cgroup: add cgroup_root_mutex
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
472b1053 55#include <linux/hash.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
d846687d 62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
81a6a5cd 82static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 83static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 84
aae8aab4
BB
85/*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
ddbcc7e8 91#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 92static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
93#include <linux/cgroup_subsys.h>
94};
95
c6d57f33
PM
96#define MAX_CGROUP_ROOT_NAMELEN 64
97
ddbcc7e8
PM
98/*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
2c6ab6d2
PM
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
ddbcc7e8
PM
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
e5f6a860 127 /* A list running through the active hierarchies */
ddbcc7e8
PM
128 struct list_head root_list;
129
130 /* Hierarchy-specific flags */
131 unsigned long flags;
81a6a5cd 132
e788e066 133 /* The path to use for release notifications. */
81a6a5cd 134 char release_agent_path[PATH_MAX];
c6d57f33
PM
135
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
138};
139
ddbcc7e8
PM
140/*
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
144 */
145static struct cgroupfs_root rootnode;
146
38460b48
KH
147/*
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
150 */
151#define CSS_ID_MAX (65535)
152struct css_id {
153 /*
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
159 */
2c392b8c 160 struct cgroup_subsys_state __rcu *css;
38460b48
KH
161 /*
162 * ID of this css.
163 */
164 unsigned short id;
165 /*
166 * Depth in hierarchy which this ID belongs to.
167 */
168 unsigned short depth;
169 /*
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 */
172 struct rcu_head rcu_head;
173 /*
174 * Hierarchy of CSS ID belongs to.
175 */
176 unsigned short stack[0]; /* Array of Length (depth+1) */
177};
178
0dea1168 179/*
25985edc 180 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
181 */
182struct cgroup_event {
183 /*
184 * Cgroup which the event belongs to.
185 */
186 struct cgroup *cgrp;
187 /*
188 * Control file which the event associated.
189 */
190 struct cftype *cft;
191 /*
192 * eventfd to signal userspace about the event.
193 */
194 struct eventfd_ctx *eventfd;
195 /*
196 * Each of these stored in a list by the cgroup.
197 */
198 struct list_head list;
199 /*
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
202 */
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
207};
38460b48 208
ddbcc7e8
PM
209/* The list of hierarchy roots */
210
211static LIST_HEAD(roots);
817929ec 212static int root_count;
ddbcc7e8 213
2c6ab6d2
PM
214static DEFINE_IDA(hierarchy_ida);
215static int next_hierarchy_id;
216static DEFINE_SPINLOCK(hierarchy_id_lock);
217
ddbcc7e8
PM
218/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219#define dummytop (&rootnode.top_cgroup)
220
221/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
ddbcc7e8 225 */
8947f9d5 226static int need_forkexit_callback __read_mostly;
ddbcc7e8 227
d11c563d
PM
228#ifdef CONFIG_PROVE_LOCKING
229int cgroup_lock_is_held(void)
230{
231 return lockdep_is_held(&cgroup_mutex);
232}
233#else /* #ifdef CONFIG_PROVE_LOCKING */
234int cgroup_lock_is_held(void)
235{
236 return mutex_is_locked(&cgroup_mutex);
237}
238#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239
240EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241
ddbcc7e8 242/* convenient tests for these bits */
bd89aabc 243inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 244{
bd89aabc 245 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
246}
247
248/* bits in struct cgroupfs_root flags field */
249enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251};
252
e9685a03 253static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
254{
255 const int bits =
bd89aabc
PM
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
259}
260
e9685a03 261static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 262{
bd89aabc 263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
264}
265
97978e6d
DL
266static int clone_children(const struct cgroup *cgrp)
267{
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269}
270
ddbcc7e8
PM
271/*
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
274 */
275#define for_each_subsys(_root, _ss) \
276list_for_each_entry(_ss, &_root->subsys_list, sibling)
277
e5f6a860
LZ
278/* for_each_active_root() allows you to iterate across the active hierarchies */
279#define for_each_active_root(_root) \
ddbcc7e8
PM
280list_for_each_entry(_root, &roots, root_list)
281
81a6a5cd
PM
282/* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284static LIST_HEAD(release_list);
cdcc136f 285static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
286static void cgroup_release_agent(struct work_struct *work);
287static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 288static void check_for_release(struct cgroup *cgrp);
81a6a5cd 289
817929ec
PM
290/* Link structure for associating css_set objects with cgroups */
291struct cg_cgroup_link {
292 /*
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
295 */
bd89aabc 296 struct list_head cgrp_link_list;
7717f7ba 297 struct cgroup *cgrp;
817929ec
PM
298 /*
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
301 */
302 struct list_head cg_link_list;
303 struct css_set *cg;
304};
305
306/* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
311 */
312
313static struct css_set init_css_set;
314static struct cg_cgroup_link init_css_set_link;
315
e6a1105b
BB
316static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
38460b48 318
817929ec
PM
319/* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322static DEFINE_RWLOCK(css_set_lock);
323static int css_set_count;
324
7717f7ba
PM
325/*
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
329 */
472b1053
LZ
330#define CSS_SET_HASH_BITS 7
331#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333
334static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335{
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
339
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
343
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
345
346 return &css_set_table[index];
347}
348
817929ec
PM
349/* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
8947f9d5 353static int use_task_css_set_links __read_mostly;
817929ec 354
2c6ab6d2 355static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 356{
71cbb949
KM
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
359 /*
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
363 */
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
370 }
81a6a5cd 371
2c6ab6d2
PM
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
375
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
bd89aabc
PM
381 if (atomic_dec_and_test(&cgrp->count) &&
382 notify_on_release(cgrp)) {
81a6a5cd 383 if (taskexit)
bd89aabc
PM
384 set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 check_for_release(cgrp);
81a6a5cd 386 }
2c6ab6d2
PM
387
388 kfree(link);
81a6a5cd 389 }
2c6ab6d2
PM
390
391 write_unlock(&css_set_lock);
30088ad8 392 kfree_rcu(cg, rcu_head);
b4f48b63
PM
393}
394
817929ec
PM
395/*
396 * refcounted get/put for css_set objects
397 */
398static inline void get_css_set(struct css_set *cg)
399{
146aa1bd 400 atomic_inc(&cg->refcount);
817929ec
PM
401}
402
403static inline void put_css_set(struct css_set *cg)
404{
146aa1bd 405 __put_css_set(cg, 0);
817929ec
PM
406}
407
81a6a5cd
PM
408static inline void put_css_set_taskexit(struct css_set *cg)
409{
146aa1bd 410 __put_css_set(cg, 1);
81a6a5cd
PM
411}
412
7717f7ba
PM
413/*
414 * compare_css_sets - helper function for find_existing_css_set().
415 * @cg: candidate css_set being tested
416 * @old_cg: existing css_set for a task
417 * @new_cgrp: cgroup that's being entered by the task
418 * @template: desired set of css pointers in css_set (pre-calculated)
419 *
420 * Returns true if "cg" matches "old_cg" except for the hierarchy
421 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
422 */
423static bool compare_css_sets(struct css_set *cg,
424 struct css_set *old_cg,
425 struct cgroup *new_cgrp,
426 struct cgroup_subsys_state *template[])
427{
428 struct list_head *l1, *l2;
429
430 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 /* Not all subsystems matched */
432 return false;
433 }
434
435 /*
436 * Compare cgroup pointers in order to distinguish between
437 * different cgroups in heirarchies with no subsystems. We
438 * could get by with just this check alone (and skip the
439 * memcmp above) but on most setups the memcmp check will
440 * avoid the need for this more expensive check on almost all
441 * candidates.
442 */
443
444 l1 = &cg->cg_links;
445 l2 = &old_cg->cg_links;
446 while (1) {
447 struct cg_cgroup_link *cgl1, *cgl2;
448 struct cgroup *cg1, *cg2;
449
450 l1 = l1->next;
451 l2 = l2->next;
452 /* See if we reached the end - both lists are equal length. */
453 if (l1 == &cg->cg_links) {
454 BUG_ON(l2 != &old_cg->cg_links);
455 break;
456 } else {
457 BUG_ON(l2 == &old_cg->cg_links);
458 }
459 /* Locate the cgroups associated with these links. */
460 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 cg1 = cgl1->cgrp;
463 cg2 = cgl2->cgrp;
464 /* Hierarchies should be linked in the same order. */
465 BUG_ON(cg1->root != cg2->root);
466
467 /*
468 * If this hierarchy is the hierarchy of the cgroup
469 * that's changing, then we need to check that this
470 * css_set points to the new cgroup; if it's any other
471 * hierarchy, then this css_set should point to the
472 * same cgroup as the old css_set.
473 */
474 if (cg1->root == new_cgrp->root) {
475 if (cg1 != new_cgrp)
476 return false;
477 } else {
478 if (cg1 != cg2)
479 return false;
480 }
481 }
482 return true;
483}
484
817929ec
PM
485/*
486 * find_existing_css_set() is a helper for
487 * find_css_set(), and checks to see whether an existing
472b1053 488 * css_set is suitable.
817929ec
PM
489 *
490 * oldcg: the cgroup group that we're using before the cgroup
491 * transition
492 *
bd89aabc 493 * cgrp: the cgroup that we're moving into
817929ec
PM
494 *
495 * template: location in which to build the desired set of subsystem
496 * state objects for the new cgroup group
497 */
817929ec
PM
498static struct css_set *find_existing_css_set(
499 struct css_set *oldcg,
bd89aabc 500 struct cgroup *cgrp,
817929ec 501 struct cgroup_subsys_state *template[])
b4f48b63
PM
502{
503 int i;
bd89aabc 504 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
505 struct hlist_head *hhead;
506 struct hlist_node *node;
507 struct css_set *cg;
817929ec 508
aae8aab4
BB
509 /*
510 * Build the set of subsystem state objects that we want to see in the
511 * new css_set. while subsystems can change globally, the entries here
512 * won't change, so no need for locking.
513 */
817929ec 514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 515 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
516 /* Subsystem is in this hierarchy. So we want
517 * the subsystem state from the new
518 * cgroup */
bd89aabc 519 template[i] = cgrp->subsys[i];
817929ec
PM
520 } else {
521 /* Subsystem is not in this hierarchy, so we
522 * don't want to change the subsystem state */
523 template[i] = oldcg->subsys[i];
524 }
525 }
526
472b1053
LZ
527 hhead = css_set_hash(template);
528 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
529 if (!compare_css_sets(cg, oldcg, cgrp, template))
530 continue;
531
532 /* This css_set matches what we need */
533 return cg;
472b1053 534 }
817929ec
PM
535
536 /* No existing cgroup group matched */
537 return NULL;
538}
539
36553434
LZ
540static void free_cg_links(struct list_head *tmp)
541{
542 struct cg_cgroup_link *link;
543 struct cg_cgroup_link *saved_link;
544
545 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 list_del(&link->cgrp_link_list);
547 kfree(link);
548 }
549}
550
817929ec
PM
551/*
552 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 553 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
554 * success or a negative error
555 */
817929ec
PM
556static int allocate_cg_links(int count, struct list_head *tmp)
557{
558 struct cg_cgroup_link *link;
559 int i;
560 INIT_LIST_HEAD(tmp);
561 for (i = 0; i < count; i++) {
562 link = kmalloc(sizeof(*link), GFP_KERNEL);
563 if (!link) {
36553434 564 free_cg_links(tmp);
817929ec
PM
565 return -ENOMEM;
566 }
bd89aabc 567 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
568 }
569 return 0;
570}
571
c12f65d4
LZ
572/**
573 * link_css_set - a helper function to link a css_set to a cgroup
574 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575 * @cg: the css_set to be linked
576 * @cgrp: the destination cgroup
577 */
578static void link_css_set(struct list_head *tmp_cg_links,
579 struct css_set *cg, struct cgroup *cgrp)
580{
581 struct cg_cgroup_link *link;
582
583 BUG_ON(list_empty(tmp_cg_links));
584 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 cgrp_link_list);
586 link->cg = cg;
7717f7ba 587 link->cgrp = cgrp;
2c6ab6d2 588 atomic_inc(&cgrp->count);
c12f65d4 589 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
590 /*
591 * Always add links to the tail of the list so that the list
592 * is sorted by order of hierarchy creation
593 */
594 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
595}
596
817929ec
PM
597/*
598 * find_css_set() takes an existing cgroup group and a
599 * cgroup object, and returns a css_set object that's
600 * equivalent to the old group, but with the given cgroup
601 * substituted into the appropriate hierarchy. Must be called with
602 * cgroup_mutex held
603 */
817929ec 604static struct css_set *find_css_set(
bd89aabc 605 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
606{
607 struct css_set *res;
608 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
609
610 struct list_head tmp_cg_links;
817929ec 611
472b1053 612 struct hlist_head *hhead;
7717f7ba 613 struct cg_cgroup_link *link;
472b1053 614
817929ec
PM
615 /* First see if we already have a cgroup group that matches
616 * the desired set */
7e9abd89 617 read_lock(&css_set_lock);
bd89aabc 618 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
619 if (res)
620 get_css_set(res);
7e9abd89 621 read_unlock(&css_set_lock);
817929ec
PM
622
623 if (res)
624 return res;
625
626 res = kmalloc(sizeof(*res), GFP_KERNEL);
627 if (!res)
628 return NULL;
629
630 /* Allocate all the cg_cgroup_link objects that we'll need */
631 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 kfree(res);
633 return NULL;
634 }
635
146aa1bd 636 atomic_set(&res->refcount, 1);
817929ec
PM
637 INIT_LIST_HEAD(&res->cg_links);
638 INIT_LIST_HEAD(&res->tasks);
472b1053 639 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
640
641 /* Copy the set of subsystem state objects generated in
642 * find_existing_css_set() */
643 memcpy(res->subsys, template, sizeof(res->subsys));
644
645 write_lock(&css_set_lock);
646 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
647 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 struct cgroup *c = link->cgrp;
649 if (c->root == cgrp->root)
650 c = cgrp;
651 link_css_set(&tmp_cg_links, res, c);
652 }
817929ec
PM
653
654 BUG_ON(!list_empty(&tmp_cg_links));
655
817929ec 656 css_set_count++;
472b1053
LZ
657
658 /* Add this cgroup group to the hash table */
659 hhead = css_set_hash(res->subsys);
660 hlist_add_head(&res->hlist, hhead);
661
817929ec
PM
662 write_unlock(&css_set_lock);
663
664 return res;
b4f48b63
PM
665}
666
7717f7ba
PM
667/*
668 * Return the cgroup for "task" from the given hierarchy. Must be
669 * called with cgroup_mutex held.
670 */
671static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 struct cgroupfs_root *root)
673{
674 struct css_set *css;
675 struct cgroup *res = NULL;
676
677 BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 read_lock(&css_set_lock);
679 /*
680 * No need to lock the task - since we hold cgroup_mutex the
681 * task can't change groups, so the only thing that can happen
682 * is that it exits and its css is set back to init_css_set.
683 */
684 css = task->cgroups;
685 if (css == &init_css_set) {
686 res = &root->top_cgroup;
687 } else {
688 struct cg_cgroup_link *link;
689 list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 struct cgroup *c = link->cgrp;
691 if (c->root == root) {
692 res = c;
693 break;
694 }
695 }
696 }
697 read_unlock(&css_set_lock);
698 BUG_ON(!res);
699 return res;
700}
701
ddbcc7e8
PM
702/*
703 * There is one global cgroup mutex. We also require taking
704 * task_lock() when dereferencing a task's cgroup subsys pointers.
705 * See "The task_lock() exception", at the end of this comment.
706 *
707 * A task must hold cgroup_mutex to modify cgroups.
708 *
709 * Any task can increment and decrement the count field without lock.
710 * So in general, code holding cgroup_mutex can't rely on the count
711 * field not changing. However, if the count goes to zero, then only
956db3ca 712 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
713 * means that no tasks are currently attached, therefore there is no
714 * way a task attached to that cgroup can fork (the other way to
715 * increment the count). So code holding cgroup_mutex can safely
716 * assume that if the count is zero, it will stay zero. Similarly, if
717 * a task holds cgroup_mutex on a cgroup with zero count, it
718 * knows that the cgroup won't be removed, as cgroup_rmdir()
719 * needs that mutex.
720 *
ddbcc7e8
PM
721 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722 * (usually) take cgroup_mutex. These are the two most performance
723 * critical pieces of code here. The exception occurs on cgroup_exit(),
724 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
725 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
726 * to the release agent with the name of the cgroup (path relative to
727 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
728 *
729 * A cgroup can only be deleted if both its 'count' of using tasks
730 * is zero, and its list of 'children' cgroups is empty. Since all
731 * tasks in the system use _some_ cgroup, and since there is always at
732 * least one task in the system (init, pid == 1), therefore, top_cgroup
733 * always has either children cgroups and/or using tasks. So we don't
734 * need a special hack to ensure that top_cgroup cannot be deleted.
735 *
736 * The task_lock() exception
737 *
738 * The need for this exception arises from the action of
956db3ca 739 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 740 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
741 * several performance critical places that need to reference
742 * task->cgroup without the expense of grabbing a system global
743 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 744 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
745 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746 * the task_struct routinely used for such matters.
747 *
748 * P.S. One more locking exception. RCU is used to guard the
956db3ca 749 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
750 */
751
ddbcc7e8
PM
752/**
753 * cgroup_lock - lock out any changes to cgroup structures
754 *
755 */
ddbcc7e8
PM
756void cgroup_lock(void)
757{
758 mutex_lock(&cgroup_mutex);
759}
67523c48 760EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
761
762/**
763 * cgroup_unlock - release lock on cgroup changes
764 *
765 * Undo the lock taken in a previous cgroup_lock() call.
766 */
ddbcc7e8
PM
767void cgroup_unlock(void)
768{
769 mutex_unlock(&cgroup_mutex);
770}
67523c48 771EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
772
773/*
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
778 */
779
780static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
c72a04e3 781static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
ddbcc7e8 782static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 783static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 784static const struct inode_operations cgroup_dir_inode_operations;
828c0950 785static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
786
787static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 788 .name = "cgroup",
e4ad08fe 789 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 790};
ddbcc7e8 791
38460b48
KH
792static int alloc_css_id(struct cgroup_subsys *ss,
793 struct cgroup *parent, struct cgroup *child);
794
ddbcc7e8
PM
795static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
796{
797 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
798
799 if (inode) {
85fe4025 800 inode->i_ino = get_next_ino();
ddbcc7e8 801 inode->i_mode = mode;
76aac0e9
DH
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
ddbcc7e8
PM
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
806 }
807 return inode;
808}
809
4fca88c8
KH
810/*
811 * Call subsys's pre_destroy handler.
812 * This is called before css refcnt check.
813 */
ec64f515 814static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
815{
816 struct cgroup_subsys *ss;
ec64f515
KH
817 int ret = 0;
818
4fca88c8 819 for_each_subsys(cgrp->root, ss)
ec64f515
KH
820 if (ss->pre_destroy) {
821 ret = ss->pre_destroy(ss, cgrp);
822 if (ret)
4ab78683 823 break;
ec64f515 824 }
0dea1168 825
ec64f515 826 return ret;
4fca88c8
KH
827}
828
ddbcc7e8
PM
829static void cgroup_diput(struct dentry *dentry, struct inode *inode)
830{
831 /* is dentry a directory ? if so, kfree() associated cgroup */
832 if (S_ISDIR(inode->i_mode)) {
bd89aabc 833 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 834 struct cgroup_subsys *ss;
bd89aabc 835 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
836 /* It's possible for external users to be holding css
837 * reference counts on a cgroup; css_put() needs to
838 * be able to access the cgroup after decrementing
839 * the reference count in order to know if it needs to
840 * queue the cgroup to be handled by the release
841 * agent */
842 synchronize_rcu();
8dc4f3e1
PM
843
844 mutex_lock(&cgroup_mutex);
845 /*
846 * Release the subsystem state objects.
847 */
75139b82
LZ
848 for_each_subsys(cgrp->root, ss)
849 ss->destroy(ss, cgrp);
8dc4f3e1
PM
850
851 cgrp->root->number_of_cgroups--;
852 mutex_unlock(&cgroup_mutex);
853
a47295e6
PM
854 /*
855 * Drop the active superblock reference that we took when we
856 * created the cgroup
857 */
8dc4f3e1
PM
858 deactivate_super(cgrp->root->sb);
859
72a8cb30
BB
860 /*
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
863 */
864 BUG_ON(!list_empty(&cgrp->pidlists));
865
f2da1c40 866 kfree_rcu(cgrp, rcu_head);
ddbcc7e8
PM
867 }
868 iput(inode);
869}
870
c72a04e3
AV
871static int cgroup_delete(const struct dentry *d)
872{
873 return 1;
874}
875
ddbcc7e8
PM
876static void remove_dir(struct dentry *d)
877{
878 struct dentry *parent = dget(d->d_parent);
879
880 d_delete(d);
881 simple_rmdir(parent->d_inode, d);
882 dput(parent);
883}
884
885static void cgroup_clear_directory(struct dentry *dentry)
886{
887 struct list_head *node;
888
889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2fd6b7f5 890 spin_lock(&dentry->d_lock);
ddbcc7e8
PM
891 node = dentry->d_subdirs.next;
892 while (node != &dentry->d_subdirs) {
893 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
2fd6b7f5
NP
894
895 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8
PM
896 list_del_init(node);
897 if (d->d_inode) {
898 /* This should never be called on a cgroup
899 * directory with child cgroups */
900 BUG_ON(d->d_inode->i_mode & S_IFDIR);
dc0474be 901 dget_dlock(d);
2fd6b7f5
NP
902 spin_unlock(&d->d_lock);
903 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
904 d_delete(d);
905 simple_unlink(dentry->d_inode, d);
906 dput(d);
2fd6b7f5
NP
907 spin_lock(&dentry->d_lock);
908 } else
909 spin_unlock(&d->d_lock);
ddbcc7e8
PM
910 node = dentry->d_subdirs.next;
911 }
2fd6b7f5 912 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
913}
914
915/*
916 * NOTE : the dentry must have been dget()'ed
917 */
918static void cgroup_d_remove_dir(struct dentry *dentry)
919{
2fd6b7f5
NP
920 struct dentry *parent;
921
ddbcc7e8
PM
922 cgroup_clear_directory(dentry);
923
2fd6b7f5
NP
924 parent = dentry->d_parent;
925 spin_lock(&parent->d_lock);
3ec762ad 926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 927 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
928 spin_unlock(&dentry->d_lock);
929 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
930 remove_dir(dentry);
931}
932
ec64f515
KH
933/*
934 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936 * reference to css->refcnt. In general, this refcnt is expected to goes down
937 * to zero, soon.
938 *
88703267 939 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515
KH
940 */
941DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
942
88703267 943static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 944{
88703267 945 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
946 wake_up_all(&cgroup_rmdir_waitq);
947}
948
88703267
KH
949void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
950{
951 css_get(css);
952}
953
954void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
955{
956 cgroup_wakeup_rmdir_waiter(css->cgroup);
957 css_put(css);
958}
959
aae8aab4 960/*
cf5d5941
BB
961 * Call with cgroup_mutex held. Drops reference counts on modules, including
962 * any duplicate ones that parse_cgroupfs_options took. If this function
963 * returns an error, no reference counts are touched.
aae8aab4 964 */
ddbcc7e8
PM
965static int rebind_subsystems(struct cgroupfs_root *root,
966 unsigned long final_bits)
967{
968 unsigned long added_bits, removed_bits;
bd89aabc 969 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
970 int i;
971
aae8aab4 972 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 973 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 974
ddbcc7e8
PM
975 removed_bits = root->actual_subsys_bits & ~final_bits;
976 added_bits = final_bits & ~root->actual_subsys_bits;
977 /* Check that any added subsystems are currently free */
978 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 979 unsigned long bit = 1UL << i;
ddbcc7e8
PM
980 struct cgroup_subsys *ss = subsys[i];
981 if (!(bit & added_bits))
982 continue;
aae8aab4
BB
983 /*
984 * Nobody should tell us to do a subsys that doesn't exist:
985 * parse_cgroupfs_options should catch that case and refcounts
986 * ensure that subsystems won't disappear once selected.
987 */
988 BUG_ON(ss == NULL);
ddbcc7e8
PM
989 if (ss->root != &rootnode) {
990 /* Subsystem isn't free */
991 return -EBUSY;
992 }
993 }
994
995 /* Currently we don't handle adding/removing subsystems when
996 * any child cgroups exist. This is theoretically supportable
997 * but involves complex error handling, so it's being left until
998 * later */
307257cf 999 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1000 return -EBUSY;
1001
1002 /* Process each subsystem */
1003 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 struct cgroup_subsys *ss = subsys[i];
1005 unsigned long bit = 1UL << i;
1006 if (bit & added_bits) {
1007 /* We're binding this subsystem to this hierarchy */
aae8aab4 1008 BUG_ON(ss == NULL);
bd89aabc 1009 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1010 BUG_ON(!dummytop->subsys[i]);
1011 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 1012 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
1013 cgrp->subsys[i] = dummytop->subsys[i];
1014 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1015 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1016 ss->root = root;
ddbcc7e8 1017 if (ss->bind)
bd89aabc 1018 ss->bind(ss, cgrp);
999cd8a4 1019 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 1020 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
1021 } else if (bit & removed_bits) {
1022 /* We're removing this subsystem */
aae8aab4 1023 BUG_ON(ss == NULL);
bd89aabc
PM
1024 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1026 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
1027 if (ss->bind)
1028 ss->bind(ss, dummytop);
1029 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1030 cgrp->subsys[i] = NULL;
b2aa30f7 1031 subsys[i]->root = &rootnode;
33a68ac1 1032 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1033 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1034 /* subsystem is now free - drop reference on module */
1035 module_put(ss->module);
ddbcc7e8
PM
1036 } else if (bit & final_bits) {
1037 /* Subsystem state should already exist */
aae8aab4 1038 BUG_ON(ss == NULL);
bd89aabc 1039 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1040 /*
1041 * a refcount was taken, but we already had one, so
1042 * drop the extra reference.
1043 */
1044 module_put(ss->module);
1045#ifdef CONFIG_MODULE_UNLOAD
1046 BUG_ON(ss->module && !module_refcount(ss->module));
1047#endif
ddbcc7e8
PM
1048 } else {
1049 /* Subsystem state shouldn't exist */
bd89aabc 1050 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1051 }
1052 }
1053 root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 synchronize_rcu();
1055
1056 return 0;
1057}
1058
1059static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1060{
1061 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1062 struct cgroup_subsys *ss;
1063
e25e2cbb 1064 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1065 for_each_subsys(root, ss)
1066 seq_printf(seq, ",%s", ss->name);
1067 if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1069 if (strlen(root->release_agent_path))
1070 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1071 if (clone_children(&root->top_cgroup))
1072 seq_puts(seq, ",clone_children");
c6d57f33
PM
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1075 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1076 return 0;
1077}
1078
1079struct cgroup_sb_opts {
1080 unsigned long subsys_bits;
1081 unsigned long flags;
81a6a5cd 1082 char *release_agent;
97978e6d 1083 bool clone_children;
c6d57f33 1084 char *name;
2c6ab6d2
PM
1085 /* User explicitly requested empty subsystem */
1086 bool none;
c6d57f33
PM
1087
1088 struct cgroupfs_root *new_root;
2c6ab6d2 1089
ddbcc7e8
PM
1090};
1091
aae8aab4
BB
1092/*
1093 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1094 * with cgroup_mutex held to protect the subsys[] array. This function takes
1095 * refcounts on subsystems to be used, unless it returns error, in which case
1096 * no refcounts are taken.
aae8aab4 1097 */
cf5d5941 1098static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1099{
32a8cf23
DL
1100 char *token, *o = data;
1101 bool all_ss = false, one_ss = false;
f9ab5b5b 1102 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1103 int i;
1104 bool module_pin_failed = false;
f9ab5b5b 1105
aae8aab4
BB
1106 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1107
f9ab5b5b
LZ
1108#ifdef CONFIG_CPUSETS
1109 mask = ~(1UL << cpuset_subsys_id);
1110#endif
ddbcc7e8 1111
c6d57f33 1112 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1113
1114 while ((token = strsep(&o, ",")) != NULL) {
1115 if (!*token)
1116 return -EINVAL;
32a8cf23 1117 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1118 /* Explicitly have no subsystems */
1119 opts->none = true;
32a8cf23
DL
1120 continue;
1121 }
1122 if (!strcmp(token, "all")) {
1123 /* Mutually exclusive option 'all' + subsystem name */
1124 if (one_ss)
1125 return -EINVAL;
1126 all_ss = true;
1127 continue;
1128 }
1129 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1130 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1131 continue;
1132 }
1133 if (!strcmp(token, "clone_children")) {
97978e6d 1134 opts->clone_children = true;
32a8cf23
DL
1135 continue;
1136 }
1137 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
c6d57f33 1141 opts->release_agent =
e400c285 1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1143 if (!opts->release_agent)
1144 return -ENOMEM;
32a8cf23
DL
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
e400c285 1165 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
32a8cf23
DL
1169
1170 continue;
1171 }
1172
1173 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 struct cgroup_subsys *ss = subsys[i];
1175 if (ss == NULL)
1176 continue;
1177 if (strcmp(token, ss->name))
1178 continue;
1179 if (ss->disabled)
1180 continue;
1181
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (all_ss)
1184 return -EINVAL;
1185 set_bit(i, &opts->subsys_bits);
1186 one_ss = true;
1187
1188 break;
1189 }
1190 if (i == CGROUP_SUBSYS_COUNT)
1191 return -ENOENT;
1192 }
1193
1194 /*
1195 * If the 'all' option was specified select all the subsystems,
1196 * otherwise 'all, 'none' and a subsystem name options were not
1197 * specified, let's default to 'all'
1198 */
1199 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1200 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 struct cgroup_subsys *ss = subsys[i];
1202 if (ss == NULL)
1203 continue;
1204 if (ss->disabled)
1205 continue;
1206 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1207 }
1208 }
1209
2c6ab6d2
PM
1210 /* Consistency checks */
1211
f9ab5b5b
LZ
1212 /*
1213 * Option noprefix was introduced just for backward compatibility
1214 * with the old cpuset, so we allow noprefix only if mounting just
1215 * the cpuset subsystem.
1216 */
1217 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 (opts->subsys_bits & mask))
1219 return -EINVAL;
1220
2c6ab6d2
PM
1221
1222 /* Can't specify "none" and some subsystems */
1223 if (opts->subsys_bits && opts->none)
1224 return -EINVAL;
1225
1226 /*
1227 * We either have to specify by name or by subsystems. (So all
1228 * empty hierarchies must have a name).
1229 */
c6d57f33 1230 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1231 return -EINVAL;
1232
cf5d5941
BB
1233 /*
1234 * Grab references on all the modules we'll need, so the subsystems
1235 * don't dance around before rebind_subsystems attaches them. This may
1236 * take duplicate reference counts on a subsystem that's already used,
1237 * but rebind_subsystems handles this case.
1238 */
1239 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 unsigned long bit = 1UL << i;
1241
1242 if (!(bit & opts->subsys_bits))
1243 continue;
1244 if (!try_module_get(subsys[i]->module)) {
1245 module_pin_failed = true;
1246 break;
1247 }
1248 }
1249 if (module_pin_failed) {
1250 /*
1251 * oops, one of the modules was going away. this means that we
1252 * raced with a module_delete call, and to the user this is
1253 * essentially a "subsystem doesn't exist" case.
1254 */
1255 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 /* drop refcounts only on the ones we took */
1257 unsigned long bit = 1UL << i;
1258
1259 if (!(bit & opts->subsys_bits))
1260 continue;
1261 module_put(subsys[i]->module);
1262 }
1263 return -ENOENT;
1264 }
1265
ddbcc7e8
PM
1266 return 0;
1267}
1268
cf5d5941
BB
1269static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1270{
1271 int i;
1272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 unsigned long bit = 1UL << i;
1274
1275 if (!(bit & subsys_bits))
1276 continue;
1277 module_put(subsys[i]->module);
1278 }
1279}
1280
ddbcc7e8
PM
1281static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1282{
1283 int ret = 0;
1284 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1285 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1286 struct cgroup_sb_opts opts;
1287
bd89aabc 1288 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1289 mutex_lock(&cgroup_mutex);
e25e2cbb 1290 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1291
1292 /* See what subsystems are wanted */
1293 ret = parse_cgroupfs_options(data, &opts);
1294 if (ret)
1295 goto out_unlock;
1296
cf5d5941
BB
1297 /* Don't allow flags or name to change at remount */
1298 if (opts.flags != root->flags ||
1299 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1300 ret = -EINVAL;
cf5d5941 1301 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1302 goto out_unlock;
1303 }
1304
ddbcc7e8 1305 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1306 if (ret) {
1307 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1308 goto out_unlock;
cf5d5941 1309 }
ddbcc7e8
PM
1310
1311 /* (re)populate subsystem files */
0670e08b 1312 cgroup_populate_dir(cgrp);
ddbcc7e8 1313
81a6a5cd
PM
1314 if (opts.release_agent)
1315 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1316 out_unlock:
66bdc9cf 1317 kfree(opts.release_agent);
c6d57f33 1318 kfree(opts.name);
e25e2cbb 1319 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1320 mutex_unlock(&cgroup_mutex);
bd89aabc 1321 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1322 return ret;
1323}
1324
b87221de 1325static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 .show_options = cgroup_show_options,
1329 .remount_fs = cgroup_remount,
1330};
1331
cc31edce
PM
1332static void init_cgroup_housekeeping(struct cgroup *cgrp)
1333{
1334 INIT_LIST_HEAD(&cgrp->sibling);
1335 INIT_LIST_HEAD(&cgrp->children);
1336 INIT_LIST_HEAD(&cgrp->css_sets);
1337 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1338 INIT_LIST_HEAD(&cgrp->pidlists);
1339 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1340 INIT_LIST_HEAD(&cgrp->event_list);
1341 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1342}
c6d57f33 1343
ddbcc7e8
PM
1344static void init_cgroup_root(struct cgroupfs_root *root)
1345{
bd89aabc 1346 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1347 INIT_LIST_HEAD(&root->subsys_list);
1348 INIT_LIST_HEAD(&root->root_list);
1349 root->number_of_cgroups = 1;
bd89aabc
PM
1350 cgrp->root = root;
1351 cgrp->top_cgroup = cgrp;
cc31edce 1352 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1353}
1354
2c6ab6d2
PM
1355static bool init_root_id(struct cgroupfs_root *root)
1356{
1357 int ret = 0;
1358
1359 do {
1360 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1361 return false;
1362 spin_lock(&hierarchy_id_lock);
1363 /* Try to allocate the next unused ID */
1364 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1365 &root->hierarchy_id);
1366 if (ret == -ENOSPC)
1367 /* Try again starting from 0 */
1368 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1369 if (!ret) {
1370 next_hierarchy_id = root->hierarchy_id + 1;
1371 } else if (ret != -EAGAIN) {
1372 /* Can only get here if the 31-bit IDR is full ... */
1373 BUG_ON(ret);
1374 }
1375 spin_unlock(&hierarchy_id_lock);
1376 } while (ret);
1377 return true;
1378}
1379
ddbcc7e8
PM
1380static int cgroup_test_super(struct super_block *sb, void *data)
1381{
c6d57f33 1382 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1383 struct cgroupfs_root *root = sb->s_fs_info;
1384
c6d57f33
PM
1385 /* If we asked for a name then it must match */
1386 if (opts->name && strcmp(opts->name, root->name))
1387 return 0;
ddbcc7e8 1388
2c6ab6d2
PM
1389 /*
1390 * If we asked for subsystems (or explicitly for no
1391 * subsystems) then they must match
1392 */
1393 if ((opts->subsys_bits || opts->none)
1394 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1395 return 0;
1396
1397 return 1;
1398}
1399
c6d57f33
PM
1400static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1401{
1402 struct cgroupfs_root *root;
1403
2c6ab6d2 1404 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1405 return NULL;
1406
1407 root = kzalloc(sizeof(*root), GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1410
2c6ab6d2
PM
1411 if (!init_root_id(root)) {
1412 kfree(root);
1413 return ERR_PTR(-ENOMEM);
1414 }
c6d57f33 1415 init_cgroup_root(root);
2c6ab6d2 1416
c6d57f33
PM
1417 root->subsys_bits = opts->subsys_bits;
1418 root->flags = opts->flags;
1419 if (opts->release_agent)
1420 strcpy(root->release_agent_path, opts->release_agent);
1421 if (opts->name)
1422 strcpy(root->name, opts->name);
97978e6d
DL
1423 if (opts->clone_children)
1424 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1425 return root;
1426}
1427
2c6ab6d2
PM
1428static void cgroup_drop_root(struct cgroupfs_root *root)
1429{
1430 if (!root)
1431 return;
1432
1433 BUG_ON(!root->hierarchy_id);
1434 spin_lock(&hierarchy_id_lock);
1435 ida_remove(&hierarchy_ida, root->hierarchy_id);
1436 spin_unlock(&hierarchy_id_lock);
1437 kfree(root);
1438}
1439
ddbcc7e8
PM
1440static int cgroup_set_super(struct super_block *sb, void *data)
1441{
1442 int ret;
c6d57f33
PM
1443 struct cgroup_sb_opts *opts = data;
1444
1445 /* If we don't have a new root, we can't set up a new sb */
1446 if (!opts->new_root)
1447 return -EINVAL;
1448
2c6ab6d2 1449 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1450
1451 ret = set_anon_super(sb, NULL);
1452 if (ret)
1453 return ret;
1454
c6d57f33
PM
1455 sb->s_fs_info = opts->new_root;
1456 opts->new_root->sb = sb;
ddbcc7e8
PM
1457
1458 sb->s_blocksize = PAGE_CACHE_SIZE;
1459 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1460 sb->s_magic = CGROUP_SUPER_MAGIC;
1461 sb->s_op = &cgroup_ops;
1462
1463 return 0;
1464}
1465
1466static int cgroup_get_rootdir(struct super_block *sb)
1467{
0df6a63f
AV
1468 static const struct dentry_operations cgroup_dops = {
1469 .d_iput = cgroup_diput,
c72a04e3 1470 .d_delete = cgroup_delete,
0df6a63f
AV
1471 };
1472
ddbcc7e8
PM
1473 struct inode *inode =
1474 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1475 struct dentry *dentry;
1476
1477 if (!inode)
1478 return -ENOMEM;
1479
ddbcc7e8
PM
1480 inode->i_fop = &simple_dir_operations;
1481 inode->i_op = &cgroup_dir_inode_operations;
1482 /* directories start off with i_nlink == 2 (for "." entry) */
1483 inc_nlink(inode);
1484 dentry = d_alloc_root(inode);
1485 if (!dentry) {
1486 iput(inode);
1487 return -ENOMEM;
1488 }
1489 sb->s_root = dentry;
0df6a63f
AV
1490 /* for everything else we want ->d_op set */
1491 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1492 return 0;
1493}
1494
f7e83571 1495static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1496 int flags, const char *unused_dev_name,
f7e83571 1497 void *data)
ddbcc7e8
PM
1498{
1499 struct cgroup_sb_opts opts;
c6d57f33 1500 struct cgroupfs_root *root;
ddbcc7e8
PM
1501 int ret = 0;
1502 struct super_block *sb;
c6d57f33 1503 struct cgroupfs_root *new_root;
e25e2cbb 1504 struct inode *inode;
ddbcc7e8
PM
1505
1506 /* First find the desired set of subsystems */
aae8aab4 1507 mutex_lock(&cgroup_mutex);
ddbcc7e8 1508 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1509 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1510 if (ret)
1511 goto out_err;
ddbcc7e8 1512
c6d57f33
PM
1513 /*
1514 * Allocate a new cgroup root. We may not need it if we're
1515 * reusing an existing hierarchy.
1516 */
1517 new_root = cgroup_root_from_opts(&opts);
1518 if (IS_ERR(new_root)) {
1519 ret = PTR_ERR(new_root);
cf5d5941 1520 goto drop_modules;
81a6a5cd 1521 }
c6d57f33 1522 opts.new_root = new_root;
ddbcc7e8 1523
c6d57f33
PM
1524 /* Locate an existing or new sb for this hierarchy */
1525 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1526 if (IS_ERR(sb)) {
c6d57f33 1527 ret = PTR_ERR(sb);
2c6ab6d2 1528 cgroup_drop_root(opts.new_root);
cf5d5941 1529 goto drop_modules;
ddbcc7e8
PM
1530 }
1531
c6d57f33
PM
1532 root = sb->s_fs_info;
1533 BUG_ON(!root);
1534 if (root == opts.new_root) {
1535 /* We used the new root structure, so this is a new hierarchy */
1536 struct list_head tmp_cg_links;
c12f65d4 1537 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1538 struct cgroupfs_root *existing_root;
2ce9738b 1539 const struct cred *cred;
28fd5dfc 1540 int i;
ddbcc7e8
PM
1541
1542 BUG_ON(sb->s_root != NULL);
1543
1544 ret = cgroup_get_rootdir(sb);
1545 if (ret)
1546 goto drop_new_super;
817929ec 1547 inode = sb->s_root->d_inode;
ddbcc7e8 1548
817929ec 1549 mutex_lock(&inode->i_mutex);
ddbcc7e8 1550 mutex_lock(&cgroup_mutex);
e25e2cbb 1551 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1552
e25e2cbb
TH
1553 /* Check for name clashes with existing mounts */
1554 ret = -EBUSY;
1555 if (strlen(root->name))
1556 for_each_active_root(existing_root)
1557 if (!strcmp(existing_root->name, root->name))
1558 goto unlock_drop;
c6d57f33 1559
817929ec
PM
1560 /*
1561 * We're accessing css_set_count without locking
1562 * css_set_lock here, but that's OK - it can only be
1563 * increased by someone holding cgroup_lock, and
1564 * that's us. The worst that can happen is that we
1565 * have some link structures left over
1566 */
1567 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1568 if (ret)
1569 goto unlock_drop;
817929ec 1570
ddbcc7e8
PM
1571 ret = rebind_subsystems(root, root->subsys_bits);
1572 if (ret == -EBUSY) {
c6d57f33 1573 free_cg_links(&tmp_cg_links);
e25e2cbb 1574 goto unlock_drop;
ddbcc7e8 1575 }
cf5d5941
BB
1576 /*
1577 * There must be no failure case after here, since rebinding
1578 * takes care of subsystems' refcounts, which are explicitly
1579 * dropped in the failure exit path.
1580 */
ddbcc7e8
PM
1581
1582 /* EBUSY should be the only error here */
1583 BUG_ON(ret);
1584
1585 list_add(&root->root_list, &roots);
817929ec 1586 root_count++;
ddbcc7e8 1587
c12f65d4 1588 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1589 root->top_cgroup.dentry = sb->s_root;
1590
817929ec
PM
1591 /* Link the top cgroup in this hierarchy into all
1592 * the css_set objects */
1593 write_lock(&css_set_lock);
28fd5dfc
LZ
1594 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1595 struct hlist_head *hhead = &css_set_table[i];
1596 struct hlist_node *node;
817929ec 1597 struct css_set *cg;
28fd5dfc 1598
c12f65d4
LZ
1599 hlist_for_each_entry(cg, node, hhead, hlist)
1600 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1601 }
817929ec
PM
1602 write_unlock(&css_set_lock);
1603
1604 free_cg_links(&tmp_cg_links);
1605
c12f65d4
LZ
1606 BUG_ON(!list_empty(&root_cgrp->sibling));
1607 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1608 BUG_ON(root->number_of_cgroups != 1);
1609
2ce9738b 1610 cred = override_creds(&init_cred);
c12f65d4 1611 cgroup_populate_dir(root_cgrp);
2ce9738b 1612 revert_creds(cred);
e25e2cbb 1613 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1614 mutex_unlock(&cgroup_mutex);
34f77a90 1615 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1616 } else {
1617 /*
1618 * We re-used an existing hierarchy - the new root (if
1619 * any) is not needed
1620 */
2c6ab6d2 1621 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1622 /* no subsys rebinding, so refcounts don't change */
1623 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1624 }
1625
c6d57f33
PM
1626 kfree(opts.release_agent);
1627 kfree(opts.name);
f7e83571 1628 return dget(sb->s_root);
ddbcc7e8 1629
e25e2cbb
TH
1630 unlock_drop:
1631 mutex_unlock(&cgroup_root_mutex);
1632 mutex_unlock(&cgroup_mutex);
1633 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1634 drop_new_super:
6f5bbff9 1635 deactivate_locked_super(sb);
cf5d5941
BB
1636 drop_modules:
1637 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1638 out_err:
1639 kfree(opts.release_agent);
1640 kfree(opts.name);
f7e83571 1641 return ERR_PTR(ret);
ddbcc7e8
PM
1642}
1643
1644static void cgroup_kill_sb(struct super_block *sb) {
1645 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1646 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1647 int ret;
71cbb949
KM
1648 struct cg_cgroup_link *link;
1649 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1650
1651 BUG_ON(!root);
1652
1653 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1654 BUG_ON(!list_empty(&cgrp->children));
1655 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1656
1657 mutex_lock(&cgroup_mutex);
e25e2cbb 1658 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1659
1660 /* Rebind all subsystems back to the default hierarchy */
1661 ret = rebind_subsystems(root, 0);
1662 /* Shouldn't be able to fail ... */
1663 BUG_ON(ret);
1664
817929ec
PM
1665 /*
1666 * Release all the links from css_sets to this hierarchy's
1667 * root cgroup
1668 */
1669 write_lock(&css_set_lock);
71cbb949
KM
1670
1671 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1672 cgrp_link_list) {
817929ec 1673 list_del(&link->cg_link_list);
bd89aabc 1674 list_del(&link->cgrp_link_list);
817929ec
PM
1675 kfree(link);
1676 }
1677 write_unlock(&css_set_lock);
1678
839ec545
PM
1679 if (!list_empty(&root->root_list)) {
1680 list_del(&root->root_list);
1681 root_count--;
1682 }
e5f6a860 1683
e25e2cbb 1684 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1685 mutex_unlock(&cgroup_mutex);
1686
ddbcc7e8 1687 kill_litter_super(sb);
2c6ab6d2 1688 cgroup_drop_root(root);
ddbcc7e8
PM
1689}
1690
1691static struct file_system_type cgroup_fs_type = {
1692 .name = "cgroup",
f7e83571 1693 .mount = cgroup_mount,
ddbcc7e8
PM
1694 .kill_sb = cgroup_kill_sb,
1695};
1696
676db4af
GKH
1697static struct kobject *cgroup_kobj;
1698
bd89aabc 1699static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1700{
1701 return dentry->d_fsdata;
1702}
1703
1704static inline struct cftype *__d_cft(struct dentry *dentry)
1705{
1706 return dentry->d_fsdata;
1707}
1708
a043e3b2
LZ
1709/**
1710 * cgroup_path - generate the path of a cgroup
1711 * @cgrp: the cgroup in question
1712 * @buf: the buffer to write the path into
1713 * @buflen: the length of the buffer
1714 *
a47295e6
PM
1715 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1716 * reference. Writes path of cgroup into buf. Returns 0 on success,
1717 * -errno on error.
ddbcc7e8 1718 */
bd89aabc 1719int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1720{
1721 char *start;
9a9686b6 1722 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1723 cgroup_lock_is_held());
ddbcc7e8 1724
a47295e6 1725 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1726 /*
1727 * Inactive subsystems have no dentry for their root
1728 * cgroup
1729 */
1730 strcpy(buf, "/");
1731 return 0;
1732 }
1733
1734 start = buf + buflen;
1735
1736 *--start = '\0';
1737 for (;;) {
a47295e6 1738 int len = dentry->d_name.len;
9a9686b6 1739
ddbcc7e8
PM
1740 if ((start -= len) < buf)
1741 return -ENAMETOOLONG;
9a9686b6 1742 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1743 cgrp = cgrp->parent;
1744 if (!cgrp)
ddbcc7e8 1745 break;
9a9686b6
LZ
1746
1747 dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1748 cgroup_lock_is_held());
bd89aabc 1749 if (!cgrp->parent)
ddbcc7e8
PM
1750 continue;
1751 if (--start < buf)
1752 return -ENAMETOOLONG;
1753 *start = '/';
1754 }
1755 memmove(buf, start, buf + buflen - start);
1756 return 0;
1757}
67523c48 1758EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1759
74a1166d
BB
1760/*
1761 * cgroup_task_migrate - move a task from one cgroup to another.
1762 *
1763 * 'guarantee' is set if the caller promises that a new css_set for the task
1764 * will already exist. If not set, this function might sleep, and can fail with
1765 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1766 */
1767static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1768 struct task_struct *tsk, bool guarantee)
1769{
1770 struct css_set *oldcg;
1771 struct css_set *newcg;
1772
1773 /*
1774 * get old css_set. we need to take task_lock and refcount it, because
1775 * an exiting task can change its css_set to init_css_set and drop its
1776 * old one without taking cgroup_mutex.
1777 */
1778 task_lock(tsk);
1779 oldcg = tsk->cgroups;
1780 get_css_set(oldcg);
1781 task_unlock(tsk);
1782
1783 /* locate or allocate a new css_set for this task. */
1784 if (guarantee) {
1785 /* we know the css_set we want already exists. */
1786 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1787 read_lock(&css_set_lock);
1788 newcg = find_existing_css_set(oldcg, cgrp, template);
1789 BUG_ON(!newcg);
1790 get_css_set(newcg);
1791 read_unlock(&css_set_lock);
1792 } else {
1793 might_sleep();
1794 /* find_css_set will give us newcg already referenced. */
1795 newcg = find_css_set(oldcg, cgrp);
1796 if (!newcg) {
1797 put_css_set(oldcg);
1798 return -ENOMEM;
1799 }
1800 }
1801 put_css_set(oldcg);
1802
1803 /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1804 task_lock(tsk);
1805 if (tsk->flags & PF_EXITING) {
1806 task_unlock(tsk);
1807 put_css_set(newcg);
1808 return -ESRCH;
1809 }
1810 rcu_assign_pointer(tsk->cgroups, newcg);
1811 task_unlock(tsk);
1812
1813 /* Update the css_set linked lists if we're using them */
1814 write_lock(&css_set_lock);
1815 if (!list_empty(&tsk->cg_list))
1816 list_move(&tsk->cg_list, &newcg->tasks);
1817 write_unlock(&css_set_lock);
1818
1819 /*
1820 * We just gained a reference on oldcg by taking it from the task. As
1821 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1822 * it here; it will be freed under RCU.
1823 */
1824 put_css_set(oldcg);
1825
1826 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1827 return 0;
1828}
1829
a043e3b2
LZ
1830/**
1831 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1832 * @cgrp: the cgroup the task is attaching to
1833 * @tsk: the task to be attached
bbcb81d0 1834 *
a043e3b2
LZ
1835 * Call holding cgroup_mutex. May take task_lock of
1836 * the task 'tsk' during call.
bbcb81d0 1837 */
956db3ca 1838int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0 1839{
74a1166d 1840 int retval;
2468c723 1841 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1842 struct cgroup *oldcgrp;
bd89aabc 1843 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1844
1845 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1846 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1847 if (cgrp == oldcgrp)
bbcb81d0
PM
1848 return 0;
1849
1850 for_each_subsys(root, ss) {
1851 if (ss->can_attach) {
f780bdb7 1852 retval = ss->can_attach(ss, cgrp, tsk);
2468c723
DN
1853 if (retval) {
1854 /*
1855 * Remember on which subsystem the can_attach()
1856 * failed, so that we only call cancel_attach()
1857 * against the subsystems whose can_attach()
1858 * succeeded. (See below)
1859 */
1860 failed_ss = ss;
1861 goto out;
1862 }
bbcb81d0 1863 }
f780bdb7
BB
1864 if (ss->can_attach_task) {
1865 retval = ss->can_attach_task(cgrp, tsk);
1866 if (retval) {
1867 failed_ss = ss;
1868 goto out;
1869 }
1870 }
bbcb81d0
PM
1871 }
1872
74a1166d
BB
1873 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1874 if (retval)
2468c723 1875 goto out;
817929ec 1876
bbcb81d0 1877 for_each_subsys(root, ss) {
f780bdb7
BB
1878 if (ss->pre_attach)
1879 ss->pre_attach(cgrp);
1880 if (ss->attach_task)
1881 ss->attach_task(cgrp, tsk);
e18f6318 1882 if (ss->attach)
f780bdb7 1883 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1884 }
74a1166d 1885
bbcb81d0 1886 synchronize_rcu();
ec64f515
KH
1887
1888 /*
1889 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1890 * is no longer empty.
1891 */
88703267 1892 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1893out:
1894 if (retval) {
1895 for_each_subsys(root, ss) {
1896 if (ss == failed_ss)
1897 /*
1898 * This subsystem was the one that failed the
1899 * can_attach() check earlier, so we don't need
1900 * to call cancel_attach() against it or any
1901 * remaining subsystems.
1902 */
1903 break;
1904 if (ss->cancel_attach)
f780bdb7 1905 ss->cancel_attach(ss, cgrp, tsk);
2468c723
DN
1906 }
1907 }
1908 return retval;
bbcb81d0
PM
1909}
1910
d7926ee3 1911/**
31583bb0
MT
1912 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1913 * @from: attach to all cgroups of a given task
d7926ee3
SS
1914 * @tsk: the task to be attached
1915 */
31583bb0 1916int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
1917{
1918 struct cgroupfs_root *root;
d7926ee3
SS
1919 int retval = 0;
1920
1921 cgroup_lock();
1922 for_each_active_root(root) {
31583bb0
MT
1923 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1924
1925 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
1926 if (retval)
1927 break;
1928 }
1929 cgroup_unlock();
1930
1931 return retval;
1932}
31583bb0 1933EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 1934
bbcb81d0 1935/*
74a1166d
BB
1936 * cgroup_attach_proc works in two stages, the first of which prefetches all
1937 * new css_sets needed (to make sure we have enough memory before committing
1938 * to the move) and stores them in a list of entries of the following type.
1939 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1940 */
1941struct cg_list_entry {
1942 struct css_set *cg;
1943 struct list_head links;
1944};
1945
1946static bool css_set_check_fetched(struct cgroup *cgrp,
1947 struct task_struct *tsk, struct css_set *cg,
1948 struct list_head *newcg_list)
1949{
1950 struct css_set *newcg;
1951 struct cg_list_entry *cg_entry;
1952 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1953
1954 read_lock(&css_set_lock);
1955 newcg = find_existing_css_set(cg, cgrp, template);
1956 if (newcg)
1957 get_css_set(newcg);
1958 read_unlock(&css_set_lock);
1959
1960 /* doesn't exist at all? */
1961 if (!newcg)
1962 return false;
1963 /* see if it's already in the list */
1964 list_for_each_entry(cg_entry, newcg_list, links) {
1965 if (cg_entry->cg == newcg) {
1966 put_css_set(newcg);
1967 return true;
1968 }
1969 }
1970
1971 /* not found */
1972 put_css_set(newcg);
1973 return false;
1974}
1975
1976/*
1977 * Find the new css_set and store it in the list in preparation for moving the
1978 * given task to the given cgroup. Returns 0 or -ENOMEM.
1979 */
1980static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1981 struct list_head *newcg_list)
1982{
1983 struct css_set *newcg;
1984 struct cg_list_entry *cg_entry;
1985
1986 /* ensure a new css_set will exist for this thread */
1987 newcg = find_css_set(cg, cgrp);
1988 if (!newcg)
1989 return -ENOMEM;
1990 /* add it to the list */
1991 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1992 if (!cg_entry) {
1993 put_css_set(newcg);
1994 return -ENOMEM;
1995 }
1996 cg_entry->cg = newcg;
1997 list_add(&cg_entry->links, newcg_list);
1998 return 0;
1999}
2000
2001/**
2002 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2003 * @cgrp: the cgroup to attach to
2004 * @leader: the threadgroup leader task_struct of the group to be attached
2005 *
2006 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
2007 * take task_lock of each thread in leader's threadgroup individually in turn.
2008 */
2009int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2010{
2011 int retval, i, group_size;
2012 struct cgroup_subsys *ss, *failed_ss = NULL;
2013 bool cancel_failed_ss = false;
2014 /* guaranteed to be initialized later, but the compiler needs this */
2015 struct cgroup *oldcgrp = NULL;
2016 struct css_set *oldcg;
2017 struct cgroupfs_root *root = cgrp->root;
2018 /* threadgroup list cursor and array */
2019 struct task_struct *tsk;
d846687d 2020 struct flex_array *group;
74a1166d
BB
2021 /*
2022 * we need to make sure we have css_sets for all the tasks we're
2023 * going to move -before- we actually start moving them, so that in
2024 * case we get an ENOMEM we can bail out before making any changes.
2025 */
2026 struct list_head newcg_list;
2027 struct cg_list_entry *cg_entry, *temp_nobe;
2028
2029 /*
2030 * step 0: in order to do expensive, possibly blocking operations for
2031 * every thread, we cannot iterate the thread group list, since it needs
2032 * rcu or tasklist locked. instead, build an array of all threads in the
2033 * group - threadgroup_fork_lock prevents new threads from appearing,
2034 * and if threads exit, this will just be an over-estimate.
2035 */
2036 group_size = get_nr_threads(leader);
d846687d
BB
2037 /* flex_array supports very large thread-groups better than kmalloc. */
2038 group = flex_array_alloc(sizeof(struct task_struct *), group_size,
2039 GFP_KERNEL);
74a1166d
BB
2040 if (!group)
2041 return -ENOMEM;
d846687d
BB
2042 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2043 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2044 if (retval)
2045 goto out_free_group_list;
74a1166d
BB
2046
2047 /* prevent changes to the threadgroup list while we take a snapshot. */
33ef6b69 2048 read_lock(&tasklist_lock);
74a1166d
BB
2049 if (!thread_group_leader(leader)) {
2050 /*
2051 * a race with de_thread from another thread's exec() may strip
2052 * us of our leadership, making while_each_thread unsafe to use
2053 * on this task. if this happens, there is no choice but to
2054 * throw this task away and try again (from cgroup_procs_write);
2055 * this is "double-double-toil-and-trouble-check locking".
2056 */
33ef6b69 2057 read_unlock(&tasklist_lock);
74a1166d
BB
2058 retval = -EAGAIN;
2059 goto out_free_group_list;
2060 }
2061 /* take a reference on each task in the group to go in the array. */
2062 tsk = leader;
2063 i = 0;
2064 do {
2065 /* as per above, nr_threads may decrease, but not increase. */
2066 BUG_ON(i >= group_size);
2067 get_task_struct(tsk);
d846687d
BB
2068 /*
2069 * saying GFP_ATOMIC has no effect here because we did prealloc
2070 * earlier, but it's good form to communicate our expectations.
2071 */
2072 retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
2073 BUG_ON(retval != 0);
74a1166d
BB
2074 i++;
2075 } while_each_thread(leader, tsk);
2076 /* remember the number of threads in the array for later. */
2077 group_size = i;
33ef6b69 2078 read_unlock(&tasklist_lock);
74a1166d
BB
2079
2080 /*
2081 * step 1: check that we can legitimately attach to the cgroup.
2082 */
2083 for_each_subsys(root, ss) {
2084 if (ss->can_attach) {
2085 retval = ss->can_attach(ss, cgrp, leader);
2086 if (retval) {
2087 failed_ss = ss;
2088 goto out_cancel_attach;
2089 }
2090 }
2091 /* a callback to be run on every thread in the threadgroup. */
2092 if (ss->can_attach_task) {
2093 /* run on each task in the threadgroup. */
2094 for (i = 0; i < group_size; i++) {
d846687d
BB
2095 tsk = flex_array_get_ptr(group, i);
2096 retval = ss->can_attach_task(cgrp, tsk);
74a1166d
BB
2097 if (retval) {
2098 failed_ss = ss;
2099 cancel_failed_ss = true;
2100 goto out_cancel_attach;
2101 }
2102 }
2103 }
2104 }
2105
2106 /*
2107 * step 2: make sure css_sets exist for all threads to be migrated.
2108 * we use find_css_set, which allocates a new one if necessary.
2109 */
2110 INIT_LIST_HEAD(&newcg_list);
2111 for (i = 0; i < group_size; i++) {
d846687d 2112 tsk = flex_array_get_ptr(group, i);
74a1166d
BB
2113 /* nothing to do if this task is already in the cgroup */
2114 oldcgrp = task_cgroup_from_root(tsk, root);
2115 if (cgrp == oldcgrp)
2116 continue;
2117 /* get old css_set pointer */
2118 task_lock(tsk);
2119 if (tsk->flags & PF_EXITING) {
2120 /* ignore this task if it's going away */
2121 task_unlock(tsk);
2122 continue;
2123 }
2124 oldcg = tsk->cgroups;
2125 get_css_set(oldcg);
2126 task_unlock(tsk);
2127 /* see if the new one for us is already in the list? */
2128 if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
2129 /* was already there, nothing to do. */
2130 put_css_set(oldcg);
2131 } else {
2132 /* we don't already have it. get new one. */
2133 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2134 put_css_set(oldcg);
2135 if (retval)
2136 goto out_list_teardown;
2137 }
2138 }
2139
2140 /*
2141 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2142 * to move all tasks to the new cgroup, calling ss->attach_task for each
2143 * one along the way. there are no failure cases after here, so this is
2144 * the commit point.
2145 */
2146 for_each_subsys(root, ss) {
2147 if (ss->pre_attach)
2148 ss->pre_attach(cgrp);
2149 }
2150 for (i = 0; i < group_size; i++) {
d846687d 2151 tsk = flex_array_get_ptr(group, i);
74a1166d
BB
2152 /* leave current thread as it is if it's already there */
2153 oldcgrp = task_cgroup_from_root(tsk, root);
2154 if (cgrp == oldcgrp)
2155 continue;
74a1166d
BB
2156 /* if the thread is PF_EXITING, it can just get skipped. */
2157 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
77ceab8e
BB
2158 if (retval == 0) {
2159 /* attach each task to each subsystem */
2160 for_each_subsys(root, ss) {
2161 if (ss->attach_task)
2162 ss->attach_task(cgrp, tsk);
2163 }
2164 } else {
2165 BUG_ON(retval != -ESRCH);
2166 }
74a1166d
BB
2167 }
2168 /* nothing is sensitive to fork() after this point. */
2169
2170 /*
2171 * step 4: do expensive, non-thread-specific subsystem callbacks.
2172 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2173 * being moved, this call will need to be reworked to communicate that.
2174 */
2175 for_each_subsys(root, ss) {
2176 if (ss->attach)
2177 ss->attach(ss, cgrp, oldcgrp, leader);
2178 }
2179
2180 /*
2181 * step 5: success! and cleanup
2182 */
2183 synchronize_rcu();
2184 cgroup_wakeup_rmdir_waiter(cgrp);
2185 retval = 0;
2186out_list_teardown:
2187 /* clean up the list of prefetched css_sets. */
2188 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2189 list_del(&cg_entry->links);
2190 put_css_set(cg_entry->cg);
2191 kfree(cg_entry);
2192 }
2193out_cancel_attach:
2194 /* same deal as in cgroup_attach_task */
2195 if (retval) {
2196 for_each_subsys(root, ss) {
2197 if (ss == failed_ss) {
2198 if (cancel_failed_ss && ss->cancel_attach)
2199 ss->cancel_attach(ss, cgrp, leader);
2200 break;
2201 }
2202 if (ss->cancel_attach)
2203 ss->cancel_attach(ss, cgrp, leader);
2204 }
2205 }
2206 /* clean up the array of referenced threads in the group. */
d846687d
BB
2207 for (i = 0; i < group_size; i++) {
2208 tsk = flex_array_get_ptr(group, i);
2209 put_task_struct(tsk);
2210 }
74a1166d 2211out_free_group_list:
d846687d 2212 flex_array_free(group);
74a1166d
BB
2213 return retval;
2214}
2215
2216/*
2217 * Find the task_struct of the task to attach by vpid and pass it along to the
2218 * function to attach either it or all tasks in its threadgroup. Will take
2219 * cgroup_mutex; may take task_lock of task.
bbcb81d0 2220 */
74a1166d 2221static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2222{
bbcb81d0 2223 struct task_struct *tsk;
c69e8d9c 2224 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2225 int ret;
2226
74a1166d
BB
2227 if (!cgroup_lock_live_group(cgrp))
2228 return -ENODEV;
2229
bbcb81d0
PM
2230 if (pid) {
2231 rcu_read_lock();
73507f33 2232 tsk = find_task_by_vpid(pid);
74a1166d
BB
2233 if (!tsk) {
2234 rcu_read_unlock();
2235 cgroup_unlock();
2236 return -ESRCH;
2237 }
2238 if (threadgroup) {
2239 /*
2240 * RCU protects this access, since tsk was found in the
2241 * tid map. a race with de_thread may cause group_leader
2242 * to stop being the leader, but cgroup_attach_proc will
2243 * detect it later.
2244 */
2245 tsk = tsk->group_leader;
2246 } else if (tsk->flags & PF_EXITING) {
2247 /* optimization for the single-task-only case */
bbcb81d0 2248 rcu_read_unlock();
74a1166d 2249 cgroup_unlock();
bbcb81d0
PM
2250 return -ESRCH;
2251 }
bbcb81d0 2252
74a1166d
BB
2253 /*
2254 * even if we're attaching all tasks in the thread group, we
2255 * only need to check permissions on one of them.
2256 */
c69e8d9c
DH
2257 tcred = __task_cred(tsk);
2258 if (cred->euid &&
2259 cred->euid != tcred->uid &&
2260 cred->euid != tcred->suid) {
2261 rcu_read_unlock();
74a1166d 2262 cgroup_unlock();
bbcb81d0
PM
2263 return -EACCES;
2264 }
c69e8d9c
DH
2265 get_task_struct(tsk);
2266 rcu_read_unlock();
bbcb81d0 2267 } else {
74a1166d
BB
2268 if (threadgroup)
2269 tsk = current->group_leader;
2270 else
2271 tsk = current;
bbcb81d0
PM
2272 get_task_struct(tsk);
2273 }
2274
74a1166d
BB
2275 if (threadgroup) {
2276 threadgroup_fork_write_lock(tsk);
2277 ret = cgroup_attach_proc(cgrp, tsk);
2278 threadgroup_fork_write_unlock(tsk);
2279 } else {
2280 ret = cgroup_attach_task(cgrp, tsk);
2281 }
bbcb81d0 2282 put_task_struct(tsk);
74a1166d 2283 cgroup_unlock();
bbcb81d0
PM
2284 return ret;
2285}
2286
af351026 2287static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2288{
2289 return attach_task_by_pid(cgrp, pid, false);
2290}
2291
2292static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026
PM
2293{
2294 int ret;
74a1166d
BB
2295 do {
2296 /*
2297 * attach_proc fails with -EAGAIN if threadgroup leadership
2298 * changes in the middle of the operation, in which case we need
2299 * to find the task_struct for the new leader and start over.
2300 */
2301 ret = attach_task_by_pid(cgrp, tgid, true);
2302 } while (ret == -EAGAIN);
af351026
PM
2303 return ret;
2304}
2305
e788e066
PM
2306/**
2307 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2308 * @cgrp: the cgroup to be checked for liveness
2309 *
84eea842
PM
2310 * On success, returns true; the lock should be later released with
2311 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 2312 */
84eea842 2313bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
2314{
2315 mutex_lock(&cgroup_mutex);
2316 if (cgroup_is_removed(cgrp)) {
2317 mutex_unlock(&cgroup_mutex);
2318 return false;
2319 }
2320 return true;
2321}
67523c48 2322EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
2323
2324static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2325 const char *buffer)
2326{
2327 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2328 if (strlen(buffer) >= PATH_MAX)
2329 return -EINVAL;
e788e066
PM
2330 if (!cgroup_lock_live_group(cgrp))
2331 return -ENODEV;
e25e2cbb 2332 mutex_lock(&cgroup_root_mutex);
e788e066 2333 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2334 mutex_unlock(&cgroup_root_mutex);
84eea842 2335 cgroup_unlock();
e788e066
PM
2336 return 0;
2337}
2338
2339static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2340 struct seq_file *seq)
2341{
2342 if (!cgroup_lock_live_group(cgrp))
2343 return -ENODEV;
2344 seq_puts(seq, cgrp->root->release_agent_path);
2345 seq_putc(seq, '\n');
84eea842 2346 cgroup_unlock();
e788e066
PM
2347 return 0;
2348}
2349
84eea842
PM
2350/* A buffer size big enough for numbers or short strings */
2351#define CGROUP_LOCAL_BUFFER_SIZE 64
2352
e73d2c61 2353static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2354 struct file *file,
2355 const char __user *userbuf,
2356 size_t nbytes, loff_t *unused_ppos)
355e0c48 2357{
84eea842 2358 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2359 int retval = 0;
355e0c48
PM
2360 char *end;
2361
2362 if (!nbytes)
2363 return -EINVAL;
2364 if (nbytes >= sizeof(buffer))
2365 return -E2BIG;
2366 if (copy_from_user(buffer, userbuf, nbytes))
2367 return -EFAULT;
2368
2369 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2370 if (cft->write_u64) {
478988d3 2371 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2372 if (*end)
2373 return -EINVAL;
2374 retval = cft->write_u64(cgrp, cft, val);
2375 } else {
478988d3 2376 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2377 if (*end)
2378 return -EINVAL;
2379 retval = cft->write_s64(cgrp, cft, val);
2380 }
355e0c48
PM
2381 if (!retval)
2382 retval = nbytes;
2383 return retval;
2384}
2385
db3b1497
PM
2386static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2387 struct file *file,
2388 const char __user *userbuf,
2389 size_t nbytes, loff_t *unused_ppos)
2390{
84eea842 2391 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2392 int retval = 0;
2393 size_t max_bytes = cft->max_write_len;
2394 char *buffer = local_buffer;
2395
2396 if (!max_bytes)
2397 max_bytes = sizeof(local_buffer) - 1;
2398 if (nbytes >= max_bytes)
2399 return -E2BIG;
2400 /* Allocate a dynamic buffer if we need one */
2401 if (nbytes >= sizeof(local_buffer)) {
2402 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2403 if (buffer == NULL)
2404 return -ENOMEM;
2405 }
5a3eb9f6
LZ
2406 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2407 retval = -EFAULT;
2408 goto out;
2409 }
db3b1497
PM
2410
2411 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2412 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2413 if (!retval)
2414 retval = nbytes;
5a3eb9f6 2415out:
db3b1497
PM
2416 if (buffer != local_buffer)
2417 kfree(buffer);
2418 return retval;
2419}
2420
ddbcc7e8
PM
2421static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2422 size_t nbytes, loff_t *ppos)
2423{
2424 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2425 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2426
75139b82 2427 if (cgroup_is_removed(cgrp))
ddbcc7e8 2428 return -ENODEV;
355e0c48 2429 if (cft->write)
bd89aabc 2430 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2431 if (cft->write_u64 || cft->write_s64)
2432 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2433 if (cft->write_string)
2434 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2435 if (cft->trigger) {
2436 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2437 return ret ? ret : nbytes;
2438 }
355e0c48 2439 return -EINVAL;
ddbcc7e8
PM
2440}
2441
f4c753b7
PM
2442static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2443 struct file *file,
2444 char __user *buf, size_t nbytes,
2445 loff_t *ppos)
ddbcc7e8 2446{
84eea842 2447 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2448 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2449 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2450
2451 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2452}
2453
e73d2c61
PM
2454static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2455 struct file *file,
2456 char __user *buf, size_t nbytes,
2457 loff_t *ppos)
2458{
84eea842 2459 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2460 s64 val = cft->read_s64(cgrp, cft);
2461 int len = sprintf(tmp, "%lld\n", (long long) val);
2462
2463 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2464}
2465
ddbcc7e8
PM
2466static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2467 size_t nbytes, loff_t *ppos)
2468{
2469 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2470 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2471
75139b82 2472 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2473 return -ENODEV;
2474
2475 if (cft->read)
bd89aabc 2476 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2477 if (cft->read_u64)
2478 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2479 if (cft->read_s64)
2480 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2481 return -EINVAL;
2482}
2483
91796569
PM
2484/*
2485 * seqfile ops/methods for returning structured data. Currently just
2486 * supports string->u64 maps, but can be extended in future.
2487 */
2488
2489struct cgroup_seqfile_state {
2490 struct cftype *cft;
2491 struct cgroup *cgroup;
2492};
2493
2494static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2495{
2496 struct seq_file *sf = cb->state;
2497 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2498}
2499
2500static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2501{
2502 struct cgroup_seqfile_state *state = m->private;
2503 struct cftype *cft = state->cft;
29486df3
SH
2504 if (cft->read_map) {
2505 struct cgroup_map_cb cb = {
2506 .fill = cgroup_map_add,
2507 .state = m,
2508 };
2509 return cft->read_map(state->cgroup, cft, &cb);
2510 }
2511 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2512}
2513
96930a63 2514static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2515{
2516 struct seq_file *seq = file->private_data;
2517 kfree(seq->private);
2518 return single_release(inode, file);
2519}
2520
828c0950 2521static const struct file_operations cgroup_seqfile_operations = {
91796569 2522 .read = seq_read,
e788e066 2523 .write = cgroup_file_write,
91796569
PM
2524 .llseek = seq_lseek,
2525 .release = cgroup_seqfile_release,
2526};
2527
ddbcc7e8
PM
2528static int cgroup_file_open(struct inode *inode, struct file *file)
2529{
2530 int err;
2531 struct cftype *cft;
2532
2533 err = generic_file_open(inode, file);
2534 if (err)
2535 return err;
ddbcc7e8 2536 cft = __d_cft(file->f_dentry);
75139b82 2537
29486df3 2538 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2539 struct cgroup_seqfile_state *state =
2540 kzalloc(sizeof(*state), GFP_USER);
2541 if (!state)
2542 return -ENOMEM;
2543 state->cft = cft;
2544 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2545 file->f_op = &cgroup_seqfile_operations;
2546 err = single_open(file, cgroup_seqfile_show, state);
2547 if (err < 0)
2548 kfree(state);
2549 } else if (cft->open)
ddbcc7e8
PM
2550 err = cft->open(inode, file);
2551 else
2552 err = 0;
2553
2554 return err;
2555}
2556
2557static int cgroup_file_release(struct inode *inode, struct file *file)
2558{
2559 struct cftype *cft = __d_cft(file->f_dentry);
2560 if (cft->release)
2561 return cft->release(inode, file);
2562 return 0;
2563}
2564
2565/*
2566 * cgroup_rename - Only allow simple rename of directories in place.
2567 */
2568static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2569 struct inode *new_dir, struct dentry *new_dentry)
2570{
2571 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2572 return -ENOTDIR;
2573 if (new_dentry->d_inode)
2574 return -EEXIST;
2575 if (old_dir != new_dir)
2576 return -EIO;
2577 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2578}
2579
828c0950 2580static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2581 .read = cgroup_file_read,
2582 .write = cgroup_file_write,
2583 .llseek = generic_file_llseek,
2584 .open = cgroup_file_open,
2585 .release = cgroup_file_release,
2586};
2587
6e1d5dcc 2588static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2589 .lookup = cgroup_lookup,
ddbcc7e8
PM
2590 .mkdir = cgroup_mkdir,
2591 .rmdir = cgroup_rmdir,
2592 .rename = cgroup_rename,
2593};
2594
c72a04e3
AV
2595static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2596{
2597 if (dentry->d_name.len > NAME_MAX)
2598 return ERR_PTR(-ENAMETOOLONG);
2599 d_add(dentry, NULL);
2600 return NULL;
2601}
2602
0dea1168
KS
2603/*
2604 * Check if a file is a control file
2605 */
2606static inline struct cftype *__file_cft(struct file *file)
2607{
2608 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2609 return ERR_PTR(-EINVAL);
2610 return __d_cft(file->f_dentry);
2611}
2612
5adcee1d
NP
2613static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2614 struct super_block *sb)
2615{
ddbcc7e8
PM
2616 struct inode *inode;
2617
2618 if (!dentry)
2619 return -ENOENT;
2620 if (dentry->d_inode)
2621 return -EEXIST;
2622
2623 inode = cgroup_new_inode(mode, sb);
2624 if (!inode)
2625 return -ENOMEM;
2626
2627 if (S_ISDIR(mode)) {
2628 inode->i_op = &cgroup_dir_inode_operations;
2629 inode->i_fop = &simple_dir_operations;
2630
2631 /* start off with i_nlink == 2 (for "." entry) */
2632 inc_nlink(inode);
2633
2634 /* start with the directory inode held, so that we can
2635 * populate it without racing with another mkdir */
817929ec 2636 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2637 } else if (S_ISREG(mode)) {
2638 inode->i_size = 0;
2639 inode->i_fop = &cgroup_file_operations;
2640 }
ddbcc7e8
PM
2641 d_instantiate(dentry, inode);
2642 dget(dentry); /* Extra count - pin the dentry in core */
2643 return 0;
2644}
2645
2646/*
a043e3b2
LZ
2647 * cgroup_create_dir - create a directory for an object.
2648 * @cgrp: the cgroup we create the directory for. It must have a valid
2649 * ->parent field. And we are going to fill its ->dentry field.
2650 * @dentry: dentry of the new cgroup
2651 * @mode: mode to set on new directory.
ddbcc7e8 2652 */
bd89aabc 2653static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
099fca32 2654 mode_t mode)
ddbcc7e8
PM
2655{
2656 struct dentry *parent;
2657 int error = 0;
2658
bd89aabc
PM
2659 parent = cgrp->parent->dentry;
2660 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2661 if (!error) {
bd89aabc 2662 dentry->d_fsdata = cgrp;
ddbcc7e8 2663 inc_nlink(parent->d_inode);
a47295e6 2664 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2665 dget(dentry);
2666 }
2667 dput(dentry);
2668
2669 return error;
2670}
2671
099fca32
LZ
2672/**
2673 * cgroup_file_mode - deduce file mode of a control file
2674 * @cft: the control file in question
2675 *
2676 * returns cft->mode if ->mode is not 0
2677 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2678 * returns S_IRUGO if it has only a read handler
2679 * returns S_IWUSR if it has only a write hander
2680 */
2681static mode_t cgroup_file_mode(const struct cftype *cft)
2682{
2683 mode_t mode = 0;
2684
2685 if (cft->mode)
2686 return cft->mode;
2687
2688 if (cft->read || cft->read_u64 || cft->read_s64 ||
2689 cft->read_map || cft->read_seq_string)
2690 mode |= S_IRUGO;
2691
2692 if (cft->write || cft->write_u64 || cft->write_s64 ||
2693 cft->write_string || cft->trigger)
2694 mode |= S_IWUSR;
2695
2696 return mode;
2697}
2698
bd89aabc 2699int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
2700 struct cgroup_subsys *subsys,
2701 const struct cftype *cft)
2702{
bd89aabc 2703 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2704 struct dentry *dentry;
2705 int error;
099fca32 2706 mode_t mode;
ddbcc7e8
PM
2707
2708 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 2709 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2710 strcpy(name, subsys->name);
2711 strcat(name, ".");
2712 }
2713 strcat(name, cft->name);
2714 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2715 dentry = lookup_one_len(name, dir, strlen(name));
2716 if (!IS_ERR(dentry)) {
099fca32
LZ
2717 mode = cgroup_file_mode(cft);
2718 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2719 cgrp->root->sb);
ddbcc7e8
PM
2720 if (!error)
2721 dentry->d_fsdata = (void *)cft;
2722 dput(dentry);
2723 } else
2724 error = PTR_ERR(dentry);
2725 return error;
2726}
e6a1105b 2727EXPORT_SYMBOL_GPL(cgroup_add_file);
ddbcc7e8 2728
bd89aabc 2729int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
2730 struct cgroup_subsys *subsys,
2731 const struct cftype cft[],
2732 int count)
2733{
2734 int i, err;
2735 for (i = 0; i < count; i++) {
bd89aabc 2736 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
2737 if (err)
2738 return err;
2739 }
2740 return 0;
2741}
e6a1105b 2742EXPORT_SYMBOL_GPL(cgroup_add_files);
ddbcc7e8 2743
a043e3b2
LZ
2744/**
2745 * cgroup_task_count - count the number of tasks in a cgroup.
2746 * @cgrp: the cgroup in question
2747 *
2748 * Return the number of tasks in the cgroup.
2749 */
bd89aabc 2750int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2751{
2752 int count = 0;
71cbb949 2753 struct cg_cgroup_link *link;
817929ec
PM
2754
2755 read_lock(&css_set_lock);
71cbb949 2756 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2757 count += atomic_read(&link->cg->refcount);
817929ec
PM
2758 }
2759 read_unlock(&css_set_lock);
bbcb81d0
PM
2760 return count;
2761}
2762
817929ec
PM
2763/*
2764 * Advance a list_head iterator. The iterator should be positioned at
2765 * the start of a css_set
2766 */
bd89aabc 2767static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2768 struct cgroup_iter *it)
817929ec
PM
2769{
2770 struct list_head *l = it->cg_link;
2771 struct cg_cgroup_link *link;
2772 struct css_set *cg;
2773
2774 /* Advance to the next non-empty css_set */
2775 do {
2776 l = l->next;
bd89aabc 2777 if (l == &cgrp->css_sets) {
817929ec
PM
2778 it->cg_link = NULL;
2779 return;
2780 }
bd89aabc 2781 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2782 cg = link->cg;
2783 } while (list_empty(&cg->tasks));
2784 it->cg_link = l;
2785 it->task = cg->tasks.next;
2786}
2787
31a7df01
CW
2788/*
2789 * To reduce the fork() overhead for systems that are not actually
2790 * using their cgroups capability, we don't maintain the lists running
2791 * through each css_set to its tasks until we see the list actually
2792 * used - in other words after the first call to cgroup_iter_start().
2793 *
2794 * The tasklist_lock is not held here, as do_each_thread() and
2795 * while_each_thread() are protected by RCU.
2796 */
3df91fe3 2797static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2798{
2799 struct task_struct *p, *g;
2800 write_lock(&css_set_lock);
2801 use_task_css_set_links = 1;
2802 do_each_thread(g, p) {
2803 task_lock(p);
0e04388f
LZ
2804 /*
2805 * We should check if the process is exiting, otherwise
2806 * it will race with cgroup_exit() in that the list
2807 * entry won't be deleted though the process has exited.
2808 */
2809 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2810 list_add(&p->cg_list, &p->cgroups->tasks);
2811 task_unlock(p);
2812 } while_each_thread(g, p);
2813 write_unlock(&css_set_lock);
2814}
2815
bd89aabc 2816void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2817{
2818 /*
2819 * The first time anyone tries to iterate across a cgroup,
2820 * we need to enable the list linking each css_set to its
2821 * tasks, and fix up all existing tasks.
2822 */
31a7df01
CW
2823 if (!use_task_css_set_links)
2824 cgroup_enable_task_cg_lists();
2825
817929ec 2826 read_lock(&css_set_lock);
bd89aabc
PM
2827 it->cg_link = &cgrp->css_sets;
2828 cgroup_advance_iter(cgrp, it);
817929ec
PM
2829}
2830
bd89aabc 2831struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2832 struct cgroup_iter *it)
2833{
2834 struct task_struct *res;
2835 struct list_head *l = it->task;
2019f634 2836 struct cg_cgroup_link *link;
817929ec
PM
2837
2838 /* If the iterator cg is NULL, we have no tasks */
2839 if (!it->cg_link)
2840 return NULL;
2841 res = list_entry(l, struct task_struct, cg_list);
2842 /* Advance iterator to find next entry */
2843 l = l->next;
2019f634
LJ
2844 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2845 if (l == &link->cg->tasks) {
817929ec
PM
2846 /* We reached the end of this task list - move on to
2847 * the next cg_cgroup_link */
bd89aabc 2848 cgroup_advance_iter(cgrp, it);
817929ec
PM
2849 } else {
2850 it->task = l;
2851 }
2852 return res;
2853}
2854
bd89aabc 2855void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2856{
2857 read_unlock(&css_set_lock);
2858}
2859
31a7df01
CW
2860static inline int started_after_time(struct task_struct *t1,
2861 struct timespec *time,
2862 struct task_struct *t2)
2863{
2864 int start_diff = timespec_compare(&t1->start_time, time);
2865 if (start_diff > 0) {
2866 return 1;
2867 } else if (start_diff < 0) {
2868 return 0;
2869 } else {
2870 /*
2871 * Arbitrarily, if two processes started at the same
2872 * time, we'll say that the lower pointer value
2873 * started first. Note that t2 may have exited by now
2874 * so this may not be a valid pointer any longer, but
2875 * that's fine - it still serves to distinguish
2876 * between two tasks started (effectively) simultaneously.
2877 */
2878 return t1 > t2;
2879 }
2880}
2881
2882/*
2883 * This function is a callback from heap_insert() and is used to order
2884 * the heap.
2885 * In this case we order the heap in descending task start time.
2886 */
2887static inline int started_after(void *p1, void *p2)
2888{
2889 struct task_struct *t1 = p1;
2890 struct task_struct *t2 = p2;
2891 return started_after_time(t1, &t2->start_time, t2);
2892}
2893
2894/**
2895 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2896 * @scan: struct cgroup_scanner containing arguments for the scan
2897 *
2898 * Arguments include pointers to callback functions test_task() and
2899 * process_task().
2900 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2901 * and if it returns true, call process_task() for it also.
2902 * The test_task pointer may be NULL, meaning always true (select all tasks).
2903 * Effectively duplicates cgroup_iter_{start,next,end}()
2904 * but does not lock css_set_lock for the call to process_task().
2905 * The struct cgroup_scanner may be embedded in any structure of the caller's
2906 * creation.
2907 * It is guaranteed that process_task() will act on every task that
2908 * is a member of the cgroup for the duration of this call. This
2909 * function may or may not call process_task() for tasks that exit
2910 * or move to a different cgroup during the call, or are forked or
2911 * move into the cgroup during the call.
2912 *
2913 * Note that test_task() may be called with locks held, and may in some
2914 * situations be called multiple times for the same task, so it should
2915 * be cheap.
2916 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2917 * pre-allocated and will be used for heap operations (and its "gt" member will
2918 * be overwritten), else a temporary heap will be used (allocation of which
2919 * may cause this function to fail).
2920 */
2921int cgroup_scan_tasks(struct cgroup_scanner *scan)
2922{
2923 int retval, i;
2924 struct cgroup_iter it;
2925 struct task_struct *p, *dropped;
2926 /* Never dereference latest_task, since it's not refcounted */
2927 struct task_struct *latest_task = NULL;
2928 struct ptr_heap tmp_heap;
2929 struct ptr_heap *heap;
2930 struct timespec latest_time = { 0, 0 };
2931
2932 if (scan->heap) {
2933 /* The caller supplied our heap and pre-allocated its memory */
2934 heap = scan->heap;
2935 heap->gt = &started_after;
2936 } else {
2937 /* We need to allocate our own heap memory */
2938 heap = &tmp_heap;
2939 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2940 if (retval)
2941 /* cannot allocate the heap */
2942 return retval;
2943 }
2944
2945 again:
2946 /*
2947 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2948 * to determine which are of interest, and using the scanner's
2949 * "process_task" callback to process any of them that need an update.
2950 * Since we don't want to hold any locks during the task updates,
2951 * gather tasks to be processed in a heap structure.
2952 * The heap is sorted by descending task start time.
2953 * If the statically-sized heap fills up, we overflow tasks that
2954 * started later, and in future iterations only consider tasks that
2955 * started after the latest task in the previous pass. This
2956 * guarantees forward progress and that we don't miss any tasks.
2957 */
2958 heap->size = 0;
2959 cgroup_iter_start(scan->cg, &it);
2960 while ((p = cgroup_iter_next(scan->cg, &it))) {
2961 /*
2962 * Only affect tasks that qualify per the caller's callback,
2963 * if he provided one
2964 */
2965 if (scan->test_task && !scan->test_task(p, scan))
2966 continue;
2967 /*
2968 * Only process tasks that started after the last task
2969 * we processed
2970 */
2971 if (!started_after_time(p, &latest_time, latest_task))
2972 continue;
2973 dropped = heap_insert(heap, p);
2974 if (dropped == NULL) {
2975 /*
2976 * The new task was inserted; the heap wasn't
2977 * previously full
2978 */
2979 get_task_struct(p);
2980 } else if (dropped != p) {
2981 /*
2982 * The new task was inserted, and pushed out a
2983 * different task
2984 */
2985 get_task_struct(p);
2986 put_task_struct(dropped);
2987 }
2988 /*
2989 * Else the new task was newer than anything already in
2990 * the heap and wasn't inserted
2991 */
2992 }
2993 cgroup_iter_end(scan->cg, &it);
2994
2995 if (heap->size) {
2996 for (i = 0; i < heap->size; i++) {
4fe91d51 2997 struct task_struct *q = heap->ptrs[i];
31a7df01 2998 if (i == 0) {
4fe91d51
PJ
2999 latest_time = q->start_time;
3000 latest_task = q;
31a7df01
CW
3001 }
3002 /* Process the task per the caller's callback */
4fe91d51
PJ
3003 scan->process_task(q, scan);
3004 put_task_struct(q);
31a7df01
CW
3005 }
3006 /*
3007 * If we had to process any tasks at all, scan again
3008 * in case some of them were in the middle of forking
3009 * children that didn't get processed.
3010 * Not the most efficient way to do it, but it avoids
3011 * having to take callback_mutex in the fork path
3012 */
3013 goto again;
3014 }
3015 if (heap == &tmp_heap)
3016 heap_free(&tmp_heap);
3017 return 0;
3018}
3019
bbcb81d0 3020/*
102a775e 3021 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3022 *
3023 * Reading this file can return large amounts of data if a cgroup has
3024 * *lots* of attached tasks. So it may need several calls to read(),
3025 * but we cannot guarantee that the information we produce is correct
3026 * unless we produce it entirely atomically.
3027 *
bbcb81d0 3028 */
bbcb81d0 3029
d1d9fd33
BB
3030/*
3031 * The following two functions "fix" the issue where there are more pids
3032 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3033 * TODO: replace with a kernel-wide solution to this problem
3034 */
3035#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3036static void *pidlist_allocate(int count)
3037{
3038 if (PIDLIST_TOO_LARGE(count))
3039 return vmalloc(count * sizeof(pid_t));
3040 else
3041 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3042}
3043static void pidlist_free(void *p)
3044{
3045 if (is_vmalloc_addr(p))
3046 vfree(p);
3047 else
3048 kfree(p);
3049}
3050static void *pidlist_resize(void *p, int newcount)
3051{
3052 void *newlist;
3053 /* note: if new alloc fails, old p will still be valid either way */
3054 if (is_vmalloc_addr(p)) {
3055 newlist = vmalloc(newcount * sizeof(pid_t));
3056 if (!newlist)
3057 return NULL;
3058 memcpy(newlist, p, newcount * sizeof(pid_t));
3059 vfree(p);
3060 } else {
3061 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3062 }
3063 return newlist;
3064}
3065
bbcb81d0 3066/*
102a775e
BB
3067 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3068 * If the new stripped list is sufficiently smaller and there's enough memory
3069 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3070 * number of unique elements.
bbcb81d0 3071 */
102a775e
BB
3072/* is the size difference enough that we should re-allocate the array? */
3073#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3074static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 3075{
102a775e
BB
3076 int src, dest = 1;
3077 pid_t *list = *p;
3078 pid_t *newlist;
3079
3080 /*
3081 * we presume the 0th element is unique, so i starts at 1. trivial
3082 * edge cases first; no work needs to be done for either
3083 */
3084 if (length == 0 || length == 1)
3085 return length;
3086 /* src and dest walk down the list; dest counts unique elements */
3087 for (src = 1; src < length; src++) {
3088 /* find next unique element */
3089 while (list[src] == list[src-1]) {
3090 src++;
3091 if (src == length)
3092 goto after;
3093 }
3094 /* dest always points to where the next unique element goes */
3095 list[dest] = list[src];
3096 dest++;
3097 }
3098after:
3099 /*
3100 * if the length difference is large enough, we want to allocate a
3101 * smaller buffer to save memory. if this fails due to out of memory,
3102 * we'll just stay with what we've got.
3103 */
3104 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 3105 newlist = pidlist_resize(list, dest);
102a775e
BB
3106 if (newlist)
3107 *p = newlist;
3108 }
3109 return dest;
3110}
3111
3112static int cmppid(const void *a, const void *b)
3113{
3114 return *(pid_t *)a - *(pid_t *)b;
3115}
3116
72a8cb30
BB
3117/*
3118 * find the appropriate pidlist for our purpose (given procs vs tasks)
3119 * returns with the lock on that pidlist already held, and takes care
3120 * of the use count, or returns NULL with no locks held if we're out of
3121 * memory.
3122 */
3123static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3124 enum cgroup_filetype type)
3125{
3126 struct cgroup_pidlist *l;
3127 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
3128 struct pid_namespace *ns = current->nsproxy->pid_ns;
3129
72a8cb30
BB
3130 /*
3131 * We can't drop the pidlist_mutex before taking the l->mutex in case
3132 * the last ref-holder is trying to remove l from the list at the same
3133 * time. Holding the pidlist_mutex precludes somebody taking whichever
3134 * list we find out from under us - compare release_pid_array().
3135 */
3136 mutex_lock(&cgrp->pidlist_mutex);
3137 list_for_each_entry(l, &cgrp->pidlists, links) {
3138 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3139 /* make sure l doesn't vanish out from under us */
3140 down_write(&l->mutex);
3141 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3142 return l;
3143 }
3144 }
3145 /* entry not found; create a new one */
3146 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3147 if (!l) {
3148 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3149 return l;
3150 }
3151 init_rwsem(&l->mutex);
3152 down_write(&l->mutex);
3153 l->key.type = type;
b70cc5fd 3154 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3155 l->use_count = 0; /* don't increment here */
3156 l->list = NULL;
3157 l->owner = cgrp;
3158 list_add(&l->links, &cgrp->pidlists);
3159 mutex_unlock(&cgrp->pidlist_mutex);
3160 return l;
3161}
3162
102a775e
BB
3163/*
3164 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3165 */
72a8cb30
BB
3166static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3167 struct cgroup_pidlist **lp)
102a775e
BB
3168{
3169 pid_t *array;
3170 int length;
3171 int pid, n = 0; /* used for populating the array */
817929ec
PM
3172 struct cgroup_iter it;
3173 struct task_struct *tsk;
102a775e
BB
3174 struct cgroup_pidlist *l;
3175
3176 /*
3177 * If cgroup gets more users after we read count, we won't have
3178 * enough space - tough. This race is indistinguishable to the
3179 * caller from the case that the additional cgroup users didn't
3180 * show up until sometime later on.
3181 */
3182 length = cgroup_task_count(cgrp);
d1d9fd33 3183 array = pidlist_allocate(length);
102a775e
BB
3184 if (!array)
3185 return -ENOMEM;
3186 /* now, populate the array */
bd89aabc
PM
3187 cgroup_iter_start(cgrp, &it);
3188 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3189 if (unlikely(n == length))
817929ec 3190 break;
102a775e 3191 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3192 if (type == CGROUP_FILE_PROCS)
3193 pid = task_tgid_vnr(tsk);
3194 else
3195 pid = task_pid_vnr(tsk);
102a775e
BB
3196 if (pid > 0) /* make sure to only use valid results */
3197 array[n++] = pid;
817929ec 3198 }
bd89aabc 3199 cgroup_iter_end(cgrp, &it);
102a775e
BB
3200 length = n;
3201 /* now sort & (if procs) strip out duplicates */
3202 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3203 if (type == CGROUP_FILE_PROCS)
102a775e 3204 length = pidlist_uniq(&array, length);
72a8cb30
BB
3205 l = cgroup_pidlist_find(cgrp, type);
3206 if (!l) {
d1d9fd33 3207 pidlist_free(array);
72a8cb30 3208 return -ENOMEM;
102a775e 3209 }
72a8cb30 3210 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3211 pidlist_free(l->list);
102a775e
BB
3212 l->list = array;
3213 l->length = length;
3214 l->use_count++;
3215 up_write(&l->mutex);
72a8cb30 3216 *lp = l;
102a775e 3217 return 0;
bbcb81d0
PM
3218}
3219
846c7bb0 3220/**
a043e3b2 3221 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3222 * @stats: cgroupstats to fill information into
3223 * @dentry: A dentry entry belonging to the cgroup for which stats have
3224 * been requested.
a043e3b2
LZ
3225 *
3226 * Build and fill cgroupstats so that taskstats can export it to user
3227 * space.
846c7bb0
BS
3228 */
3229int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3230{
3231 int ret = -EINVAL;
bd89aabc 3232 struct cgroup *cgrp;
846c7bb0
BS
3233 struct cgroup_iter it;
3234 struct task_struct *tsk;
33d283be 3235
846c7bb0 3236 /*
33d283be
LZ
3237 * Validate dentry by checking the superblock operations,
3238 * and make sure it's a directory.
846c7bb0 3239 */
33d283be
LZ
3240 if (dentry->d_sb->s_op != &cgroup_ops ||
3241 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3242 goto err;
3243
3244 ret = 0;
bd89aabc 3245 cgrp = dentry->d_fsdata;
846c7bb0 3246
bd89aabc
PM
3247 cgroup_iter_start(cgrp, &it);
3248 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3249 switch (tsk->state) {
3250 case TASK_RUNNING:
3251 stats->nr_running++;
3252 break;
3253 case TASK_INTERRUPTIBLE:
3254 stats->nr_sleeping++;
3255 break;
3256 case TASK_UNINTERRUPTIBLE:
3257 stats->nr_uninterruptible++;
3258 break;
3259 case TASK_STOPPED:
3260 stats->nr_stopped++;
3261 break;
3262 default:
3263 if (delayacct_is_task_waiting_on_io(tsk))
3264 stats->nr_io_wait++;
3265 break;
3266 }
3267 }
bd89aabc 3268 cgroup_iter_end(cgrp, &it);
846c7bb0 3269
846c7bb0
BS
3270err:
3271 return ret;
3272}
3273
8f3ff208 3274
bbcb81d0 3275/*
102a775e 3276 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3277 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3278 * in the cgroup->l->list array.
bbcb81d0 3279 */
cc31edce 3280
102a775e 3281static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3282{
cc31edce
PM
3283 /*
3284 * Initially we receive a position value that corresponds to
3285 * one more than the last pid shown (or 0 on the first call or
3286 * after a seek to the start). Use a binary-search to find the
3287 * next pid to display, if any
3288 */
102a775e 3289 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3290 int index = 0, pid = *pos;
3291 int *iter;
3292
102a775e 3293 down_read(&l->mutex);
cc31edce 3294 if (pid) {
102a775e 3295 int end = l->length;
20777766 3296
cc31edce
PM
3297 while (index < end) {
3298 int mid = (index + end) / 2;
102a775e 3299 if (l->list[mid] == pid) {
cc31edce
PM
3300 index = mid;
3301 break;
102a775e 3302 } else if (l->list[mid] <= pid)
cc31edce
PM
3303 index = mid + 1;
3304 else
3305 end = mid;
3306 }
3307 }
3308 /* If we're off the end of the array, we're done */
102a775e 3309 if (index >= l->length)
cc31edce
PM
3310 return NULL;
3311 /* Update the abstract position to be the actual pid that we found */
102a775e 3312 iter = l->list + index;
cc31edce
PM
3313 *pos = *iter;
3314 return iter;
3315}
3316
102a775e 3317static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3318{
102a775e
BB
3319 struct cgroup_pidlist *l = s->private;
3320 up_read(&l->mutex);
cc31edce
PM
3321}
3322
102a775e 3323static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3324{
102a775e
BB
3325 struct cgroup_pidlist *l = s->private;
3326 pid_t *p = v;
3327 pid_t *end = l->list + l->length;
cc31edce
PM
3328 /*
3329 * Advance to the next pid in the array. If this goes off the
3330 * end, we're done
3331 */
3332 p++;
3333 if (p >= end) {
3334 return NULL;
3335 } else {
3336 *pos = *p;
3337 return p;
3338 }
3339}
3340
102a775e 3341static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3342{
3343 return seq_printf(s, "%d\n", *(int *)v);
3344}
bbcb81d0 3345
102a775e
BB
3346/*
3347 * seq_operations functions for iterating on pidlists through seq_file -
3348 * independent of whether it's tasks or procs
3349 */
3350static const struct seq_operations cgroup_pidlist_seq_operations = {
3351 .start = cgroup_pidlist_start,
3352 .stop = cgroup_pidlist_stop,
3353 .next = cgroup_pidlist_next,
3354 .show = cgroup_pidlist_show,
cc31edce
PM
3355};
3356
102a775e 3357static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3358{
72a8cb30
BB
3359 /*
3360 * the case where we're the last user of this particular pidlist will
3361 * have us remove it from the cgroup's list, which entails taking the
3362 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3363 * pidlist_mutex, we have to take pidlist_mutex first.
3364 */
3365 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3366 down_write(&l->mutex);
3367 BUG_ON(!l->use_count);
3368 if (!--l->use_count) {
72a8cb30
BB
3369 /* we're the last user if refcount is 0; remove and free */
3370 list_del(&l->links);
3371 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3372 pidlist_free(l->list);
72a8cb30
BB
3373 put_pid_ns(l->key.ns);
3374 up_write(&l->mutex);
3375 kfree(l);
3376 return;
cc31edce 3377 }
72a8cb30 3378 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3379 up_write(&l->mutex);
bbcb81d0
PM
3380}
3381
102a775e 3382static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3383{
102a775e 3384 struct cgroup_pidlist *l;
cc31edce
PM
3385 if (!(file->f_mode & FMODE_READ))
3386 return 0;
102a775e
BB
3387 /*
3388 * the seq_file will only be initialized if the file was opened for
3389 * reading; hence we check if it's not null only in that case.
3390 */
3391 l = ((struct seq_file *)file->private_data)->private;
3392 cgroup_release_pid_array(l);
cc31edce
PM
3393 return seq_release(inode, file);
3394}
3395
102a775e 3396static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3397 .read = seq_read,
3398 .llseek = seq_lseek,
3399 .write = cgroup_file_write,
102a775e 3400 .release = cgroup_pidlist_release,
cc31edce
PM
3401};
3402
bbcb81d0 3403/*
102a775e
BB
3404 * The following functions handle opens on a file that displays a pidlist
3405 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3406 * in the cgroup.
bbcb81d0 3407 */
102a775e 3408/* helper function for the two below it */
72a8cb30 3409static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3410{
bd89aabc 3411 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3412 struct cgroup_pidlist *l;
cc31edce 3413 int retval;
bbcb81d0 3414
cc31edce 3415 /* Nothing to do for write-only files */
bbcb81d0
PM
3416 if (!(file->f_mode & FMODE_READ))
3417 return 0;
3418
102a775e 3419 /* have the array populated */
72a8cb30 3420 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3421 if (retval)
3422 return retval;
3423 /* configure file information */
3424 file->f_op = &cgroup_pidlist_operations;
cc31edce 3425
102a775e 3426 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3427 if (retval) {
102a775e 3428 cgroup_release_pid_array(l);
cc31edce 3429 return retval;
bbcb81d0 3430 }
102a775e 3431 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3432 return 0;
3433}
102a775e
BB
3434static int cgroup_tasks_open(struct inode *unused, struct file *file)
3435{
72a8cb30 3436 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3437}
3438static int cgroup_procs_open(struct inode *unused, struct file *file)
3439{
72a8cb30 3440 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3441}
bbcb81d0 3442
bd89aabc 3443static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3444 struct cftype *cft)
3445{
bd89aabc 3446 return notify_on_release(cgrp);
81a6a5cd
PM
3447}
3448
6379c106
PM
3449static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3450 struct cftype *cft,
3451 u64 val)
3452{
3453 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3454 if (val)
3455 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3456 else
3457 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3458 return 0;
3459}
3460
0dea1168
KS
3461/*
3462 * Unregister event and free resources.
3463 *
3464 * Gets called from workqueue.
3465 */
3466static void cgroup_event_remove(struct work_struct *work)
3467{
3468 struct cgroup_event *event = container_of(work, struct cgroup_event,
3469 remove);
3470 struct cgroup *cgrp = event->cgrp;
3471
0dea1168
KS
3472 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3473
3474 eventfd_ctx_put(event->eventfd);
0dea1168 3475 kfree(event);
a0a4db54 3476 dput(cgrp->dentry);
0dea1168
KS
3477}
3478
3479/*
3480 * Gets called on POLLHUP on eventfd when user closes it.
3481 *
3482 * Called with wqh->lock held and interrupts disabled.
3483 */
3484static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3485 int sync, void *key)
3486{
3487 struct cgroup_event *event = container_of(wait,
3488 struct cgroup_event, wait);
3489 struct cgroup *cgrp = event->cgrp;
3490 unsigned long flags = (unsigned long)key;
3491
3492 if (flags & POLLHUP) {
a93d2f17 3493 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3494 spin_lock(&cgrp->event_list_lock);
3495 list_del(&event->list);
3496 spin_unlock(&cgrp->event_list_lock);
3497 /*
3498 * We are in atomic context, but cgroup_event_remove() may
3499 * sleep, so we have to call it in workqueue.
3500 */
3501 schedule_work(&event->remove);
3502 }
3503
3504 return 0;
3505}
3506
3507static void cgroup_event_ptable_queue_proc(struct file *file,
3508 wait_queue_head_t *wqh, poll_table *pt)
3509{
3510 struct cgroup_event *event = container_of(pt,
3511 struct cgroup_event, pt);
3512
3513 event->wqh = wqh;
3514 add_wait_queue(wqh, &event->wait);
3515}
3516
3517/*
3518 * Parse input and register new cgroup event handler.
3519 *
3520 * Input must be in format '<event_fd> <control_fd> <args>'.
3521 * Interpretation of args is defined by control file implementation.
3522 */
3523static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3524 const char *buffer)
3525{
3526 struct cgroup_event *event = NULL;
3527 unsigned int efd, cfd;
3528 struct file *efile = NULL;
3529 struct file *cfile = NULL;
3530 char *endp;
3531 int ret;
3532
3533 efd = simple_strtoul(buffer, &endp, 10);
3534 if (*endp != ' ')
3535 return -EINVAL;
3536 buffer = endp + 1;
3537
3538 cfd = simple_strtoul(buffer, &endp, 10);
3539 if ((*endp != ' ') && (*endp != '\0'))
3540 return -EINVAL;
3541 buffer = endp + 1;
3542
3543 event = kzalloc(sizeof(*event), GFP_KERNEL);
3544 if (!event)
3545 return -ENOMEM;
3546 event->cgrp = cgrp;
3547 INIT_LIST_HEAD(&event->list);
3548 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3549 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3550 INIT_WORK(&event->remove, cgroup_event_remove);
3551
3552 efile = eventfd_fget(efd);
3553 if (IS_ERR(efile)) {
3554 ret = PTR_ERR(efile);
3555 goto fail;
3556 }
3557
3558 event->eventfd = eventfd_ctx_fileget(efile);
3559 if (IS_ERR(event->eventfd)) {
3560 ret = PTR_ERR(event->eventfd);
3561 goto fail;
3562 }
3563
3564 cfile = fget(cfd);
3565 if (!cfile) {
3566 ret = -EBADF;
3567 goto fail;
3568 }
3569
3570 /* the process need read permission on control file */
3bfa784a
AV
3571 /* AV: shouldn't we check that it's been opened for read instead? */
3572 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
0dea1168
KS
3573 if (ret < 0)
3574 goto fail;
3575
3576 event->cft = __file_cft(cfile);
3577 if (IS_ERR(event->cft)) {
3578 ret = PTR_ERR(event->cft);
3579 goto fail;
3580 }
3581
3582 if (!event->cft->register_event || !event->cft->unregister_event) {
3583 ret = -EINVAL;
3584 goto fail;
3585 }
3586
3587 ret = event->cft->register_event(cgrp, event->cft,
3588 event->eventfd, buffer);
3589 if (ret)
3590 goto fail;
3591
3592 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3593 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3594 ret = 0;
3595 goto fail;
3596 }
3597
a0a4db54
KS
3598 /*
3599 * Events should be removed after rmdir of cgroup directory, but before
3600 * destroying subsystem state objects. Let's take reference to cgroup
3601 * directory dentry to do that.
3602 */
3603 dget(cgrp->dentry);
3604
0dea1168
KS
3605 spin_lock(&cgrp->event_list_lock);
3606 list_add(&event->list, &cgrp->event_list);
3607 spin_unlock(&cgrp->event_list_lock);
3608
3609 fput(cfile);
3610 fput(efile);
3611
3612 return 0;
3613
3614fail:
3615 if (cfile)
3616 fput(cfile);
3617
3618 if (event && event->eventfd && !IS_ERR(event->eventfd))
3619 eventfd_ctx_put(event->eventfd);
3620
3621 if (!IS_ERR_OR_NULL(efile))
3622 fput(efile);
3623
3624 kfree(event);
3625
3626 return ret;
3627}
3628
97978e6d
DL
3629static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3630 struct cftype *cft)
3631{
3632 return clone_children(cgrp);
3633}
3634
3635static int cgroup_clone_children_write(struct cgroup *cgrp,
3636 struct cftype *cft,
3637 u64 val)
3638{
3639 if (val)
3640 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3641 else
3642 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3643 return 0;
3644}
3645
bbcb81d0
PM
3646/*
3647 * for the common functions, 'private' gives the type of file
3648 */
102a775e
BB
3649/* for hysterical raisins, we can't put this on the older files */
3650#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3651static struct cftype files[] = {
3652 {
3653 .name = "tasks",
3654 .open = cgroup_tasks_open,
af351026 3655 .write_u64 = cgroup_tasks_write,
102a775e 3656 .release = cgroup_pidlist_release,
099fca32 3657 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3658 },
102a775e
BB
3659 {
3660 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3661 .open = cgroup_procs_open,
74a1166d 3662 .write_u64 = cgroup_procs_write,
102a775e 3663 .release = cgroup_pidlist_release,
74a1166d 3664 .mode = S_IRUGO | S_IWUSR,
102a775e 3665 },
81a6a5cd
PM
3666 {
3667 .name = "notify_on_release",
f4c753b7 3668 .read_u64 = cgroup_read_notify_on_release,
6379c106 3669 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3670 },
0dea1168
KS
3671 {
3672 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3673 .write_string = cgroup_write_event_control,
3674 .mode = S_IWUGO,
3675 },
97978e6d
DL
3676 {
3677 .name = "cgroup.clone_children",
3678 .read_u64 = cgroup_clone_children_read,
3679 .write_u64 = cgroup_clone_children_write,
3680 },
81a6a5cd
PM
3681};
3682
3683static struct cftype cft_release_agent = {
3684 .name = "release_agent",
e788e066
PM
3685 .read_seq_string = cgroup_release_agent_show,
3686 .write_string = cgroup_release_agent_write,
3687 .max_write_len = PATH_MAX,
bbcb81d0
PM
3688};
3689
bd89aabc 3690static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3691{
3692 int err;
3693 struct cgroup_subsys *ss;
3694
3695 /* First clear out any existing files */
bd89aabc 3696 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 3697
bd89aabc 3698 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
3699 if (err < 0)
3700 return err;
3701
bd89aabc
PM
3702 if (cgrp == cgrp->top_cgroup) {
3703 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
3704 return err;
3705 }
3706
bd89aabc
PM
3707 for_each_subsys(cgrp->root, ss) {
3708 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
3709 return err;
3710 }
38460b48
KH
3711 /* This cgroup is ready now */
3712 for_each_subsys(cgrp->root, ss) {
3713 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3714 /*
3715 * Update id->css pointer and make this css visible from
3716 * CSS ID functions. This pointer will be dereferened
3717 * from RCU-read-side without locks.
3718 */
3719 if (css->id)
3720 rcu_assign_pointer(css->id->css, css);
3721 }
ddbcc7e8
PM
3722
3723 return 0;
3724}
3725
3726static void init_cgroup_css(struct cgroup_subsys_state *css,
3727 struct cgroup_subsys *ss,
bd89aabc 3728 struct cgroup *cgrp)
ddbcc7e8 3729{
bd89aabc 3730 css->cgroup = cgrp;
e7c5ec91 3731 atomic_set(&css->refcnt, 1);
ddbcc7e8 3732 css->flags = 0;
38460b48 3733 css->id = NULL;
bd89aabc 3734 if (cgrp == dummytop)
ddbcc7e8 3735 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3736 BUG_ON(cgrp->subsys[ss->subsys_id]);
3737 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
3738}
3739
999cd8a4
PM
3740static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3741{
3742 /* We need to take each hierarchy_mutex in a consistent order */
3743 int i;
3744
aae8aab4
BB
3745 /*
3746 * No worry about a race with rebind_subsystems that might mess up the
3747 * locking order, since both parties are under cgroup_mutex.
3748 */
999cd8a4
PM
3749 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3750 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3751 if (ss == NULL)
3752 continue;
999cd8a4 3753 if (ss->root == root)
cfebe563 3754 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3755 }
3756}
3757
3758static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3759{
3760 int i;
3761
3762 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3763 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3764 if (ss == NULL)
3765 continue;
999cd8a4
PM
3766 if (ss->root == root)
3767 mutex_unlock(&ss->hierarchy_mutex);
3768 }
3769}
3770
ddbcc7e8 3771/*
a043e3b2
LZ
3772 * cgroup_create - create a cgroup
3773 * @parent: cgroup that will be parent of the new cgroup
3774 * @dentry: dentry of the new cgroup
3775 * @mode: mode to set on new inode
ddbcc7e8 3776 *
a043e3b2 3777 * Must be called with the mutex on the parent inode held
ddbcc7e8 3778 */
ddbcc7e8 3779static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
099fca32 3780 mode_t mode)
ddbcc7e8 3781{
bd89aabc 3782 struct cgroup *cgrp;
ddbcc7e8
PM
3783 struct cgroupfs_root *root = parent->root;
3784 int err = 0;
3785 struct cgroup_subsys *ss;
3786 struct super_block *sb = root->sb;
3787
bd89aabc
PM
3788 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3789 if (!cgrp)
ddbcc7e8
PM
3790 return -ENOMEM;
3791
3792 /* Grab a reference on the superblock so the hierarchy doesn't
3793 * get deleted on unmount if there are child cgroups. This
3794 * can be done outside cgroup_mutex, since the sb can't
3795 * disappear while someone has an open control file on the
3796 * fs */
3797 atomic_inc(&sb->s_active);
3798
3799 mutex_lock(&cgroup_mutex);
3800
cc31edce 3801 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3802
bd89aabc
PM
3803 cgrp->parent = parent;
3804 cgrp->root = parent->root;
3805 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3806
b6abdb0e
LZ
3807 if (notify_on_release(parent))
3808 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3809
97978e6d
DL
3810 if (clone_children(parent))
3811 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3812
ddbcc7e8 3813 for_each_subsys(root, ss) {
bd89aabc 3814 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
4528fd05 3815
ddbcc7e8
PM
3816 if (IS_ERR(css)) {
3817 err = PTR_ERR(css);
3818 goto err_destroy;
3819 }
bd89aabc 3820 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3821 if (ss->use_id) {
3822 err = alloc_css_id(ss, parent, cgrp);
3823 if (err)
38460b48 3824 goto err_destroy;
4528fd05 3825 }
38460b48 3826 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d
DL
3827 if (clone_children(parent) && ss->post_clone)
3828 ss->post_clone(ss, cgrp);
ddbcc7e8
PM
3829 }
3830
999cd8a4 3831 cgroup_lock_hierarchy(root);
bd89aabc 3832 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3833 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3834 root->number_of_cgroups++;
3835
bd89aabc 3836 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3837 if (err < 0)
3838 goto err_remove;
3839
3840 /* The cgroup directory was pre-locked for us */
bd89aabc 3841 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3842
bd89aabc 3843 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3844 /* If err < 0, we have a half-filled directory - oh well ;) */
3845
3846 mutex_unlock(&cgroup_mutex);
bd89aabc 3847 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3848
3849 return 0;
3850
3851 err_remove:
3852
baef99a0 3853 cgroup_lock_hierarchy(root);
bd89aabc 3854 list_del(&cgrp->sibling);
baef99a0 3855 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3856 root->number_of_cgroups--;
3857
3858 err_destroy:
3859
3860 for_each_subsys(root, ss) {
bd89aabc
PM
3861 if (cgrp->subsys[ss->subsys_id])
3862 ss->destroy(ss, cgrp);
ddbcc7e8
PM
3863 }
3864
3865 mutex_unlock(&cgroup_mutex);
3866
3867 /* Release the reference count that we took on the superblock */
3868 deactivate_super(sb);
3869
bd89aabc 3870 kfree(cgrp);
ddbcc7e8
PM
3871 return err;
3872}
3873
3874static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3875{
3876 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3877
3878 /* the vfs holds inode->i_mutex already */
3879 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3880}
3881
55b6fd01 3882static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
3883{
3884 /* Check the reference count on each subsystem. Since we
3885 * already established that there are no tasks in the
e7c5ec91 3886 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3887 * be no outstanding references, so the subsystem is safe to
3888 * destroy. We scan across all subsystems rather than using
3889 * the per-hierarchy linked list of mounted subsystems since
3890 * we can be called via check_for_release() with no
3891 * synchronization other than RCU, and the subsystem linked
3892 * list isn't RCU-safe */
3893 int i;
aae8aab4
BB
3894 /*
3895 * We won't need to lock the subsys array, because the subsystems
3896 * we're concerned about aren't going anywhere since our cgroup root
3897 * has a reference on them.
3898 */
81a6a5cd
PM
3899 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3900 struct cgroup_subsys *ss = subsys[i];
3901 struct cgroup_subsys_state *css;
aae8aab4
BB
3902 /* Skip subsystems not present or not in this hierarchy */
3903 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 3904 continue;
bd89aabc 3905 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3906 /* When called from check_for_release() it's possible
3907 * that by this point the cgroup has been removed
3908 * and the css deleted. But a false-positive doesn't
3909 * matter, since it can only happen if the cgroup
3910 * has been deleted and hence no longer needs the
3911 * release agent to be called anyway. */
e7c5ec91 3912 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 3913 return 1;
81a6a5cd
PM
3914 }
3915 return 0;
3916}
3917
e7c5ec91
PM
3918/*
3919 * Atomically mark all (or else none) of the cgroup's CSS objects as
3920 * CSS_REMOVED. Return true on success, or false if the cgroup has
3921 * busy subsystems. Call with cgroup_mutex held
3922 */
3923
3924static int cgroup_clear_css_refs(struct cgroup *cgrp)
3925{
3926 struct cgroup_subsys *ss;
3927 unsigned long flags;
3928 bool failed = false;
3929 local_irq_save(flags);
3930 for_each_subsys(cgrp->root, ss) {
3931 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3932 int refcnt;
804b3c28 3933 while (1) {
e7c5ec91
PM
3934 /* We can only remove a CSS with a refcnt==1 */
3935 refcnt = atomic_read(&css->refcnt);
3936 if (refcnt > 1) {
3937 failed = true;
3938 goto done;
3939 }
3940 BUG_ON(!refcnt);
3941 /*
3942 * Drop the refcnt to 0 while we check other
3943 * subsystems. This will cause any racing
3944 * css_tryget() to spin until we set the
3945 * CSS_REMOVED bits or abort
3946 */
804b3c28
PM
3947 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3948 break;
3949 cpu_relax();
3950 }
e7c5ec91
PM
3951 }
3952 done:
3953 for_each_subsys(cgrp->root, ss) {
3954 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3955 if (failed) {
3956 /*
3957 * Restore old refcnt if we previously managed
3958 * to clear it from 1 to 0
3959 */
3960 if (!atomic_read(&css->refcnt))
3961 atomic_set(&css->refcnt, 1);
3962 } else {
3963 /* Commit the fact that the CSS is removed */
3964 set_bit(CSS_REMOVED, &css->flags);
3965 }
3966 }
3967 local_irq_restore(flags);
3968 return !failed;
3969}
3970
ddbcc7e8
PM
3971static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3972{
bd89aabc 3973 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
3974 struct dentry *d;
3975 struct cgroup *parent;
ec64f515 3976 DEFINE_WAIT(wait);
4ab78683 3977 struct cgroup_event *event, *tmp;
ec64f515 3978 int ret;
ddbcc7e8
PM
3979
3980 /* the vfs holds both inode->i_mutex already */
ec64f515 3981again:
ddbcc7e8 3982 mutex_lock(&cgroup_mutex);
bd89aabc 3983 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
3984 mutex_unlock(&cgroup_mutex);
3985 return -EBUSY;
3986 }
bd89aabc 3987 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
3988 mutex_unlock(&cgroup_mutex);
3989 return -EBUSY;
3990 }
3fa59dfb 3991 mutex_unlock(&cgroup_mutex);
a043e3b2 3992
88703267
KH
3993 /*
3994 * In general, subsystem has no css->refcnt after pre_destroy(). But
3995 * in racy cases, subsystem may have to get css->refcnt after
3996 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3997 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3998 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3999 * and subsystem's reference count handling. Please see css_get/put
4000 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4001 */
4002 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4003
4fca88c8 4004 /*
a043e3b2
LZ
4005 * Call pre_destroy handlers of subsys. Notify subsystems
4006 * that rmdir() request comes.
4fca88c8 4007 */
ec64f515 4008 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
4009 if (ret) {
4010 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 4011 return ret;
88703267 4012 }
ddbcc7e8 4013
3fa59dfb
KH
4014 mutex_lock(&cgroup_mutex);
4015 parent = cgrp->parent;
ec64f515 4016 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 4017 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
4018 mutex_unlock(&cgroup_mutex);
4019 return -EBUSY;
4020 }
ec64f515 4021 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
4022 if (!cgroup_clear_css_refs(cgrp)) {
4023 mutex_unlock(&cgroup_mutex);
88703267
KH
4024 /*
4025 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4026 * prepare_to_wait(), we need to check this flag.
4027 */
4028 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4029 schedule();
ec64f515
KH
4030 finish_wait(&cgroup_rmdir_waitq, &wait);
4031 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4032 if (signal_pending(current))
4033 return -EINTR;
4034 goto again;
4035 }
4036 /* NO css_tryget() can success after here. */
4037 finish_wait(&cgroup_rmdir_waitq, &wait);
4038 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 4039
cdcc136f 4040 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4041 set_bit(CGRP_REMOVED, &cgrp->flags);
4042 if (!list_empty(&cgrp->release_list))
8d258797 4043 list_del_init(&cgrp->release_list);
cdcc136f 4044 raw_spin_unlock(&release_list_lock);
999cd8a4
PM
4045
4046 cgroup_lock_hierarchy(cgrp->root);
4047 /* delete this cgroup from parent->children */
8d258797 4048 list_del_init(&cgrp->sibling);
999cd8a4
PM
4049 cgroup_unlock_hierarchy(cgrp->root);
4050
bd89aabc 4051 d = dget(cgrp->dentry);
ddbcc7e8
PM
4052
4053 cgroup_d_remove_dir(d);
4054 dput(d);
ddbcc7e8 4055
bd89aabc 4056 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4057 check_for_release(parent);
4058
4ab78683
KS
4059 /*
4060 * Unregister events and notify userspace.
4061 * Notify userspace about cgroup removing only after rmdir of cgroup
4062 * directory to avoid race between userspace and kernelspace
4063 */
4064 spin_lock(&cgrp->event_list_lock);
4065 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4066 list_del(&event->list);
4067 remove_wait_queue(event->wqh, &event->wait);
4068 eventfd_signal(event->eventfd, 1);
4069 schedule_work(&event->remove);
4070 }
4071 spin_unlock(&cgrp->event_list_lock);
4072
ddbcc7e8 4073 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4074 return 0;
4075}
4076
06a11920 4077static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4078{
ddbcc7e8 4079 struct cgroup_subsys_state *css;
cfe36bde
DC
4080
4081 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
4082
4083 /* Create the top cgroup state for this subsystem */
33a68ac1 4084 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
4085 ss->root = &rootnode;
4086 css = ss->create(ss, dummytop);
4087 /* We don't handle early failures gracefully */
4088 BUG_ON(IS_ERR(css));
4089 init_cgroup_css(css, ss, dummytop);
4090
e8d55fde 4091 /* Update the init_css_set to contain a subsys
817929ec 4092 * pointer to this state - since the subsystem is
e8d55fde
LZ
4093 * newly registered, all tasks and hence the
4094 * init_css_set is in the subsystem's top cgroup. */
4095 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
4096
4097 need_forkexit_callback |= ss->fork || ss->exit;
4098
e8d55fde
LZ
4099 /* At system boot, before all subsystems have been
4100 * registered, no tasks have been forked, so we don't
4101 * need to invoke fork callbacks here. */
4102 BUG_ON(!list_empty(&init_task.tasks));
4103
999cd8a4 4104 mutex_init(&ss->hierarchy_mutex);
cfebe563 4105 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 4106 ss->active = 1;
e6a1105b
BB
4107
4108 /* this function shouldn't be used with modular subsystems, since they
4109 * need to register a subsys_id, among other things */
4110 BUG_ON(ss->module);
4111}
4112
4113/**
4114 * cgroup_load_subsys: load and register a modular subsystem at runtime
4115 * @ss: the subsystem to load
4116 *
4117 * This function should be called in a modular subsystem's initcall. If the
88393161 4118 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4119 * up for use. If the subsystem is built-in anyway, work is delegated to the
4120 * simpler cgroup_init_subsys.
4121 */
4122int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4123{
4124 int i;
4125 struct cgroup_subsys_state *css;
4126
4127 /* check name and function validity */
4128 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4129 ss->create == NULL || ss->destroy == NULL)
4130 return -EINVAL;
4131
4132 /*
4133 * we don't support callbacks in modular subsystems. this check is
4134 * before the ss->module check for consistency; a subsystem that could
4135 * be a module should still have no callbacks even if the user isn't
4136 * compiling it as one.
4137 */
4138 if (ss->fork || ss->exit)
4139 return -EINVAL;
4140
4141 /*
4142 * an optionally modular subsystem is built-in: we want to do nothing,
4143 * since cgroup_init_subsys will have already taken care of it.
4144 */
4145 if (ss->module == NULL) {
4146 /* a few sanity checks */
4147 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4148 BUG_ON(subsys[ss->subsys_id] != ss);
4149 return 0;
4150 }
4151
4152 /*
4153 * need to register a subsys id before anything else - for example,
4154 * init_cgroup_css needs it.
4155 */
4156 mutex_lock(&cgroup_mutex);
4157 /* find the first empty slot in the array */
4158 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4159 if (subsys[i] == NULL)
4160 break;
4161 }
4162 if (i == CGROUP_SUBSYS_COUNT) {
4163 /* maximum number of subsystems already registered! */
4164 mutex_unlock(&cgroup_mutex);
4165 return -EBUSY;
4166 }
4167 /* assign ourselves the subsys_id */
4168 ss->subsys_id = i;
4169 subsys[i] = ss;
4170
4171 /*
4172 * no ss->create seems to need anything important in the ss struct, so
4173 * this can happen first (i.e. before the rootnode attachment).
4174 */
4175 css = ss->create(ss, dummytop);
4176 if (IS_ERR(css)) {
4177 /* failure case - need to deassign the subsys[] slot. */
4178 subsys[i] = NULL;
4179 mutex_unlock(&cgroup_mutex);
4180 return PTR_ERR(css);
4181 }
4182
4183 list_add(&ss->sibling, &rootnode.subsys_list);
4184 ss->root = &rootnode;
4185
4186 /* our new subsystem will be attached to the dummy hierarchy. */
4187 init_cgroup_css(css, ss, dummytop);
4188 /* init_idr must be after init_cgroup_css because it sets css->id. */
4189 if (ss->use_id) {
4190 int ret = cgroup_init_idr(ss, css);
4191 if (ret) {
4192 dummytop->subsys[ss->subsys_id] = NULL;
4193 ss->destroy(ss, dummytop);
4194 subsys[i] = NULL;
4195 mutex_unlock(&cgroup_mutex);
4196 return ret;
4197 }
4198 }
4199
4200 /*
4201 * Now we need to entangle the css into the existing css_sets. unlike
4202 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4203 * will need a new pointer to it; done by iterating the css_set_table.
4204 * furthermore, modifying the existing css_sets will corrupt the hash
4205 * table state, so each changed css_set will need its hash recomputed.
4206 * this is all done under the css_set_lock.
4207 */
4208 write_lock(&css_set_lock);
4209 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4210 struct css_set *cg;
4211 struct hlist_node *node, *tmp;
4212 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4213
4214 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4215 /* skip entries that we already rehashed */
4216 if (cg->subsys[ss->subsys_id])
4217 continue;
4218 /* remove existing entry */
4219 hlist_del(&cg->hlist);
4220 /* set new value */
4221 cg->subsys[ss->subsys_id] = css;
4222 /* recompute hash and restore entry */
4223 new_bucket = css_set_hash(cg->subsys);
4224 hlist_add_head(&cg->hlist, new_bucket);
4225 }
4226 }
4227 write_unlock(&css_set_lock);
4228
4229 mutex_init(&ss->hierarchy_mutex);
4230 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4231 ss->active = 1;
4232
e6a1105b
BB
4233 /* success! */
4234 mutex_unlock(&cgroup_mutex);
4235 return 0;
ddbcc7e8 4236}
e6a1105b 4237EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4238
cf5d5941
BB
4239/**
4240 * cgroup_unload_subsys: unload a modular subsystem
4241 * @ss: the subsystem to unload
4242 *
4243 * This function should be called in a modular subsystem's exitcall. When this
4244 * function is invoked, the refcount on the subsystem's module will be 0, so
4245 * the subsystem will not be attached to any hierarchy.
4246 */
4247void cgroup_unload_subsys(struct cgroup_subsys *ss)
4248{
4249 struct cg_cgroup_link *link;
4250 struct hlist_head *hhead;
4251
4252 BUG_ON(ss->module == NULL);
4253
4254 /*
4255 * we shouldn't be called if the subsystem is in use, and the use of
4256 * try_module_get in parse_cgroupfs_options should ensure that it
4257 * doesn't start being used while we're killing it off.
4258 */
4259 BUG_ON(ss->root != &rootnode);
4260
4261 mutex_lock(&cgroup_mutex);
4262 /* deassign the subsys_id */
4263 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4264 subsys[ss->subsys_id] = NULL;
4265
4266 /* remove subsystem from rootnode's list of subsystems */
8d258797 4267 list_del_init(&ss->sibling);
cf5d5941
BB
4268
4269 /*
4270 * disentangle the css from all css_sets attached to the dummytop. as
4271 * in loading, we need to pay our respects to the hashtable gods.
4272 */
4273 write_lock(&css_set_lock);
4274 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4275 struct css_set *cg = link->cg;
4276
4277 hlist_del(&cg->hlist);
4278 BUG_ON(!cg->subsys[ss->subsys_id]);
4279 cg->subsys[ss->subsys_id] = NULL;
4280 hhead = css_set_hash(cg->subsys);
4281 hlist_add_head(&cg->hlist, hhead);
4282 }
4283 write_unlock(&css_set_lock);
4284
4285 /*
4286 * remove subsystem's css from the dummytop and free it - need to free
4287 * before marking as null because ss->destroy needs the cgrp->subsys
4288 * pointer to find their state. note that this also takes care of
4289 * freeing the css_id.
4290 */
4291 ss->destroy(ss, dummytop);
4292 dummytop->subsys[ss->subsys_id] = NULL;
4293
4294 mutex_unlock(&cgroup_mutex);
4295}
4296EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4297
ddbcc7e8 4298/**
a043e3b2
LZ
4299 * cgroup_init_early - cgroup initialization at system boot
4300 *
4301 * Initialize cgroups at system boot, and initialize any
4302 * subsystems that request early init.
ddbcc7e8
PM
4303 */
4304int __init cgroup_init_early(void)
4305{
4306 int i;
146aa1bd 4307 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4308 INIT_LIST_HEAD(&init_css_set.cg_links);
4309 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4310 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4311 css_set_count = 1;
ddbcc7e8 4312 init_cgroup_root(&rootnode);
817929ec
PM
4313 root_count = 1;
4314 init_task.cgroups = &init_css_set;
4315
4316 init_css_set_link.cg = &init_css_set;
7717f7ba 4317 init_css_set_link.cgrp = dummytop;
bd89aabc 4318 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4319 &rootnode.top_cgroup.css_sets);
4320 list_add(&init_css_set_link.cg_link_list,
4321 &init_css_set.cg_links);
ddbcc7e8 4322
472b1053
LZ
4323 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4324 INIT_HLIST_HEAD(&css_set_table[i]);
4325
aae8aab4
BB
4326 /* at bootup time, we don't worry about modular subsystems */
4327 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4328 struct cgroup_subsys *ss = subsys[i];
4329
4330 BUG_ON(!ss->name);
4331 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4332 BUG_ON(!ss->create);
4333 BUG_ON(!ss->destroy);
4334 if (ss->subsys_id != i) {
cfe36bde 4335 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4336 ss->name, ss->subsys_id);
4337 BUG();
4338 }
4339
4340 if (ss->early_init)
4341 cgroup_init_subsys(ss);
4342 }
4343 return 0;
4344}
4345
4346/**
a043e3b2
LZ
4347 * cgroup_init - cgroup initialization
4348 *
4349 * Register cgroup filesystem and /proc file, and initialize
4350 * any subsystems that didn't request early init.
ddbcc7e8
PM
4351 */
4352int __init cgroup_init(void)
4353{
4354 int err;
4355 int i;
472b1053 4356 struct hlist_head *hhead;
a424316c
PM
4357
4358 err = bdi_init(&cgroup_backing_dev_info);
4359 if (err)
4360 return err;
ddbcc7e8 4361
aae8aab4
BB
4362 /* at bootup time, we don't worry about modular subsystems */
4363 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4364 struct cgroup_subsys *ss = subsys[i];
4365 if (!ss->early_init)
4366 cgroup_init_subsys(ss);
38460b48 4367 if (ss->use_id)
e6a1105b 4368 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4369 }
4370
472b1053
LZ
4371 /* Add init_css_set to the hash table */
4372 hhead = css_set_hash(init_css_set.subsys);
4373 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 4374 BUG_ON(!init_root_id(&rootnode));
676db4af
GKH
4375
4376 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4377 if (!cgroup_kobj) {
4378 err = -ENOMEM;
4379 goto out;
4380 }
4381
ddbcc7e8 4382 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4383 if (err < 0) {
4384 kobject_put(cgroup_kobj);
ddbcc7e8 4385 goto out;
676db4af 4386 }
ddbcc7e8 4387
46ae220b 4388 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4389
ddbcc7e8 4390out:
a424316c
PM
4391 if (err)
4392 bdi_destroy(&cgroup_backing_dev_info);
4393
ddbcc7e8
PM
4394 return err;
4395}
b4f48b63 4396
a424316c
PM
4397/*
4398 * proc_cgroup_show()
4399 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4400 * - Used for /proc/<pid>/cgroup.
4401 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4402 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4403 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4404 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4405 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4406 * cgroup to top_cgroup.
4407 */
4408
4409/* TODO: Use a proper seq_file iterator */
4410static int proc_cgroup_show(struct seq_file *m, void *v)
4411{
4412 struct pid *pid;
4413 struct task_struct *tsk;
4414 char *buf;
4415 int retval;
4416 struct cgroupfs_root *root;
4417
4418 retval = -ENOMEM;
4419 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4420 if (!buf)
4421 goto out;
4422
4423 retval = -ESRCH;
4424 pid = m->private;
4425 tsk = get_pid_task(pid, PIDTYPE_PID);
4426 if (!tsk)
4427 goto out_free;
4428
4429 retval = 0;
4430
4431 mutex_lock(&cgroup_mutex);
4432
e5f6a860 4433 for_each_active_root(root) {
a424316c 4434 struct cgroup_subsys *ss;
bd89aabc 4435 struct cgroup *cgrp;
a424316c
PM
4436 int count = 0;
4437
2c6ab6d2 4438 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4439 for_each_subsys(root, ss)
4440 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4441 if (strlen(root->name))
4442 seq_printf(m, "%sname=%s", count ? "," : "",
4443 root->name);
a424316c 4444 seq_putc(m, ':');
7717f7ba 4445 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4446 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4447 if (retval < 0)
4448 goto out_unlock;
4449 seq_puts(m, buf);
4450 seq_putc(m, '\n');
4451 }
4452
4453out_unlock:
4454 mutex_unlock(&cgroup_mutex);
4455 put_task_struct(tsk);
4456out_free:
4457 kfree(buf);
4458out:
4459 return retval;
4460}
4461
4462static int cgroup_open(struct inode *inode, struct file *file)
4463{
4464 struct pid *pid = PROC_I(inode)->pid;
4465 return single_open(file, proc_cgroup_show, pid);
4466}
4467
828c0950 4468const struct file_operations proc_cgroup_operations = {
a424316c
PM
4469 .open = cgroup_open,
4470 .read = seq_read,
4471 .llseek = seq_lseek,
4472 .release = single_release,
4473};
4474
4475/* Display information about each subsystem and each hierarchy */
4476static int proc_cgroupstats_show(struct seq_file *m, void *v)
4477{
4478 int i;
a424316c 4479
8bab8dde 4480 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4481 /*
4482 * ideally we don't want subsystems moving around while we do this.
4483 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4484 * subsys/hierarchy state.
4485 */
a424316c 4486 mutex_lock(&cgroup_mutex);
a424316c
PM
4487 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4488 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4489 if (ss == NULL)
4490 continue;
2c6ab6d2
PM
4491 seq_printf(m, "%s\t%d\t%d\t%d\n",
4492 ss->name, ss->root->hierarchy_id,
8bab8dde 4493 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4494 }
4495 mutex_unlock(&cgroup_mutex);
4496 return 0;
4497}
4498
4499static int cgroupstats_open(struct inode *inode, struct file *file)
4500{
9dce07f1 4501 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4502}
4503
828c0950 4504static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4505 .open = cgroupstats_open,
4506 .read = seq_read,
4507 .llseek = seq_lseek,
4508 .release = single_release,
4509};
4510
b4f48b63
PM
4511/**
4512 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4513 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4514 *
4515 * Description: A task inherits its parent's cgroup at fork().
4516 *
4517 * A pointer to the shared css_set was automatically copied in
4518 * fork.c by dup_task_struct(). However, we ignore that copy, since
4519 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 4520 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
4521 * have already changed current->cgroups, allowing the previously
4522 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4523 *
4524 * At the point that cgroup_fork() is called, 'current' is the parent
4525 * task, and the passed argument 'child' points to the child task.
4526 */
4527void cgroup_fork(struct task_struct *child)
4528{
817929ec
PM
4529 task_lock(current);
4530 child->cgroups = current->cgroups;
4531 get_css_set(child->cgroups);
4532 task_unlock(current);
4533 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4534}
4535
4536/**
a043e3b2
LZ
4537 * cgroup_fork_callbacks - run fork callbacks
4538 * @child: the new task
4539 *
4540 * Called on a new task very soon before adding it to the
4541 * tasklist. No need to take any locks since no-one can
4542 * be operating on this task.
b4f48b63
PM
4543 */
4544void cgroup_fork_callbacks(struct task_struct *child)
4545{
4546 if (need_forkexit_callback) {
4547 int i;
aae8aab4
BB
4548 /*
4549 * forkexit callbacks are only supported for builtin
4550 * subsystems, and the builtin section of the subsys array is
4551 * immutable, so we don't need to lock the subsys array here.
4552 */
4553 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4554 struct cgroup_subsys *ss = subsys[i];
4555 if (ss->fork)
4556 ss->fork(ss, child);
4557 }
4558 }
4559}
4560
817929ec 4561/**
a043e3b2
LZ
4562 * cgroup_post_fork - called on a new task after adding it to the task list
4563 * @child: the task in question
4564 *
4565 * Adds the task to the list running through its css_set if necessary.
4566 * Has to be after the task is visible on the task list in case we race
4567 * with the first call to cgroup_iter_start() - to guarantee that the
4568 * new task ends up on its list.
4569 */
817929ec
PM
4570void cgroup_post_fork(struct task_struct *child)
4571{
4572 if (use_task_css_set_links) {
4573 write_lock(&css_set_lock);
b12b533f 4574 task_lock(child);
817929ec
PM
4575 if (list_empty(&child->cg_list))
4576 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 4577 task_unlock(child);
817929ec
PM
4578 write_unlock(&css_set_lock);
4579 }
4580}
b4f48b63
PM
4581/**
4582 * cgroup_exit - detach cgroup from exiting task
4583 * @tsk: pointer to task_struct of exiting process
a043e3b2 4584 * @run_callback: run exit callbacks?
b4f48b63
PM
4585 *
4586 * Description: Detach cgroup from @tsk and release it.
4587 *
4588 * Note that cgroups marked notify_on_release force every task in
4589 * them to take the global cgroup_mutex mutex when exiting.
4590 * This could impact scaling on very large systems. Be reluctant to
4591 * use notify_on_release cgroups where very high task exit scaling
4592 * is required on large systems.
4593 *
4594 * the_top_cgroup_hack:
4595 *
4596 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4597 *
4598 * We call cgroup_exit() while the task is still competent to
4599 * handle notify_on_release(), then leave the task attached to the
4600 * root cgroup in each hierarchy for the remainder of its exit.
4601 *
4602 * To do this properly, we would increment the reference count on
4603 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4604 * code we would add a second cgroup function call, to drop that
4605 * reference. This would just create an unnecessary hot spot on
4606 * the top_cgroup reference count, to no avail.
4607 *
4608 * Normally, holding a reference to a cgroup without bumping its
4609 * count is unsafe. The cgroup could go away, or someone could
4610 * attach us to a different cgroup, decrementing the count on
4611 * the first cgroup that we never incremented. But in this case,
4612 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4613 * which wards off any cgroup_attach_task() attempts, or task is a failed
4614 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4615 */
4616void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4617{
817929ec 4618 struct css_set *cg;
d41d5a01 4619 int i;
817929ec
PM
4620
4621 /*
4622 * Unlink from the css_set task list if necessary.
4623 * Optimistically check cg_list before taking
4624 * css_set_lock
4625 */
4626 if (!list_empty(&tsk->cg_list)) {
4627 write_lock(&css_set_lock);
4628 if (!list_empty(&tsk->cg_list))
8d258797 4629 list_del_init(&tsk->cg_list);
817929ec
PM
4630 write_unlock(&css_set_lock);
4631 }
4632
b4f48b63
PM
4633 /* Reassign the task to the init_css_set. */
4634 task_lock(tsk);
817929ec
PM
4635 cg = tsk->cgroups;
4636 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4637
4638 if (run_callbacks && need_forkexit_callback) {
4639 /*
4640 * modular subsystems can't use callbacks, so no need to lock
4641 * the subsys array
4642 */
4643 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4644 struct cgroup_subsys *ss = subsys[i];
4645 if (ss->exit) {
4646 struct cgroup *old_cgrp =
4647 rcu_dereference_raw(cg->subsys[i])->cgroup;
4648 struct cgroup *cgrp = task_cgroup(tsk, i);
4649 ss->exit(ss, cgrp, old_cgrp, tsk);
4650 }
4651 }
4652 }
b4f48b63 4653 task_unlock(tsk);
d41d5a01 4654
817929ec 4655 if (cg)
81a6a5cd 4656 put_css_set_taskexit(cg);
b4f48b63 4657}
697f4161 4658
a043e3b2 4659/**
313e924c 4660 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4661 * @cgrp: the cgroup in question
313e924c 4662 * @task: the task in question
a043e3b2 4663 *
313e924c
GN
4664 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4665 * hierarchy.
697f4161
PM
4666 *
4667 * If we are sending in dummytop, then presumably we are creating
4668 * the top cgroup in the subsystem.
4669 *
4670 * Called only by the ns (nsproxy) cgroup.
4671 */
313e924c 4672int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4673{
4674 int ret;
4675 struct cgroup *target;
697f4161 4676
bd89aabc 4677 if (cgrp == dummytop)
697f4161
PM
4678 return 1;
4679
7717f7ba 4680 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4681 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4682 cgrp = cgrp->parent;
4683 ret = (cgrp == target);
697f4161
PM
4684 return ret;
4685}
81a6a5cd 4686
bd89aabc 4687static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4688{
4689 /* All of these checks rely on RCU to keep the cgroup
4690 * structure alive */
bd89aabc
PM
4691 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4692 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4693 /* Control Group is currently removeable. If it's not
4694 * already queued for a userspace notification, queue
4695 * it now */
4696 int need_schedule_work = 0;
cdcc136f 4697 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4698 if (!cgroup_is_removed(cgrp) &&
4699 list_empty(&cgrp->release_list)) {
4700 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4701 need_schedule_work = 1;
4702 }
cdcc136f 4703 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4704 if (need_schedule_work)
4705 schedule_work(&release_agent_work);
4706 }
4707}
4708
d7b9fff7
DN
4709/* Caller must verify that the css is not for root cgroup */
4710void __css_put(struct cgroup_subsys_state *css, int count)
81a6a5cd 4711{
bd89aabc 4712 struct cgroup *cgrp = css->cgroup;
3dece834 4713 int val;
81a6a5cd 4714 rcu_read_lock();
d7b9fff7 4715 val = atomic_sub_return(count, &css->refcnt);
3dece834 4716 if (val == 1) {
ec64f515
KH
4717 if (notify_on_release(cgrp)) {
4718 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4719 check_for_release(cgrp);
4720 }
88703267 4721 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
4722 }
4723 rcu_read_unlock();
3dece834 4724 WARN_ON_ONCE(val < 1);
81a6a5cd 4725}
67523c48 4726EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4727
4728/*
4729 * Notify userspace when a cgroup is released, by running the
4730 * configured release agent with the name of the cgroup (path
4731 * relative to the root of cgroup file system) as the argument.
4732 *
4733 * Most likely, this user command will try to rmdir this cgroup.
4734 *
4735 * This races with the possibility that some other task will be
4736 * attached to this cgroup before it is removed, or that some other
4737 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4738 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4739 * unused, and this cgroup will be reprieved from its death sentence,
4740 * to continue to serve a useful existence. Next time it's released,
4741 * we will get notified again, if it still has 'notify_on_release' set.
4742 *
4743 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4744 * means only wait until the task is successfully execve()'d. The
4745 * separate release agent task is forked by call_usermodehelper(),
4746 * then control in this thread returns here, without waiting for the
4747 * release agent task. We don't bother to wait because the caller of
4748 * this routine has no use for the exit status of the release agent
4749 * task, so no sense holding our caller up for that.
81a6a5cd 4750 */
81a6a5cd
PM
4751static void cgroup_release_agent(struct work_struct *work)
4752{
4753 BUG_ON(work != &release_agent_work);
4754 mutex_lock(&cgroup_mutex);
cdcc136f 4755 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4756 while (!list_empty(&release_list)) {
4757 char *argv[3], *envp[3];
4758 int i;
e788e066 4759 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4760 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4761 struct cgroup,
4762 release_list);
bd89aabc 4763 list_del_init(&cgrp->release_list);
cdcc136f 4764 raw_spin_unlock(&release_list_lock);
81a6a5cd 4765 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4766 if (!pathbuf)
4767 goto continue_free;
4768 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4769 goto continue_free;
4770 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4771 if (!agentbuf)
4772 goto continue_free;
81a6a5cd
PM
4773
4774 i = 0;
e788e066
PM
4775 argv[i++] = agentbuf;
4776 argv[i++] = pathbuf;
81a6a5cd
PM
4777 argv[i] = NULL;
4778
4779 i = 0;
4780 /* minimal command environment */
4781 envp[i++] = "HOME=/";
4782 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4783 envp[i] = NULL;
4784
4785 /* Drop the lock while we invoke the usermode helper,
4786 * since the exec could involve hitting disk and hence
4787 * be a slow process */
4788 mutex_unlock(&cgroup_mutex);
4789 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4790 mutex_lock(&cgroup_mutex);
e788e066
PM
4791 continue_free:
4792 kfree(pathbuf);
4793 kfree(agentbuf);
cdcc136f 4794 raw_spin_lock(&release_list_lock);
81a6a5cd 4795 }
cdcc136f 4796 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4797 mutex_unlock(&cgroup_mutex);
4798}
8bab8dde
PM
4799
4800static int __init cgroup_disable(char *str)
4801{
4802 int i;
4803 char *token;
4804
4805 while ((token = strsep(&str, ",")) != NULL) {
4806 if (!*token)
4807 continue;
aae8aab4
BB
4808 /*
4809 * cgroup_disable, being at boot time, can't know about module
4810 * subsystems, so we don't worry about them.
4811 */
4812 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4813 struct cgroup_subsys *ss = subsys[i];
4814
4815 if (!strcmp(token, ss->name)) {
4816 ss->disabled = 1;
4817 printk(KERN_INFO "Disabling %s control group"
4818 " subsystem\n", ss->name);
4819 break;
4820 }
4821 }
4822 }
4823 return 1;
4824}
4825__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4826
4827/*
4828 * Functons for CSS ID.
4829 */
4830
4831/*
4832 *To get ID other than 0, this should be called when !cgroup_is_removed().
4833 */
4834unsigned short css_id(struct cgroup_subsys_state *css)
4835{
7f0f1546
KH
4836 struct css_id *cssid;
4837
4838 /*
4839 * This css_id() can return correct value when somone has refcnt
4840 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4841 * it's unchanged until freed.
4842 */
d8bf4ca9 4843 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4844
4845 if (cssid)
4846 return cssid->id;
4847 return 0;
4848}
67523c48 4849EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
4850
4851unsigned short css_depth(struct cgroup_subsys_state *css)
4852{
7f0f1546
KH
4853 struct css_id *cssid;
4854
d8bf4ca9 4855 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4856
4857 if (cssid)
4858 return cssid->depth;
4859 return 0;
4860}
67523c48 4861EXPORT_SYMBOL_GPL(css_depth);
38460b48 4862
747388d7
KH
4863/**
4864 * css_is_ancestor - test "root" css is an ancestor of "child"
4865 * @child: the css to be tested.
4866 * @root: the css supporsed to be an ancestor of the child.
4867 *
4868 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4869 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4870 * But, considering usual usage, the csses should be valid objects after test.
4871 * Assuming that the caller will do some action to the child if this returns
4872 * returns true, the caller must take "child";s reference count.
4873 * If "child" is valid object and this returns true, "root" is valid, too.
4874 */
4875
38460b48 4876bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 4877 const struct cgroup_subsys_state *root)
38460b48 4878{
747388d7
KH
4879 struct css_id *child_id;
4880 struct css_id *root_id;
4881 bool ret = true;
38460b48 4882
747388d7
KH
4883 rcu_read_lock();
4884 child_id = rcu_dereference(child->id);
4885 root_id = rcu_dereference(root->id);
4886 if (!child_id
4887 || !root_id
4888 || (child_id->depth < root_id->depth)
4889 || (child_id->stack[root_id->depth] != root_id->id))
4890 ret = false;
4891 rcu_read_unlock();
4892 return ret;
38460b48
KH
4893}
4894
38460b48
KH
4895void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4896{
4897 struct css_id *id = css->id;
4898 /* When this is called before css_id initialization, id can be NULL */
4899 if (!id)
4900 return;
4901
4902 BUG_ON(!ss->use_id);
4903
4904 rcu_assign_pointer(id->css, NULL);
4905 rcu_assign_pointer(css->id, NULL);
c1e2ee2d 4906 write_lock(&ss->id_lock);
38460b48 4907 idr_remove(&ss->idr, id->id);
c1e2ee2d 4908 write_unlock(&ss->id_lock);
025cea99 4909 kfree_rcu(id, rcu_head);
38460b48 4910}
67523c48 4911EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
4912
4913/*
4914 * This is called by init or create(). Then, calls to this function are
4915 * always serialized (By cgroup_mutex() at create()).
4916 */
4917
4918static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4919{
4920 struct css_id *newid;
4921 int myid, error, size;
4922
4923 BUG_ON(!ss->use_id);
4924
4925 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4926 newid = kzalloc(size, GFP_KERNEL);
4927 if (!newid)
4928 return ERR_PTR(-ENOMEM);
4929 /* get id */
4930 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4931 error = -ENOMEM;
4932 goto err_out;
4933 }
c1e2ee2d 4934 write_lock(&ss->id_lock);
38460b48
KH
4935 /* Don't use 0. allocates an ID of 1-65535 */
4936 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
c1e2ee2d 4937 write_unlock(&ss->id_lock);
38460b48
KH
4938
4939 /* Returns error when there are no free spaces for new ID.*/
4940 if (error) {
4941 error = -ENOSPC;
4942 goto err_out;
4943 }
4944 if (myid > CSS_ID_MAX)
4945 goto remove_idr;
4946
4947 newid->id = myid;
4948 newid->depth = depth;
4949 return newid;
4950remove_idr:
4951 error = -ENOSPC;
c1e2ee2d 4952 write_lock(&ss->id_lock);
38460b48 4953 idr_remove(&ss->idr, myid);
c1e2ee2d 4954 write_unlock(&ss->id_lock);
38460b48
KH
4955err_out:
4956 kfree(newid);
4957 return ERR_PTR(error);
4958
4959}
4960
e6a1105b
BB
4961static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4962 struct cgroup_subsys_state *rootcss)
38460b48
KH
4963{
4964 struct css_id *newid;
38460b48 4965
c1e2ee2d 4966 rwlock_init(&ss->id_lock);
38460b48
KH
4967 idr_init(&ss->idr);
4968
38460b48
KH
4969 newid = get_new_cssid(ss, 0);
4970 if (IS_ERR(newid))
4971 return PTR_ERR(newid);
4972
4973 newid->stack[0] = newid->id;
4974 newid->css = rootcss;
4975 rootcss->id = newid;
4976 return 0;
4977}
4978
4979static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4980 struct cgroup *child)
4981{
4982 int subsys_id, i, depth = 0;
4983 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 4984 struct css_id *child_id, *parent_id;
38460b48
KH
4985
4986 subsys_id = ss->subsys_id;
4987 parent_css = parent->subsys[subsys_id];
4988 child_css = child->subsys[subsys_id];
38460b48 4989 parent_id = parent_css->id;
94b3dd0f 4990 depth = parent_id->depth + 1;
38460b48
KH
4991
4992 child_id = get_new_cssid(ss, depth);
4993 if (IS_ERR(child_id))
4994 return PTR_ERR(child_id);
4995
4996 for (i = 0; i < depth; i++)
4997 child_id->stack[i] = parent_id->stack[i];
4998 child_id->stack[depth] = child_id->id;
4999 /*
5000 * child_id->css pointer will be set after this cgroup is available
5001 * see cgroup_populate_dir()
5002 */
5003 rcu_assign_pointer(child_css->id, child_id);
5004
5005 return 0;
5006}
5007
5008/**
5009 * css_lookup - lookup css by id
5010 * @ss: cgroup subsys to be looked into.
5011 * @id: the id
5012 *
5013 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5014 * NULL if not. Should be called under rcu_read_lock()
5015 */
5016struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5017{
5018 struct css_id *cssid = NULL;
5019
5020 BUG_ON(!ss->use_id);
5021 cssid = idr_find(&ss->idr, id);
5022
5023 if (unlikely(!cssid))
5024 return NULL;
5025
5026 return rcu_dereference(cssid->css);
5027}
67523c48 5028EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5029
5030/**
5031 * css_get_next - lookup next cgroup under specified hierarchy.
5032 * @ss: pointer to subsystem
5033 * @id: current position of iteration.
5034 * @root: pointer to css. search tree under this.
5035 * @foundid: position of found object.
5036 *
5037 * Search next css under the specified hierarchy of rootid. Calling under
5038 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5039 */
5040struct cgroup_subsys_state *
5041css_get_next(struct cgroup_subsys *ss, int id,
5042 struct cgroup_subsys_state *root, int *foundid)
5043{
5044 struct cgroup_subsys_state *ret = NULL;
5045 struct css_id *tmp;
5046 int tmpid;
5047 int rootid = css_id(root);
5048 int depth = css_depth(root);
5049
5050 if (!rootid)
5051 return NULL;
5052
5053 BUG_ON(!ss->use_id);
5054 /* fill start point for scan */
5055 tmpid = id;
5056 while (1) {
5057 /*
5058 * scan next entry from bitmap(tree), tmpid is updated after
5059 * idr_get_next().
5060 */
c1e2ee2d 5061 read_lock(&ss->id_lock);
38460b48 5062 tmp = idr_get_next(&ss->idr, &tmpid);
c1e2ee2d 5063 read_unlock(&ss->id_lock);
38460b48
KH
5064
5065 if (!tmp)
5066 break;
5067 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5068 ret = rcu_dereference(tmp->css);
5069 if (ret) {
5070 *foundid = tmpid;
5071 break;
5072 }
5073 }
5074 /* continue to scan from next id */
5075 tmpid = tmpid + 1;
5076 }
5077 return ret;
5078}
5079
e5d1367f
SE
5080/*
5081 * get corresponding css from file open on cgroupfs directory
5082 */
5083struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5084{
5085 struct cgroup *cgrp;
5086 struct inode *inode;
5087 struct cgroup_subsys_state *css;
5088
5089 inode = f->f_dentry->d_inode;
5090 /* check in cgroup filesystem dir */
5091 if (inode->i_op != &cgroup_dir_inode_operations)
5092 return ERR_PTR(-EBADF);
5093
5094 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5095 return ERR_PTR(-EINVAL);
5096
5097 /* get cgroup */
5098 cgrp = __d_cgrp(f->f_dentry);
5099 css = cgrp->subsys[id];
5100 return css ? css : ERR_PTR(-ENOENT);
5101}
5102
fe693435
PM
5103#ifdef CONFIG_CGROUP_DEBUG
5104static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5105 struct cgroup *cont)
5106{
5107 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5108
5109 if (!css)
5110 return ERR_PTR(-ENOMEM);
5111
5112 return css;
5113}
5114
5115static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5116{
5117 kfree(cont->subsys[debug_subsys_id]);
5118}
5119
5120static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5121{
5122 return atomic_read(&cont->count);
5123}
5124
5125static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5126{
5127 return cgroup_task_count(cont);
5128}
5129
5130static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5131{
5132 return (u64)(unsigned long)current->cgroups;
5133}
5134
5135static u64 current_css_set_refcount_read(struct cgroup *cont,
5136 struct cftype *cft)
5137{
5138 u64 count;
5139
5140 rcu_read_lock();
5141 count = atomic_read(&current->cgroups->refcount);
5142 rcu_read_unlock();
5143 return count;
5144}
5145
7717f7ba
PM
5146static int current_css_set_cg_links_read(struct cgroup *cont,
5147 struct cftype *cft,
5148 struct seq_file *seq)
5149{
5150 struct cg_cgroup_link *link;
5151 struct css_set *cg;
5152
5153 read_lock(&css_set_lock);
5154 rcu_read_lock();
5155 cg = rcu_dereference(current->cgroups);
5156 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5157 struct cgroup *c = link->cgrp;
5158 const char *name;
5159
5160 if (c->dentry)
5161 name = c->dentry->d_name.name;
5162 else
5163 name = "?";
2c6ab6d2
PM
5164 seq_printf(seq, "Root %d group %s\n",
5165 c->root->hierarchy_id, name);
7717f7ba
PM
5166 }
5167 rcu_read_unlock();
5168 read_unlock(&css_set_lock);
5169 return 0;
5170}
5171
5172#define MAX_TASKS_SHOWN_PER_CSS 25
5173static int cgroup_css_links_read(struct cgroup *cont,
5174 struct cftype *cft,
5175 struct seq_file *seq)
5176{
5177 struct cg_cgroup_link *link;
5178
5179 read_lock(&css_set_lock);
5180 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5181 struct css_set *cg = link->cg;
5182 struct task_struct *task;
5183 int count = 0;
5184 seq_printf(seq, "css_set %p\n", cg);
5185 list_for_each_entry(task, &cg->tasks, cg_list) {
5186 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5187 seq_puts(seq, " ...\n");
5188 break;
5189 } else {
5190 seq_printf(seq, " task %d\n",
5191 task_pid_vnr(task));
5192 }
5193 }
5194 }
5195 read_unlock(&css_set_lock);
5196 return 0;
5197}
5198
fe693435
PM
5199static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5200{
5201 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5202}
5203
5204static struct cftype debug_files[] = {
5205 {
5206 .name = "cgroup_refcount",
5207 .read_u64 = cgroup_refcount_read,
5208 },
5209 {
5210 .name = "taskcount",
5211 .read_u64 = debug_taskcount_read,
5212 },
5213
5214 {
5215 .name = "current_css_set",
5216 .read_u64 = current_css_set_read,
5217 },
5218
5219 {
5220 .name = "current_css_set_refcount",
5221 .read_u64 = current_css_set_refcount_read,
5222 },
5223
7717f7ba
PM
5224 {
5225 .name = "current_css_set_cg_links",
5226 .read_seq_string = current_css_set_cg_links_read,
5227 },
5228
5229 {
5230 .name = "cgroup_css_links",
5231 .read_seq_string = cgroup_css_links_read,
5232 },
5233
fe693435
PM
5234 {
5235 .name = "releasable",
5236 .read_u64 = releasable_read,
5237 },
5238};
5239
5240static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5241{
5242 return cgroup_add_files(cont, ss, debug_files,
5243 ARRAY_SIZE(debug_files));
5244}
5245
5246struct cgroup_subsys debug_subsys = {
5247 .name = "debug",
5248 .create = debug_create,
5249 .destroy = debug_destroy,
5250 .populate = debug_populate,
5251 .subsys_id = debug_subsys_id,
5252};
5253#endif /* CONFIG_CGROUP_DEBUG */