am437x-vpfe: always assign bpp variable
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca 60#include <linux/cgroup.h>
e44193d3 61#include <linux/wait.h>
1da177e4 62
664eedde 63struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
202f72d5 64
3e0d98b9
PJ
65/* See "Frequency meter" comments, below. */
66
67struct fmeter {
68 int cnt; /* unprocessed events count */
69 int val; /* most recent output value */
70 time_t time; /* clock (secs) when val computed */
71 spinlock_t lock; /* guards read or write of above */
72};
73
1da177e4 74struct cpuset {
8793d854
PM
75 struct cgroup_subsys_state css;
76
1da177e4 77 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7 78
7e88291b
LZ
79 /*
80 * On default hierarchy:
81 *
82 * The user-configured masks can only be changed by writing to
83 * cpuset.cpus and cpuset.mems, and won't be limited by the
84 * parent masks.
85 *
86 * The effective masks is the real masks that apply to the tasks
87 * in the cpuset. They may be changed if the configured masks are
88 * changed or hotplug happens.
89 *
90 * effective_mask == configured_mask & parent's effective_mask,
91 * and if it ends up empty, it will inherit the parent's mask.
92 *
93 *
94 * On legacy hierachy:
95 *
96 * The user-configured masks are always the same with effective masks.
97 */
98
e2b9a3d7
LZ
99 /* user-configured CPUs and Memory Nodes allow to tasks */
100 cpumask_var_t cpus_allowed;
cd55f3c2 101 cpumask_var_t cpus_requested;
e2b9a3d7
LZ
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
1da177e4 107
33ad801d
LZ
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
3e0d98b9 120 struct fmeter fmeter; /* memory_pressure filter */
029190c5 121
452477fa
TH
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
029190c5
PJ
128 /* partition number for rebuild_sched_domains() */
129 int pn;
956db3ca 130
1d3504fc
HS
131 /* for custom sched domain */
132 int relax_domain_level;
1da177e4
LT
133};
134
a7c6d554 135static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 136{
a7c6d554 137 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
138}
139
140/* Retrieve the cpuset for a task */
141static inline struct cpuset *task_cs(struct task_struct *task)
142{
073219e9 143 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 144}
8793d854 145
c9710d80 146static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 147{
5c9d535b 148 return css_cs(cs->css.parent);
c431069f
TH
149}
150
b246272e
DR
151#ifdef CONFIG_NUMA
152static inline bool task_has_mempolicy(struct task_struct *task)
153{
154 return task->mempolicy;
155}
156#else
157static inline bool task_has_mempolicy(struct task_struct *task)
158{
159 return false;
160}
161#endif
162
163
1da177e4
LT
164/* bits in struct cpuset flags field */
165typedef enum {
efeb77b2 166 CS_ONLINE,
1da177e4
LT
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
78608366 169 CS_MEM_HARDWALL,
45b07ef3 170 CS_MEMORY_MIGRATE,
029190c5 171 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
1da177e4
LT
174} cpuset_flagbits_t;
175
176/* convenient tests for these bits */
efeb77b2
TH
177static inline bool is_cpuset_online(const struct cpuset *cs)
178{
179 return test_bit(CS_ONLINE, &cs->flags);
180}
181
1da177e4
LT
182static inline int is_cpu_exclusive(const struct cpuset *cs)
183{
7b5b9ef0 184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
185}
186
187static inline int is_mem_exclusive(const struct cpuset *cs)
188{
7b5b9ef0 189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
190}
191
78608366
PM
192static inline int is_mem_hardwall(const struct cpuset *cs)
193{
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195}
196
029190c5
PJ
197static inline int is_sched_load_balance(const struct cpuset *cs)
198{
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200}
201
45b07ef3
PJ
202static inline int is_memory_migrate(const struct cpuset *cs)
203{
7b5b9ef0 204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
205}
206
825a46af
PJ
207static inline int is_spread_page(const struct cpuset *cs)
208{
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210}
211
212static inline int is_spread_slab(const struct cpuset *cs)
213{
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215}
216
1da177e4 217static struct cpuset top_cpuset = {
efeb77b2
TH
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
220};
221
ae8086ce
TH
222/**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
492eb21b 225 * @pos_css: used for iteration
ae8086ce
TH
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
492eb21b
TH
231#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 234
fc560a26
TH
235/**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
492eb21b 238 * @pos_css: used for iteration
fc560a26
TH
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 242 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
fc560a26 245 */
492eb21b
TH
246#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 249
1da177e4 250/*
8447a0fe
VD
251 * There are two global locks guarding cpuset structures - cpuset_mutex and
252 * callback_lock. We also require taking task_lock() when dereferencing a
253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
254 * comment.
5d21cc2d 255 *
8447a0fe 256 * A task must hold both locks to modify cpusets. If a task holds
5d21cc2d 257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
8447a0fe 258 * is the only task able to also acquire callback_lock and be able to
5d21cc2d
TH
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
8447a0fe
VD
262 * callback routines can briefly acquire callback_lock to query cpusets.
263 * Once it is ready to make the changes, it takes callback_lock, blocking
5d21cc2d 264 * everyone else.
053199ed
PJ
265 *
266 * Calls to the kernel memory allocator can not be made while holding
8447a0fe 267 * callback_lock, as that would risk double tripping on callback_lock
053199ed
PJ
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
8447a0fe 271 * If a task is only holding callback_lock, then it has read-only
053199ed
PJ
272 * access to cpusets.
273 *
58568d2a
MX
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
053199ed 277 *
8447a0fe 278 * The cpuset_common_file_read() handlers only hold callback_lock across
053199ed
PJ
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
2df167a3
PM
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
284 */
285
5d21cc2d 286static DEFINE_MUTEX(cpuset_mutex);
8447a0fe 287static DEFINE_SPINLOCK(callback_lock);
4247bdc6 288
fff4dc84
TH
289static struct workqueue_struct *cpuset_migrate_mm_wq;
290
3a5a6d0c
TH
291/*
292 * CPU / memory hotplug is handled asynchronously.
293 */
294static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
295static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
296
e44193d3
LZ
297static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
298
cf417141
MK
299/*
300 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 301 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
302 * silently switch it to mount "cgroup" instead
303 */
f7e83571
AV
304static struct dentry *cpuset_mount(struct file_system_type *fs_type,
305 int flags, const char *unused_dev_name, void *data)
1da177e4 306{
8793d854 307 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 308 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
309 if (cgroup_fs) {
310 char mountopts[] =
311 "cpuset,noprefix,"
312 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
313 ret = cgroup_fs->mount(cgroup_fs, flags,
314 unused_dev_name, mountopts);
8793d854
PM
315 put_filesystem(cgroup_fs);
316 }
317 return ret;
1da177e4
LT
318}
319
320static struct file_system_type cpuset_fs_type = {
321 .name = "cpuset",
f7e83571 322 .mount = cpuset_mount,
1da177e4
LT
323};
324
1da177e4 325/*
300ed6cb 326 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 327 * are online. If none are online, walk up the cpuset hierarchy
8132ffc9 328 * until we find one that does have some online cpus.
1da177e4
LT
329 *
330 * One way or another, we guarantee to return some non-empty subset
5f054e31 331 * of cpu_online_mask.
1da177e4 332 *
8447a0fe 333 * Call with callback_lock or cpuset_mutex held.
1da177e4 334 */
c9710d80 335static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 336{
8132ffc9 337 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
c431069f 338 cs = parent_cs(cs);
8132ffc9
JP
339 if (unlikely(!cs)) {
340 /*
341 * The top cpuset doesn't have any online cpu as a
342 * consequence of a race between cpuset_hotplug_work
343 * and cpu hotplug notifier. But we know the top
344 * cpuset's effective_cpus is on its way to to be
345 * identical to cpu_online_mask.
346 */
347 cpumask_copy(pmask, cpu_online_mask);
348 return;
349 }
350 }
ae1c8023 351 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
352}
353
354/*
355 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
356 * are online, with memory. If none are online with memory, walk
357 * up the cpuset hierarchy until we find one that does have some
40df2deb 358 * online mems. The top cpuset always has some mems online.
1da177e4
LT
359 *
360 * One way or another, we guarantee to return some non-empty subset
38d7bee9 361 * of node_states[N_MEMORY].
1da177e4 362 *
8447a0fe 363 * Call with callback_lock or cpuset_mutex held.
1da177e4 364 */
c9710d80 365static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 366{
ae1c8023 367 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 368 cs = parent_cs(cs);
ae1c8023 369 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
370}
371
f3b39d47
MX
372/*
373 * update task's spread flag if cpuset's page/slab spread flag is set
374 *
8447a0fe 375 * Call with callback_lock or cpuset_mutex held.
f3b39d47
MX
376 */
377static void cpuset_update_task_spread_flag(struct cpuset *cs,
378 struct task_struct *tsk)
379{
380 if (is_spread_page(cs))
2ad654bc 381 task_set_spread_page(tsk);
f3b39d47 382 else
2ad654bc
ZL
383 task_clear_spread_page(tsk);
384
f3b39d47 385 if (is_spread_slab(cs))
2ad654bc 386 task_set_spread_slab(tsk);
f3b39d47 387 else
2ad654bc 388 task_clear_spread_slab(tsk);
f3b39d47
MX
389}
390
1da177e4
LT
391/*
392 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
393 *
394 * One cpuset is a subset of another if all its allowed CPUs and
395 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 396 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
397 */
398
399static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
400{
cd55f3c2 401 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
1da177e4
LT
402 nodes_subset(p->mems_allowed, q->mems_allowed) &&
403 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
404 is_mem_exclusive(p) <= is_mem_exclusive(q);
405}
406
645fcc9d
LZ
407/**
408 * alloc_trial_cpuset - allocate a trial cpuset
409 * @cs: the cpuset that the trial cpuset duplicates
410 */
c9710d80 411static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 412{
300ed6cb
LZ
413 struct cpuset *trial;
414
415 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
416 if (!trial)
417 return NULL;
418
e2b9a3d7
LZ
419 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
420 goto free_cs;
421 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
422 goto free_cpus;
300ed6cb 423
e2b9a3d7
LZ
424 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
425 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 426 return trial;
e2b9a3d7
LZ
427
428free_cpus:
429 free_cpumask_var(trial->cpus_allowed);
430free_cs:
431 kfree(trial);
432 return NULL;
645fcc9d
LZ
433}
434
435/**
436 * free_trial_cpuset - free the trial cpuset
437 * @trial: the trial cpuset to be freed
438 */
439static void free_trial_cpuset(struct cpuset *trial)
440{
e2b9a3d7 441 free_cpumask_var(trial->effective_cpus);
300ed6cb 442 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
443 kfree(trial);
444}
445
1da177e4
LT
446/*
447 * validate_change() - Used to validate that any proposed cpuset change
448 * follows the structural rules for cpusets.
449 *
450 * If we replaced the flag and mask values of the current cpuset
451 * (cur) with those values in the trial cpuset (trial), would
452 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 453 * cpuset_mutex held.
1da177e4
LT
454 *
455 * 'cur' is the address of an actual, in-use cpuset. Operations
456 * such as list traversal that depend on the actual address of the
457 * cpuset in the list must use cur below, not trial.
458 *
459 * 'trial' is the address of bulk structure copy of cur, with
460 * perhaps one or more of the fields cpus_allowed, mems_allowed,
461 * or flags changed to new, trial values.
462 *
463 * Return 0 if valid, -errno if not.
464 */
465
c9710d80 466static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 467{
492eb21b 468 struct cgroup_subsys_state *css;
1da177e4 469 struct cpuset *c, *par;
ae8086ce
TH
470 int ret;
471
472 rcu_read_lock();
1da177e4
LT
473
474 /* Each of our child cpusets must be a subset of us */
ae8086ce 475 ret = -EBUSY;
492eb21b 476 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
477 if (!is_cpuset_subset(c, trial))
478 goto out;
1da177e4
LT
479
480 /* Remaining checks don't apply to root cpuset */
ae8086ce 481 ret = 0;
69604067 482 if (cur == &top_cpuset)
ae8086ce 483 goto out;
1da177e4 484
c431069f 485 par = parent_cs(cur);
69604067 486
7e88291b 487 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
ae8086ce 488 ret = -EACCES;
9e10a130
TH
489 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
490 !is_cpuset_subset(trial, par))
ae8086ce 491 goto out;
1da177e4 492
2df167a3
PM
493 /*
494 * If either I or some sibling (!= me) is exclusive, we can't
495 * overlap
496 */
ae8086ce 497 ret = -EINVAL;
492eb21b 498 cpuset_for_each_child(c, css, par) {
1da177e4
LT
499 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
500 c != cur &&
cd55f3c2 501 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
ae8086ce 502 goto out;
1da177e4
LT
503 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
504 c != cur &&
505 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 506 goto out;
1da177e4
LT
507 }
508
452477fa
TH
509 /*
510 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 511 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 512 */
ae8086ce 513 ret = -ENOSPC;
27bd4dbb 514 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
515 if (!cpumask_empty(cur->cpus_allowed) &&
516 cpumask_empty(trial->cpus_allowed))
517 goto out;
518 if (!nodes_empty(cur->mems_allowed) &&
519 nodes_empty(trial->mems_allowed))
520 goto out;
521 }
020958b6 522
f82f8042
JL
523 /*
524 * We can't shrink if we won't have enough room for SCHED_DEADLINE
525 * tasks.
526 */
527 ret = -EBUSY;
528 if (is_cpu_exclusive(cur) &&
529 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
530 trial->cpus_allowed))
531 goto out;
532
ae8086ce
TH
533 ret = 0;
534out:
535 rcu_read_unlock();
536 return ret;
1da177e4
LT
537}
538
db7f47cf 539#ifdef CONFIG_SMP
029190c5 540/*
cf417141 541 * Helper routine for generate_sched_domains().
8b5f1c52 542 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 543 */
029190c5
PJ
544static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
545{
8b5f1c52 546 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
547}
548
1d3504fc
HS
549static void
550update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
551{
1d3504fc
HS
552 if (dattr->relax_domain_level < c->relax_domain_level)
553 dattr->relax_domain_level = c->relax_domain_level;
554 return;
555}
556
fc560a26
TH
557static void update_domain_attr_tree(struct sched_domain_attr *dattr,
558 struct cpuset *root_cs)
f5393693 559{
fc560a26 560 struct cpuset *cp;
492eb21b 561 struct cgroup_subsys_state *pos_css;
f5393693 562
fc560a26 563 rcu_read_lock();
492eb21b 564 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
fc560a26
TH
565 /* skip the whole subtree if @cp doesn't have any CPU */
566 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 567 pos_css = css_rightmost_descendant(pos_css);
f5393693 568 continue;
fc560a26 569 }
f5393693
LJ
570
571 if (is_sched_load_balance(cp))
572 update_domain_attr(dattr, cp);
f5393693 573 }
fc560a26 574 rcu_read_unlock();
f5393693
LJ
575}
576
029190c5 577/*
cf417141
MK
578 * generate_sched_domains()
579 *
580 * This function builds a partial partition of the systems CPUs
581 * A 'partial partition' is a set of non-overlapping subsets whose
582 * union is a subset of that set.
0a0fca9d 583 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
584 * partition_sched_domains() routine, which will rebuild the scheduler's
585 * load balancing domains (sched domains) as specified by that partial
586 * partition.
029190c5 587 *
45ce80fb 588 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
589 * for a background explanation of this.
590 *
591 * Does not return errors, on the theory that the callers of this
592 * routine would rather not worry about failures to rebuild sched
593 * domains when operating in the severe memory shortage situations
594 * that could cause allocation failures below.
595 *
5d21cc2d 596 * Must be called with cpuset_mutex held.
029190c5
PJ
597 *
598 * The three key local variables below are:
aeed6824 599 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
600 * top-down scan of all cpusets. This scan loads a pointer
601 * to each cpuset marked is_sched_load_balance into the
602 * array 'csa'. For our purposes, rebuilding the schedulers
603 * sched domains, we can ignore !is_sched_load_balance cpusets.
604 * csa - (for CpuSet Array) Array of pointers to all the cpusets
605 * that need to be load balanced, for convenient iterative
606 * access by the subsequent code that finds the best partition,
607 * i.e the set of domains (subsets) of CPUs such that the
608 * cpus_allowed of every cpuset marked is_sched_load_balance
609 * is a subset of one of these domains, while there are as
610 * many such domains as possible, each as small as possible.
611 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 612 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
613 * convenient format, that can be easily compared to the prior
614 * value to determine what partition elements (sched domains)
615 * were changed (added or removed.)
616 *
617 * Finding the best partition (set of domains):
618 * The triple nested loops below over i, j, k scan over the
619 * load balanced cpusets (using the array of cpuset pointers in
620 * csa[]) looking for pairs of cpusets that have overlapping
621 * cpus_allowed, but which don't have the same 'pn' partition
622 * number and gives them in the same partition number. It keeps
623 * looping on the 'restart' label until it can no longer find
624 * any such pairs.
625 *
626 * The union of the cpus_allowed masks from the set of
627 * all cpusets having the same 'pn' value then form the one
628 * element of the partition (one sched domain) to be passed to
629 * partition_sched_domains().
630 */
acc3f5d7 631static int generate_sched_domains(cpumask_var_t **domains,
cf417141 632 struct sched_domain_attr **attributes)
029190c5 633{
029190c5
PJ
634 struct cpuset *cp; /* scans q */
635 struct cpuset **csa; /* array of all cpuset ptrs */
636 int csn; /* how many cpuset ptrs in csa so far */
637 int i, j, k; /* indices for partition finding loops */
acc3f5d7 638 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
47b8ea71 639 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
1d3504fc 640 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 641 int ndoms = 0; /* number of sched domains in result */
6af866af 642 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 643 struct cgroup_subsys_state *pos_css;
029190c5 644
029190c5 645 doms = NULL;
1d3504fc 646 dattr = NULL;
cf417141 647 csa = NULL;
029190c5 648
47b8ea71
RR
649 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
650 goto done;
651 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
652
029190c5
PJ
653 /* Special case for the 99% of systems with one, full, sched domain */
654 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
655 ndoms = 1;
656 doms = alloc_sched_domains(ndoms);
029190c5 657 if (!doms)
cf417141
MK
658 goto done;
659
1d3504fc
HS
660 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
661 if (dattr) {
662 *dattr = SD_ATTR_INIT;
93a65575 663 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 664 }
47b8ea71
RR
665 cpumask_and(doms[0], top_cpuset.effective_cpus,
666 non_isolated_cpus);
cf417141 667
cf417141 668 goto done;
029190c5
PJ
669 }
670
664eedde 671 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
672 if (!csa)
673 goto done;
674 csn = 0;
675
fc560a26 676 rcu_read_lock();
492eb21b 677 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
678 if (cp == &top_cpuset)
679 continue;
f5393693 680 /*
fc560a26
TH
681 * Continue traversing beyond @cp iff @cp has some CPUs and
682 * isn't load balancing. The former is obvious. The
683 * latter: All child cpusets contain a subset of the
684 * parent's cpus, so just skip them, and then we call
685 * update_domain_attr_tree() to calc relax_domain_level of
686 * the corresponding sched domain.
f5393693 687 */
fc560a26 688 if (!cpumask_empty(cp->cpus_allowed) &&
47b8ea71
RR
689 !(is_sched_load_balance(cp) &&
690 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
f5393693 691 continue;
489a5393 692
fc560a26
TH
693 if (is_sched_load_balance(cp))
694 csa[csn++] = cp;
695
696 /* skip @cp's subtree */
492eb21b 697 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
698 }
699 rcu_read_unlock();
029190c5
PJ
700
701 for (i = 0; i < csn; i++)
702 csa[i]->pn = i;
703 ndoms = csn;
704
705restart:
706 /* Find the best partition (set of sched domains) */
707 for (i = 0; i < csn; i++) {
708 struct cpuset *a = csa[i];
709 int apn = a->pn;
710
711 for (j = 0; j < csn; j++) {
712 struct cpuset *b = csa[j];
713 int bpn = b->pn;
714
715 if (apn != bpn && cpusets_overlap(a, b)) {
716 for (k = 0; k < csn; k++) {
717 struct cpuset *c = csa[k];
718
719 if (c->pn == bpn)
720 c->pn = apn;
721 }
722 ndoms--; /* one less element */
723 goto restart;
724 }
725 }
726 }
727
cf417141
MK
728 /*
729 * Now we know how many domains to create.
730 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
731 */
acc3f5d7 732 doms = alloc_sched_domains(ndoms);
700018e0 733 if (!doms)
cf417141 734 goto done;
cf417141
MK
735
736 /*
737 * The rest of the code, including the scheduler, can deal with
738 * dattr==NULL case. No need to abort if alloc fails.
739 */
1d3504fc 740 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
741
742 for (nslot = 0, i = 0; i < csn; i++) {
743 struct cpuset *a = csa[i];
6af866af 744 struct cpumask *dp;
029190c5
PJ
745 int apn = a->pn;
746
cf417141
MK
747 if (apn < 0) {
748 /* Skip completed partitions */
749 continue;
750 }
751
acc3f5d7 752 dp = doms[nslot];
cf417141
MK
753
754 if (nslot == ndoms) {
755 static int warnings = 10;
756 if (warnings) {
12d3089c
FF
757 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
758 nslot, ndoms, csn, i, apn);
cf417141 759 warnings--;
029190c5 760 }
cf417141
MK
761 continue;
762 }
029190c5 763
6af866af 764 cpumask_clear(dp);
cf417141
MK
765 if (dattr)
766 *(dattr + nslot) = SD_ATTR_INIT;
767 for (j = i; j < csn; j++) {
768 struct cpuset *b = csa[j];
769
770 if (apn == b->pn) {
8b5f1c52 771 cpumask_or(dp, dp, b->effective_cpus);
47b8ea71 772 cpumask_and(dp, dp, non_isolated_cpus);
cf417141
MK
773 if (dattr)
774 update_domain_attr_tree(dattr + nslot, b);
775
776 /* Done with this partition */
777 b->pn = -1;
029190c5 778 }
029190c5 779 }
cf417141 780 nslot++;
029190c5
PJ
781 }
782 BUG_ON(nslot != ndoms);
783
cf417141 784done:
47b8ea71 785 free_cpumask_var(non_isolated_cpus);
cf417141
MK
786 kfree(csa);
787
700018e0
LZ
788 /*
789 * Fallback to the default domain if kmalloc() failed.
790 * See comments in partition_sched_domains().
791 */
792 if (doms == NULL)
793 ndoms = 1;
794
cf417141
MK
795 *domains = doms;
796 *attributes = dattr;
797 return ndoms;
798}
799
800/*
801 * Rebuild scheduler domains.
802 *
699140ba
TH
803 * If the flag 'sched_load_balance' of any cpuset with non-empty
804 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
805 * which has that flag enabled, or if any cpuset with a non-empty
806 * 'cpus' is removed, then call this routine to rebuild the
807 * scheduler's dynamic sched domains.
cf417141 808 *
5d21cc2d 809 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 810 */
699140ba 811static void rebuild_sched_domains_locked(void)
cf417141
MK
812{
813 struct sched_domain_attr *attr;
acc3f5d7 814 cpumask_var_t *doms;
cf417141
MK
815 int ndoms;
816
5d21cc2d 817 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 818 get_online_cpus();
cf417141 819
5b16c2a4
LZ
820 /*
821 * We have raced with CPU hotplug. Don't do anything to avoid
822 * passing doms with offlined cpu to partition_sched_domains().
823 * Anyways, hotplug work item will rebuild sched domains.
824 */
8b5f1c52 825 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
826 goto out;
827
cf417141 828 /* Generate domain masks and attrs */
cf417141 829 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
830
831 /* Have scheduler rebuild the domains */
832 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 833out:
86ef5c9a 834 put_online_cpus();
cf417141 835}
db7f47cf 836#else /* !CONFIG_SMP */
699140ba 837static void rebuild_sched_domains_locked(void)
db7f47cf
PM
838{
839}
db7f47cf 840#endif /* CONFIG_SMP */
029190c5 841
cf417141
MK
842void rebuild_sched_domains(void)
843{
5d21cc2d 844 mutex_lock(&cpuset_mutex);
699140ba 845 rebuild_sched_domains_locked();
5d21cc2d 846 mutex_unlock(&cpuset_mutex);
029190c5
PJ
847}
848
0b2f630a
MX
849/**
850 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
851 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 852 *
d66393e5
TH
853 * Iterate through each task of @cs updating its cpus_allowed to the
854 * effective cpuset's. As this function is called with cpuset_mutex held,
855 * cpuset membership stays stable.
0b2f630a 856 */
d66393e5 857static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 858{
d66393e5
TH
859 struct css_task_iter it;
860 struct task_struct *task;
861
862 css_task_iter_start(&cs->css, &it);
863 while ((task = css_task_iter_next(&it)))
ae1c8023 864 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 865 css_task_iter_end(&it);
0b2f630a
MX
866}
867
5c5cc623 868/*
734d4513
LZ
869 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
870 * @cs: the cpuset to consider
871 * @new_cpus: temp variable for calculating new effective_cpus
872 *
873 * When congifured cpumask is changed, the effective cpumasks of this cpuset
874 * and all its descendants need to be updated.
5c5cc623 875 *
734d4513 876 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
877 *
878 * Called with cpuset_mutex held
879 */
734d4513 880static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
881{
882 struct cpuset *cp;
492eb21b 883 struct cgroup_subsys_state *pos_css;
8b5f1c52 884 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
885
886 rcu_read_lock();
734d4513
LZ
887 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
888 struct cpuset *parent = parent_cs(cp);
889
890 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
891
554b0d1c
LZ
892 /*
893 * If it becomes empty, inherit the effective mask of the
894 * parent, which is guaranteed to have some CPUs.
895 */
9e10a130
TH
896 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
897 cpumask_empty(new_cpus))
554b0d1c
LZ
898 cpumask_copy(new_cpus, parent->effective_cpus);
899
734d4513
LZ
900 /* Skip the whole subtree if the cpumask remains the same. */
901 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
902 pos_css = css_rightmost_descendant(pos_css);
903 continue;
5c5cc623 904 }
734d4513 905
ec903c0c 906 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
907 continue;
908 rcu_read_unlock();
909
8447a0fe 910 spin_lock_irq(&callback_lock);
734d4513 911 cpumask_copy(cp->effective_cpus, new_cpus);
8447a0fe 912 spin_unlock_irq(&callback_lock);
734d4513 913
9e10a130 914 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
734d4513
LZ
915 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
916
d66393e5 917 update_tasks_cpumask(cp);
5c5cc623 918
8b5f1c52
LZ
919 /*
920 * If the effective cpumask of any non-empty cpuset is changed,
921 * we need to rebuild sched domains.
922 */
923 if (!cpumask_empty(cp->cpus_allowed) &&
924 is_sched_load_balance(cp))
925 need_rebuild_sched_domains = true;
926
5c5cc623
LZ
927 rcu_read_lock();
928 css_put(&cp->css);
929 }
930 rcu_read_unlock();
8b5f1c52
LZ
931
932 if (need_rebuild_sched_domains)
933 rebuild_sched_domains_locked();
5c5cc623
LZ
934}
935
58f4790b
CW
936/**
937 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
938 * @cs: the cpuset to consider
fc34ac1d 939 * @trialcs: trial cpuset
58f4790b
CW
940 * @buf: buffer of cpu numbers written to this cpuset
941 */
645fcc9d
LZ
942static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
943 const char *buf)
1da177e4 944{
58f4790b 945 int retval;
1da177e4 946
5f054e31 947 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
948 if (cs == &top_cpuset)
949 return -EACCES;
950
6f7f02e7 951 /*
c8d9c90c 952 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
953 * Since cpulist_parse() fails on an empty mask, we special case
954 * that parsing. The validate_change() call ensures that cpusets
955 * with tasks have cpus.
6f7f02e7 956 */
020958b6 957 if (!*buf) {
300ed6cb 958 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 959 } else {
cd55f3c2 960 retval = cpulist_parse(buf, trialcs->cpus_requested);
6f7f02e7
DR
961 if (retval < 0)
962 return retval;
37340746 963
cd55f3c2 964 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
37340746 965 return -EINVAL;
cd55f3c2
RA
966
967 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
6f7f02e7 968 }
029190c5 969
8707d8b8 970 /* Nothing to do if the cpus didn't change */
cd55f3c2 971 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
8707d8b8 972 return 0;
58f4790b 973
a73456f3
LZ
974 retval = validate_change(cs, trialcs);
975 if (retval < 0)
976 return retval;
977
8447a0fe 978 spin_lock_irq(&callback_lock);
300ed6cb 979 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
cd55f3c2 980 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
8447a0fe 981 spin_unlock_irq(&callback_lock);
029190c5 982
734d4513
LZ
983 /* use trialcs->cpus_allowed as a temp variable */
984 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 985 return 0;
1da177e4
LT
986}
987
e4e364e8 988/*
fff4dc84
TH
989 * Migrate memory region from one set of nodes to another. This is
990 * performed asynchronously as it can be called from process migration path
991 * holding locks involved in process management. All mm migrations are
992 * performed in the queued order and can be waited for by flushing
993 * cpuset_migrate_mm_wq.
e4e364e8
PJ
994 */
995
fff4dc84
TH
996struct cpuset_migrate_mm_work {
997 struct work_struct work;
998 struct mm_struct *mm;
999 nodemask_t from;
1000 nodemask_t to;
1001};
1002
1003static void cpuset_migrate_mm_workfn(struct work_struct *work)
1004{
1005 struct cpuset_migrate_mm_work *mwork =
1006 container_of(work, struct cpuset_migrate_mm_work, work);
1007
1008 /* on a wq worker, no need to worry about %current's mems_allowed */
1009 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1010 mmput(mwork->mm);
1011 kfree(mwork);
1012}
1013
e4e364e8
PJ
1014static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1015 const nodemask_t *to)
1016{
fff4dc84 1017 struct cpuset_migrate_mm_work *mwork;
e4e364e8 1018
fff4dc84
TH
1019 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1020 if (mwork) {
1021 mwork->mm = mm;
1022 mwork->from = *from;
1023 mwork->to = *to;
1024 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1025 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1026 } else {
1027 mmput(mm);
1028 }
1029}
e4e364e8 1030
d5209747 1031static void cpuset_post_attach(void)
fff4dc84
TH
1032{
1033 flush_workqueue(cpuset_migrate_mm_wq);
e4e364e8
PJ
1034}
1035
3b6766fe 1036/*
58568d2a
MX
1037 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1038 * @tsk: the task to change
1039 * @newmems: new nodes that the task will be set
1040 *
1041 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1042 * we structure updates as setting all new allowed nodes, then clearing newly
1043 * disallowed ones.
58568d2a
MX
1044 */
1045static void cpuset_change_task_nodemask(struct task_struct *tsk,
1046 nodemask_t *newmems)
1047{
b246272e 1048 bool need_loop;
89e8a244 1049
c0ff7453
MX
1050 /*
1051 * Allow tasks that have access to memory reserves because they have
1052 * been OOM killed to get memory anywhere.
1053 */
1054 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1055 return;
1056 if (current->flags & PF_EXITING) /* Let dying task have memory */
1057 return;
1058
1059 task_lock(tsk);
b246272e
DR
1060 /*
1061 * Determine if a loop is necessary if another thread is doing
d26914d1 1062 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1063 * tsk does not have a mempolicy, then an empty nodemask will not be
1064 * possible when mems_allowed is larger than a word.
1065 */
1066 need_loop = task_has_mempolicy(tsk) ||
1067 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1068
0fc0287c
PZ
1069 if (need_loop) {
1070 local_irq_disable();
cc9a6c87 1071 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1072 }
c0ff7453 1073
cc9a6c87
MG
1074 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1075 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1076
1077 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1078 tsk->mems_allowed = *newmems;
cc9a6c87 1079
0fc0287c 1080 if (need_loop) {
cc9a6c87 1081 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1082 local_irq_enable();
1083 }
cc9a6c87 1084
c0ff7453 1085 task_unlock(tsk);
58568d2a
MX
1086}
1087
8793d854
PM
1088static void *cpuset_being_rebound;
1089
0b2f630a
MX
1090/**
1091 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1092 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1093 *
d66393e5
TH
1094 * Iterate through each task of @cs updating its mems_allowed to the
1095 * effective cpuset's. As this function is called with cpuset_mutex held,
1096 * cpuset membership stays stable.
0b2f630a 1097 */
d66393e5 1098static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1099{
33ad801d 1100 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1101 struct css_task_iter it;
1102 struct task_struct *task;
59dac16f 1103
846a16bf 1104 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1105
ae1c8023 1106 guarantee_online_mems(cs, &newmems);
33ad801d 1107
4225399a 1108 /*
3b6766fe
LZ
1109 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1110 * take while holding tasklist_lock. Forks can happen - the
1111 * mpol_dup() cpuset_being_rebound check will catch such forks,
1112 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1113 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1114 * will be contending for the global variable cpuset_being_rebound.
4225399a 1115 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1116 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1117 */
d66393e5
TH
1118 css_task_iter_start(&cs->css, &it);
1119 while ((task = css_task_iter_next(&it))) {
1120 struct mm_struct *mm;
1121 bool migrate;
1122
1123 cpuset_change_task_nodemask(task, &newmems);
1124
1125 mm = get_task_mm(task);
1126 if (!mm)
1127 continue;
1128
1129 migrate = is_memory_migrate(cs);
1130
1131 mpol_rebind_mm(mm, &cs->mems_allowed);
1132 if (migrate)
1133 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
fff4dc84
TH
1134 else
1135 mmput(mm);
d66393e5
TH
1136 }
1137 css_task_iter_end(&it);
4225399a 1138
33ad801d
LZ
1139 /*
1140 * All the tasks' nodemasks have been updated, update
1141 * cs->old_mems_allowed.
1142 */
1143 cs->old_mems_allowed = newmems;
1144
2df167a3 1145 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1146 cpuset_being_rebound = NULL;
1da177e4
LT
1147}
1148
5c5cc623 1149/*
734d4513
LZ
1150 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1151 * @cs: the cpuset to consider
1152 * @new_mems: a temp variable for calculating new effective_mems
5c5cc623 1153 *
734d4513
LZ
1154 * When configured nodemask is changed, the effective nodemasks of this cpuset
1155 * and all its descendants need to be updated.
5c5cc623 1156 *
734d4513 1157 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1158 *
1159 * Called with cpuset_mutex held
1160 */
734d4513 1161static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1162{
1163 struct cpuset *cp;
492eb21b 1164 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1165
1166 rcu_read_lock();
734d4513
LZ
1167 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1168 struct cpuset *parent = parent_cs(cp);
1169
1170 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1171
554b0d1c
LZ
1172 /*
1173 * If it becomes empty, inherit the effective mask of the
1174 * parent, which is guaranteed to have some MEMs.
1175 */
9e10a130
TH
1176 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1177 nodes_empty(*new_mems))
554b0d1c
LZ
1178 *new_mems = parent->effective_mems;
1179
734d4513
LZ
1180 /* Skip the whole subtree if the nodemask remains the same. */
1181 if (nodes_equal(*new_mems, cp->effective_mems)) {
1182 pos_css = css_rightmost_descendant(pos_css);
1183 continue;
5c5cc623 1184 }
734d4513 1185
ec903c0c 1186 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1187 continue;
1188 rcu_read_unlock();
1189
8447a0fe 1190 spin_lock_irq(&callback_lock);
734d4513 1191 cp->effective_mems = *new_mems;
8447a0fe 1192 spin_unlock_irq(&callback_lock);
734d4513 1193
9e10a130 1194 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
a1381268 1195 !nodes_equal(cp->mems_allowed, cp->effective_mems));
734d4513 1196
d66393e5 1197 update_tasks_nodemask(cp);
5c5cc623
LZ
1198
1199 rcu_read_lock();
1200 css_put(&cp->css);
1201 }
1202 rcu_read_unlock();
1203}
1204
0b2f630a
MX
1205/*
1206 * Handle user request to change the 'mems' memory placement
1207 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1208 * cpusets mems_allowed, and for each task in the cpuset,
1209 * update mems_allowed and rebind task's mempolicy and any vma
1210 * mempolicies and if the cpuset is marked 'memory_migrate',
1211 * migrate the tasks pages to the new memory.
0b2f630a 1212 *
8447a0fe 1213 * Call with cpuset_mutex held. May take callback_lock during call.
0b2f630a
MX
1214 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1215 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1216 * their mempolicies to the cpusets new mems_allowed.
1217 */
645fcc9d
LZ
1218static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1219 const char *buf)
0b2f630a 1220{
0b2f630a
MX
1221 int retval;
1222
1223 /*
38d7bee9 1224 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1225 * it's read-only
1226 */
53feb297
MX
1227 if (cs == &top_cpuset) {
1228 retval = -EACCES;
1229 goto done;
1230 }
0b2f630a 1231
0b2f630a
MX
1232 /*
1233 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1234 * Since nodelist_parse() fails on an empty mask, we special case
1235 * that parsing. The validate_change() call ensures that cpusets
1236 * with tasks have memory.
1237 */
1238 if (!*buf) {
645fcc9d 1239 nodes_clear(trialcs->mems_allowed);
0b2f630a 1240 } else {
645fcc9d 1241 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1242 if (retval < 0)
1243 goto done;
1244
645fcc9d 1245 if (!nodes_subset(trialcs->mems_allowed,
5d8ba82c
LZ
1246 top_cpuset.mems_allowed)) {
1247 retval = -EINVAL;
53feb297
MX
1248 goto done;
1249 }
0b2f630a 1250 }
33ad801d
LZ
1251
1252 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1253 retval = 0; /* Too easy - nothing to do */
1254 goto done;
1255 }
645fcc9d 1256 retval = validate_change(cs, trialcs);
0b2f630a
MX
1257 if (retval < 0)
1258 goto done;
1259
8447a0fe 1260 spin_lock_irq(&callback_lock);
645fcc9d 1261 cs->mems_allowed = trialcs->mems_allowed;
8447a0fe 1262 spin_unlock_irq(&callback_lock);
0b2f630a 1263
734d4513 1264 /* use trialcs->mems_allowed as a temp variable */
24ee3cf8 1265 update_nodemasks_hier(cs, &trialcs->mems_allowed);
0b2f630a
MX
1266done:
1267 return retval;
1268}
1269
8793d854
PM
1270int current_cpuset_is_being_rebound(void)
1271{
391acf97
GZ
1272 int ret;
1273
1274 rcu_read_lock();
1275 ret = task_cs(current) == cpuset_being_rebound;
1276 rcu_read_unlock();
1277
1278 return ret;
8793d854
PM
1279}
1280
5be7a479 1281static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1282{
db7f47cf 1283#ifdef CONFIG_SMP
60495e77 1284 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1285 return -EINVAL;
db7f47cf 1286#endif
1d3504fc
HS
1287
1288 if (val != cs->relax_domain_level) {
1289 cs->relax_domain_level = val;
300ed6cb
LZ
1290 if (!cpumask_empty(cs->cpus_allowed) &&
1291 is_sched_load_balance(cs))
699140ba 1292 rebuild_sched_domains_locked();
1d3504fc
HS
1293 }
1294
1295 return 0;
1296}
1297
72ec7029 1298/**
950592f7
MX
1299 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1300 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1301 *
d66393e5
TH
1302 * Iterate through each task of @cs updating its spread flags. As this
1303 * function is called with cpuset_mutex held, cpuset membership stays
1304 * stable.
950592f7 1305 */
d66393e5 1306static void update_tasks_flags(struct cpuset *cs)
950592f7 1307{
d66393e5
TH
1308 struct css_task_iter it;
1309 struct task_struct *task;
1310
1311 css_task_iter_start(&cs->css, &it);
1312 while ((task = css_task_iter_next(&it)))
1313 cpuset_update_task_spread_flag(cs, task);
1314 css_task_iter_end(&it);
950592f7
MX
1315}
1316
1da177e4
LT
1317/*
1318 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1319 * bit: the bit to update (see cpuset_flagbits_t)
1320 * cs: the cpuset to update
1321 * turning_on: whether the flag is being set or cleared
053199ed 1322 *
5d21cc2d 1323 * Call with cpuset_mutex held.
1da177e4
LT
1324 */
1325
700fe1ab
PM
1326static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1327 int turning_on)
1da177e4 1328{
645fcc9d 1329 struct cpuset *trialcs;
40b6a762 1330 int balance_flag_changed;
950592f7 1331 int spread_flag_changed;
950592f7 1332 int err;
1da177e4 1333
645fcc9d
LZ
1334 trialcs = alloc_trial_cpuset(cs);
1335 if (!trialcs)
1336 return -ENOMEM;
1337
1da177e4 1338 if (turning_on)
645fcc9d 1339 set_bit(bit, &trialcs->flags);
1da177e4 1340 else
645fcc9d 1341 clear_bit(bit, &trialcs->flags);
1da177e4 1342
645fcc9d 1343 err = validate_change(cs, trialcs);
85d7b949 1344 if (err < 0)
645fcc9d 1345 goto out;
029190c5 1346
029190c5 1347 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1348 is_sched_load_balance(trialcs));
029190c5 1349
950592f7
MX
1350 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1351 || (is_spread_page(cs) != is_spread_page(trialcs)));
1352
8447a0fe 1353 spin_lock_irq(&callback_lock);
645fcc9d 1354 cs->flags = trialcs->flags;
8447a0fe 1355 spin_unlock_irq(&callback_lock);
85d7b949 1356
300ed6cb 1357 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1358 rebuild_sched_domains_locked();
029190c5 1359
950592f7 1360 if (spread_flag_changed)
d66393e5 1361 update_tasks_flags(cs);
645fcc9d
LZ
1362out:
1363 free_trial_cpuset(trialcs);
1364 return err;
1da177e4
LT
1365}
1366
3e0d98b9 1367/*
80f7228b 1368 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1369 *
1370 * These routines manage a digitally filtered, constant time based,
1371 * event frequency meter. There are four routines:
1372 * fmeter_init() - initialize a frequency meter.
1373 * fmeter_markevent() - called each time the event happens.
1374 * fmeter_getrate() - returns the recent rate of such events.
1375 * fmeter_update() - internal routine used to update fmeter.
1376 *
1377 * A common data structure is passed to each of these routines,
1378 * which is used to keep track of the state required to manage the
1379 * frequency meter and its digital filter.
1380 *
1381 * The filter works on the number of events marked per unit time.
1382 * The filter is single-pole low-pass recursive (IIR). The time unit
1383 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1384 * simulate 3 decimal digits of precision (multiplied by 1000).
1385 *
1386 * With an FM_COEF of 933, and a time base of 1 second, the filter
1387 * has a half-life of 10 seconds, meaning that if the events quit
1388 * happening, then the rate returned from the fmeter_getrate()
1389 * will be cut in half each 10 seconds, until it converges to zero.
1390 *
1391 * It is not worth doing a real infinitely recursive filter. If more
1392 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1393 * just compute FM_MAXTICKS ticks worth, by which point the level
1394 * will be stable.
1395 *
1396 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1397 * arithmetic overflow in the fmeter_update() routine.
1398 *
1399 * Given the simple 32 bit integer arithmetic used, this meter works
1400 * best for reporting rates between one per millisecond (msec) and
1401 * one per 32 (approx) seconds. At constant rates faster than one
1402 * per msec it maxes out at values just under 1,000,000. At constant
1403 * rates between one per msec, and one per second it will stabilize
1404 * to a value N*1000, where N is the rate of events per second.
1405 * At constant rates between one per second and one per 32 seconds,
1406 * it will be choppy, moving up on the seconds that have an event,
1407 * and then decaying until the next event. At rates slower than
1408 * about one in 32 seconds, it decays all the way back to zero between
1409 * each event.
1410 */
1411
1412#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1413#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1414#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1415#define FM_SCALE 1000 /* faux fixed point scale */
1416
1417/* Initialize a frequency meter */
1418static void fmeter_init(struct fmeter *fmp)
1419{
1420 fmp->cnt = 0;
1421 fmp->val = 0;
1422 fmp->time = 0;
1423 spin_lock_init(&fmp->lock);
1424}
1425
1426/* Internal meter update - process cnt events and update value */
1427static void fmeter_update(struct fmeter *fmp)
1428{
1429 time_t now = get_seconds();
1430 time_t ticks = now - fmp->time;
1431
1432 if (ticks == 0)
1433 return;
1434
1435 ticks = min(FM_MAXTICKS, ticks);
1436 while (ticks-- > 0)
1437 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1438 fmp->time = now;
1439
1440 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1441 fmp->cnt = 0;
1442}
1443
1444/* Process any previous ticks, then bump cnt by one (times scale). */
1445static void fmeter_markevent(struct fmeter *fmp)
1446{
1447 spin_lock(&fmp->lock);
1448 fmeter_update(fmp);
1449 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1450 spin_unlock(&fmp->lock);
1451}
1452
1453/* Process any previous ticks, then return current value. */
1454static int fmeter_getrate(struct fmeter *fmp)
1455{
1456 int val;
1457
1458 spin_lock(&fmp->lock);
1459 fmeter_update(fmp);
1460 val = fmp->val;
1461 spin_unlock(&fmp->lock);
1462 return val;
1463}
1464
57fce0a6
TH
1465static struct cpuset *cpuset_attach_old_cs;
1466
5d21cc2d 1467/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1f7dd3e5 1468static int cpuset_can_attach(struct cgroup_taskset *tset)
f780bdb7 1469{
1f7dd3e5
TH
1470 struct cgroup_subsys_state *css;
1471 struct cpuset *cs;
bb9d97b6
TH
1472 struct task_struct *task;
1473 int ret;
1da177e4 1474
57fce0a6 1475 /* used later by cpuset_attach() */
1f7dd3e5
TH
1476 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1477 cs = css_cs(css);
57fce0a6 1478
5d21cc2d
TH
1479 mutex_lock(&cpuset_mutex);
1480
aa6ec29b 1481 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1482 ret = -ENOSPC;
9e10a130 1483 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
88fa523b 1484 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1485 goto out_unlock;
9985b0ba 1486
1f7dd3e5 1487 cgroup_taskset_for_each(task, css, tset) {
7f51412a
JL
1488 ret = task_can_attach(task, cs->cpus_allowed);
1489 if (ret)
5d21cc2d
TH
1490 goto out_unlock;
1491 ret = security_task_setscheduler(task);
1492 if (ret)
1493 goto out_unlock;
bb9d97b6 1494 }
f780bdb7 1495
452477fa
TH
1496 /*
1497 * Mark attach is in progress. This makes validate_change() fail
1498 * changes which zero cpus/mems_allowed.
1499 */
1500 cs->attach_in_progress++;
5d21cc2d
TH
1501 ret = 0;
1502out_unlock:
1503 mutex_unlock(&cpuset_mutex);
1504 return ret;
8793d854 1505}
f780bdb7 1506
1f7dd3e5 1507static void cpuset_cancel_attach(struct cgroup_taskset *tset)
452477fa 1508{
1f7dd3e5
TH
1509 struct cgroup_subsys_state *css;
1510 struct cpuset *cs;
1511
1512 cgroup_taskset_first(tset, &css);
1513 cs = css_cs(css);
1514
5d21cc2d 1515 mutex_lock(&cpuset_mutex);
eb95419b 1516 css_cs(css)->attach_in_progress--;
5d21cc2d 1517 mutex_unlock(&cpuset_mutex);
8793d854 1518}
1da177e4 1519
4e4c9a14 1520/*
5d21cc2d 1521 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1522 * but we can't allocate it dynamically there. Define it global and
1523 * allocate from cpuset_init().
1524 */
1525static cpumask_var_t cpus_attach;
1526
1f7dd3e5 1527static void cpuset_attach(struct cgroup_taskset *tset)
8793d854 1528{
67bd2c59 1529 /* static buf protected by cpuset_mutex */
4e4c9a14 1530 static nodemask_t cpuset_attach_nodemask_to;
bb9d97b6 1531 struct task_struct *task;
4530eddb 1532 struct task_struct *leader;
1f7dd3e5
TH
1533 struct cgroup_subsys_state *css;
1534 struct cpuset *cs;
57fce0a6 1535 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 1536
1f7dd3e5
TH
1537 cgroup_taskset_first(tset, &css);
1538 cs = css_cs(css);
1539
5d21cc2d
TH
1540 mutex_lock(&cpuset_mutex);
1541
4e4c9a14
TH
1542 /* prepare for attach */
1543 if (cs == &top_cpuset)
1544 cpumask_copy(cpus_attach, cpu_possible_mask);
1545 else
ae1c8023 1546 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 1547
ae1c8023 1548 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 1549
1f7dd3e5 1550 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6
TH
1551 /*
1552 * can_attach beforehand should guarantee that this doesn't
1553 * fail. TODO: have a better way to handle failure here
1554 */
1555 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1556
1557 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1558 cpuset_update_task_spread_flag(cs, task);
1559 }
22fb52dd 1560
f780bdb7 1561 /*
4530eddb
TH
1562 * Change mm for all threadgroup leaders. This is expensive and may
1563 * sleep and should be moved outside migration path proper.
f780bdb7 1564 */
ae1c8023 1565 cpuset_attach_nodemask_to = cs->effective_mems;
1f7dd3e5 1566 cgroup_taskset_for_each_leader(leader, css, tset) {
3df9ca0a
TH
1567 struct mm_struct *mm = get_task_mm(leader);
1568
1569 if (mm) {
1570 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1571
1572 /*
1573 * old_mems_allowed is the same with mems_allowed
1574 * here, except if this task is being moved
1575 * automatically due to hotplug. In that case
1576 * @mems_allowed has been updated and is empty, so
1577 * @old_mems_allowed is the right nodesets that we
1578 * migrate mm from.
1579 */
fff4dc84 1580 if (is_memory_migrate(cs))
3df9ca0a
TH
1581 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1582 &cpuset_attach_nodemask_to);
fff4dc84
TH
1583 else
1584 mmput(mm);
f047cecf 1585 }
4225399a 1586 }
452477fa 1587
33ad801d 1588 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1589
452477fa 1590 cs->attach_in_progress--;
e44193d3
LZ
1591 if (!cs->attach_in_progress)
1592 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1593
1594 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1595}
1596
1597/* The various types of files and directories in a cpuset file system */
1598
1599typedef enum {
45b07ef3 1600 FILE_MEMORY_MIGRATE,
1da177e4
LT
1601 FILE_CPULIST,
1602 FILE_MEMLIST,
afd1a8b3
LZ
1603 FILE_EFFECTIVE_CPULIST,
1604 FILE_EFFECTIVE_MEMLIST,
1da177e4
LT
1605 FILE_CPU_EXCLUSIVE,
1606 FILE_MEM_EXCLUSIVE,
78608366 1607 FILE_MEM_HARDWALL,
029190c5 1608 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1609 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1610 FILE_MEMORY_PRESSURE_ENABLED,
1611 FILE_MEMORY_PRESSURE,
825a46af
PJ
1612 FILE_SPREAD_PAGE,
1613 FILE_SPREAD_SLAB,
1da177e4
LT
1614} cpuset_filetype_t;
1615
182446d0
TH
1616static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1617 u64 val)
700fe1ab 1618{
182446d0 1619 struct cpuset *cs = css_cs(css);
700fe1ab 1620 cpuset_filetype_t type = cft->private;
a903f086 1621 int retval = 0;
700fe1ab 1622
5d21cc2d 1623 mutex_lock(&cpuset_mutex);
a903f086
LZ
1624 if (!is_cpuset_online(cs)) {
1625 retval = -ENODEV;
5d21cc2d 1626 goto out_unlock;
a903f086 1627 }
700fe1ab
PM
1628
1629 switch (type) {
1da177e4 1630 case FILE_CPU_EXCLUSIVE:
700fe1ab 1631 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1632 break;
1633 case FILE_MEM_EXCLUSIVE:
700fe1ab 1634 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1635 break;
78608366
PM
1636 case FILE_MEM_HARDWALL:
1637 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1638 break;
029190c5 1639 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1640 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1641 break;
45b07ef3 1642 case FILE_MEMORY_MIGRATE:
700fe1ab 1643 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1644 break;
3e0d98b9 1645 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1646 cpuset_memory_pressure_enabled = !!val;
3e0d98b9 1647 break;
825a46af 1648 case FILE_SPREAD_PAGE:
700fe1ab 1649 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1650 break;
1651 case FILE_SPREAD_SLAB:
700fe1ab 1652 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1653 break;
1da177e4
LT
1654 default:
1655 retval = -EINVAL;
700fe1ab 1656 break;
1da177e4 1657 }
5d21cc2d
TH
1658out_unlock:
1659 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1660 return retval;
1661}
1662
182446d0
TH
1663static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1664 s64 val)
5be7a479 1665{
182446d0 1666 struct cpuset *cs = css_cs(css);
5be7a479 1667 cpuset_filetype_t type = cft->private;
5d21cc2d 1668 int retval = -ENODEV;
5be7a479 1669
5d21cc2d
TH
1670 mutex_lock(&cpuset_mutex);
1671 if (!is_cpuset_online(cs))
1672 goto out_unlock;
e3712395 1673
5be7a479
PM
1674 switch (type) {
1675 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1676 retval = update_relax_domain_level(cs, val);
1677 break;
1678 default:
1679 retval = -EINVAL;
1680 break;
1681 }
5d21cc2d
TH
1682out_unlock:
1683 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1684 return retval;
1685}
1686
e3712395
PM
1687/*
1688 * Common handling for a write to a "cpus" or "mems" file.
1689 */
451af504
TH
1690static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1691 char *buf, size_t nbytes, loff_t off)
e3712395 1692{
451af504 1693 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1694 struct cpuset *trialcs;
5d21cc2d 1695 int retval = -ENODEV;
e3712395 1696
451af504
TH
1697 buf = strstrip(buf);
1698
3a5a6d0c
TH
1699 /*
1700 * CPU or memory hotunplug may leave @cs w/o any execution
1701 * resources, in which case the hotplug code asynchronously updates
1702 * configuration and transfers all tasks to the nearest ancestor
1703 * which can execute.
1704 *
1705 * As writes to "cpus" or "mems" may restore @cs's execution
1706 * resources, wait for the previously scheduled operations before
1707 * proceeding, so that we don't end up keep removing tasks added
1708 * after execution capability is restored.
76bb5ab8
TH
1709 *
1710 * cpuset_hotplug_work calls back into cgroup core via
1711 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1712 * operation like this one can lead to a deadlock through kernfs
1713 * active_ref protection. Let's break the protection. Losing the
1714 * protection is okay as we check whether @cs is online after
1715 * grabbing cpuset_mutex anyway. This only happens on the legacy
1716 * hierarchies.
3a5a6d0c 1717 */
76bb5ab8
TH
1718 css_get(&cs->css);
1719 kernfs_break_active_protection(of->kn);
3a5a6d0c
TH
1720 flush_work(&cpuset_hotplug_work);
1721
5d21cc2d
TH
1722 mutex_lock(&cpuset_mutex);
1723 if (!is_cpuset_online(cs))
1724 goto out_unlock;
e3712395 1725
645fcc9d 1726 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1727 if (!trialcs) {
1728 retval = -ENOMEM;
5d21cc2d 1729 goto out_unlock;
b75f38d6 1730 }
645fcc9d 1731
451af504 1732 switch (of_cft(of)->private) {
e3712395 1733 case FILE_CPULIST:
645fcc9d 1734 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1735 break;
1736 case FILE_MEMLIST:
645fcc9d 1737 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1738 break;
1739 default:
1740 retval = -EINVAL;
1741 break;
1742 }
645fcc9d
LZ
1743
1744 free_trial_cpuset(trialcs);
5d21cc2d
TH
1745out_unlock:
1746 mutex_unlock(&cpuset_mutex);
76bb5ab8
TH
1747 kernfs_unbreak_active_protection(of->kn);
1748 css_put(&cs->css);
fff4dc84 1749 flush_workqueue(cpuset_migrate_mm_wq);
451af504 1750 return retval ?: nbytes;
e3712395
PM
1751}
1752
1da177e4
LT
1753/*
1754 * These ascii lists should be read in a single call, by using a user
1755 * buffer large enough to hold the entire map. If read in smaller
1756 * chunks, there is no guarantee of atomicity. Since the display format
1757 * used, list of ranges of sequential numbers, is variable length,
1758 * and since these maps can change value dynamically, one could read
1759 * gibberish by doing partial reads while a list was changing.
1da177e4 1760 */
2da8ca82 1761static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1762{
2da8ca82
TH
1763 struct cpuset *cs = css_cs(seq_css(sf));
1764 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411 1765 int ret = 0;
1da177e4 1766
8447a0fe 1767 spin_lock_irq(&callback_lock);
1da177e4
LT
1768
1769 switch (type) {
1770 case FILE_CPULIST:
cd55f3c2 1771 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
1da177e4
LT
1772 break;
1773 case FILE_MEMLIST:
e8e6d97c 1774 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1da177e4 1775 break;
afd1a8b3 1776 case FILE_EFFECTIVE_CPULIST:
e8e6d97c 1777 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
afd1a8b3
LZ
1778 break;
1779 case FILE_EFFECTIVE_MEMLIST:
e8e6d97c 1780 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
afd1a8b3 1781 break;
1da177e4 1782 default:
51ffe411 1783 ret = -EINVAL;
1da177e4 1784 }
1da177e4 1785
8447a0fe 1786 spin_unlock_irq(&callback_lock);
51ffe411 1787 return ret;
1da177e4
LT
1788}
1789
182446d0 1790static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1791{
182446d0 1792 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1793 cpuset_filetype_t type = cft->private;
1794 switch (type) {
1795 case FILE_CPU_EXCLUSIVE:
1796 return is_cpu_exclusive(cs);
1797 case FILE_MEM_EXCLUSIVE:
1798 return is_mem_exclusive(cs);
78608366
PM
1799 case FILE_MEM_HARDWALL:
1800 return is_mem_hardwall(cs);
700fe1ab
PM
1801 case FILE_SCHED_LOAD_BALANCE:
1802 return is_sched_load_balance(cs);
1803 case FILE_MEMORY_MIGRATE:
1804 return is_memory_migrate(cs);
1805 case FILE_MEMORY_PRESSURE_ENABLED:
1806 return cpuset_memory_pressure_enabled;
1807 case FILE_MEMORY_PRESSURE:
1808 return fmeter_getrate(&cs->fmeter);
1809 case FILE_SPREAD_PAGE:
1810 return is_spread_page(cs);
1811 case FILE_SPREAD_SLAB:
1812 return is_spread_slab(cs);
1813 default:
1814 BUG();
1815 }
cf417141
MK
1816
1817 /* Unreachable but makes gcc happy */
1818 return 0;
700fe1ab 1819}
1da177e4 1820
182446d0 1821static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1822{
182446d0 1823 struct cpuset *cs = css_cs(css);
5be7a479
PM
1824 cpuset_filetype_t type = cft->private;
1825 switch (type) {
1826 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1827 return cs->relax_domain_level;
1828 default:
1829 BUG();
1830 }
cf417141
MK
1831
1832 /* Unrechable but makes gcc happy */
1833 return 0;
5be7a479
PM
1834}
1835
1da177e4
LT
1836
1837/*
1838 * for the common functions, 'private' gives the type of file
1839 */
1840
addf2c73
PM
1841static struct cftype files[] = {
1842 {
1843 .name = "cpus",
2da8ca82 1844 .seq_show = cpuset_common_seq_show,
451af504 1845 .write = cpuset_write_resmask,
e3712395 1846 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1847 .private = FILE_CPULIST,
1848 },
1849
1850 {
1851 .name = "mems",
2da8ca82 1852 .seq_show = cpuset_common_seq_show,
451af504 1853 .write = cpuset_write_resmask,
e3712395 1854 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1855 .private = FILE_MEMLIST,
1856 },
1857
afd1a8b3
LZ
1858 {
1859 .name = "effective_cpus",
1860 .seq_show = cpuset_common_seq_show,
1861 .private = FILE_EFFECTIVE_CPULIST,
1862 },
1863
1864 {
1865 .name = "effective_mems",
1866 .seq_show = cpuset_common_seq_show,
1867 .private = FILE_EFFECTIVE_MEMLIST,
1868 },
1869
addf2c73
PM
1870 {
1871 .name = "cpu_exclusive",
1872 .read_u64 = cpuset_read_u64,
1873 .write_u64 = cpuset_write_u64,
1874 .private = FILE_CPU_EXCLUSIVE,
1875 },
1876
1877 {
1878 .name = "mem_exclusive",
1879 .read_u64 = cpuset_read_u64,
1880 .write_u64 = cpuset_write_u64,
1881 .private = FILE_MEM_EXCLUSIVE,
1882 },
1883
78608366
PM
1884 {
1885 .name = "mem_hardwall",
1886 .read_u64 = cpuset_read_u64,
1887 .write_u64 = cpuset_write_u64,
1888 .private = FILE_MEM_HARDWALL,
1889 },
1890
addf2c73
PM
1891 {
1892 .name = "sched_load_balance",
1893 .read_u64 = cpuset_read_u64,
1894 .write_u64 = cpuset_write_u64,
1895 .private = FILE_SCHED_LOAD_BALANCE,
1896 },
1897
1898 {
1899 .name = "sched_relax_domain_level",
5be7a479
PM
1900 .read_s64 = cpuset_read_s64,
1901 .write_s64 = cpuset_write_s64,
addf2c73
PM
1902 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1903 },
1904
1905 {
1906 .name = "memory_migrate",
1907 .read_u64 = cpuset_read_u64,
1908 .write_u64 = cpuset_write_u64,
1909 .private = FILE_MEMORY_MIGRATE,
1910 },
1911
1912 {
1913 .name = "memory_pressure",
1914 .read_u64 = cpuset_read_u64,
addf2c73
PM
1915 },
1916
1917 {
1918 .name = "memory_spread_page",
1919 .read_u64 = cpuset_read_u64,
1920 .write_u64 = cpuset_write_u64,
1921 .private = FILE_SPREAD_PAGE,
1922 },
1923
1924 {
1925 .name = "memory_spread_slab",
1926 .read_u64 = cpuset_read_u64,
1927 .write_u64 = cpuset_write_u64,
1928 .private = FILE_SPREAD_SLAB,
1929 },
3e0d98b9 1930
4baf6e33
TH
1931 {
1932 .name = "memory_pressure_enabled",
1933 .flags = CFTYPE_ONLY_ON_ROOT,
1934 .read_u64 = cpuset_read_u64,
1935 .write_u64 = cpuset_write_u64,
1936 .private = FILE_MEMORY_PRESSURE_ENABLED,
1937 },
1da177e4 1938
4baf6e33
TH
1939 { } /* terminate */
1940};
1da177e4
LT
1941
1942/*
92fb9748 1943 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1944 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1945 */
1946
eb95419b
TH
1947static struct cgroup_subsys_state *
1948cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1949{
c8f699bb 1950 struct cpuset *cs;
1da177e4 1951
eb95419b 1952 if (!parent_css)
8793d854 1953 return &top_cpuset.css;
033fa1c5 1954
c8f699bb 1955 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1956 if (!cs)
8793d854 1957 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1958 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1959 goto free_cs;
cd55f3c2
RA
1960 if (!alloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
1961 goto free_allowed;
e2b9a3d7 1962 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
cd55f3c2 1963 goto free_requested;
1da177e4 1964
029190c5 1965 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1966 cpumask_clear(cs->cpus_allowed);
cd55f3c2 1967 cpumask_clear(cs->cpus_requested);
f9a86fcb 1968 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1969 cpumask_clear(cs->effective_cpus);
1970 nodes_clear(cs->effective_mems);
3e0d98b9 1971 fmeter_init(&cs->fmeter);
1d3504fc 1972 cs->relax_domain_level = -1;
1da177e4 1973
c8f699bb 1974 return &cs->css;
e2b9a3d7 1975
cd55f3c2
RA
1976free_requested:
1977 free_cpumask_var(cs->cpus_requested);
1978free_allowed:
e2b9a3d7
LZ
1979 free_cpumask_var(cs->cpus_allowed);
1980free_cs:
1981 kfree(cs);
1982 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1983}
1984
eb95419b 1985static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1986{
eb95419b 1987 struct cpuset *cs = css_cs(css);
c431069f 1988 struct cpuset *parent = parent_cs(cs);
ae8086ce 1989 struct cpuset *tmp_cs;
492eb21b 1990 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1991
1992 if (!parent)
1993 return 0;
1994
5d21cc2d
TH
1995 mutex_lock(&cpuset_mutex);
1996
efeb77b2 1997 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1998 if (is_spread_page(parent))
1999 set_bit(CS_SPREAD_PAGE, &cs->flags);
2000 if (is_spread_slab(parent))
2001 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 2002
664eedde 2003 cpuset_inc();
033fa1c5 2004
8447a0fe 2005 spin_lock_irq(&callback_lock);
9e10a130 2006 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
e2b9a3d7
LZ
2007 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2008 cs->effective_mems = parent->effective_mems;
2009 }
8447a0fe 2010 spin_unlock_irq(&callback_lock);
e2b9a3d7 2011
eb95419b 2012 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 2013 goto out_unlock;
033fa1c5
TH
2014
2015 /*
2016 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2017 * set. This flag handling is implemented in cgroup core for
2018 * histrical reasons - the flag may be specified during mount.
2019 *
2020 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2021 * refuse to clone the configuration - thereby refusing the task to
2022 * be entered, and as a result refusing the sys_unshare() or
2023 * clone() which initiated it. If this becomes a problem for some
2024 * users who wish to allow that scenario, then this could be
2025 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2026 * (and likewise for mems) to the new cgroup.
2027 */
ae8086ce 2028 rcu_read_lock();
492eb21b 2029 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
2030 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2031 rcu_read_unlock();
5d21cc2d 2032 goto out_unlock;
ae8086ce 2033 }
033fa1c5 2034 }
ae8086ce 2035 rcu_read_unlock();
033fa1c5 2036
8447a0fe 2037 spin_lock_irq(&callback_lock);
033fa1c5 2038 cs->mems_allowed = parent->mems_allowed;
790317e1 2039 cs->effective_mems = parent->mems_allowed;
033fa1c5 2040 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
cd55f3c2 2041 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
790317e1 2042 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
cea74465 2043 spin_unlock_irq(&callback_lock);
5d21cc2d
TH
2044out_unlock:
2045 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2046 return 0;
2047}
2048
0b9e6965
ZH
2049/*
2050 * If the cpuset being removed has its flag 'sched_load_balance'
2051 * enabled, then simulate turning sched_load_balance off, which
2052 * will call rebuild_sched_domains_locked().
2053 */
2054
eb95419b 2055static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2056{
eb95419b 2057 struct cpuset *cs = css_cs(css);
c8f699bb 2058
5d21cc2d 2059 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2060
2061 if (is_sched_load_balance(cs))
2062 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2063
664eedde 2064 cpuset_dec();
efeb77b2 2065 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2066
5d21cc2d 2067 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2068}
2069
eb95419b 2070static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2071{
eb95419b 2072 struct cpuset *cs = css_cs(css);
1da177e4 2073
e2b9a3d7 2074 free_cpumask_var(cs->effective_cpus);
300ed6cb 2075 free_cpumask_var(cs->cpus_allowed);
cd55f3c2 2076 free_cpumask_var(cs->cpus_requested);
8793d854 2077 kfree(cs);
1da177e4
LT
2078}
2079
39bd0d15
LZ
2080static void cpuset_bind(struct cgroup_subsys_state *root_css)
2081{
2082 mutex_lock(&cpuset_mutex);
8447a0fe 2083 spin_lock_irq(&callback_lock);
39bd0d15 2084
9e10a130 2085 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
39bd0d15
LZ
2086 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2087 top_cpuset.mems_allowed = node_possible_map;
2088 } else {
2089 cpumask_copy(top_cpuset.cpus_allowed,
2090 top_cpuset.effective_cpus);
2091 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2092 }
2093
8447a0fe 2094 spin_unlock_irq(&callback_lock);
39bd0d15
LZ
2095 mutex_unlock(&cpuset_mutex);
2096}
2097
06ec7a1d
ZL
2098/*
2099 * Make sure the new task conform to the current state of its parent,
2100 * which could have been changed by cpuset just after it inherits the
2101 * state from the parent and before it sits on the cgroup's task list.
2102 */
29bd0359 2103void cpuset_fork(struct task_struct *task, void *priv)
06ec7a1d
ZL
2104{
2105 if (task_css_is_root(task, cpuset_cgrp_id))
2106 return;
2107
2108 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2109 task->mems_allowed = current->mems_allowed;
2110}
2111
073219e9 2112struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
2113 .css_alloc = cpuset_css_alloc,
2114 .css_online = cpuset_css_online,
2115 .css_offline = cpuset_css_offline,
2116 .css_free = cpuset_css_free,
2117 .can_attach = cpuset_can_attach,
2118 .cancel_attach = cpuset_cancel_attach,
2119 .attach = cpuset_attach,
d5209747 2120 .post_attach = cpuset_post_attach,
39bd0d15 2121 .bind = cpuset_bind,
06ec7a1d 2122 .fork = cpuset_fork,
5577964e 2123 .legacy_cftypes = files,
39bd0d15 2124 .early_init = 1,
8793d854
PM
2125};
2126
1da177e4
LT
2127/**
2128 * cpuset_init - initialize cpusets at system boot
2129 *
2130 * Description: Initialize top_cpuset and the cpuset internal file system,
2131 **/
2132
2133int __init cpuset_init(void)
2134{
8793d854 2135 int err = 0;
1da177e4 2136
58568d2a
MX
2137 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2138 BUG();
e2b9a3d7
LZ
2139 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2140 BUG();
cd55f3c2
RA
2141 if (!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL))
2142 BUG();
58568d2a 2143
300ed6cb 2144 cpumask_setall(top_cpuset.cpus_allowed);
cd55f3c2 2145 cpumask_setall(top_cpuset.cpus_requested);
f9a86fcb 2146 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2147 cpumask_setall(top_cpuset.effective_cpus);
2148 nodes_setall(top_cpuset.effective_mems);
1da177e4 2149
3e0d98b9 2150 fmeter_init(&top_cpuset.fmeter);
029190c5 2151 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2152 top_cpuset.relax_domain_level = -1;
1da177e4 2153
1da177e4
LT
2154 err = register_filesystem(&cpuset_fs_type);
2155 if (err < 0)
8793d854
PM
2156 return err;
2157
2341d1b6
LZ
2158 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2159 BUG();
2160
8793d854 2161 return 0;
1da177e4
LT
2162}
2163
b1aac8bb 2164/*
cf417141 2165 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2166 * or memory nodes, we need to walk over the cpuset hierarchy,
2167 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2168 * last CPU or node from a cpuset, then move the tasks in the empty
2169 * cpuset to its next-highest non-empty parent.
b1aac8bb 2170 */
956db3ca
CW
2171static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2172{
2173 struct cpuset *parent;
2174
956db3ca
CW
2175 /*
2176 * Find its next-highest non-empty parent, (top cpuset
2177 * has online cpus, so can't be empty).
2178 */
c431069f 2179 parent = parent_cs(cs);
300ed6cb 2180 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2181 nodes_empty(parent->mems_allowed))
c431069f 2182 parent = parent_cs(parent);
956db3ca 2183
8cc99345 2184 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2185 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2186 pr_cont_cgroup_name(cs->css.cgroup);
2187 pr_cont("\n");
8cc99345 2188 }
956db3ca
CW
2189}
2190
be4c9dd7
LZ
2191static void
2192hotplug_update_tasks_legacy(struct cpuset *cs,
2193 struct cpumask *new_cpus, nodemask_t *new_mems,
2194 bool cpus_updated, bool mems_updated)
390a36aa
LZ
2195{
2196 bool is_empty;
2197
8447a0fe 2198 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2199 cpumask_copy(cs->cpus_allowed, new_cpus);
2200 cpumask_copy(cs->effective_cpus, new_cpus);
2201 cs->mems_allowed = *new_mems;
2202 cs->effective_mems = *new_mems;
8447a0fe 2203 spin_unlock_irq(&callback_lock);
390a36aa
LZ
2204
2205 /*
2206 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2207 * as the tasks will be migratecd to an ancestor.
2208 */
be4c9dd7 2209 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
390a36aa 2210 update_tasks_cpumask(cs);
be4c9dd7 2211 if (mems_updated && !nodes_empty(cs->mems_allowed))
390a36aa
LZ
2212 update_tasks_nodemask(cs);
2213
2214 is_empty = cpumask_empty(cs->cpus_allowed) ||
2215 nodes_empty(cs->mems_allowed);
2216
2217 mutex_unlock(&cpuset_mutex);
2218
2219 /*
2220 * Move tasks to the nearest ancestor with execution resources,
2221 * This is full cgroup operation which will also call back into
2222 * cpuset. Should be done outside any lock.
2223 */
2224 if (is_empty)
2225 remove_tasks_in_empty_cpuset(cs);
2226
2227 mutex_lock(&cpuset_mutex);
2228}
2229
be4c9dd7
LZ
2230static void
2231hotplug_update_tasks(struct cpuset *cs,
2232 struct cpumask *new_cpus, nodemask_t *new_mems,
2233 bool cpus_updated, bool mems_updated)
390a36aa 2234{
be4c9dd7
LZ
2235 if (cpumask_empty(new_cpus))
2236 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2237 if (nodes_empty(*new_mems))
2238 *new_mems = parent_cs(cs)->effective_mems;
2239
8447a0fe 2240 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2241 cpumask_copy(cs->effective_cpus, new_cpus);
2242 cs->effective_mems = *new_mems;
8447a0fe 2243 spin_unlock_irq(&callback_lock);
390a36aa 2244
be4c9dd7 2245 if (cpus_updated)
390a36aa 2246 update_tasks_cpumask(cs);
be4c9dd7 2247 if (mems_updated)
390a36aa
LZ
2248 update_tasks_nodemask(cs);
2249}
2250
deb7aa30 2251/**
388afd85 2252 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2253 * @cs: cpuset in interest
956db3ca 2254 *
deb7aa30
TH
2255 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2256 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2257 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2258 */
388afd85 2259static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2260{
be4c9dd7
LZ
2261 static cpumask_t new_cpus;
2262 static nodemask_t new_mems;
2263 bool cpus_updated;
2264 bool mems_updated;
e44193d3
LZ
2265retry:
2266 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2267
5d21cc2d 2268 mutex_lock(&cpuset_mutex);
7ddf96b0 2269
e44193d3
LZ
2270 /*
2271 * We have raced with task attaching. We wait until attaching
2272 * is finished, so we won't attach a task to an empty cpuset.
2273 */
2274 if (cs->attach_in_progress) {
2275 mutex_unlock(&cpuset_mutex);
2276 goto retry;
2277 }
2278
cd55f3c2 2279 cpumask_and(&new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
be4c9dd7 2280 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
80d1fa64 2281
be4c9dd7
LZ
2282 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2283 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
deb7aa30 2284
9e10a130 2285 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
be4c9dd7
LZ
2286 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2287 cpus_updated, mems_updated);
390a36aa 2288 else
be4c9dd7
LZ
2289 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2290 cpus_updated, mems_updated);
8d033948 2291
5d21cc2d 2292 mutex_unlock(&cpuset_mutex);
b1aac8bb
PJ
2293}
2294
deb7aa30 2295/**
3a5a6d0c 2296 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2297 *
deb7aa30
TH
2298 * This function is called after either CPU or memory configuration has
2299 * changed and updates cpuset accordingly. The top_cpuset is always
2300 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2301 * order to make cpusets transparent (of no affect) on systems that are
2302 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2303 *
deb7aa30 2304 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2305 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2306 * all descendants.
956db3ca 2307 *
deb7aa30
TH
2308 * Note that CPU offlining during suspend is ignored. We don't modify
2309 * cpusets across suspend/resume cycles at all.
956db3ca 2310 */
3a5a6d0c 2311static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2312{
5c5cc623
LZ
2313 static cpumask_t new_cpus;
2314 static nodemask_t new_mems;
deb7aa30 2315 bool cpus_updated, mems_updated;
9e10a130 2316 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
b1aac8bb 2317
5d21cc2d 2318 mutex_lock(&cpuset_mutex);
956db3ca 2319
deb7aa30
TH
2320 /* fetch the available cpus/mems and find out which changed how */
2321 cpumask_copy(&new_cpus, cpu_active_mask);
2322 new_mems = node_states[N_MEMORY];
7ddf96b0 2323
7e88291b
LZ
2324 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2325 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
7ddf96b0 2326
deb7aa30
TH
2327 /* synchronize cpus_allowed to cpu_active_mask */
2328 if (cpus_updated) {
8447a0fe 2329 spin_lock_irq(&callback_lock);
7e88291b
LZ
2330 if (!on_dfl)
2331 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2332 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
8447a0fe 2333 spin_unlock_irq(&callback_lock);
deb7aa30
TH
2334 /* we don't mess with cpumasks of tasks in top_cpuset */
2335 }
b4501295 2336
deb7aa30
TH
2337 /* synchronize mems_allowed to N_MEMORY */
2338 if (mems_updated) {
8447a0fe 2339 spin_lock_irq(&callback_lock);
7e88291b
LZ
2340 if (!on_dfl)
2341 top_cpuset.mems_allowed = new_mems;
1344ab9c 2342 top_cpuset.effective_mems = new_mems;
8447a0fe 2343 spin_unlock_irq(&callback_lock);
d66393e5 2344 update_tasks_nodemask(&top_cpuset);
deb7aa30 2345 }
b4501295 2346
388afd85
LZ
2347 mutex_unlock(&cpuset_mutex);
2348
5c5cc623
LZ
2349 /* if cpus or mems changed, we need to propagate to descendants */
2350 if (cpus_updated || mems_updated) {
deb7aa30 2351 struct cpuset *cs;
492eb21b 2352 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2353
fc560a26 2354 rcu_read_lock();
492eb21b 2355 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2356 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2357 continue;
2358 rcu_read_unlock();
7ddf96b0 2359
388afd85 2360 cpuset_hotplug_update_tasks(cs);
b4501295 2361
388afd85
LZ
2362 rcu_read_lock();
2363 css_put(&cs->css);
2364 }
2365 rcu_read_unlock();
2366 }
8d033948 2367
deb7aa30 2368 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2369 if (cpus_updated)
2370 rebuild_sched_domains();
b1aac8bb
PJ
2371}
2372
7ddf96b0 2373void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2374{
3a5a6d0c
TH
2375 /*
2376 * We're inside cpu hotplug critical region which usually nests
2377 * inside cgroup synchronization. Bounce actual hotplug processing
2378 * to a work item to avoid reverse locking order.
2379 *
2380 * We still need to do partition_sched_domains() synchronously;
2381 * otherwise, the scheduler will get confused and put tasks to the
2382 * dead CPU. Fall back to the default single domain.
2383 * cpuset_hotplug_workfn() will rebuild it as necessary.
2384 */
2385 partition_sched_domains(1, NULL, NULL);
2386 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2387}
4c4d50f7 2388
38837fc7 2389/*
38d7bee9
LJ
2390 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2391 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2392 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2393 */
f481891f
MX
2394static int cpuset_track_online_nodes(struct notifier_block *self,
2395 unsigned long action, void *arg)
38837fc7 2396{
3a5a6d0c 2397 schedule_work(&cpuset_hotplug_work);
f481891f 2398 return NOTIFY_OK;
38837fc7 2399}
d8f10cb3
AM
2400
2401static struct notifier_block cpuset_track_online_nodes_nb = {
2402 .notifier_call = cpuset_track_online_nodes,
2403 .priority = 10, /* ??! */
2404};
38837fc7 2405
1da177e4
LT
2406/**
2407 * cpuset_init_smp - initialize cpus_allowed
2408 *
2409 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2410 */
1da177e4
LT
2411void __init cpuset_init_smp(void)
2412{
6ad4c188 2413 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2414 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2415 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2416
e2b9a3d7
LZ
2417 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2418 top_cpuset.effective_mems = node_states[N_MEMORY];
2419
d8f10cb3 2420 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
fff4dc84
TH
2421
2422 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2423 BUG_ON(!cpuset_migrate_mm_wq);
1da177e4
LT
2424}
2425
2426/**
1da177e4
LT
2427 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2428 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2429 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2430 *
300ed6cb 2431 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2432 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2433 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2434 * tasks cpuset.
2435 **/
2436
6af866af 2437void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2438{
8447a0fe
VD
2439 unsigned long flags;
2440
2441 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2442 rcu_read_lock();
ae1c8023 2443 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 2444 rcu_read_unlock();
8447a0fe 2445 spin_unlock_irqrestore(&callback_lock, flags);
1da177e4
LT
2446}
2447
2baab4e9 2448void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2449{
9084bb82 2450 rcu_read_lock();
ae1c8023 2451 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
9084bb82
ON
2452 rcu_read_unlock();
2453
2454 /*
2455 * We own tsk->cpus_allowed, nobody can change it under us.
2456 *
2457 * But we used cs && cs->cpus_allowed lockless and thus can
2458 * race with cgroup_attach_task() or update_cpumask() and get
2459 * the wrong tsk->cpus_allowed. However, both cases imply the
2460 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2461 * which takes task_rq_lock().
2462 *
2463 * If we are called after it dropped the lock we must see all
2464 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2465 * set any mask even if it is not right from task_cs() pov,
2466 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2467 *
2468 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2469 * if required.
9084bb82 2470 */
9084bb82
ON
2471}
2472
8f4ab07f 2473void __init cpuset_init_current_mems_allowed(void)
1da177e4 2474{
f9a86fcb 2475 nodes_setall(current->mems_allowed);
1da177e4
LT
2476}
2477
909d75a3
PJ
2478/**
2479 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2480 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2481 *
2482 * Description: Returns the nodemask_t mems_allowed of the cpuset
2483 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2484 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2485 * tasks cpuset.
2486 **/
2487
2488nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2489{
2490 nodemask_t mask;
8447a0fe 2491 unsigned long flags;
909d75a3 2492
8447a0fe 2493 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2494 rcu_read_lock();
ae1c8023 2495 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 2496 rcu_read_unlock();
8447a0fe 2497 spin_unlock_irqrestore(&callback_lock, flags);
909d75a3
PJ
2498
2499 return mask;
2500}
2501
d9fd8a6d 2502/**
19770b32
MG
2503 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2504 * @nodemask: the nodemask to be checked
d9fd8a6d 2505 *
19770b32 2506 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2507 */
19770b32 2508int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2509{
19770b32 2510 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2511}
2512
9bf2229f 2513/*
78608366
PM
2514 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2515 * mem_hardwall ancestor to the specified cpuset. Call holding
8447a0fe 2516 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
78608366 2517 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2518 */
c9710d80 2519static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2520{
c431069f
TH
2521 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2522 cs = parent_cs(cs);
9bf2229f
PJ
2523 return cs;
2524}
2525
d9fd8a6d 2526/**
344736f2 2527 * cpuset_node_allowed - Can we allocate on a memory node?
a1bc5a4e 2528 * @node: is this an allowed node?
02a0e53d 2529 * @gfp_mask: memory allocation flags
d9fd8a6d 2530 *
6e276d2a
DR
2531 * If we're in interrupt, yes, we can always allocate. If @node is set in
2532 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2533 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2534 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
9bf2229f
PJ
2535 * Otherwise, no.
2536 *
2537 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2538 * and do not allow allocations outside the current tasks cpuset
2539 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2540 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2541 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2542 *
8447a0fe 2543 * Scanning up parent cpusets requires callback_lock. The
02a0e53d
PJ
2544 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2545 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2546 * current tasks mems_allowed came up empty on the first pass over
2547 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
8447a0fe 2548 * cpuset are short of memory, might require taking the callback_lock.
9bf2229f 2549 *
36be57ff 2550 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2551 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2552 * so no allocation on a node outside the cpuset is allowed (unless
2553 * in interrupt, of course).
36be57ff
PJ
2554 *
2555 * The second pass through get_page_from_freelist() doesn't even call
2556 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2557 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2558 * in alloc_flags. That logic and the checks below have the combined
2559 * affect that:
9bf2229f
PJ
2560 * in_interrupt - any node ok (current task context irrelevant)
2561 * GFP_ATOMIC - any node ok
c596d9f3 2562 * TIF_MEMDIE - any node ok
78608366 2563 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2564 * GFP_USER - only nodes in current tasks mems allowed ok.
02a0e53d 2565 */
344736f2 2566int __cpuset_node_allowed(int node, gfp_t gfp_mask)
1da177e4 2567{
c9710d80 2568 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2569 int allowed; /* is allocation in zone z allowed? */
8447a0fe 2570 unsigned long flags;
9bf2229f 2571
6e276d2a 2572 if (in_interrupt())
9bf2229f 2573 return 1;
9bf2229f
PJ
2574 if (node_isset(node, current->mems_allowed))
2575 return 1;
c596d9f3
DR
2576 /*
2577 * Allow tasks that have access to memory reserves because they have
2578 * been OOM killed to get memory anywhere.
2579 */
2580 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2581 return 1;
9bf2229f
PJ
2582 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2583 return 0;
2584
5563e770
BP
2585 if (current->flags & PF_EXITING) /* Let dying task have memory */
2586 return 1;
2587
9bf2229f 2588 /* Not hardwall and node outside mems_allowed: scan up cpusets */
8447a0fe 2589 spin_lock_irqsave(&callback_lock, flags);
053199ed 2590
b8dadcb5 2591 rcu_read_lock();
78608366 2592 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2593 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2594 rcu_read_unlock();
053199ed 2595
8447a0fe 2596 spin_unlock_irqrestore(&callback_lock, flags);
9bf2229f 2597 return allowed;
1da177e4
LT
2598}
2599
825a46af 2600/**
6adef3eb
JS
2601 * cpuset_mem_spread_node() - On which node to begin search for a file page
2602 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2603 *
2604 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2605 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2606 * and if the memory allocation used cpuset_mem_spread_node()
2607 * to determine on which node to start looking, as it will for
2608 * certain page cache or slab cache pages such as used for file
2609 * system buffers and inode caches, then instead of starting on the
2610 * local node to look for a free page, rather spread the starting
2611 * node around the tasks mems_allowed nodes.
2612 *
2613 * We don't have to worry about the returned node being offline
2614 * because "it can't happen", and even if it did, it would be ok.
2615 *
2616 * The routines calling guarantee_online_mems() are careful to
2617 * only set nodes in task->mems_allowed that are online. So it
2618 * should not be possible for the following code to return an
2619 * offline node. But if it did, that would be ok, as this routine
2620 * is not returning the node where the allocation must be, only
2621 * the node where the search should start. The zonelist passed to
2622 * __alloc_pages() will include all nodes. If the slab allocator
2623 * is passed an offline node, it will fall back to the local node.
2624 * See kmem_cache_alloc_node().
2625 */
2626
6adef3eb 2627static int cpuset_spread_node(int *rotor)
825a46af
PJ
2628{
2629 int node;
2630
6adef3eb 2631 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2632 if (node == MAX_NUMNODES)
2633 node = first_node(current->mems_allowed);
6adef3eb 2634 *rotor = node;
825a46af
PJ
2635 return node;
2636}
6adef3eb
JS
2637
2638int cpuset_mem_spread_node(void)
2639{
778d3b0f
MH
2640 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2641 current->cpuset_mem_spread_rotor =
2642 node_random(&current->mems_allowed);
2643
6adef3eb
JS
2644 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2645}
2646
2647int cpuset_slab_spread_node(void)
2648{
778d3b0f
MH
2649 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2650 current->cpuset_slab_spread_rotor =
2651 node_random(&current->mems_allowed);
2652
6adef3eb
JS
2653 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2654}
2655
825a46af
PJ
2656EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2657
ef08e3b4 2658/**
bbe373f2
DR
2659 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2660 * @tsk1: pointer to task_struct of some task.
2661 * @tsk2: pointer to task_struct of some other task.
2662 *
2663 * Description: Return true if @tsk1's mems_allowed intersects the
2664 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2665 * one of the task's memory usage might impact the memory available
2666 * to the other.
ef08e3b4
PJ
2667 **/
2668
bbe373f2
DR
2669int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2670 const struct task_struct *tsk2)
ef08e3b4 2671{
bbe373f2 2672 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2673}
2674
75aa1994 2675/**
da39da3a 2676 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
75aa1994 2677 *
da39da3a 2678 * Description: Prints current's name, cpuset name, and cached copy of its
b8dadcb5 2679 * mems_allowed to the kernel log.
75aa1994 2680 */
da39da3a 2681void cpuset_print_current_mems_allowed(void)
75aa1994 2682{
b8dadcb5 2683 struct cgroup *cgrp;
75aa1994 2684
b8dadcb5 2685 rcu_read_lock();
63f43f55 2686
da39da3a
DR
2687 cgrp = task_cs(current)->css.cgroup;
2688 pr_info("%s cpuset=", current->comm);
e61734c5 2689 pr_cont_cgroup_name(cgrp);
da39da3a
DR
2690 pr_cont(" mems_allowed=%*pbl\n",
2691 nodemask_pr_args(&current->mems_allowed));
f440d98f 2692
cfb5966b 2693 rcu_read_unlock();
75aa1994
DR
2694}
2695
3e0d98b9
PJ
2696/*
2697 * Collection of memory_pressure is suppressed unless
2698 * this flag is enabled by writing "1" to the special
2699 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2700 */
2701
c5b2aff8 2702int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2703
2704/**
2705 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2706 *
2707 * Keep a running average of the rate of synchronous (direct)
2708 * page reclaim efforts initiated by tasks in each cpuset.
2709 *
2710 * This represents the rate at which some task in the cpuset
2711 * ran low on memory on all nodes it was allowed to use, and
2712 * had to enter the kernels page reclaim code in an effort to
2713 * create more free memory by tossing clean pages or swapping
2714 * or writing dirty pages.
2715 *
2716 * Display to user space in the per-cpuset read-only file
2717 * "memory_pressure". Value displayed is an integer
2718 * representing the recent rate of entry into the synchronous
2719 * (direct) page reclaim by any task attached to the cpuset.
2720 **/
2721
2722void __cpuset_memory_pressure_bump(void)
2723{
b8dadcb5 2724 rcu_read_lock();
8793d854 2725 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2726 rcu_read_unlock();
3e0d98b9
PJ
2727}
2728
8793d854 2729#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2730/*
2731 * proc_cpuset_show()
2732 * - Print tasks cpuset path into seq_file.
2733 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2734 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2735 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2736 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2737 * anyway.
1da177e4 2738 */
52de4779
ZL
2739int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2740 struct pid *pid, struct task_struct *tsk)
1da177e4 2741{
e61734c5 2742 char *buf, *p;
8793d854 2743 struct cgroup_subsys_state *css;
99f89551 2744 int retval;
1da177e4 2745
99f89551 2746 retval = -ENOMEM;
e61734c5 2747 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2748 if (!buf)
99f89551
EB
2749 goto out;
2750
e61734c5 2751 retval = -ENAMETOOLONG;
27e89ae5 2752 rcu_read_lock();
073219e9 2753 css = task_css(tsk, cpuset_cgrp_id);
e61734c5 2754 p = cgroup_path(css->cgroup, buf, PATH_MAX);
27e89ae5 2755 rcu_read_unlock();
e61734c5 2756 if (!p)
52de4779 2757 goto out_free;
e61734c5 2758 seq_puts(m, p);
1da177e4 2759 seq_putc(m, '\n');
e61734c5 2760 retval = 0;
99f89551 2761out_free:
1da177e4 2762 kfree(buf);
99f89551 2763out:
1da177e4
LT
2764 return retval;
2765}
8793d854 2766#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2767
d01d4827 2768/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2769void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2770{
e8e6d97c
TH
2771 seq_printf(m, "Mems_allowed:\t%*pb\n",
2772 nodemask_pr_args(&task->mems_allowed));
2773 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2774 nodemask_pr_args(&task->mems_allowed));
1da177e4 2775}