usb: gadget: f_mtp: Avoid race between mtp_read and mtp_function_disable
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca 60#include <linux/cgroup.h>
e44193d3 61#include <linux/wait.h>
1da177e4 62
97e37140 63struct static_key cpusets_pre_enable_key __read_mostly = STATIC_KEY_INIT_FALSE;
664eedde 64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
202f72d5 65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4 75struct cpuset {
8793d854
PM
76 struct cgroup_subsys_state css;
77
1da177e4 78 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7 79
7e88291b
LZ
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
e2b9a3d7
LZ
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
cd55f3c2 102 cpumask_var_t cpus_requested;
e2b9a3d7
LZ
103 nodemask_t mems_allowed;
104
105 /* effective CPUs and Memory Nodes allow to tasks */
106 cpumask_var_t effective_cpus;
107 nodemask_t effective_mems;
1da177e4 108
33ad801d
LZ
109 /*
110 * This is old Memory Nodes tasks took on.
111 *
112 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
113 * - A new cpuset's old_mems_allowed is initialized when some
114 * task is moved into it.
115 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
116 * cpuset.mems_allowed and have tasks' nodemask updated, and
117 * then old_mems_allowed is updated to mems_allowed.
118 */
119 nodemask_t old_mems_allowed;
120
3e0d98b9 121 struct fmeter fmeter; /* memory_pressure filter */
029190c5 122
452477fa
TH
123 /*
124 * Tasks are being attached to this cpuset. Used to prevent
125 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 */
127 int attach_in_progress;
128
029190c5
PJ
129 /* partition number for rebuild_sched_domains() */
130 int pn;
956db3ca 131
1d3504fc
HS
132 /* for custom sched domain */
133 int relax_domain_level;
1da177e4
LT
134};
135
a7c6d554 136static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 137{
a7c6d554 138 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
139}
140
141/* Retrieve the cpuset for a task */
142static inline struct cpuset *task_cs(struct task_struct *task)
143{
073219e9 144 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 145}
8793d854 146
c9710d80 147static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 148{
5c9d535b 149 return css_cs(cs->css.parent);
c431069f
TH
150}
151
b246272e
DR
152#ifdef CONFIG_NUMA
153static inline bool task_has_mempolicy(struct task_struct *task)
154{
155 return task->mempolicy;
156}
157#else
158static inline bool task_has_mempolicy(struct task_struct *task)
159{
160 return false;
161}
162#endif
163
164
1da177e4
LT
165/* bits in struct cpuset flags field */
166typedef enum {
efeb77b2 167 CS_ONLINE,
1da177e4
LT
168 CS_CPU_EXCLUSIVE,
169 CS_MEM_EXCLUSIVE,
78608366 170 CS_MEM_HARDWALL,
45b07ef3 171 CS_MEMORY_MIGRATE,
029190c5 172 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
173 CS_SPREAD_PAGE,
174 CS_SPREAD_SLAB,
1cac41cb 175 CS_FAMILY_BOOST,
1da177e4
LT
176} cpuset_flagbits_t;
177
178/* convenient tests for these bits */
c8acec90 179static inline bool is_cpuset_online(struct cpuset *cs)
efeb77b2 180{
c8acec90 181 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
efeb77b2
TH
182}
183
1da177e4
LT
184static inline int is_cpu_exclusive(const struct cpuset *cs)
185{
7b5b9ef0 186 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
187}
188
189static inline int is_mem_exclusive(const struct cpuset *cs)
190{
7b5b9ef0 191 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
192}
193
78608366
PM
194static inline int is_mem_hardwall(const struct cpuset *cs)
195{
196 return test_bit(CS_MEM_HARDWALL, &cs->flags);
197}
198
029190c5
PJ
199static inline int is_sched_load_balance(const struct cpuset *cs)
200{
201 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
202}
203
45b07ef3
PJ
204static inline int is_memory_migrate(const struct cpuset *cs)
205{
7b5b9ef0 206 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
207}
208
825a46af
PJ
209static inline int is_spread_page(const struct cpuset *cs)
210{
211 return test_bit(CS_SPREAD_PAGE, &cs->flags);
212}
213
214static inline int is_spread_slab(const struct cpuset *cs)
215{
216 return test_bit(CS_SPREAD_SLAB, &cs->flags);
217}
218
1da177e4 219static struct cpuset top_cpuset = {
efeb77b2
TH
220 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
221 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
222};
223
1cac41cb
MB
224static inline int is_family_boost_enabled(const struct cpuset *cs)
225{
226 return test_bit(CS_FAMILY_BOOST, &cs->flags);
227}
228
ae8086ce
TH
229/**
230 * cpuset_for_each_child - traverse online children of a cpuset
231 * @child_cs: loop cursor pointing to the current child
492eb21b 232 * @pos_css: used for iteration
ae8086ce
TH
233 * @parent_cs: target cpuset to walk children of
234 *
235 * Walk @child_cs through the online children of @parent_cs. Must be used
236 * with RCU read locked.
237 */
492eb21b
TH
238#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
239 css_for_each_child((pos_css), &(parent_cs)->css) \
240 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 241
fc560a26
TH
242/**
243 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
244 * @des_cs: loop cursor pointing to the current descendant
492eb21b 245 * @pos_css: used for iteration
fc560a26
TH
246 * @root_cs: target cpuset to walk ancestor of
247 *
248 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 249 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
250 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
251 * iteration and the first node to be visited.
fc560a26 252 */
492eb21b
TH
253#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
254 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
255 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 256
1da177e4 257/*
8447a0fe
VD
258 * There are two global locks guarding cpuset structures - cpuset_mutex and
259 * callback_lock. We also require taking task_lock() when dereferencing a
260 * task's cpuset pointer. See "The task_lock() exception", at the end of this
261 * comment.
5d21cc2d 262 *
8447a0fe 263 * A task must hold both locks to modify cpusets. If a task holds
5d21cc2d 264 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
8447a0fe 265 * is the only task able to also acquire callback_lock and be able to
5d21cc2d
TH
266 * modify cpusets. It can perform various checks on the cpuset structure
267 * first, knowing nothing will change. It can also allocate memory while
268 * just holding cpuset_mutex. While it is performing these checks, various
8447a0fe
VD
269 * callback routines can briefly acquire callback_lock to query cpusets.
270 * Once it is ready to make the changes, it takes callback_lock, blocking
5d21cc2d 271 * everyone else.
053199ed
PJ
272 *
273 * Calls to the kernel memory allocator can not be made while holding
8447a0fe 274 * callback_lock, as that would risk double tripping on callback_lock
053199ed
PJ
275 * from one of the callbacks into the cpuset code from within
276 * __alloc_pages().
277 *
8447a0fe 278 * If a task is only holding callback_lock, then it has read-only
053199ed
PJ
279 * access to cpusets.
280 *
58568d2a
MX
281 * Now, the task_struct fields mems_allowed and mempolicy may be changed
282 * by other task, we use alloc_lock in the task_struct fields to protect
283 * them.
053199ed 284 *
8447a0fe 285 * The cpuset_common_file_read() handlers only hold callback_lock across
053199ed
PJ
286 * small pieces of code, such as when reading out possibly multi-word
287 * cpumasks and nodemasks.
288 *
2df167a3
PM
289 * Accessing a task's cpuset should be done in accordance with the
290 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
291 */
292
5d21cc2d 293static DEFINE_MUTEX(cpuset_mutex);
8447a0fe 294static DEFINE_SPINLOCK(callback_lock);
4247bdc6 295
fff4dc84
TH
296static struct workqueue_struct *cpuset_migrate_mm_wq;
297
3a5a6d0c
TH
298/*
299 * CPU / memory hotplug is handled asynchronously.
300 */
301static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
302static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
303
e44193d3
LZ
304static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
305
cf417141
MK
306/*
307 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 308 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
309 * silently switch it to mount "cgroup" instead
310 */
f7e83571
AV
311static struct dentry *cpuset_mount(struct file_system_type *fs_type,
312 int flags, const char *unused_dev_name, void *data)
1da177e4 313{
8793d854 314 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 315 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
316 if (cgroup_fs) {
317 char mountopts[] =
318 "cpuset,noprefix,"
319 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
320 ret = cgroup_fs->mount(cgroup_fs, flags,
321 unused_dev_name, mountopts);
8793d854
PM
322 put_filesystem(cgroup_fs);
323 }
324 return ret;
1da177e4
LT
325}
326
327static struct file_system_type cpuset_fs_type = {
328 .name = "cpuset",
f7e83571 329 .mount = cpuset_mount,
1da177e4
LT
330};
331
1cac41cb
MB
332int is_top_task(struct task_struct *p)
333{
334 struct cpuset *cpuset_for_task;
335 int ret;
336
337 rcu_read_lock();
338 cpuset_for_task = task_cs(p);
339 ret = is_family_boost_enabled(cpuset_for_task);
340 rcu_read_unlock();
341
342 return ret;
343}
344EXPORT_SYMBOL(is_top_task);
345
1da177e4 346/*
300ed6cb 347 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 348 * are online. If none are online, walk up the cpuset hierarchy
8132ffc9 349 * until we find one that does have some online cpus.
1da177e4
LT
350 *
351 * One way or another, we guarantee to return some non-empty subset
5f054e31 352 * of cpu_online_mask.
1da177e4 353 *
8447a0fe 354 * Call with callback_lock or cpuset_mutex held.
1da177e4 355 */
c9710d80 356static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 357{
8132ffc9 358 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
c431069f 359 cs = parent_cs(cs);
8132ffc9
JP
360 if (unlikely(!cs)) {
361 /*
362 * The top cpuset doesn't have any online cpu as a
363 * consequence of a race between cpuset_hotplug_work
364 * and cpu hotplug notifier. But we know the top
365 * cpuset's effective_cpus is on its way to to be
366 * identical to cpu_online_mask.
367 */
368 cpumask_copy(pmask, cpu_online_mask);
369 return;
370 }
371 }
ae1c8023 372 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
373}
374
375/*
376 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
377 * are online, with memory. If none are online with memory, walk
378 * up the cpuset hierarchy until we find one that does have some
40df2deb 379 * online mems. The top cpuset always has some mems online.
1da177e4
LT
380 *
381 * One way or another, we guarantee to return some non-empty subset
38d7bee9 382 * of node_states[N_MEMORY].
1da177e4 383 *
8447a0fe 384 * Call with callback_lock or cpuset_mutex held.
1da177e4 385 */
c9710d80 386static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 387{
ae1c8023 388 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 389 cs = parent_cs(cs);
ae1c8023 390 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
391}
392
f3b39d47
MX
393/*
394 * update task's spread flag if cpuset's page/slab spread flag is set
395 *
8447a0fe 396 * Call with callback_lock or cpuset_mutex held.
f3b39d47
MX
397 */
398static void cpuset_update_task_spread_flag(struct cpuset *cs,
399 struct task_struct *tsk)
400{
401 if (is_spread_page(cs))
2ad654bc 402 task_set_spread_page(tsk);
f3b39d47 403 else
2ad654bc
ZL
404 task_clear_spread_page(tsk);
405
f3b39d47 406 if (is_spread_slab(cs))
2ad654bc 407 task_set_spread_slab(tsk);
f3b39d47 408 else
2ad654bc 409 task_clear_spread_slab(tsk);
f3b39d47
MX
410}
411
1da177e4
LT
412/*
413 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
414 *
415 * One cpuset is a subset of another if all its allowed CPUs and
416 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 417 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
418 */
419
420static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
421{
cd55f3c2 422 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
1da177e4
LT
423 nodes_subset(p->mems_allowed, q->mems_allowed) &&
424 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
425 is_mem_exclusive(p) <= is_mem_exclusive(q);
426}
427
645fcc9d
LZ
428/**
429 * alloc_trial_cpuset - allocate a trial cpuset
430 * @cs: the cpuset that the trial cpuset duplicates
431 */
c9710d80 432static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 433{
300ed6cb
LZ
434 struct cpuset *trial;
435
436 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
437 if (!trial)
438 return NULL;
439
e2b9a3d7
LZ
440 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
441 goto free_cs;
442 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
443 goto free_cpus;
300ed6cb 444
e2b9a3d7
LZ
445 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
446 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 447 return trial;
e2b9a3d7
LZ
448
449free_cpus:
450 free_cpumask_var(trial->cpus_allowed);
451free_cs:
452 kfree(trial);
453 return NULL;
645fcc9d
LZ
454}
455
456/**
457 * free_trial_cpuset - free the trial cpuset
458 * @trial: the trial cpuset to be freed
459 */
460static void free_trial_cpuset(struct cpuset *trial)
461{
e2b9a3d7 462 free_cpumask_var(trial->effective_cpus);
300ed6cb 463 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
464 kfree(trial);
465}
466
1da177e4
LT
467/*
468 * validate_change() - Used to validate that any proposed cpuset change
469 * follows the structural rules for cpusets.
470 *
471 * If we replaced the flag and mask values of the current cpuset
472 * (cur) with those values in the trial cpuset (trial), would
473 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 474 * cpuset_mutex held.
1da177e4
LT
475 *
476 * 'cur' is the address of an actual, in-use cpuset. Operations
477 * such as list traversal that depend on the actual address of the
478 * cpuset in the list must use cur below, not trial.
479 *
480 * 'trial' is the address of bulk structure copy of cur, with
481 * perhaps one or more of the fields cpus_allowed, mems_allowed,
482 * or flags changed to new, trial values.
483 *
484 * Return 0 if valid, -errno if not.
485 */
486
c9710d80 487static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 488{
492eb21b 489 struct cgroup_subsys_state *css;
1da177e4 490 struct cpuset *c, *par;
ae8086ce
TH
491 int ret;
492
493 rcu_read_lock();
1da177e4
LT
494
495 /* Each of our child cpusets must be a subset of us */
ae8086ce 496 ret = -EBUSY;
492eb21b 497 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
498 if (!is_cpuset_subset(c, trial))
499 goto out;
1da177e4
LT
500
501 /* Remaining checks don't apply to root cpuset */
ae8086ce 502 ret = 0;
69604067 503 if (cur == &top_cpuset)
ae8086ce 504 goto out;
1da177e4 505
c431069f 506 par = parent_cs(cur);
69604067 507
7e88291b 508 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
ae8086ce 509 ret = -EACCES;
9e10a130
TH
510 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
511 !is_cpuset_subset(trial, par))
ae8086ce 512 goto out;
1da177e4 513
2df167a3
PM
514 /*
515 * If either I or some sibling (!= me) is exclusive, we can't
516 * overlap
517 */
ae8086ce 518 ret = -EINVAL;
492eb21b 519 cpuset_for_each_child(c, css, par) {
1da177e4
LT
520 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
521 c != cur &&
cd55f3c2 522 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
ae8086ce 523 goto out;
1da177e4
LT
524 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
525 c != cur &&
526 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 527 goto out;
1da177e4
LT
528 }
529
452477fa
TH
530 /*
531 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 532 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 533 */
ae8086ce 534 ret = -ENOSPC;
27bd4dbb 535 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
536 if (!cpumask_empty(cur->cpus_allowed) &&
537 cpumask_empty(trial->cpus_allowed))
538 goto out;
539 if (!nodes_empty(cur->mems_allowed) &&
540 nodes_empty(trial->mems_allowed))
541 goto out;
542 }
020958b6 543
f82f8042
JL
544 /*
545 * We can't shrink if we won't have enough room for SCHED_DEADLINE
546 * tasks.
547 */
548 ret = -EBUSY;
549 if (is_cpu_exclusive(cur) &&
550 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
551 trial->cpus_allowed))
552 goto out;
553
ae8086ce
TH
554 ret = 0;
555out:
556 rcu_read_unlock();
557 return ret;
1da177e4
LT
558}
559
db7f47cf 560#ifdef CONFIG_SMP
029190c5 561/*
cf417141 562 * Helper routine for generate_sched_domains().
8b5f1c52 563 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 564 */
029190c5
PJ
565static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
566{
8b5f1c52 567 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
568}
569
1d3504fc
HS
570static void
571update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
572{
1d3504fc
HS
573 if (dattr->relax_domain_level < c->relax_domain_level)
574 dattr->relax_domain_level = c->relax_domain_level;
575 return;
576}
577
fc560a26
TH
578static void update_domain_attr_tree(struct sched_domain_attr *dattr,
579 struct cpuset *root_cs)
f5393693 580{
fc560a26 581 struct cpuset *cp;
492eb21b 582 struct cgroup_subsys_state *pos_css;
f5393693 583
fc560a26 584 rcu_read_lock();
492eb21b 585 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
fc560a26
TH
586 /* skip the whole subtree if @cp doesn't have any CPU */
587 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 588 pos_css = css_rightmost_descendant(pos_css);
f5393693 589 continue;
fc560a26 590 }
f5393693
LJ
591
592 if (is_sched_load_balance(cp))
593 update_domain_attr(dattr, cp);
f5393693 594 }
fc560a26 595 rcu_read_unlock();
f5393693
LJ
596}
597
029190c5 598/*
cf417141
MK
599 * generate_sched_domains()
600 *
601 * This function builds a partial partition of the systems CPUs
602 * A 'partial partition' is a set of non-overlapping subsets whose
603 * union is a subset of that set.
0a0fca9d 604 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
605 * partition_sched_domains() routine, which will rebuild the scheduler's
606 * load balancing domains (sched domains) as specified by that partial
607 * partition.
029190c5 608 *
45ce80fb 609 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
610 * for a background explanation of this.
611 *
612 * Does not return errors, on the theory that the callers of this
613 * routine would rather not worry about failures to rebuild sched
614 * domains when operating in the severe memory shortage situations
615 * that could cause allocation failures below.
616 *
5d21cc2d 617 * Must be called with cpuset_mutex held.
029190c5
PJ
618 *
619 * The three key local variables below are:
aeed6824 620 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
621 * top-down scan of all cpusets. This scan loads a pointer
622 * to each cpuset marked is_sched_load_balance into the
623 * array 'csa'. For our purposes, rebuilding the schedulers
624 * sched domains, we can ignore !is_sched_load_balance cpusets.
625 * csa - (for CpuSet Array) Array of pointers to all the cpusets
626 * that need to be load balanced, for convenient iterative
627 * access by the subsequent code that finds the best partition,
628 * i.e the set of domains (subsets) of CPUs such that the
629 * cpus_allowed of every cpuset marked is_sched_load_balance
630 * is a subset of one of these domains, while there are as
631 * many such domains as possible, each as small as possible.
632 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 633 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
634 * convenient format, that can be easily compared to the prior
635 * value to determine what partition elements (sched domains)
636 * were changed (added or removed.)
637 *
638 * Finding the best partition (set of domains):
639 * The triple nested loops below over i, j, k scan over the
640 * load balanced cpusets (using the array of cpuset pointers in
641 * csa[]) looking for pairs of cpusets that have overlapping
642 * cpus_allowed, but which don't have the same 'pn' partition
643 * number and gives them in the same partition number. It keeps
644 * looping on the 'restart' label until it can no longer find
645 * any such pairs.
646 *
647 * The union of the cpus_allowed masks from the set of
648 * all cpusets having the same 'pn' value then form the one
649 * element of the partition (one sched domain) to be passed to
650 * partition_sched_domains().
651 */
acc3f5d7 652static int generate_sched_domains(cpumask_var_t **domains,
cf417141 653 struct sched_domain_attr **attributes)
029190c5 654{
029190c5
PJ
655 struct cpuset *cp; /* scans q */
656 struct cpuset **csa; /* array of all cpuset ptrs */
657 int csn; /* how many cpuset ptrs in csa so far */
658 int i, j, k; /* indices for partition finding loops */
acc3f5d7 659 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
47b8ea71 660 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
1d3504fc 661 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 662 int ndoms = 0; /* number of sched domains in result */
6af866af 663 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 664 struct cgroup_subsys_state *pos_css;
029190c5 665
029190c5 666 doms = NULL;
1d3504fc 667 dattr = NULL;
cf417141 668 csa = NULL;
029190c5 669
47b8ea71
RR
670 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
671 goto done;
672 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
673
029190c5
PJ
674 /* Special case for the 99% of systems with one, full, sched domain */
675 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
676 ndoms = 1;
677 doms = alloc_sched_domains(ndoms);
029190c5 678 if (!doms)
cf417141
MK
679 goto done;
680
1d3504fc
HS
681 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
682 if (dattr) {
683 *dattr = SD_ATTR_INIT;
93a65575 684 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 685 }
47b8ea71
RR
686 cpumask_and(doms[0], top_cpuset.effective_cpus,
687 non_isolated_cpus);
cf417141 688
cf417141 689 goto done;
029190c5
PJ
690 }
691
664eedde 692 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
693 if (!csa)
694 goto done;
695 csn = 0;
696
fc560a26 697 rcu_read_lock();
492eb21b 698 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
699 if (cp == &top_cpuset)
700 continue;
f5393693 701 /*
fc560a26
TH
702 * Continue traversing beyond @cp iff @cp has some CPUs and
703 * isn't load balancing. The former is obvious. The
704 * latter: All child cpusets contain a subset of the
705 * parent's cpus, so just skip them, and then we call
706 * update_domain_attr_tree() to calc relax_domain_level of
707 * the corresponding sched domain.
f5393693 708 */
fc560a26 709 if (!cpumask_empty(cp->cpus_allowed) &&
47b8ea71
RR
710 !(is_sched_load_balance(cp) &&
711 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
f5393693 712 continue;
489a5393 713
fc560a26
TH
714 if (is_sched_load_balance(cp))
715 csa[csn++] = cp;
716
717 /* skip @cp's subtree */
492eb21b 718 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
719 }
720 rcu_read_unlock();
029190c5
PJ
721
722 for (i = 0; i < csn; i++)
723 csa[i]->pn = i;
724 ndoms = csn;
725
726restart:
727 /* Find the best partition (set of sched domains) */
728 for (i = 0; i < csn; i++) {
729 struct cpuset *a = csa[i];
730 int apn = a->pn;
731
732 for (j = 0; j < csn; j++) {
733 struct cpuset *b = csa[j];
734 int bpn = b->pn;
735
736 if (apn != bpn && cpusets_overlap(a, b)) {
737 for (k = 0; k < csn; k++) {
738 struct cpuset *c = csa[k];
739
740 if (c->pn == bpn)
741 c->pn = apn;
742 }
743 ndoms--; /* one less element */
744 goto restart;
745 }
746 }
747 }
748
cf417141
MK
749 /*
750 * Now we know how many domains to create.
751 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
752 */
acc3f5d7 753 doms = alloc_sched_domains(ndoms);
700018e0 754 if (!doms)
cf417141 755 goto done;
cf417141
MK
756
757 /*
758 * The rest of the code, including the scheduler, can deal with
759 * dattr==NULL case. No need to abort if alloc fails.
760 */
1d3504fc 761 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
762
763 for (nslot = 0, i = 0; i < csn; i++) {
764 struct cpuset *a = csa[i];
6af866af 765 struct cpumask *dp;
029190c5
PJ
766 int apn = a->pn;
767
cf417141
MK
768 if (apn < 0) {
769 /* Skip completed partitions */
770 continue;
771 }
772
acc3f5d7 773 dp = doms[nslot];
cf417141
MK
774
775 if (nslot == ndoms) {
776 static int warnings = 10;
777 if (warnings) {
12d3089c
FF
778 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
779 nslot, ndoms, csn, i, apn);
cf417141 780 warnings--;
029190c5 781 }
cf417141
MK
782 continue;
783 }
029190c5 784
6af866af 785 cpumask_clear(dp);
cf417141
MK
786 if (dattr)
787 *(dattr + nslot) = SD_ATTR_INIT;
788 for (j = i; j < csn; j++) {
789 struct cpuset *b = csa[j];
790
791 if (apn == b->pn) {
8b5f1c52 792 cpumask_or(dp, dp, b->effective_cpus);
47b8ea71 793 cpumask_and(dp, dp, non_isolated_cpus);
cf417141
MK
794 if (dattr)
795 update_domain_attr_tree(dattr + nslot, b);
796
797 /* Done with this partition */
798 b->pn = -1;
029190c5 799 }
029190c5 800 }
cf417141 801 nslot++;
029190c5
PJ
802 }
803 BUG_ON(nslot != ndoms);
804
cf417141 805done:
47b8ea71 806 free_cpumask_var(non_isolated_cpus);
cf417141
MK
807 kfree(csa);
808
700018e0
LZ
809 /*
810 * Fallback to the default domain if kmalloc() failed.
811 * See comments in partition_sched_domains().
812 */
813 if (doms == NULL)
814 ndoms = 1;
815
cf417141
MK
816 *domains = doms;
817 *attributes = dattr;
818 return ndoms;
819}
820
821/*
822 * Rebuild scheduler domains.
823 *
699140ba
TH
824 * If the flag 'sched_load_balance' of any cpuset with non-empty
825 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
826 * which has that flag enabled, or if any cpuset with a non-empty
827 * 'cpus' is removed, then call this routine to rebuild the
828 * scheduler's dynamic sched domains.
cf417141 829 *
5d21cc2d 830 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 831 */
699140ba 832static void rebuild_sched_domains_locked(void)
cf417141
MK
833{
834 struct sched_domain_attr *attr;
acc3f5d7 835 cpumask_var_t *doms;
cf417141
MK
836 int ndoms;
837
5d21cc2d 838 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 839 get_online_cpus();
cf417141 840
5b16c2a4
LZ
841 /*
842 * We have raced with CPU hotplug. Don't do anything to avoid
843 * passing doms with offlined cpu to partition_sched_domains().
844 * Anyways, hotplug work item will rebuild sched domains.
845 */
8b5f1c52 846 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
847 goto out;
848
cf417141 849 /* Generate domain masks and attrs */
cf417141 850 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
851
852 /* Have scheduler rebuild the domains */
853 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 854out:
86ef5c9a 855 put_online_cpus();
cf417141 856}
db7f47cf 857#else /* !CONFIG_SMP */
699140ba 858static void rebuild_sched_domains_locked(void)
db7f47cf
PM
859{
860}
db7f47cf 861#endif /* CONFIG_SMP */
029190c5 862
cf417141
MK
863void rebuild_sched_domains(void)
864{
5d21cc2d 865 mutex_lock(&cpuset_mutex);
699140ba 866 rebuild_sched_domains_locked();
5d21cc2d 867 mutex_unlock(&cpuset_mutex);
029190c5
PJ
868}
869
0b2f630a
MX
870/**
871 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
872 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 873 *
d66393e5
TH
874 * Iterate through each task of @cs updating its cpus_allowed to the
875 * effective cpuset's. As this function is called with cpuset_mutex held,
876 * cpuset membership stays stable.
0b2f630a 877 */
d66393e5 878static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 879{
d66393e5
TH
880 struct css_task_iter it;
881 struct task_struct *task;
882
883 css_task_iter_start(&cs->css, &it);
884 while ((task = css_task_iter_next(&it)))
ae1c8023 885 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 886 css_task_iter_end(&it);
0b2f630a
MX
887}
888
5c5cc623 889/*
734d4513
LZ
890 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
891 * @cs: the cpuset to consider
892 * @new_cpus: temp variable for calculating new effective_cpus
893 *
894 * When congifured cpumask is changed, the effective cpumasks of this cpuset
895 * and all its descendants need to be updated.
5c5cc623 896 *
734d4513 897 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
898 *
899 * Called with cpuset_mutex held
900 */
734d4513 901static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
902{
903 struct cpuset *cp;
492eb21b 904 struct cgroup_subsys_state *pos_css;
8b5f1c52 905 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
906
907 rcu_read_lock();
734d4513
LZ
908 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
909 struct cpuset *parent = parent_cs(cp);
910
911 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
912
554b0d1c
LZ
913 /*
914 * If it becomes empty, inherit the effective mask of the
915 * parent, which is guaranteed to have some CPUs.
916 */
9e10a130
TH
917 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
918 cpumask_empty(new_cpus))
554b0d1c
LZ
919 cpumask_copy(new_cpus, parent->effective_cpus);
920
734d4513
LZ
921 /* Skip the whole subtree if the cpumask remains the same. */
922 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
923 pos_css = css_rightmost_descendant(pos_css);
924 continue;
5c5cc623 925 }
734d4513 926
ec903c0c 927 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
928 continue;
929 rcu_read_unlock();
930
8447a0fe 931 spin_lock_irq(&callback_lock);
734d4513 932 cpumask_copy(cp->effective_cpus, new_cpus);
8447a0fe 933 spin_unlock_irq(&callback_lock);
734d4513 934
9e10a130 935 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
734d4513
LZ
936 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
937
d66393e5 938 update_tasks_cpumask(cp);
5c5cc623 939
8b5f1c52
LZ
940 /*
941 * If the effective cpumask of any non-empty cpuset is changed,
942 * we need to rebuild sched domains.
943 */
944 if (!cpumask_empty(cp->cpus_allowed) &&
945 is_sched_load_balance(cp))
946 need_rebuild_sched_domains = true;
947
5c5cc623
LZ
948 rcu_read_lock();
949 css_put(&cp->css);
950 }
951 rcu_read_unlock();
8b5f1c52
LZ
952
953 if (need_rebuild_sched_domains)
954 rebuild_sched_domains_locked();
5c5cc623
LZ
955}
956
58f4790b
CW
957/**
958 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
959 * @cs: the cpuset to consider
fc34ac1d 960 * @trialcs: trial cpuset
58f4790b
CW
961 * @buf: buffer of cpu numbers written to this cpuset
962 */
645fcc9d
LZ
963static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
964 const char *buf)
1da177e4 965{
58f4790b 966 int retval;
1da177e4 967
5f054e31 968 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
969 if (cs == &top_cpuset)
970 return -EACCES;
971
6f7f02e7 972 /*
c8d9c90c 973 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
974 * Since cpulist_parse() fails on an empty mask, we special case
975 * that parsing. The validate_change() call ensures that cpusets
976 * with tasks have cpus.
6f7f02e7 977 */
020958b6 978 if (!*buf) {
300ed6cb 979 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 980 } else {
cd55f3c2 981 retval = cpulist_parse(buf, trialcs->cpus_requested);
6f7f02e7
DR
982 if (retval < 0)
983 return retval;
37340746 984
cd55f3c2 985 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
37340746 986 return -EINVAL;
cd55f3c2
RA
987
988 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
6f7f02e7 989 }
029190c5 990
8707d8b8 991 /* Nothing to do if the cpus didn't change */
cd55f3c2 992 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
8707d8b8 993 return 0;
58f4790b 994
a73456f3
LZ
995 retval = validate_change(cs, trialcs);
996 if (retval < 0)
997 return retval;
998
8447a0fe 999 spin_lock_irq(&callback_lock);
300ed6cb 1000 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
cd55f3c2 1001 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
8447a0fe 1002 spin_unlock_irq(&callback_lock);
029190c5 1003
734d4513
LZ
1004 /* use trialcs->cpus_allowed as a temp variable */
1005 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 1006 return 0;
1da177e4
LT
1007}
1008
e4e364e8 1009/*
fff4dc84
TH
1010 * Migrate memory region from one set of nodes to another. This is
1011 * performed asynchronously as it can be called from process migration path
1012 * holding locks involved in process management. All mm migrations are
1013 * performed in the queued order and can be waited for by flushing
1014 * cpuset_migrate_mm_wq.
e4e364e8
PJ
1015 */
1016
fff4dc84
TH
1017struct cpuset_migrate_mm_work {
1018 struct work_struct work;
1019 struct mm_struct *mm;
1020 nodemask_t from;
1021 nodemask_t to;
1022};
1023
1024static void cpuset_migrate_mm_workfn(struct work_struct *work)
1025{
1026 struct cpuset_migrate_mm_work *mwork =
1027 container_of(work, struct cpuset_migrate_mm_work, work);
1028
1029 /* on a wq worker, no need to worry about %current's mems_allowed */
1030 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1031 mmput(mwork->mm);
1032 kfree(mwork);
1033}
1034
e4e364e8
PJ
1035static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1036 const nodemask_t *to)
1037{
fff4dc84 1038 struct cpuset_migrate_mm_work *mwork;
e4e364e8 1039
fff4dc84
TH
1040 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1041 if (mwork) {
1042 mwork->mm = mm;
1043 mwork->from = *from;
1044 mwork->to = *to;
1045 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1046 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1047 } else {
1048 mmput(mm);
1049 }
1050}
e4e364e8 1051
d5209747 1052static void cpuset_post_attach(void)
fff4dc84
TH
1053{
1054 flush_workqueue(cpuset_migrate_mm_wq);
e4e364e8
PJ
1055}
1056
3b6766fe 1057/*
58568d2a
MX
1058 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1059 * @tsk: the task to change
1060 * @newmems: new nodes that the task will be set
1061 *
1062 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1063 * we structure updates as setting all new allowed nodes, then clearing newly
1064 * disallowed ones.
58568d2a
MX
1065 */
1066static void cpuset_change_task_nodemask(struct task_struct *tsk,
1067 nodemask_t *newmems)
1068{
b246272e 1069 bool need_loop;
89e8a244 1070
c0ff7453
MX
1071 /*
1072 * Allow tasks that have access to memory reserves because they have
1073 * been OOM killed to get memory anywhere.
1074 */
1075 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1076 return;
1077 if (current->flags & PF_EXITING) /* Let dying task have memory */
1078 return;
1079
1080 task_lock(tsk);
b246272e
DR
1081 /*
1082 * Determine if a loop is necessary if another thread is doing
d26914d1 1083 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1084 * tsk does not have a mempolicy, then an empty nodemask will not be
1085 * possible when mems_allowed is larger than a word.
1086 */
1087 need_loop = task_has_mempolicy(tsk) ||
1088 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1089
0fc0287c
PZ
1090 if (need_loop) {
1091 local_irq_disable();
cc9a6c87 1092 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1093 }
c0ff7453 1094
cc9a6c87
MG
1095 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1096 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1097
1098 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1099 tsk->mems_allowed = *newmems;
cc9a6c87 1100
0fc0287c 1101 if (need_loop) {
cc9a6c87 1102 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1103 local_irq_enable();
1104 }
cc9a6c87 1105
c0ff7453 1106 task_unlock(tsk);
58568d2a
MX
1107}
1108
8793d854
PM
1109static void *cpuset_being_rebound;
1110
0b2f630a
MX
1111/**
1112 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1113 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1114 *
d66393e5
TH
1115 * Iterate through each task of @cs updating its mems_allowed to the
1116 * effective cpuset's. As this function is called with cpuset_mutex held,
1117 * cpuset membership stays stable.
0b2f630a 1118 */
d66393e5 1119static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1120{
33ad801d 1121 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1122 struct css_task_iter it;
1123 struct task_struct *task;
59dac16f 1124
846a16bf 1125 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1126
ae1c8023 1127 guarantee_online_mems(cs, &newmems);
33ad801d 1128
4225399a 1129 /*
3b6766fe
LZ
1130 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1131 * take while holding tasklist_lock. Forks can happen - the
1132 * mpol_dup() cpuset_being_rebound check will catch such forks,
1133 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1134 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1135 * will be contending for the global variable cpuset_being_rebound.
4225399a 1136 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1137 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1138 */
d66393e5
TH
1139 css_task_iter_start(&cs->css, &it);
1140 while ((task = css_task_iter_next(&it))) {
1141 struct mm_struct *mm;
1142 bool migrate;
1143
1144 cpuset_change_task_nodemask(task, &newmems);
1145
1146 mm = get_task_mm(task);
1147 if (!mm)
1148 continue;
1149
1150 migrate = is_memory_migrate(cs);
1151
1152 mpol_rebind_mm(mm, &cs->mems_allowed);
1153 if (migrate)
1154 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
fff4dc84
TH
1155 else
1156 mmput(mm);
d66393e5
TH
1157 }
1158 css_task_iter_end(&it);
4225399a 1159
33ad801d
LZ
1160 /*
1161 * All the tasks' nodemasks have been updated, update
1162 * cs->old_mems_allowed.
1163 */
1164 cs->old_mems_allowed = newmems;
1165
2df167a3 1166 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1167 cpuset_being_rebound = NULL;
1da177e4
LT
1168}
1169
5c5cc623 1170/*
734d4513
LZ
1171 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1172 * @cs: the cpuset to consider
1173 * @new_mems: a temp variable for calculating new effective_mems
5c5cc623 1174 *
734d4513
LZ
1175 * When configured nodemask is changed, the effective nodemasks of this cpuset
1176 * and all its descendants need to be updated.
5c5cc623 1177 *
734d4513 1178 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1179 *
1180 * Called with cpuset_mutex held
1181 */
734d4513 1182static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1183{
1184 struct cpuset *cp;
492eb21b 1185 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1186
1187 rcu_read_lock();
734d4513
LZ
1188 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1189 struct cpuset *parent = parent_cs(cp);
1190
1191 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1192
554b0d1c
LZ
1193 /*
1194 * If it becomes empty, inherit the effective mask of the
1195 * parent, which is guaranteed to have some MEMs.
1196 */
9e10a130
TH
1197 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1198 nodes_empty(*new_mems))
554b0d1c
LZ
1199 *new_mems = parent->effective_mems;
1200
734d4513
LZ
1201 /* Skip the whole subtree if the nodemask remains the same. */
1202 if (nodes_equal(*new_mems, cp->effective_mems)) {
1203 pos_css = css_rightmost_descendant(pos_css);
1204 continue;
5c5cc623 1205 }
734d4513 1206
ec903c0c 1207 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1208 continue;
1209 rcu_read_unlock();
1210
8447a0fe 1211 spin_lock_irq(&callback_lock);
734d4513 1212 cp->effective_mems = *new_mems;
8447a0fe 1213 spin_unlock_irq(&callback_lock);
734d4513 1214
9e10a130 1215 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
a1381268 1216 !nodes_equal(cp->mems_allowed, cp->effective_mems));
734d4513 1217
d66393e5 1218 update_tasks_nodemask(cp);
5c5cc623
LZ
1219
1220 rcu_read_lock();
1221 css_put(&cp->css);
1222 }
1223 rcu_read_unlock();
1224}
1225
0b2f630a
MX
1226/*
1227 * Handle user request to change the 'mems' memory placement
1228 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1229 * cpusets mems_allowed, and for each task in the cpuset,
1230 * update mems_allowed and rebind task's mempolicy and any vma
1231 * mempolicies and if the cpuset is marked 'memory_migrate',
1232 * migrate the tasks pages to the new memory.
0b2f630a 1233 *
8447a0fe 1234 * Call with cpuset_mutex held. May take callback_lock during call.
0b2f630a
MX
1235 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1236 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1237 * their mempolicies to the cpusets new mems_allowed.
1238 */
645fcc9d
LZ
1239static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1240 const char *buf)
0b2f630a 1241{
0b2f630a
MX
1242 int retval;
1243
1244 /*
38d7bee9 1245 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1246 * it's read-only
1247 */
53feb297
MX
1248 if (cs == &top_cpuset) {
1249 retval = -EACCES;
1250 goto done;
1251 }
0b2f630a 1252
0b2f630a
MX
1253 /*
1254 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1255 * Since nodelist_parse() fails on an empty mask, we special case
1256 * that parsing. The validate_change() call ensures that cpusets
1257 * with tasks have memory.
1258 */
1259 if (!*buf) {
645fcc9d 1260 nodes_clear(trialcs->mems_allowed);
0b2f630a 1261 } else {
645fcc9d 1262 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1263 if (retval < 0)
1264 goto done;
1265
645fcc9d 1266 if (!nodes_subset(trialcs->mems_allowed,
5d8ba82c
LZ
1267 top_cpuset.mems_allowed)) {
1268 retval = -EINVAL;
53feb297
MX
1269 goto done;
1270 }
0b2f630a 1271 }
33ad801d
LZ
1272
1273 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1274 retval = 0; /* Too easy - nothing to do */
1275 goto done;
1276 }
645fcc9d 1277 retval = validate_change(cs, trialcs);
0b2f630a
MX
1278 if (retval < 0)
1279 goto done;
1280
8447a0fe 1281 spin_lock_irq(&callback_lock);
645fcc9d 1282 cs->mems_allowed = trialcs->mems_allowed;
8447a0fe 1283 spin_unlock_irq(&callback_lock);
0b2f630a 1284
734d4513 1285 /* use trialcs->mems_allowed as a temp variable */
24ee3cf8 1286 update_nodemasks_hier(cs, &trialcs->mems_allowed);
0b2f630a
MX
1287done:
1288 return retval;
1289}
1290
8793d854
PM
1291int current_cpuset_is_being_rebound(void)
1292{
391acf97
GZ
1293 int ret;
1294
1295 rcu_read_lock();
1296 ret = task_cs(current) == cpuset_being_rebound;
1297 rcu_read_unlock();
1298
1299 return ret;
8793d854
PM
1300}
1301
5be7a479 1302static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1303{
db7f47cf 1304#ifdef CONFIG_SMP
60495e77 1305 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1306 return -EINVAL;
db7f47cf 1307#endif
1d3504fc
HS
1308
1309 if (val != cs->relax_domain_level) {
1310 cs->relax_domain_level = val;
300ed6cb
LZ
1311 if (!cpumask_empty(cs->cpus_allowed) &&
1312 is_sched_load_balance(cs))
699140ba 1313 rebuild_sched_domains_locked();
1d3504fc
HS
1314 }
1315
1316 return 0;
1317}
1318
72ec7029 1319/**
950592f7
MX
1320 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1321 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1322 *
d66393e5
TH
1323 * Iterate through each task of @cs updating its spread flags. As this
1324 * function is called with cpuset_mutex held, cpuset membership stays
1325 * stable.
950592f7 1326 */
d66393e5 1327static void update_tasks_flags(struct cpuset *cs)
950592f7 1328{
d66393e5
TH
1329 struct css_task_iter it;
1330 struct task_struct *task;
1331
1332 css_task_iter_start(&cs->css, &it);
1333 while ((task = css_task_iter_next(&it)))
1334 cpuset_update_task_spread_flag(cs, task);
1335 css_task_iter_end(&it);
950592f7
MX
1336}
1337
1da177e4
LT
1338/*
1339 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1340 * bit: the bit to update (see cpuset_flagbits_t)
1341 * cs: the cpuset to update
1342 * turning_on: whether the flag is being set or cleared
053199ed 1343 *
5d21cc2d 1344 * Call with cpuset_mutex held.
1da177e4
LT
1345 */
1346
700fe1ab
PM
1347static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1348 int turning_on)
1da177e4 1349{
645fcc9d 1350 struct cpuset *trialcs;
40b6a762 1351 int balance_flag_changed;
950592f7 1352 int spread_flag_changed;
950592f7 1353 int err;
1da177e4 1354
645fcc9d
LZ
1355 trialcs = alloc_trial_cpuset(cs);
1356 if (!trialcs)
1357 return -ENOMEM;
1358
1da177e4 1359 if (turning_on)
645fcc9d 1360 set_bit(bit, &trialcs->flags);
1da177e4 1361 else
645fcc9d 1362 clear_bit(bit, &trialcs->flags);
1da177e4 1363
645fcc9d 1364 err = validate_change(cs, trialcs);
85d7b949 1365 if (err < 0)
645fcc9d 1366 goto out;
029190c5 1367
029190c5 1368 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1369 is_sched_load_balance(trialcs));
029190c5 1370
950592f7
MX
1371 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1372 || (is_spread_page(cs) != is_spread_page(trialcs)));
1373
8447a0fe 1374 spin_lock_irq(&callback_lock);
645fcc9d 1375 cs->flags = trialcs->flags;
8447a0fe 1376 spin_unlock_irq(&callback_lock);
85d7b949 1377
300ed6cb 1378 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1379 rebuild_sched_domains_locked();
029190c5 1380
950592f7 1381 if (spread_flag_changed)
d66393e5 1382 update_tasks_flags(cs);
645fcc9d
LZ
1383out:
1384 free_trial_cpuset(trialcs);
1385 return err;
1da177e4
LT
1386}
1387
3e0d98b9 1388/*
80f7228b 1389 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1390 *
1391 * These routines manage a digitally filtered, constant time based,
1392 * event frequency meter. There are four routines:
1393 * fmeter_init() - initialize a frequency meter.
1394 * fmeter_markevent() - called each time the event happens.
1395 * fmeter_getrate() - returns the recent rate of such events.
1396 * fmeter_update() - internal routine used to update fmeter.
1397 *
1398 * A common data structure is passed to each of these routines,
1399 * which is used to keep track of the state required to manage the
1400 * frequency meter and its digital filter.
1401 *
1402 * The filter works on the number of events marked per unit time.
1403 * The filter is single-pole low-pass recursive (IIR). The time unit
1404 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1405 * simulate 3 decimal digits of precision (multiplied by 1000).
1406 *
1407 * With an FM_COEF of 933, and a time base of 1 second, the filter
1408 * has a half-life of 10 seconds, meaning that if the events quit
1409 * happening, then the rate returned from the fmeter_getrate()
1410 * will be cut in half each 10 seconds, until it converges to zero.
1411 *
1412 * It is not worth doing a real infinitely recursive filter. If more
1413 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1414 * just compute FM_MAXTICKS ticks worth, by which point the level
1415 * will be stable.
1416 *
1417 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1418 * arithmetic overflow in the fmeter_update() routine.
1419 *
1420 * Given the simple 32 bit integer arithmetic used, this meter works
1421 * best for reporting rates between one per millisecond (msec) and
1422 * one per 32 (approx) seconds. At constant rates faster than one
1423 * per msec it maxes out at values just under 1,000,000. At constant
1424 * rates between one per msec, and one per second it will stabilize
1425 * to a value N*1000, where N is the rate of events per second.
1426 * At constant rates between one per second and one per 32 seconds,
1427 * it will be choppy, moving up on the seconds that have an event,
1428 * and then decaying until the next event. At rates slower than
1429 * about one in 32 seconds, it decays all the way back to zero between
1430 * each event.
1431 */
1432
1433#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1434#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1435#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1436#define FM_SCALE 1000 /* faux fixed point scale */
1437
1438/* Initialize a frequency meter */
1439static void fmeter_init(struct fmeter *fmp)
1440{
1441 fmp->cnt = 0;
1442 fmp->val = 0;
1443 fmp->time = 0;
1444 spin_lock_init(&fmp->lock);
1445}
1446
1447/* Internal meter update - process cnt events and update value */
1448static void fmeter_update(struct fmeter *fmp)
1449{
1450 time_t now = get_seconds();
1451 time_t ticks = now - fmp->time;
1452
1453 if (ticks == 0)
1454 return;
1455
1456 ticks = min(FM_MAXTICKS, ticks);
1457 while (ticks-- > 0)
1458 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1459 fmp->time = now;
1460
1461 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1462 fmp->cnt = 0;
1463}
1464
1465/* Process any previous ticks, then bump cnt by one (times scale). */
1466static void fmeter_markevent(struct fmeter *fmp)
1467{
1468 spin_lock(&fmp->lock);
1469 fmeter_update(fmp);
1470 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1471 spin_unlock(&fmp->lock);
1472}
1473
1474/* Process any previous ticks, then return current value. */
1475static int fmeter_getrate(struct fmeter *fmp)
1476{
1477 int val;
1478
1479 spin_lock(&fmp->lock);
1480 fmeter_update(fmp);
1481 val = fmp->val;
1482 spin_unlock(&fmp->lock);
1483 return val;
1484}
1485
57fce0a6
TH
1486static struct cpuset *cpuset_attach_old_cs;
1487
5d21cc2d 1488/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1f7dd3e5 1489static int cpuset_can_attach(struct cgroup_taskset *tset)
f780bdb7 1490{
1f7dd3e5
TH
1491 struct cgroup_subsys_state *css;
1492 struct cpuset *cs;
bb9d97b6
TH
1493 struct task_struct *task;
1494 int ret;
1da177e4 1495
57fce0a6 1496 /* used later by cpuset_attach() */
1f7dd3e5
TH
1497 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1498 cs = css_cs(css);
57fce0a6 1499
5d21cc2d
TH
1500 mutex_lock(&cpuset_mutex);
1501
aa6ec29b 1502 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1503 ret = -ENOSPC;
9e10a130 1504 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
88fa523b 1505 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1506 goto out_unlock;
9985b0ba 1507
1f7dd3e5 1508 cgroup_taskset_for_each(task, css, tset) {
7f51412a
JL
1509 ret = task_can_attach(task, cs->cpus_allowed);
1510 if (ret)
5d21cc2d
TH
1511 goto out_unlock;
1512 ret = security_task_setscheduler(task);
1513 if (ret)
1514 goto out_unlock;
bb9d97b6 1515 }
f780bdb7 1516
452477fa
TH
1517 /*
1518 * Mark attach is in progress. This makes validate_change() fail
1519 * changes which zero cpus/mems_allowed.
1520 */
1521 cs->attach_in_progress++;
5d21cc2d
TH
1522 ret = 0;
1523out_unlock:
1524 mutex_unlock(&cpuset_mutex);
1525 return ret;
8793d854 1526}
f780bdb7 1527
1f7dd3e5 1528static void cpuset_cancel_attach(struct cgroup_taskset *tset)
452477fa 1529{
1f7dd3e5
TH
1530 struct cgroup_subsys_state *css;
1531 struct cpuset *cs;
1532
1533 cgroup_taskset_first(tset, &css);
1534 cs = css_cs(css);
1535
5d21cc2d 1536 mutex_lock(&cpuset_mutex);
eb95419b 1537 css_cs(css)->attach_in_progress--;
5d21cc2d 1538 mutex_unlock(&cpuset_mutex);
8793d854 1539}
1da177e4 1540
4e4c9a14 1541/*
5d21cc2d 1542 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1543 * but we can't allocate it dynamically there. Define it global and
1544 * allocate from cpuset_init().
1545 */
1546static cpumask_var_t cpus_attach;
1547
1f7dd3e5 1548static void cpuset_attach(struct cgroup_taskset *tset)
8793d854 1549{
67bd2c59 1550 /* static buf protected by cpuset_mutex */
4e4c9a14 1551 static nodemask_t cpuset_attach_nodemask_to;
bb9d97b6 1552 struct task_struct *task;
4530eddb 1553 struct task_struct *leader;
1f7dd3e5
TH
1554 struct cgroup_subsys_state *css;
1555 struct cpuset *cs;
57fce0a6 1556 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 1557
1f7dd3e5
TH
1558 cgroup_taskset_first(tset, &css);
1559 cs = css_cs(css);
1560
5d21cc2d
TH
1561 mutex_lock(&cpuset_mutex);
1562
4e4c9a14
TH
1563 /* prepare for attach */
1564 if (cs == &top_cpuset)
1565 cpumask_copy(cpus_attach, cpu_possible_mask);
1566 else
ae1c8023 1567 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 1568
ae1c8023 1569 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 1570
1f7dd3e5 1571 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6
TH
1572 /*
1573 * can_attach beforehand should guarantee that this doesn't
1574 * fail. TODO: have a better way to handle failure here
1575 */
1576 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1577
1578 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1579 cpuset_update_task_spread_flag(cs, task);
1580 }
22fb52dd 1581
f780bdb7 1582 /*
4530eddb
TH
1583 * Change mm for all threadgroup leaders. This is expensive and may
1584 * sleep and should be moved outside migration path proper.
f780bdb7 1585 */
ae1c8023 1586 cpuset_attach_nodemask_to = cs->effective_mems;
1f7dd3e5 1587 cgroup_taskset_for_each_leader(leader, css, tset) {
3df9ca0a
TH
1588 struct mm_struct *mm = get_task_mm(leader);
1589
1590 if (mm) {
1591 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1592
1593 /*
1594 * old_mems_allowed is the same with mems_allowed
1595 * here, except if this task is being moved
1596 * automatically due to hotplug. In that case
1597 * @mems_allowed has been updated and is empty, so
1598 * @old_mems_allowed is the right nodesets that we
1599 * migrate mm from.
1600 */
fff4dc84 1601 if (is_memory_migrate(cs))
3df9ca0a
TH
1602 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1603 &cpuset_attach_nodemask_to);
fff4dc84
TH
1604 else
1605 mmput(mm);
f047cecf 1606 }
4225399a 1607 }
452477fa 1608
33ad801d 1609 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1610
452477fa 1611 cs->attach_in_progress--;
e44193d3
LZ
1612 if (!cs->attach_in_progress)
1613 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1614
1615 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1616}
1617
1618/* The various types of files and directories in a cpuset file system */
1619
1620typedef enum {
45b07ef3 1621 FILE_MEMORY_MIGRATE,
1da177e4
LT
1622 FILE_CPULIST,
1623 FILE_MEMLIST,
afd1a8b3
LZ
1624 FILE_EFFECTIVE_CPULIST,
1625 FILE_EFFECTIVE_MEMLIST,
1da177e4
LT
1626 FILE_CPU_EXCLUSIVE,
1627 FILE_MEM_EXCLUSIVE,
78608366 1628 FILE_MEM_HARDWALL,
029190c5 1629 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1630 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1631 FILE_MEMORY_PRESSURE_ENABLED,
1632 FILE_MEMORY_PRESSURE,
825a46af
PJ
1633 FILE_SPREAD_PAGE,
1634 FILE_SPREAD_SLAB,
1cac41cb 1635 FILE_FAMILY_BOOST,
1da177e4
LT
1636} cpuset_filetype_t;
1637
182446d0
TH
1638static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1639 u64 val)
700fe1ab 1640{
182446d0 1641 struct cpuset *cs = css_cs(css);
700fe1ab 1642 cpuset_filetype_t type = cft->private;
a903f086 1643 int retval = 0;
700fe1ab 1644
5d21cc2d 1645 mutex_lock(&cpuset_mutex);
a903f086
LZ
1646 if (!is_cpuset_online(cs)) {
1647 retval = -ENODEV;
5d21cc2d 1648 goto out_unlock;
a903f086 1649 }
700fe1ab
PM
1650
1651 switch (type) {
1da177e4 1652 case FILE_CPU_EXCLUSIVE:
700fe1ab 1653 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1654 break;
1655 case FILE_MEM_EXCLUSIVE:
700fe1ab 1656 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1657 break;
78608366
PM
1658 case FILE_MEM_HARDWALL:
1659 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1660 break;
029190c5 1661 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1662 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1663 break;
45b07ef3 1664 case FILE_MEMORY_MIGRATE:
700fe1ab 1665 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1666 break;
3e0d98b9 1667 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1668 cpuset_memory_pressure_enabled = !!val;
3e0d98b9 1669 break;
825a46af 1670 case FILE_SPREAD_PAGE:
700fe1ab 1671 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1672 break;
1673 case FILE_SPREAD_SLAB:
700fe1ab 1674 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1675 break;
1cac41cb
MB
1676 case FILE_FAMILY_BOOST:
1677 retval = update_flag(CS_FAMILY_BOOST, cs, val);
1678 break;
1da177e4
LT
1679 default:
1680 retval = -EINVAL;
700fe1ab 1681 break;
1da177e4 1682 }
5d21cc2d
TH
1683out_unlock:
1684 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1685 return retval;
1686}
1687
182446d0
TH
1688static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1689 s64 val)
5be7a479 1690{
182446d0 1691 struct cpuset *cs = css_cs(css);
5be7a479 1692 cpuset_filetype_t type = cft->private;
5d21cc2d 1693 int retval = -ENODEV;
5be7a479 1694
5d21cc2d
TH
1695 mutex_lock(&cpuset_mutex);
1696 if (!is_cpuset_online(cs))
1697 goto out_unlock;
e3712395 1698
5be7a479
PM
1699 switch (type) {
1700 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1701 retval = update_relax_domain_level(cs, val);
1702 break;
1703 default:
1704 retval = -EINVAL;
1705 break;
1706 }
5d21cc2d
TH
1707out_unlock:
1708 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1709 return retval;
1710}
1711
e3712395
PM
1712/*
1713 * Common handling for a write to a "cpus" or "mems" file.
1714 */
451af504
TH
1715static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1716 char *buf, size_t nbytes, loff_t off)
e3712395 1717{
451af504 1718 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1719 struct cpuset *trialcs;
5d21cc2d 1720 int retval = -ENODEV;
e3712395 1721
451af504
TH
1722 buf = strstrip(buf);
1723
3a5a6d0c
TH
1724 /*
1725 * CPU or memory hotunplug may leave @cs w/o any execution
1726 * resources, in which case the hotplug code asynchronously updates
1727 * configuration and transfers all tasks to the nearest ancestor
1728 * which can execute.
1729 *
1730 * As writes to "cpus" or "mems" may restore @cs's execution
1731 * resources, wait for the previously scheduled operations before
1732 * proceeding, so that we don't end up keep removing tasks added
1733 * after execution capability is restored.
76bb5ab8
TH
1734 *
1735 * cpuset_hotplug_work calls back into cgroup core via
1736 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1737 * operation like this one can lead to a deadlock through kernfs
1738 * active_ref protection. Let's break the protection. Losing the
1739 * protection is okay as we check whether @cs is online after
1740 * grabbing cpuset_mutex anyway. This only happens on the legacy
1741 * hierarchies.
3a5a6d0c 1742 */
76bb5ab8
TH
1743 css_get(&cs->css);
1744 kernfs_break_active_protection(of->kn);
3a5a6d0c
TH
1745 flush_work(&cpuset_hotplug_work);
1746
5d21cc2d
TH
1747 mutex_lock(&cpuset_mutex);
1748 if (!is_cpuset_online(cs))
1749 goto out_unlock;
e3712395 1750
645fcc9d 1751 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1752 if (!trialcs) {
1753 retval = -ENOMEM;
5d21cc2d 1754 goto out_unlock;
b75f38d6 1755 }
645fcc9d 1756
451af504 1757 switch (of_cft(of)->private) {
e3712395 1758 case FILE_CPULIST:
645fcc9d 1759 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1760 break;
1761 case FILE_MEMLIST:
645fcc9d 1762 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1763 break;
1764 default:
1765 retval = -EINVAL;
1766 break;
1767 }
645fcc9d
LZ
1768
1769 free_trial_cpuset(trialcs);
5d21cc2d
TH
1770out_unlock:
1771 mutex_unlock(&cpuset_mutex);
76bb5ab8
TH
1772 kernfs_unbreak_active_protection(of->kn);
1773 css_put(&cs->css);
fff4dc84 1774 flush_workqueue(cpuset_migrate_mm_wq);
451af504 1775 return retval ?: nbytes;
e3712395
PM
1776}
1777
1da177e4
LT
1778/*
1779 * These ascii lists should be read in a single call, by using a user
1780 * buffer large enough to hold the entire map. If read in smaller
1781 * chunks, there is no guarantee of atomicity. Since the display format
1782 * used, list of ranges of sequential numbers, is variable length,
1783 * and since these maps can change value dynamically, one could read
1784 * gibberish by doing partial reads while a list was changing.
1da177e4 1785 */
2da8ca82 1786static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1787{
2da8ca82
TH
1788 struct cpuset *cs = css_cs(seq_css(sf));
1789 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411 1790 int ret = 0;
1da177e4 1791
8447a0fe 1792 spin_lock_irq(&callback_lock);
1da177e4
LT
1793
1794 switch (type) {
1795 case FILE_CPULIST:
cd55f3c2 1796 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
1da177e4
LT
1797 break;
1798 case FILE_MEMLIST:
e8e6d97c 1799 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1da177e4 1800 break;
afd1a8b3 1801 case FILE_EFFECTIVE_CPULIST:
e8e6d97c 1802 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
afd1a8b3
LZ
1803 break;
1804 case FILE_EFFECTIVE_MEMLIST:
e8e6d97c 1805 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
afd1a8b3 1806 break;
1da177e4 1807 default:
51ffe411 1808 ret = -EINVAL;
1da177e4 1809 }
1da177e4 1810
8447a0fe 1811 spin_unlock_irq(&callback_lock);
51ffe411 1812 return ret;
1da177e4
LT
1813}
1814
182446d0 1815static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1816{
182446d0 1817 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1818 cpuset_filetype_t type = cft->private;
1819 switch (type) {
1820 case FILE_CPU_EXCLUSIVE:
1821 return is_cpu_exclusive(cs);
1822 case FILE_MEM_EXCLUSIVE:
1823 return is_mem_exclusive(cs);
78608366
PM
1824 case FILE_MEM_HARDWALL:
1825 return is_mem_hardwall(cs);
700fe1ab
PM
1826 case FILE_SCHED_LOAD_BALANCE:
1827 return is_sched_load_balance(cs);
1828 case FILE_MEMORY_MIGRATE:
1829 return is_memory_migrate(cs);
1830 case FILE_MEMORY_PRESSURE_ENABLED:
1831 return cpuset_memory_pressure_enabled;
1832 case FILE_MEMORY_PRESSURE:
1833 return fmeter_getrate(&cs->fmeter);
1834 case FILE_SPREAD_PAGE:
1835 return is_spread_page(cs);
1836 case FILE_SPREAD_SLAB:
1837 return is_spread_slab(cs);
1cac41cb
MB
1838 case FILE_FAMILY_BOOST:
1839 return is_family_boost_enabled(cs);
700fe1ab
PM
1840 default:
1841 BUG();
1842 }
cf417141
MK
1843
1844 /* Unreachable but makes gcc happy */
1845 return 0;
700fe1ab 1846}
1da177e4 1847
182446d0 1848static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1849{
182446d0 1850 struct cpuset *cs = css_cs(css);
5be7a479
PM
1851 cpuset_filetype_t type = cft->private;
1852 switch (type) {
1853 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1854 return cs->relax_domain_level;
1855 default:
1856 BUG();
1857 }
cf417141
MK
1858
1859 /* Unrechable but makes gcc happy */
1860 return 0;
5be7a479
PM
1861}
1862
1da177e4
LT
1863
1864/*
1865 * for the common functions, 'private' gives the type of file
1866 */
1867
addf2c73
PM
1868static struct cftype files[] = {
1869 {
1870 .name = "cpus",
2da8ca82 1871 .seq_show = cpuset_common_seq_show,
451af504 1872 .write = cpuset_write_resmask,
e3712395 1873 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1874 .private = FILE_CPULIST,
1875 },
1876
1877 {
1878 .name = "mems",
2da8ca82 1879 .seq_show = cpuset_common_seq_show,
451af504 1880 .write = cpuset_write_resmask,
e3712395 1881 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1882 .private = FILE_MEMLIST,
1883 },
1884
afd1a8b3
LZ
1885 {
1886 .name = "effective_cpus",
1887 .seq_show = cpuset_common_seq_show,
1888 .private = FILE_EFFECTIVE_CPULIST,
1889 },
1890
1891 {
1892 .name = "effective_mems",
1893 .seq_show = cpuset_common_seq_show,
1894 .private = FILE_EFFECTIVE_MEMLIST,
1895 },
1896
addf2c73
PM
1897 {
1898 .name = "cpu_exclusive",
1899 .read_u64 = cpuset_read_u64,
1900 .write_u64 = cpuset_write_u64,
1901 .private = FILE_CPU_EXCLUSIVE,
1902 },
1903
1904 {
1905 .name = "mem_exclusive",
1906 .read_u64 = cpuset_read_u64,
1907 .write_u64 = cpuset_write_u64,
1908 .private = FILE_MEM_EXCLUSIVE,
1909 },
1910
78608366
PM
1911 {
1912 .name = "mem_hardwall",
1913 .read_u64 = cpuset_read_u64,
1914 .write_u64 = cpuset_write_u64,
1915 .private = FILE_MEM_HARDWALL,
1916 },
1917
addf2c73
PM
1918 {
1919 .name = "sched_load_balance",
1920 .read_u64 = cpuset_read_u64,
1921 .write_u64 = cpuset_write_u64,
1922 .private = FILE_SCHED_LOAD_BALANCE,
1923 },
1924
1925 {
1926 .name = "sched_relax_domain_level",
5be7a479
PM
1927 .read_s64 = cpuset_read_s64,
1928 .write_s64 = cpuset_write_s64,
addf2c73
PM
1929 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1930 },
1931
1932 {
1933 .name = "memory_migrate",
1934 .read_u64 = cpuset_read_u64,
1935 .write_u64 = cpuset_write_u64,
1936 .private = FILE_MEMORY_MIGRATE,
1937 },
1938
1939 {
1940 .name = "memory_pressure",
1941 .read_u64 = cpuset_read_u64,
ed48d923 1942 .private = FILE_MEMORY_PRESSURE,
addf2c73
PM
1943 },
1944
1945 {
1946 .name = "memory_spread_page",
1947 .read_u64 = cpuset_read_u64,
1948 .write_u64 = cpuset_write_u64,
1949 .private = FILE_SPREAD_PAGE,
1950 },
1951
1952 {
1953 .name = "memory_spread_slab",
1954 .read_u64 = cpuset_read_u64,
1955 .write_u64 = cpuset_write_u64,
1956 .private = FILE_SPREAD_SLAB,
1957 },
3e0d98b9 1958
4baf6e33
TH
1959 {
1960 .name = "memory_pressure_enabled",
1961 .flags = CFTYPE_ONLY_ON_ROOT,
1962 .read_u64 = cpuset_read_u64,
1963 .write_u64 = cpuset_write_u64,
1964 .private = FILE_MEMORY_PRESSURE_ENABLED,
1965 },
1da177e4 1966
1cac41cb
MB
1967 {
1968 .name = "family_boost",
1969 .read_u64 = cpuset_read_u64,
1970 .write_u64 = cpuset_write_u64,
1971 .private = FILE_FAMILY_BOOST,
1972 },
1973
1974
4baf6e33
TH
1975 { } /* terminate */
1976};
1da177e4
LT
1977
1978/*
92fb9748 1979 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1980 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1981 */
1982
eb95419b
TH
1983static struct cgroup_subsys_state *
1984cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1985{
c8f699bb 1986 struct cpuset *cs;
1da177e4 1987
eb95419b 1988 if (!parent_css)
8793d854 1989 return &top_cpuset.css;
033fa1c5 1990
c8f699bb 1991 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1992 if (!cs)
8793d854 1993 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1994 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1995 goto free_cs;
cd55f3c2
RA
1996 if (!alloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
1997 goto free_allowed;
e2b9a3d7 1998 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
cd55f3c2 1999 goto free_requested;
1da177e4 2000
029190c5 2001 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 2002 cpumask_clear(cs->cpus_allowed);
cd55f3c2 2003 cpumask_clear(cs->cpus_requested);
f9a86fcb 2004 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
2005 cpumask_clear(cs->effective_cpus);
2006 nodes_clear(cs->effective_mems);
3e0d98b9 2007 fmeter_init(&cs->fmeter);
1d3504fc 2008 cs->relax_domain_level = -1;
1da177e4 2009
c8f699bb 2010 return &cs->css;
e2b9a3d7 2011
cd55f3c2
RA
2012free_requested:
2013 free_cpumask_var(cs->cpus_requested);
2014free_allowed:
e2b9a3d7
LZ
2015 free_cpumask_var(cs->cpus_allowed);
2016free_cs:
2017 kfree(cs);
2018 return ERR_PTR(-ENOMEM);
c8f699bb
TH
2019}
2020
eb95419b 2021static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 2022{
eb95419b 2023 struct cpuset *cs = css_cs(css);
c431069f 2024 struct cpuset *parent = parent_cs(cs);
ae8086ce 2025 struct cpuset *tmp_cs;
492eb21b 2026 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
2027
2028 if (!parent)
2029 return 0;
2030
5d21cc2d
TH
2031 mutex_lock(&cpuset_mutex);
2032
efeb77b2 2033 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
2034 if (is_spread_page(parent))
2035 set_bit(CS_SPREAD_PAGE, &cs->flags);
2036 if (is_spread_slab(parent))
2037 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 2038
664eedde 2039 cpuset_inc();
033fa1c5 2040
8447a0fe 2041 spin_lock_irq(&callback_lock);
9e10a130 2042 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
e2b9a3d7
LZ
2043 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2044 cs->effective_mems = parent->effective_mems;
2045 }
8447a0fe 2046 spin_unlock_irq(&callback_lock);
e2b9a3d7 2047
eb95419b 2048 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 2049 goto out_unlock;
033fa1c5
TH
2050
2051 /*
2052 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2053 * set. This flag handling is implemented in cgroup core for
2054 * histrical reasons - the flag may be specified during mount.
2055 *
2056 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2057 * refuse to clone the configuration - thereby refusing the task to
2058 * be entered, and as a result refusing the sys_unshare() or
2059 * clone() which initiated it. If this becomes a problem for some
2060 * users who wish to allow that scenario, then this could be
2061 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2062 * (and likewise for mems) to the new cgroup.
2063 */
ae8086ce 2064 rcu_read_lock();
492eb21b 2065 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
2066 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2067 rcu_read_unlock();
5d21cc2d 2068 goto out_unlock;
ae8086ce 2069 }
033fa1c5 2070 }
ae8086ce 2071 rcu_read_unlock();
033fa1c5 2072
8447a0fe 2073 spin_lock_irq(&callback_lock);
033fa1c5 2074 cs->mems_allowed = parent->mems_allowed;
790317e1 2075 cs->effective_mems = parent->mems_allowed;
033fa1c5 2076 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
cd55f3c2 2077 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
790317e1 2078 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
cea74465 2079 spin_unlock_irq(&callback_lock);
5d21cc2d
TH
2080out_unlock:
2081 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2082 return 0;
2083}
2084
0b9e6965
ZH
2085/*
2086 * If the cpuset being removed has its flag 'sched_load_balance'
2087 * enabled, then simulate turning sched_load_balance off, which
2088 * will call rebuild_sched_domains_locked().
2089 */
2090
eb95419b 2091static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2092{
eb95419b 2093 struct cpuset *cs = css_cs(css);
c8f699bb 2094
5d21cc2d 2095 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2096
2097 if (is_sched_load_balance(cs))
2098 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2099
664eedde 2100 cpuset_dec();
efeb77b2 2101 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2102
5d21cc2d 2103 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2104}
2105
eb95419b 2106static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2107{
eb95419b 2108 struct cpuset *cs = css_cs(css);
1da177e4 2109
e2b9a3d7 2110 free_cpumask_var(cs->effective_cpus);
300ed6cb 2111 free_cpumask_var(cs->cpus_allowed);
cd55f3c2 2112 free_cpumask_var(cs->cpus_requested);
8793d854 2113 kfree(cs);
1da177e4
LT
2114}
2115
39bd0d15
LZ
2116static void cpuset_bind(struct cgroup_subsys_state *root_css)
2117{
2118 mutex_lock(&cpuset_mutex);
8447a0fe 2119 spin_lock_irq(&callback_lock);
39bd0d15 2120
9e10a130 2121 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
39bd0d15
LZ
2122 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2123 top_cpuset.mems_allowed = node_possible_map;
2124 } else {
2125 cpumask_copy(top_cpuset.cpus_allowed,
2126 top_cpuset.effective_cpus);
2127 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2128 }
2129
8447a0fe 2130 spin_unlock_irq(&callback_lock);
39bd0d15
LZ
2131 mutex_unlock(&cpuset_mutex);
2132}
2133
06ec7a1d
ZL
2134/*
2135 * Make sure the new task conform to the current state of its parent,
2136 * which could have been changed by cpuset just after it inherits the
2137 * state from the parent and before it sits on the cgroup's task list.
2138 */
29bd0359 2139void cpuset_fork(struct task_struct *task, void *priv)
06ec7a1d
ZL
2140{
2141 if (task_css_is_root(task, cpuset_cgrp_id))
2142 return;
2143
2144 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2145 task->mems_allowed = current->mems_allowed;
2146}
2147
1cac41cb
MB
2148static int cpuset_allow_attach(struct cgroup_taskset *tset)
2149{
2150 const struct cred *cred = current_cred(), *tcred;
2151 struct task_struct *task;
2152 struct cgroup_subsys_state *css;
2153
2154 cgroup_taskset_for_each(task, css, tset) {
2155 tcred = __task_cred(task);
2156
2157 if ((current != task) && !capable(CAP_SYS_ADMIN) &&
2158 cred->euid.val != tcred->uid.val && cred->euid.val != tcred->suid.val)
2159 return -EACCES;
2160 }
2161
2162 return 0;
2163}
2164
073219e9 2165struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
2166 .css_alloc = cpuset_css_alloc,
2167 .css_online = cpuset_css_online,
2168 .css_offline = cpuset_css_offline,
2169 .css_free = cpuset_css_free,
2170 .can_attach = cpuset_can_attach,
1cac41cb 2171 .allow_attach = cpuset_allow_attach,
39bd0d15
LZ
2172 .cancel_attach = cpuset_cancel_attach,
2173 .attach = cpuset_attach,
d5209747 2174 .post_attach = cpuset_post_attach,
39bd0d15 2175 .bind = cpuset_bind,
06ec7a1d 2176 .fork = cpuset_fork,
5577964e 2177 .legacy_cftypes = files,
39bd0d15 2178 .early_init = 1,
8793d854
PM
2179};
2180
1da177e4
LT
2181/**
2182 * cpuset_init - initialize cpusets at system boot
2183 *
2184 * Description: Initialize top_cpuset and the cpuset internal file system,
2185 **/
2186
2187int __init cpuset_init(void)
2188{
8793d854 2189 int err = 0;
1da177e4 2190
58568d2a
MX
2191 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2192 BUG();
e2b9a3d7
LZ
2193 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2194 BUG();
cd55f3c2
RA
2195 if (!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL))
2196 BUG();
58568d2a 2197
300ed6cb 2198 cpumask_setall(top_cpuset.cpus_allowed);
cd55f3c2 2199 cpumask_setall(top_cpuset.cpus_requested);
f9a86fcb 2200 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2201 cpumask_setall(top_cpuset.effective_cpus);
2202 nodes_setall(top_cpuset.effective_mems);
1da177e4 2203
3e0d98b9 2204 fmeter_init(&top_cpuset.fmeter);
029190c5 2205 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2206 top_cpuset.relax_domain_level = -1;
1da177e4 2207
1da177e4
LT
2208 err = register_filesystem(&cpuset_fs_type);
2209 if (err < 0)
8793d854
PM
2210 return err;
2211
2341d1b6
LZ
2212 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2213 BUG();
2214
8793d854 2215 return 0;
1da177e4
LT
2216}
2217
b1aac8bb 2218/*
cf417141 2219 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2220 * or memory nodes, we need to walk over the cpuset hierarchy,
2221 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2222 * last CPU or node from a cpuset, then move the tasks in the empty
2223 * cpuset to its next-highest non-empty parent.
b1aac8bb 2224 */
956db3ca
CW
2225static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2226{
2227 struct cpuset *parent;
2228
956db3ca
CW
2229 /*
2230 * Find its next-highest non-empty parent, (top cpuset
2231 * has online cpus, so can't be empty).
2232 */
c431069f 2233 parent = parent_cs(cs);
300ed6cb 2234 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2235 nodes_empty(parent->mems_allowed))
c431069f 2236 parent = parent_cs(parent);
956db3ca 2237
8cc99345 2238 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2239 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2240 pr_cont_cgroup_name(cs->css.cgroup);
2241 pr_cont("\n");
8cc99345 2242 }
956db3ca
CW
2243}
2244
be4c9dd7
LZ
2245static void
2246hotplug_update_tasks_legacy(struct cpuset *cs,
2247 struct cpumask *new_cpus, nodemask_t *new_mems,
2248 bool cpus_updated, bool mems_updated)
390a36aa
LZ
2249{
2250 bool is_empty;
2251
8447a0fe 2252 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2253 cpumask_copy(cs->cpus_allowed, new_cpus);
2254 cpumask_copy(cs->effective_cpus, new_cpus);
2255 cs->mems_allowed = *new_mems;
2256 cs->effective_mems = *new_mems;
8447a0fe 2257 spin_unlock_irq(&callback_lock);
390a36aa
LZ
2258
2259 /*
2260 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2261 * as the tasks will be migratecd to an ancestor.
2262 */
be4c9dd7 2263 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
390a36aa 2264 update_tasks_cpumask(cs);
be4c9dd7 2265 if (mems_updated && !nodes_empty(cs->mems_allowed))
390a36aa
LZ
2266 update_tasks_nodemask(cs);
2267
2268 is_empty = cpumask_empty(cs->cpus_allowed) ||
2269 nodes_empty(cs->mems_allowed);
2270
2271 mutex_unlock(&cpuset_mutex);
2272
2273 /*
2274 * Move tasks to the nearest ancestor with execution resources,
2275 * This is full cgroup operation which will also call back into
2276 * cpuset. Should be done outside any lock.
2277 */
2278 if (is_empty)
2279 remove_tasks_in_empty_cpuset(cs);
2280
2281 mutex_lock(&cpuset_mutex);
2282}
2283
be4c9dd7
LZ
2284static void
2285hotplug_update_tasks(struct cpuset *cs,
2286 struct cpumask *new_cpus, nodemask_t *new_mems,
2287 bool cpus_updated, bool mems_updated)
390a36aa 2288{
be4c9dd7
LZ
2289 if (cpumask_empty(new_cpus))
2290 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2291 if (nodes_empty(*new_mems))
2292 *new_mems = parent_cs(cs)->effective_mems;
2293
8447a0fe 2294 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2295 cpumask_copy(cs->effective_cpus, new_cpus);
2296 cs->effective_mems = *new_mems;
8447a0fe 2297 spin_unlock_irq(&callback_lock);
390a36aa 2298
be4c9dd7 2299 if (cpus_updated)
390a36aa 2300 update_tasks_cpumask(cs);
be4c9dd7 2301 if (mems_updated)
390a36aa
LZ
2302 update_tasks_nodemask(cs);
2303}
2304
deb7aa30 2305/**
388afd85 2306 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2307 * @cs: cpuset in interest
956db3ca 2308 *
deb7aa30
TH
2309 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2310 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2311 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2312 */
388afd85 2313static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2314{
be4c9dd7
LZ
2315 static cpumask_t new_cpus;
2316 static nodemask_t new_mems;
2317 bool cpus_updated;
2318 bool mems_updated;
e44193d3
LZ
2319retry:
2320 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2321
5d21cc2d 2322 mutex_lock(&cpuset_mutex);
7ddf96b0 2323
e44193d3
LZ
2324 /*
2325 * We have raced with task attaching. We wait until attaching
2326 * is finished, so we won't attach a task to an empty cpuset.
2327 */
2328 if (cs->attach_in_progress) {
2329 mutex_unlock(&cpuset_mutex);
2330 goto retry;
2331 }
2332
cd55f3c2 2333 cpumask_and(&new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
be4c9dd7 2334 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
80d1fa64 2335
be4c9dd7
LZ
2336 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2337 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
deb7aa30 2338
9e10a130 2339 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
be4c9dd7
LZ
2340 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2341 cpus_updated, mems_updated);
390a36aa 2342 else
be4c9dd7
LZ
2343 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2344 cpus_updated, mems_updated);
8d033948 2345
5d21cc2d 2346 mutex_unlock(&cpuset_mutex);
b1aac8bb
PJ
2347}
2348
90fd6738
PZ
2349static bool force_rebuild;
2350
2351void cpuset_force_rebuild(void)
2352{
2353 force_rebuild = true;
2354}
2355
deb7aa30 2356/**
3a5a6d0c 2357 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2358 *
deb7aa30
TH
2359 * This function is called after either CPU or memory configuration has
2360 * changed and updates cpuset accordingly. The top_cpuset is always
2361 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2362 * order to make cpusets transparent (of no affect) on systems that are
2363 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2364 *
deb7aa30 2365 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2366 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2367 * all descendants.
956db3ca 2368 *
deb7aa30
TH
2369 * Note that CPU offlining during suspend is ignored. We don't modify
2370 * cpusets across suspend/resume cycles at all.
956db3ca 2371 */
3a5a6d0c 2372static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2373{
5c5cc623
LZ
2374 static cpumask_t new_cpus;
2375 static nodemask_t new_mems;
deb7aa30 2376 bool cpus_updated, mems_updated;
9e10a130 2377 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
b1aac8bb 2378
5d21cc2d 2379 mutex_lock(&cpuset_mutex);
956db3ca 2380
deb7aa30
TH
2381 /* fetch the available cpus/mems and find out which changed how */
2382 cpumask_copy(&new_cpus, cpu_active_mask);
2383 new_mems = node_states[N_MEMORY];
7ddf96b0 2384
7e88291b
LZ
2385 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2386 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
7ddf96b0 2387
deb7aa30
TH
2388 /* synchronize cpus_allowed to cpu_active_mask */
2389 if (cpus_updated) {
8447a0fe 2390 spin_lock_irq(&callback_lock);
7e88291b
LZ
2391 if (!on_dfl)
2392 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2393 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
8447a0fe 2394 spin_unlock_irq(&callback_lock);
deb7aa30
TH
2395 /* we don't mess with cpumasks of tasks in top_cpuset */
2396 }
b4501295 2397
deb7aa30
TH
2398 /* synchronize mems_allowed to N_MEMORY */
2399 if (mems_updated) {
8447a0fe 2400 spin_lock_irq(&callback_lock);
7e88291b
LZ
2401 if (!on_dfl)
2402 top_cpuset.mems_allowed = new_mems;
1344ab9c 2403 top_cpuset.effective_mems = new_mems;
8447a0fe 2404 spin_unlock_irq(&callback_lock);
d66393e5 2405 update_tasks_nodemask(&top_cpuset);
deb7aa30 2406 }
b4501295 2407
388afd85
LZ
2408 mutex_unlock(&cpuset_mutex);
2409
5c5cc623
LZ
2410 /* if cpus or mems changed, we need to propagate to descendants */
2411 if (cpus_updated || mems_updated) {
deb7aa30 2412 struct cpuset *cs;
492eb21b 2413 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2414
fc560a26 2415 rcu_read_lock();
492eb21b 2416 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2417 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2418 continue;
2419 rcu_read_unlock();
7ddf96b0 2420
388afd85 2421 cpuset_hotplug_update_tasks(cs);
b4501295 2422
388afd85
LZ
2423 rcu_read_lock();
2424 css_put(&cs->css);
2425 }
2426 rcu_read_unlock();
2427 }
8d033948 2428
deb7aa30 2429 /* rebuild sched domains if cpus_allowed has changed */
90fd6738
PZ
2430 if (cpus_updated || force_rebuild) {
2431 force_rebuild = false;
e0e80a02 2432 rebuild_sched_domains();
90fd6738 2433 }
b1aac8bb
PJ
2434}
2435
7ddf96b0 2436void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2437{
3a5a6d0c
TH
2438 /*
2439 * We're inside cpu hotplug critical region which usually nests
2440 * inside cgroup synchronization. Bounce actual hotplug processing
2441 * to a work item to avoid reverse locking order.
2442 *
2443 * We still need to do partition_sched_domains() synchronously;
2444 * otherwise, the scheduler will get confused and put tasks to the
2445 * dead CPU. Fall back to the default single domain.
2446 * cpuset_hotplug_workfn() will rebuild it as necessary.
2447 */
2448 partition_sched_domains(1, NULL, NULL);
2449 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2450}
4c4d50f7 2451
90fd6738
PZ
2452void cpuset_wait_for_hotplug(void)
2453{
2454 flush_work(&cpuset_hotplug_work);
2455}
2456
38837fc7 2457/*
38d7bee9
LJ
2458 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2459 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2460 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2461 */
f481891f
MX
2462static int cpuset_track_online_nodes(struct notifier_block *self,
2463 unsigned long action, void *arg)
38837fc7 2464{
3a5a6d0c 2465 schedule_work(&cpuset_hotplug_work);
f481891f 2466 return NOTIFY_OK;
38837fc7 2467}
d8f10cb3
AM
2468
2469static struct notifier_block cpuset_track_online_nodes_nb = {
2470 .notifier_call = cpuset_track_online_nodes,
2471 .priority = 10, /* ??! */
2472};
38837fc7 2473
1da177e4
LT
2474/**
2475 * cpuset_init_smp - initialize cpus_allowed
2476 *
2477 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2478 */
1da177e4
LT
2479void __init cpuset_init_smp(void)
2480{
6ad4c188 2481 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2482 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2483 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2484
e2b9a3d7
LZ
2485 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2486 top_cpuset.effective_mems = node_states[N_MEMORY];
2487
d8f10cb3 2488 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
fff4dc84
TH
2489
2490 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2491 BUG_ON(!cpuset_migrate_mm_wq);
1da177e4
LT
2492}
2493
2494/**
1da177e4
LT
2495 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2496 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2497 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2498 *
300ed6cb 2499 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2500 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2501 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2502 * tasks cpuset.
2503 **/
2504
6af866af 2505void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2506{
8447a0fe
VD
2507 unsigned long flags;
2508
2509 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2510 rcu_read_lock();
ae1c8023 2511 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 2512 rcu_read_unlock();
8447a0fe 2513 spin_unlock_irqrestore(&callback_lock, flags);
1da177e4
LT
2514}
2515
2baab4e9 2516void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2517{
9084bb82 2518 rcu_read_lock();
ae1c8023 2519 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
9084bb82
ON
2520 rcu_read_unlock();
2521
2522 /*
2523 * We own tsk->cpus_allowed, nobody can change it under us.
2524 *
2525 * But we used cs && cs->cpus_allowed lockless and thus can
2526 * race with cgroup_attach_task() or update_cpumask() and get
2527 * the wrong tsk->cpus_allowed. However, both cases imply the
2528 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2529 * which takes task_rq_lock().
2530 *
2531 * If we are called after it dropped the lock we must see all
2532 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2533 * set any mask even if it is not right from task_cs() pov,
2534 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2535 *
2536 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2537 * if required.
9084bb82 2538 */
9084bb82
ON
2539}
2540
8f4ab07f 2541void __init cpuset_init_current_mems_allowed(void)
1da177e4 2542{
f9a86fcb 2543 nodes_setall(current->mems_allowed);
1da177e4
LT
2544}
2545
909d75a3
PJ
2546/**
2547 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2548 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2549 *
2550 * Description: Returns the nodemask_t mems_allowed of the cpuset
2551 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2552 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2553 * tasks cpuset.
2554 **/
2555
2556nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2557{
2558 nodemask_t mask;
8447a0fe 2559 unsigned long flags;
909d75a3 2560
8447a0fe 2561 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2562 rcu_read_lock();
ae1c8023 2563 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 2564 rcu_read_unlock();
8447a0fe 2565 spin_unlock_irqrestore(&callback_lock, flags);
909d75a3
PJ
2566
2567 return mask;
2568}
2569
d9fd8a6d 2570/**
19770b32
MG
2571 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2572 * @nodemask: the nodemask to be checked
d9fd8a6d 2573 *
19770b32 2574 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2575 */
19770b32 2576int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2577{
19770b32 2578 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2579}
2580
9bf2229f 2581/*
78608366
PM
2582 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2583 * mem_hardwall ancestor to the specified cpuset. Call holding
8447a0fe 2584 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
78608366 2585 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2586 */
c9710d80 2587static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2588{
c431069f
TH
2589 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2590 cs = parent_cs(cs);
9bf2229f
PJ
2591 return cs;
2592}
2593
d9fd8a6d 2594/**
344736f2 2595 * cpuset_node_allowed - Can we allocate on a memory node?
a1bc5a4e 2596 * @node: is this an allowed node?
02a0e53d 2597 * @gfp_mask: memory allocation flags
d9fd8a6d 2598 *
6e276d2a
DR
2599 * If we're in interrupt, yes, we can always allocate. If @node is set in
2600 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2601 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2602 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
9bf2229f
PJ
2603 * Otherwise, no.
2604 *
2605 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2606 * and do not allow allocations outside the current tasks cpuset
2607 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2608 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2609 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2610 *
8447a0fe 2611 * Scanning up parent cpusets requires callback_lock. The
02a0e53d
PJ
2612 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2613 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2614 * current tasks mems_allowed came up empty on the first pass over
2615 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
8447a0fe 2616 * cpuset are short of memory, might require taking the callback_lock.
9bf2229f 2617 *
36be57ff 2618 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2619 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2620 * so no allocation on a node outside the cpuset is allowed (unless
2621 * in interrupt, of course).
36be57ff
PJ
2622 *
2623 * The second pass through get_page_from_freelist() doesn't even call
2624 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2625 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2626 * in alloc_flags. That logic and the checks below have the combined
2627 * affect that:
9bf2229f
PJ
2628 * in_interrupt - any node ok (current task context irrelevant)
2629 * GFP_ATOMIC - any node ok
c596d9f3 2630 * TIF_MEMDIE - any node ok
78608366 2631 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2632 * GFP_USER - only nodes in current tasks mems allowed ok.
02a0e53d 2633 */
344736f2 2634int __cpuset_node_allowed(int node, gfp_t gfp_mask)
1da177e4 2635{
c9710d80 2636 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2637 int allowed; /* is allocation in zone z allowed? */
8447a0fe 2638 unsigned long flags;
9bf2229f 2639
6e276d2a 2640 if (in_interrupt())
9bf2229f 2641 return 1;
9bf2229f
PJ
2642 if (node_isset(node, current->mems_allowed))
2643 return 1;
c596d9f3
DR
2644 /*
2645 * Allow tasks that have access to memory reserves because they have
2646 * been OOM killed to get memory anywhere.
2647 */
2648 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2649 return 1;
9bf2229f
PJ
2650 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2651 return 0;
2652
5563e770
BP
2653 if (current->flags & PF_EXITING) /* Let dying task have memory */
2654 return 1;
2655
9bf2229f 2656 /* Not hardwall and node outside mems_allowed: scan up cpusets */
8447a0fe 2657 spin_lock_irqsave(&callback_lock, flags);
053199ed 2658
b8dadcb5 2659 rcu_read_lock();
78608366 2660 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2661 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2662 rcu_read_unlock();
053199ed 2663
8447a0fe 2664 spin_unlock_irqrestore(&callback_lock, flags);
9bf2229f 2665 return allowed;
1da177e4
LT
2666}
2667
825a46af 2668/**
6adef3eb
JS
2669 * cpuset_mem_spread_node() - On which node to begin search for a file page
2670 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2671 *
2672 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2673 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2674 * and if the memory allocation used cpuset_mem_spread_node()
2675 * to determine on which node to start looking, as it will for
2676 * certain page cache or slab cache pages such as used for file
2677 * system buffers and inode caches, then instead of starting on the
2678 * local node to look for a free page, rather spread the starting
2679 * node around the tasks mems_allowed nodes.
2680 *
2681 * We don't have to worry about the returned node being offline
2682 * because "it can't happen", and even if it did, it would be ok.
2683 *
2684 * The routines calling guarantee_online_mems() are careful to
2685 * only set nodes in task->mems_allowed that are online. So it
2686 * should not be possible for the following code to return an
2687 * offline node. But if it did, that would be ok, as this routine
2688 * is not returning the node where the allocation must be, only
2689 * the node where the search should start. The zonelist passed to
2690 * __alloc_pages() will include all nodes. If the slab allocator
2691 * is passed an offline node, it will fall back to the local node.
2692 * See kmem_cache_alloc_node().
2693 */
2694
6adef3eb 2695static int cpuset_spread_node(int *rotor)
825a46af
PJ
2696{
2697 int node;
2698
6adef3eb 2699 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2700 if (node == MAX_NUMNODES)
2701 node = first_node(current->mems_allowed);
6adef3eb 2702 *rotor = node;
825a46af
PJ
2703 return node;
2704}
6adef3eb
JS
2705
2706int cpuset_mem_spread_node(void)
2707{
778d3b0f
MH
2708 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2709 current->cpuset_mem_spread_rotor =
2710 node_random(&current->mems_allowed);
2711
6adef3eb
JS
2712 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2713}
2714
2715int cpuset_slab_spread_node(void)
2716{
778d3b0f
MH
2717 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2718 current->cpuset_slab_spread_rotor =
2719 node_random(&current->mems_allowed);
2720
6adef3eb
JS
2721 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2722}
2723
825a46af
PJ
2724EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2725
ef08e3b4 2726/**
bbe373f2
DR
2727 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2728 * @tsk1: pointer to task_struct of some task.
2729 * @tsk2: pointer to task_struct of some other task.
2730 *
2731 * Description: Return true if @tsk1's mems_allowed intersects the
2732 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2733 * one of the task's memory usage might impact the memory available
2734 * to the other.
ef08e3b4
PJ
2735 **/
2736
bbe373f2
DR
2737int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2738 const struct task_struct *tsk2)
ef08e3b4 2739{
bbe373f2 2740 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2741}
2742
75aa1994 2743/**
da39da3a 2744 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
75aa1994 2745 *
da39da3a 2746 * Description: Prints current's name, cpuset name, and cached copy of its
b8dadcb5 2747 * mems_allowed to the kernel log.
75aa1994 2748 */
da39da3a 2749void cpuset_print_current_mems_allowed(void)
75aa1994 2750{
b8dadcb5 2751 struct cgroup *cgrp;
75aa1994 2752
b8dadcb5 2753 rcu_read_lock();
63f43f55 2754
da39da3a
DR
2755 cgrp = task_cs(current)->css.cgroup;
2756 pr_info("%s cpuset=", current->comm);
e61734c5 2757 pr_cont_cgroup_name(cgrp);
da39da3a
DR
2758 pr_cont(" mems_allowed=%*pbl\n",
2759 nodemask_pr_args(&current->mems_allowed));
f440d98f 2760
cfb5966b 2761 rcu_read_unlock();
75aa1994
DR
2762}
2763
3e0d98b9
PJ
2764/*
2765 * Collection of memory_pressure is suppressed unless
2766 * this flag is enabled by writing "1" to the special
2767 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2768 */
2769
c5b2aff8 2770int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2771
2772/**
2773 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2774 *
2775 * Keep a running average of the rate of synchronous (direct)
2776 * page reclaim efforts initiated by tasks in each cpuset.
2777 *
2778 * This represents the rate at which some task in the cpuset
2779 * ran low on memory on all nodes it was allowed to use, and
2780 * had to enter the kernels page reclaim code in an effort to
2781 * create more free memory by tossing clean pages or swapping
2782 * or writing dirty pages.
2783 *
2784 * Display to user space in the per-cpuset read-only file
2785 * "memory_pressure". Value displayed is an integer
2786 * representing the recent rate of entry into the synchronous
2787 * (direct) page reclaim by any task attached to the cpuset.
2788 **/
2789
2790void __cpuset_memory_pressure_bump(void)
2791{
b8dadcb5 2792 rcu_read_lock();
8793d854 2793 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2794 rcu_read_unlock();
3e0d98b9
PJ
2795}
2796
8793d854 2797#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2798/*
2799 * proc_cpuset_show()
2800 * - Print tasks cpuset path into seq_file.
2801 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2802 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2803 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2804 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2805 * anyway.
1da177e4 2806 */
52de4779
ZL
2807int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2808 struct pid *pid, struct task_struct *tsk)
1da177e4 2809{
e61734c5 2810 char *buf, *p;
8793d854 2811 struct cgroup_subsys_state *css;
99f89551 2812 int retval;
1da177e4 2813
99f89551 2814 retval = -ENOMEM;
e61734c5 2815 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2816 if (!buf)
99f89551
EB
2817 goto out;
2818
e61734c5 2819 retval = -ENAMETOOLONG;
27e89ae5 2820 rcu_read_lock();
073219e9 2821 css = task_css(tsk, cpuset_cgrp_id);
e61734c5 2822 p = cgroup_path(css->cgroup, buf, PATH_MAX);
27e89ae5 2823 rcu_read_unlock();
e61734c5 2824 if (!p)
52de4779 2825 goto out_free;
e61734c5 2826 seq_puts(m, p);
1da177e4 2827 seq_putc(m, '\n');
e61734c5 2828 retval = 0;
99f89551 2829out_free:
1da177e4 2830 kfree(buf);
99f89551 2831out:
1da177e4
LT
2832 return retval;
2833}
8793d854 2834#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2835
d01d4827 2836/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2837void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2838{
e8e6d97c
TH
2839 seq_printf(m, "Mems_allowed:\t%*pb\n",
2840 nodemask_pr_args(&task->mems_allowed));
2841 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2842 nodemask_pr_args(&task->mems_allowed));
1da177e4 2843}