out:
762 while (prev)
763 prev = free_map_info(prev);
764 return curr;
2b144498
SD
765}
766
767static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
768{
26872090
ON
769 struct map_info *info;
770 int err = 0;
2b144498 771
32cdba1e 772 percpu_down_write(&dup_mmap_sem);
26872090
ON
773 info = build_map_info(uprobe->inode->i_mapping,
774 uprobe->offset, is_register);
32cdba1e
ON
775 if (IS_ERR(info)) {
776 err = PTR_ERR(info);
777 goto out;
778 }
7b2d81d4 779
26872090
ON
780 while (info) {
781 struct mm_struct *mm = info->mm;
782 struct vm_area_struct *vma;
7b2d81d4 783
076a365b 784 if (err && is_register)
26872090 785 goto free;
7b2d81d4 786
77fc4af1 787 down_write(&mm->mmap_sem);
f4d6dfe5
ON
788 vma = find_vma(mm, info->vaddr);
789 if (!vma || !valid_vma(vma, is_register) ||
790 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
791 goto unlock;
792
f4d6dfe5
ON
793 if (vma->vm_start > info->vaddr ||
794 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 795 goto unlock;
2b144498 796
78f74116 797 if (is_register)
26872090 798 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 799 else
076a365b 800 err |= remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 801
26872090
ON
802 unlock:
803 up_write(&mm->mmap_sem);
804 free:
805 mmput(mm);
806 info = free_map_info(info);
2b144498 807 }
32cdba1e
ON
808 out:
809 percpu_up_write(&dup_mmap_sem);
26872090 810 return err;
2b144498
SD
811}
812
7b2d81d4 813static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
814{
815 return register_for_each_vma(uprobe, true);
816}
817
7b2d81d4 818static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
819{
820 if (!register_for_each_vma(uprobe, false))
821 delete_uprobe(uprobe);
822
823 /* TODO : cant unregister? schedule a worker thread */
824}
825
826/*
7b2d81d4 827 * uprobe_register - register a probe
2b144498
SD
828 * @inode: the file in which the probe has to be placed.
829 * @offset: offset from the start of the file.
e3343e6a 830 * @uc: information on howto handle the probe..
2b144498 831 *
7b2d81d4 832 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
833 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
834 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 835 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 836 * @uprobe even before the register operation is complete. Creation
e3343e6a 837 * refcount is released when the last @uc for the @uprobe
2b144498
SD
838 * unregisters.
839 *
840 * Return errno if it cannot successully install probes
841 * else return 0 (success)
842 */
e3343e6a 843int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
844{
845 struct uprobe *uprobe;
7b2d81d4 846 int ret;
2b144498 847
e3343e6a 848 if (!inode || !uc || uc->next)
7b2d81d4 849 return -EINVAL;
2b144498
SD
850
851 if (offset > i_size_read(inode))
7b2d81d4 852 return -EINVAL;
2b144498
SD
853
854 ret = 0;
855 mutex_lock(uprobes_hash(inode));
856 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 857
a5f658b7
ON
858 if (!uprobe) {
859 ret = -ENOMEM;
860 } else if (!consumer_add(uprobe, uc)) {
7b2d81d4 861 ret = __uprobe_register(uprobe);
2b144498
SD
862 if (ret) {
863 uprobe->consumers = NULL;
7b2d81d4
IM
864 __uprobe_unregister(uprobe);
865 } else {
71434f2f 866 set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
7b2d81d4 867 }
2b144498
SD
868 }
869
870 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
871 if (uprobe)
872 put_uprobe(uprobe);
2b144498
SD
873
874 return ret;
875}
876
877/*
7b2d81d4 878 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
879 * @inode: the file in which the probe has to be removed.
880 * @offset: offset from the start of the file.
e3343e6a 881 * @uc: identify which probe if multiple probes are colocated.
2b144498 882 */
e3343e6a 883void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 884{
7b2d81d4 885 struct uprobe *uprobe;
2b144498 886
e3343e6a 887 if (!inode || !uc)
2b144498
SD
888 return;
889
890 uprobe = find_uprobe(inode, offset);
891 if (!uprobe)
892 return;
893
894 mutex_lock(uprobes_hash(inode));
2b144498 895
e3343e6a 896 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
897 if (!uprobe->consumers) {
898 __uprobe_unregister(uprobe);
71434f2f 899 clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
7b2d81d4 900 }
2b144498
SD
901 }
902
2b144498
SD
903 mutex_unlock(uprobes_hash(inode));
904 if (uprobe)
905 put_uprobe(uprobe);
906}
907
891c3970
ON
908static struct rb_node *
909find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 910{
2b144498 911 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
912
913 while (n) {
891c3970 914 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 915
891c3970 916 if (inode < u->inode) {
2b144498 917 n = n->rb_left;
891c3970 918 } else if (inode > u->inode) {
2b144498 919 n = n->rb_right;
891c3970
ON
920 } else {
921 if (max < u->offset)
922 n = n->rb_left;
923 else if (min > u->offset)
924 n = n->rb_right;
925 else
926 break;
927 }
2b144498 928 }
7b2d81d4 929
891c3970 930 return n;
2b144498
SD
931}
932
933/*
891c3970 934 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 935 */
891c3970
ON
936static void build_probe_list(struct inode *inode,
937 struct vm_area_struct *vma,
938 unsigned long start, unsigned long end,
939 struct list_head *head)
2b144498 940{
891c3970 941 loff_t min, max;
891c3970
ON
942 struct rb_node *n, *t;
943 struct uprobe *u;
7b2d81d4 944
891c3970 945 INIT_LIST_HEAD(head);
cb113b47 946 min = vaddr_to_offset(vma, start);
891c3970 947 max = min + (end - start) - 1;
2b144498 948
6f47caa0 949 spin_lock(&uprobes_treelock);
891c3970
ON
950 n = find_node_in_range(inode, min, max);
951 if (n) {
952 for (t = n; t; t = rb_prev(t)) {
953 u = rb_entry(t, struct uprobe, rb_node);
954 if (u->inode != inode || u->offset < min)
955 break;
956 list_add(&u->pending_list, head);
957 atomic_inc(&u->ref);
958 }
959 for (t = n; (t = rb_next(t)); ) {
960 u = rb_entry(t, struct uprobe, rb_node);
961 if (u->inode != inode || u->offset > max)
962 break;
963 list_add(&u->pending_list, head);
964 atomic_inc(&u->ref);
965 }
2b144498 966 }
6f47caa0 967 spin_unlock(&uprobes_treelock);
2b144498
SD
968}
969
970/*
5e5be71a 971 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 972 *
5e5be71a
ON
973 * Currently we ignore all errors and always return 0, the callers
974 * can't handle the failure anyway.
2b144498 975 */
7b2d81d4 976int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
977{
978 struct list_head tmp_list;
665605a2 979 struct uprobe *uprobe, *u;
2b144498 980 struct inode *inode;
2b144498
SD
981
982 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 983 return 0;
2b144498
SD
984
985 inode = vma->vm_file->f_mapping->host;
986 if (!inode)
7b2d81d4 987 return 0;
2b144498 988
2b144498 989 mutex_lock(uprobes_mmap_hash(inode));
891c3970 990 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 991
665605a2 992 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 993 if (!fatal_signal_pending(current)) {
57683f72 994 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 995 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
996 }
997 put_uprobe(uprobe);
998 }
2b144498
SD
999 mutex_unlock(uprobes_mmap_hash(inode));
1000
5e5be71a 1001 return 0;
2b144498
SD
1002}
1003
9f68f672
ON
1004static bool
1005vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1006{
1007 loff_t min, max;
1008 struct inode *inode;
1009 struct rb_node *n;
1010
1011 inode = vma->vm_file->f_mapping->host;
1012
1013 min = vaddr_to_offset(vma, start);
1014 max = min + (end - start) - 1;
1015
1016 spin_lock(&uprobes_treelock);
1017 n = find_node_in_range(inode, min, max);
1018 spin_unlock(&uprobes_treelock);
1019
1020 return !!n;
1021}
1022
682968e0
SD
1023/*
1024 * Called in context of a munmap of a vma.
1025 */
cbc91f71 1026void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1027{
682968e0
SD
1028 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1029 return;
1030
2fd611a9
ON
1031 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1032 return;
1033
9f68f672
ON
1034 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1035 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1036 return;
1037
9f68f672
ON
1038 if (vma_has_uprobes(vma, start, end))
1039 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1040}
1041
d4b3b638
SD
1042/* Slot allocation for XOL */
1043static int xol_add_vma(struct xol_area *area)
1044{
1045 struct mm_struct *mm;
1046 int ret;
1047
1048 area->page = alloc_page(GFP_HIGHUSER);
1049 if (!area->page)
1050 return -ENOMEM;
1051
1052 ret = -EALREADY;
1053 mm = current->mm;
1054
1055 down_write(&mm->mmap_sem);
1056 if (mm->uprobes_state.xol_area)
1057 goto fail;
1058
1059 ret = -ENOMEM;
1060
1061 /* Try to map as high as possible, this is only a hint. */
1062 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1063 if (area->vaddr & ~PAGE_MASK) {
1064 ret = area->vaddr;
1065 goto fail;
1066 }
1067
1068 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1069 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1070 if (ret)
1071 goto fail;
1072
1073 smp_wmb(); /* pairs with get_xol_area() */
1074 mm->uprobes_state.xol_area = area;
1075 ret = 0;
1076
1077fail:
1078 up_write(&mm->mmap_sem);
1079 if (ret)
1080 __free_page(area->page);
1081
1082 return ret;
1083}
1084
1085static struct xol_area *get_xol_area(struct mm_struct *mm)
1086{
1087 struct xol_area *area;
1088
1089 area = mm->uprobes_state.xol_area;
1090 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1091
1092 return area;
1093}
1094
1095/*
1096 * xol_alloc_area - Allocate process's xol_area.
1097 * This area will be used for storing instructions for execution out of
1098 * line.
1099 *
1100 * Returns the allocated area or NULL.
1101 */
1102static struct xol_area *xol_alloc_area(void)
1103{
1104 struct xol_area *area;
1105
1106 area = kzalloc(sizeof(*area), GFP_KERNEL);
1107 if (unlikely(!area))
1108 return NULL;
1109
1110 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1111
1112 if (!area->bitmap)
1113 goto fail;
1114
1115 init_waitqueue_head(&area->wq);
1116 if (!xol_add_vma(area))
1117 return area;
1118
1119fail:
1120 kfree(area->bitmap);
1121 kfree(area);
1122
1123 return get_xol_area(current->mm);
1124}
1125
1126/*
1127 * uprobe_clear_state - Free the area allocated for slots.
1128 */
1129void uprobe_clear_state(struct mm_struct *mm)
1130{
1131 struct xol_area *area = mm->uprobes_state.xol_area;
1132
1133 if (!area)
1134 return;
1135
1136 put_page(area->page);
1137 kfree(area->bitmap);
1138 kfree(area);
1139}
1140
32cdba1e
ON
1141void uprobe_start_dup_mmap(void)
1142{
1143 percpu_down_read(&dup_mmap_sem);
1144}
1145
1146void uprobe_end_dup_mmap(void)
1147{
1148 percpu_up_read(&dup_mmap_sem);
1149}
1150
f8ac4ec9
ON
1151void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1152{
61559a81
ON
1153 newmm->uprobes_state.xol_area = NULL;
1154
9f68f672 1155 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1156 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1157 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1158 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1159 }
f8ac4ec9
ON
1160}
1161
d4b3b638
SD
1162/*
1163 * - search for a free slot.
1164 */
1165static unsigned long xol_take_insn_slot(struct xol_area *area)
1166{
1167 unsigned long slot_addr;
1168 int slot_nr;
1169
1170 do {
1171 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1172 if (slot_nr < UINSNS_PER_PAGE) {
1173 if (!test_and_set_bit(slot_nr, area->bitmap))
1174 break;
1175
1176 slot_nr = UINSNS_PER_PAGE;
1177 continue;
1178 }
1179 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1180 } while (slot_nr >= UINSNS_PER_PAGE);
1181
1182 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1183 atomic_inc(&area->slot_count);
1184
1185 return slot_addr;
1186}
1187
1188/*
1189 * xol_get_insn_slot - If was not allocated a slot, then
1190 * allocate a slot.
1191 * Returns the allocated slot address or 0.
1192 */
1193static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1194{
1195 struct xol_area *area;
1196 unsigned long offset;
1197 void *vaddr;
1198
1199 area = get_xol_area(current->mm);
1200 if (!area) {
1201 area = xol_alloc_area();
1202 if (!area)
1203 return 0;
1204 }
1205 current->utask->xol_vaddr = xol_take_insn_slot(area);
1206
1207 /*
1208 * Initialize the slot if xol_vaddr points to valid
1209 * instruction slot.
1210 */
1211 if (unlikely(!current->utask->xol_vaddr))
1212 return 0;
1213
1214 current->utask->vaddr = slot_addr;
1215 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1216 vaddr = kmap_atomic(area->page);
1217 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1218 kunmap_atomic(vaddr);
65b6ecc0
RV
1219 /*
1220 * We probably need flush_icache_user_range() but it needs vma.
1221 * This should work on supported architectures too.
1222 */
1223 flush_dcache_page(area->page);
d4b3b638
SD
1224
1225 return current->utask->xol_vaddr;
1226}
1227
1228/*
1229 * xol_free_insn_slot - If slot was earlier allocated by
1230 * @xol_get_insn_slot(), make the slot available for
1231 * subsequent requests.
1232 */
1233static void xol_free_insn_slot(struct task_struct *tsk)
1234{
1235 struct xol_area *area;
1236 unsigned long vma_end;
1237 unsigned long slot_addr;
1238
1239 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1240 return;
1241
1242 slot_addr = tsk->utask->xol_vaddr;
1243
1244 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1245 return;
1246
1247 area = tsk->mm->uprobes_state.xol_area;
1248 vma_end = area->vaddr + PAGE_SIZE;
1249 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1250 unsigned long offset;
1251 int slot_nr;
1252
1253 offset = slot_addr - area->vaddr;
1254 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1255 if (slot_nr >= UINSNS_PER_PAGE)
1256 return;
1257
1258 clear_bit(slot_nr, area->bitmap);
1259 atomic_dec(&area->slot_count);
1260 if (waitqueue_active(&area->wq))
1261 wake_up(&area->wq);
1262
1263 tsk->utask->xol_vaddr = 0;
1264 }
1265}
1266
0326f5a9
SD
1267/**
1268 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1269 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1270 * instruction.
1271 * Return the address of the breakpoint instruction.
1272 */
1273unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1274{
1275 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1276}
1277
1278/*
1279 * Called with no locks held.
1280 * Called in context of a exiting or a exec-ing thread.
1281 */
1282void uprobe_free_utask(struct task_struct *t)
1283{
1284 struct uprobe_task *utask = t->utask;
1285
0326f5a9
SD
1286 if (!utask)
1287 return;
1288
1289 if (utask->active_uprobe)
1290 put_uprobe(utask->active_uprobe);
1291
d4b3b638 1292 xol_free_insn_slot(t);
0326f5a9
SD
1293 kfree(utask);
1294 t->utask = NULL;
1295}
1296
1297/*
1298 * Called in context of a new clone/fork from copy_process.
1299 */
1300void uprobe_copy_process(struct task_struct *t)
1301{
1302 t->utask = NULL;
0326f5a9
SD
1303}
1304
1305/*
1306 * Allocate a uprobe_task object for the task.
1307 * Called when the thread hits a breakpoint for the first time.
1308 *
1309 * Returns:
1310 * - pointer to new uprobe_task on success
1311 * - NULL otherwise
1312 */
1313static struct uprobe_task *add_utask(void)
1314{
1315 struct uprobe_task *utask;
1316
1317 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1318 if (unlikely(!utask))
1319 return NULL;
1320
0326f5a9
SD
1321 current->utask = utask;
1322 return utask;
1323}
1324
1325/* Prepare to single-step probed instruction out of line. */
1326static int
1327pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1328{
d4b3b638
SD
1329 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1330 return 0;
1331
0326f5a9
SD
1332 return -EFAULT;
1333}
1334
1335/*
1336 * If we are singlestepping, then ensure this thread is not connected to
1337 * non-fatal signals until completion of singlestep. When xol insn itself
1338 * triggers the signal, restart the original insn even if the task is
1339 * already SIGKILL'ed (since coredump should report the correct ip). This
1340 * is even more important if the task has a handler for SIGSEGV/etc, The
1341 * _same_ instruction should be repeated again after return from the signal
1342 * handler, and SSTEP can never finish in this case.
1343 */
1344bool uprobe_deny_signal(void)
1345{
1346 struct task_struct *t = current;
1347 struct uprobe_task *utask = t->utask;
1348
1349 if (likely(!utask || !utask->active_uprobe))
1350 return false;
1351
1352 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1353
1354 if (signal_pending(t)) {
1355 spin_lock_irq(&t->sighand->siglock);
1356 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1357 spin_unlock_irq(&t->sighand->siglock);
1358
1359 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1360 utask->state = UTASK_SSTEP_TRAPPED;
1361 set_tsk_thread_flag(t, TIF_UPROBE);
1362 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1363 }
1364 }
1365
1366 return true;
1367}
1368
1369/*
1370 * Avoid singlestepping the original instruction if the original instruction
1371 * is a NOP or can be emulated.
1372 */
1373static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1374{
71434f2f 1375 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
0578a970
ON
1376 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1377 return true;
71434f2f 1378 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0578a970 1379 }
0326f5a9
SD
1380 return false;
1381}
1382
499a4f3e
ON
1383static void mmf_recalc_uprobes(struct mm_struct *mm)
1384{
1385 struct vm_area_struct *vma;
1386
1387 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1388 if (!valid_vma(vma, false))
1389 continue;
1390 /*
1391 * This is not strictly accurate, we can race with
1392 * uprobe_unregister() and see the already removed
1393 * uprobe if delete_uprobe() was not yet called.
1394 */
1395 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1396 return;
1397 }
1398
1399 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1400}
1401
ec75fba9
ON
1402static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1403{
1404 struct page *page;
1405 uprobe_opcode_t opcode;
1406 int result;
1407
1408 pagefault_disable();
1409 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1410 sizeof(opcode));
1411 pagefault_enable();
1412
1413 if (likely(result == 0))
1414 goto out;
1415
1416 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1417 if (result < 0)
1418 return result;
1419
1420 copy_opcode(page, vaddr, &opcode);
1421 put_page(page);
1422 out:
1423 return is_swbp_insn(&opcode);
1424}
1425
d790d346 1426static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1427{
3a9ea052
ON
1428 struct mm_struct *mm = current->mm;
1429 struct uprobe *uprobe = NULL;
0326f5a9 1430 struct vm_area_struct *vma;
0326f5a9 1431
0326f5a9
SD
1432 down_read(&mm->mmap_sem);
1433 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1434 if (vma && vma->vm_start <= bp_vaddr) {
1435 if (valid_vma(vma, false)) {
cb113b47
ON
1436 struct inode *inode = vma->vm_file->f_mapping->host;
1437 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1438
3a9ea052
ON
1439 uprobe = find_uprobe(inode, offset);
1440 }
d790d346
ON
1441
1442 if (!uprobe)
1443 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1444 } else {
1445 *is_swbp = -EFAULT;
0326f5a9 1446 }
499a4f3e
ON
1447
1448 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1449 mmf_recalc_uprobes(mm);
0326f5a9
SD
1450 up_read(&mm->mmap_sem);
1451
3a9ea052
ON
1452 return uprobe;
1453}
1454
1455/*
1456 * Run handler and ask thread to singlestep.
1457 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1458 */
1459static void handle_swbp(struct pt_regs *regs)
1460{
1461 struct uprobe_task *utask;
1462 struct uprobe *uprobe;
1463 unsigned long bp_vaddr;
56bb4cf6 1464 int uninitialized_var(is_swbp);
3a9ea052
ON
1465
1466 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1467 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1468
0326f5a9 1469 if (!uprobe) {
56bb4cf6
ON
1470 if (is_swbp > 0) {
1471 /* No matching uprobe; signal SIGTRAP. */
1472 send_sig(SIGTRAP, current, 0);
1473 } else {
1474 /*
1475 * Either we raced with uprobe_unregister() or we can't
1476 * access this memory. The latter is only possible if
1477 * another thread plays with our ->mm. In both cases
1478 * we can simply restart. If this vma was unmapped we
1479 * can pretend this insn was not executed yet and get
1480 * the (correct) SIGSEGV after restart.
1481 */
1482 instruction_pointer_set(regs, bp_vaddr);
1483 }
0326f5a9
SD
1484 return;
1485 }
142b18dd
ON
1486 /*
1487 * TODO: move copy_insn/etc into _register and remove this hack.
1488 * After we hit the bp, _unregister + _register can install the
1489 * new and not-yet-analyzed uprobe at the same address, restart.
1490 */
1491 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1492 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
142b18dd 1493 goto restart;
0326f5a9
SD
1494
1495 utask = current->utask;
1496 if (!utask) {
1497 utask = add_utask();
1498 /* Cannot allocate; re-execute the instruction. */
1499 if (!utask)
0578a970 1500 goto restart;
0326f5a9 1501 }
746a9e6b 1502
0326f5a9 1503 handler_chain(uprobe, regs);
0578a970
ON
1504 if (can_skip_sstep(uprobe, regs))
1505 goto out;
0326f5a9 1506
0326f5a9 1507 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
746a9e6b
ON
1508 utask->active_uprobe = uprobe;
1509 utask->state = UTASK_SSTEP;
0326f5a9
SD
1510 return;
1511 }
1512
0578a970
ON
1513restart:
1514 /*
1515 * cannot singlestep; cannot skip instruction;
1516 * re-execute the instruction.
1517 */
1518 instruction_pointer_set(regs, bp_vaddr);
1519out:
8bd87445 1520 put_uprobe(uprobe);
0326f5a9
SD
1521}
1522
1523/*
1524 * Perform required fix-ups and disable singlestep.
1525 * Allow pending signals to take effect.
1526 */
1527static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1528{
1529 struct uprobe *uprobe;
1530
1531 uprobe = utask->active_uprobe;
1532 if (utask->state == UTASK_SSTEP_ACK)
1533 arch_uprobe_post_xol(&uprobe->arch, regs);
1534 else if (utask->state == UTASK_SSTEP_TRAPPED)
1535 arch_uprobe_abort_xol(&uprobe->arch, regs);
1536 else
1537 WARN_ON_ONCE(1);
1538
1539 put_uprobe(uprobe);
1540 utask->active_uprobe = NULL;
1541 utask->state = UTASK_RUNNING;
d4b3b638 1542 xol_free_insn_slot(current);
0326f5a9
SD
1543
1544 spin_lock_irq(&current->sighand->siglock);
1545 recalc_sigpending(); /* see uprobe_deny_signal() */
1546 spin_unlock_irq(&current->sighand->siglock);
1547}
1548
1549/*
1b08e907
ON
1550 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1551 * allows the thread to return from interrupt. After that handle_swbp()
1552 * sets utask->active_uprobe.
0326f5a9 1553 *
1b08e907
ON
1554 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1555 * and allows the thread to return from interrupt.
0326f5a9
SD
1556 *
1557 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1558 * uprobe_notify_resume().
1559 */
1560void uprobe_notify_resume(struct pt_regs *regs)
1561{
1562 struct uprobe_task *utask;
1563
db023ea5
ON
1564 clear_thread_flag(TIF_UPROBE);
1565
0326f5a9 1566 utask = current->utask;
1b08e907 1567 if (utask && utask->active_uprobe)
0326f5a9 1568 handle_singlestep(utask, regs);
1b08e907
ON
1569 else
1570 handle_swbp(regs);
0326f5a9
SD
1571}
1572
1573/*
1574 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1575 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1576 */
1577int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1578{
f8ac4ec9 1579 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1580 return 0;
1581
0326f5a9 1582 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1583 return 1;
1584}
1585
1586/*
1587 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1588 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1589 */
1590int uprobe_post_sstep_notifier(struct pt_regs *regs)
1591{
1592 struct uprobe_task *utask = current->utask;
1593
1594 if (!current->mm || !utask || !utask->active_uprobe)
1595 /* task is currently not uprobed */
1596 return 0;
1597
1598 utask->state = UTASK_SSTEP_ACK;
1599 set_thread_flag(TIF_UPROBE);
1600 return 1;
1601}
1602
1603static struct notifier_block uprobe_exception_nb = {
1604 .notifier_call = arch_uprobe_exception_notify,
1605 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1606};
1607
2b144498
SD
1608static int __init init_uprobes(void)
1609{
1610 int i;
1611
1612 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1613 mutex_init(&uprobes_mutex[i]);
1614 mutex_init(&uprobes_mmap_mutex[i]);
1615 }
0326f5a9 1616
32cdba1e
ON
1617 if (percpu_init_rwsem(&dup_mmap_sem))
1618 return -ENOMEM;
1619
0326f5a9 1620 return register_die_notifier(&uprobe_exception_nb);
2b144498 1621}
0326f5a9 1622module_init(init_uprobes);
2b144498
SD
1623
1624static void __exit exit_uprobes(void)
1625{
1626}
2b144498 1627module_exit(exit_uprobes);