cgroup: remove cgroup_subsys->populate()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
472b1053 55#include <linux/hash.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
d846687d 62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
28b4c27b
TH
66/* css deactivation bias, makes css->refcnt negative to deny new trygets */
67#define CSS_DEACT_BIAS INT_MIN
68
e25e2cbb
TH
69/*
70 * cgroup_mutex is the master lock. Any modification to cgroup or its
71 * hierarchy must be performed while holding it.
72 *
73 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
74 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
75 * release_agent_path and so on. Modifying requires both cgroup_mutex and
76 * cgroup_root_mutex. Readers can acquire either of the two. This is to
77 * break the following locking order cycle.
78 *
79 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
80 * B. namespace_sem -> cgroup_mutex
81 *
82 * B happens only through cgroup_show_options() and using cgroup_root_mutex
83 * breaks it.
84 */
81a6a5cd 85static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 86static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 87
aae8aab4
BB
88/*
89 * Generate an array of cgroup subsystem pointers. At boot time, this is
90 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
91 * registered after that. The mutable section of this array is protected by
92 * cgroup_mutex.
93 */
ddbcc7e8 94#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 95static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
96#include <linux/cgroup_subsys.h>
97};
98
c6d57f33
PM
99#define MAX_CGROUP_ROOT_NAMELEN 64
100
ddbcc7e8
PM
101/*
102 * A cgroupfs_root represents the root of a cgroup hierarchy,
103 * and may be associated with a superblock to form an active
104 * hierarchy
105 */
106struct cgroupfs_root {
107 struct super_block *sb;
108
109 /*
110 * The bitmask of subsystems intended to be attached to this
111 * hierarchy
112 */
113 unsigned long subsys_bits;
114
2c6ab6d2
PM
115 /* Unique id for this hierarchy. */
116 int hierarchy_id;
117
ddbcc7e8
PM
118 /* The bitmask of subsystems currently attached to this hierarchy */
119 unsigned long actual_subsys_bits;
120
121 /* A list running through the attached subsystems */
122 struct list_head subsys_list;
123
124 /* The root cgroup for this hierarchy */
125 struct cgroup top_cgroup;
126
127 /* Tracks how many cgroups are currently defined in hierarchy.*/
128 int number_of_cgroups;
129
e5f6a860 130 /* A list running through the active hierarchies */
ddbcc7e8
PM
131 struct list_head root_list;
132
b0ca5a84
TH
133 /* All cgroups on this root, cgroup_mutex protected */
134 struct list_head allcg_list;
135
ddbcc7e8
PM
136 /* Hierarchy-specific flags */
137 unsigned long flags;
81a6a5cd 138
e788e066 139 /* The path to use for release notifications. */
81a6a5cd 140 char release_agent_path[PATH_MAX];
c6d57f33
PM
141
142 /* The name for this hierarchy - may be empty */
143 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
144};
145
ddbcc7e8
PM
146/*
147 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
148 * subsystems that are otherwise unattached - it never has more than a
149 * single cgroup, and all tasks are part of that cgroup.
150 */
151static struct cgroupfs_root rootnode;
152
05ef1d7c
TH
153/*
154 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
155 */
156struct cfent {
157 struct list_head node;
158 struct dentry *dentry;
159 struct cftype *type;
160};
161
38460b48
KH
162/*
163 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
164 * cgroup_subsys->use_id != 0.
165 */
166#define CSS_ID_MAX (65535)
167struct css_id {
168 /*
169 * The css to which this ID points. This pointer is set to valid value
170 * after cgroup is populated. If cgroup is removed, this will be NULL.
171 * This pointer is expected to be RCU-safe because destroy()
172 * is called after synchronize_rcu(). But for safe use, css_is_removed()
173 * css_tryget() should be used for avoiding race.
174 */
2c392b8c 175 struct cgroup_subsys_state __rcu *css;
38460b48
KH
176 /*
177 * ID of this css.
178 */
179 unsigned short id;
180 /*
181 * Depth in hierarchy which this ID belongs to.
182 */
183 unsigned short depth;
184 /*
185 * ID is freed by RCU. (and lookup routine is RCU safe.)
186 */
187 struct rcu_head rcu_head;
188 /*
189 * Hierarchy of CSS ID belongs to.
190 */
191 unsigned short stack[0]; /* Array of Length (depth+1) */
192};
193
0dea1168 194/*
25985edc 195 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
196 */
197struct cgroup_event {
198 /*
199 * Cgroup which the event belongs to.
200 */
201 struct cgroup *cgrp;
202 /*
203 * Control file which the event associated.
204 */
205 struct cftype *cft;
206 /*
207 * eventfd to signal userspace about the event.
208 */
209 struct eventfd_ctx *eventfd;
210 /*
211 * Each of these stored in a list by the cgroup.
212 */
213 struct list_head list;
214 /*
215 * All fields below needed to unregister event when
216 * userspace closes eventfd.
217 */
218 poll_table pt;
219 wait_queue_head_t *wqh;
220 wait_queue_t wait;
221 struct work_struct remove;
222};
38460b48 223
ddbcc7e8
PM
224/* The list of hierarchy roots */
225
226static LIST_HEAD(roots);
817929ec 227static int root_count;
ddbcc7e8 228
2c6ab6d2
PM
229static DEFINE_IDA(hierarchy_ida);
230static int next_hierarchy_id;
231static DEFINE_SPINLOCK(hierarchy_id_lock);
232
ddbcc7e8
PM
233/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
234#define dummytop (&rootnode.top_cgroup)
235
236/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
237 * check for fork/exit handlers to call. This avoids us having to do
238 * extra work in the fork/exit path if none of the subsystems need to
239 * be called.
ddbcc7e8 240 */
8947f9d5 241static int need_forkexit_callback __read_mostly;
ddbcc7e8 242
d11c563d
PM
243#ifdef CONFIG_PROVE_LOCKING
244int cgroup_lock_is_held(void)
245{
246 return lockdep_is_held(&cgroup_mutex);
247}
248#else /* #ifdef CONFIG_PROVE_LOCKING */
249int cgroup_lock_is_held(void)
250{
251 return mutex_is_locked(&cgroup_mutex);
252}
253#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
254
255EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
256
28b4c27b
TH
257/* the current nr of refs, always >= 0 whether @css is deactivated or not */
258static int css_refcnt(struct cgroup_subsys_state *css)
259{
260 int v = atomic_read(&css->refcnt);
261
262 return v >= 0 ? v : v - CSS_DEACT_BIAS;
263}
264
ddbcc7e8 265/* convenient tests for these bits */
bd89aabc 266inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 267{
bd89aabc 268 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
269}
270
271/* bits in struct cgroupfs_root flags field */
272enum {
273 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
274};
275
e9685a03 276static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
277{
278 const int bits =
bd89aabc
PM
279 (1 << CGRP_RELEASABLE) |
280 (1 << CGRP_NOTIFY_ON_RELEASE);
281 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
282}
283
e9685a03 284static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 285{
bd89aabc 286 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
287}
288
97978e6d
DL
289static int clone_children(const struct cgroup *cgrp)
290{
291 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
292}
293
ddbcc7e8
PM
294/*
295 * for_each_subsys() allows you to iterate on each subsystem attached to
296 * an active hierarchy
297 */
298#define for_each_subsys(_root, _ss) \
299list_for_each_entry(_ss, &_root->subsys_list, sibling)
300
e5f6a860
LZ
301/* for_each_active_root() allows you to iterate across the active hierarchies */
302#define for_each_active_root(_root) \
ddbcc7e8
PM
303list_for_each_entry(_root, &roots, root_list)
304
f6ea9372
TH
305static inline struct cgroup *__d_cgrp(struct dentry *dentry)
306{
307 return dentry->d_fsdata;
308}
309
05ef1d7c 310static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
311{
312 return dentry->d_fsdata;
313}
314
05ef1d7c
TH
315static inline struct cftype *__d_cft(struct dentry *dentry)
316{
317 return __d_cfe(dentry)->type;
318}
319
81a6a5cd
PM
320/* the list of cgroups eligible for automatic release. Protected by
321 * release_list_lock */
322static LIST_HEAD(release_list);
cdcc136f 323static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
324static void cgroup_release_agent(struct work_struct *work);
325static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 326static void check_for_release(struct cgroup *cgrp);
81a6a5cd 327
817929ec
PM
328/* Link structure for associating css_set objects with cgroups */
329struct cg_cgroup_link {
330 /*
331 * List running through cg_cgroup_links associated with a
332 * cgroup, anchored on cgroup->css_sets
333 */
bd89aabc 334 struct list_head cgrp_link_list;
7717f7ba 335 struct cgroup *cgrp;
817929ec
PM
336 /*
337 * List running through cg_cgroup_links pointing at a
338 * single css_set object, anchored on css_set->cg_links
339 */
340 struct list_head cg_link_list;
341 struct css_set *cg;
342};
343
344/* The default css_set - used by init and its children prior to any
345 * hierarchies being mounted. It contains a pointer to the root state
346 * for each subsystem. Also used to anchor the list of css_sets. Not
347 * reference-counted, to improve performance when child cgroups
348 * haven't been created.
349 */
350
351static struct css_set init_css_set;
352static struct cg_cgroup_link init_css_set_link;
353
e6a1105b
BB
354static int cgroup_init_idr(struct cgroup_subsys *ss,
355 struct cgroup_subsys_state *css);
38460b48 356
817929ec
PM
357/* css_set_lock protects the list of css_set objects, and the
358 * chain of tasks off each css_set. Nests outside task->alloc_lock
359 * due to cgroup_iter_start() */
360static DEFINE_RWLOCK(css_set_lock);
361static int css_set_count;
362
7717f7ba
PM
363/*
364 * hash table for cgroup groups. This improves the performance to find
365 * an existing css_set. This hash doesn't (currently) take into
366 * account cgroups in empty hierarchies.
367 */
472b1053
LZ
368#define CSS_SET_HASH_BITS 7
369#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
370static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
371
372static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
373{
374 int i;
375 int index;
376 unsigned long tmp = 0UL;
377
378 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
379 tmp += (unsigned long)css[i];
380 tmp = (tmp >> 16) ^ tmp;
381
382 index = hash_long(tmp, CSS_SET_HASH_BITS);
383
384 return &css_set_table[index];
385}
386
817929ec
PM
387/* We don't maintain the lists running through each css_set to its
388 * task until after the first call to cgroup_iter_start(). This
389 * reduces the fork()/exit() overhead for people who have cgroups
390 * compiled into their kernel but not actually in use */
8947f9d5 391static int use_task_css_set_links __read_mostly;
817929ec 392
2c6ab6d2 393static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 394{
71cbb949
KM
395 struct cg_cgroup_link *link;
396 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
397 /*
398 * Ensure that the refcount doesn't hit zero while any readers
399 * can see it. Similar to atomic_dec_and_lock(), but for an
400 * rwlock
401 */
402 if (atomic_add_unless(&cg->refcount, -1, 1))
403 return;
404 write_lock(&css_set_lock);
405 if (!atomic_dec_and_test(&cg->refcount)) {
406 write_unlock(&css_set_lock);
407 return;
408 }
81a6a5cd 409
2c6ab6d2
PM
410 /* This css_set is dead. unlink it and release cgroup refcounts */
411 hlist_del(&cg->hlist);
412 css_set_count--;
413
414 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
415 cg_link_list) {
416 struct cgroup *cgrp = link->cgrp;
417 list_del(&link->cg_link_list);
418 list_del(&link->cgrp_link_list);
bd89aabc
PM
419 if (atomic_dec_and_test(&cgrp->count) &&
420 notify_on_release(cgrp)) {
81a6a5cd 421 if (taskexit)
bd89aabc
PM
422 set_bit(CGRP_RELEASABLE, &cgrp->flags);
423 check_for_release(cgrp);
81a6a5cd 424 }
2c6ab6d2
PM
425
426 kfree(link);
81a6a5cd 427 }
2c6ab6d2
PM
428
429 write_unlock(&css_set_lock);
30088ad8 430 kfree_rcu(cg, rcu_head);
b4f48b63
PM
431}
432
817929ec
PM
433/*
434 * refcounted get/put for css_set objects
435 */
436static inline void get_css_set(struct css_set *cg)
437{
146aa1bd 438 atomic_inc(&cg->refcount);
817929ec
PM
439}
440
441static inline void put_css_set(struct css_set *cg)
442{
146aa1bd 443 __put_css_set(cg, 0);
817929ec
PM
444}
445
81a6a5cd
PM
446static inline void put_css_set_taskexit(struct css_set *cg)
447{
146aa1bd 448 __put_css_set(cg, 1);
81a6a5cd
PM
449}
450
7717f7ba
PM
451/*
452 * compare_css_sets - helper function for find_existing_css_set().
453 * @cg: candidate css_set being tested
454 * @old_cg: existing css_set for a task
455 * @new_cgrp: cgroup that's being entered by the task
456 * @template: desired set of css pointers in css_set (pre-calculated)
457 *
458 * Returns true if "cg" matches "old_cg" except for the hierarchy
459 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
460 */
461static bool compare_css_sets(struct css_set *cg,
462 struct css_set *old_cg,
463 struct cgroup *new_cgrp,
464 struct cgroup_subsys_state *template[])
465{
466 struct list_head *l1, *l2;
467
468 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
469 /* Not all subsystems matched */
470 return false;
471 }
472
473 /*
474 * Compare cgroup pointers in order to distinguish between
475 * different cgroups in heirarchies with no subsystems. We
476 * could get by with just this check alone (and skip the
477 * memcmp above) but on most setups the memcmp check will
478 * avoid the need for this more expensive check on almost all
479 * candidates.
480 */
481
482 l1 = &cg->cg_links;
483 l2 = &old_cg->cg_links;
484 while (1) {
485 struct cg_cgroup_link *cgl1, *cgl2;
486 struct cgroup *cg1, *cg2;
487
488 l1 = l1->next;
489 l2 = l2->next;
490 /* See if we reached the end - both lists are equal length. */
491 if (l1 == &cg->cg_links) {
492 BUG_ON(l2 != &old_cg->cg_links);
493 break;
494 } else {
495 BUG_ON(l2 == &old_cg->cg_links);
496 }
497 /* Locate the cgroups associated with these links. */
498 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
499 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
500 cg1 = cgl1->cgrp;
501 cg2 = cgl2->cgrp;
502 /* Hierarchies should be linked in the same order. */
503 BUG_ON(cg1->root != cg2->root);
504
505 /*
506 * If this hierarchy is the hierarchy of the cgroup
507 * that's changing, then we need to check that this
508 * css_set points to the new cgroup; if it's any other
509 * hierarchy, then this css_set should point to the
510 * same cgroup as the old css_set.
511 */
512 if (cg1->root == new_cgrp->root) {
513 if (cg1 != new_cgrp)
514 return false;
515 } else {
516 if (cg1 != cg2)
517 return false;
518 }
519 }
520 return true;
521}
522
817929ec
PM
523/*
524 * find_existing_css_set() is a helper for
525 * find_css_set(), and checks to see whether an existing
472b1053 526 * css_set is suitable.
817929ec
PM
527 *
528 * oldcg: the cgroup group that we're using before the cgroup
529 * transition
530 *
bd89aabc 531 * cgrp: the cgroup that we're moving into
817929ec
PM
532 *
533 * template: location in which to build the desired set of subsystem
534 * state objects for the new cgroup group
535 */
817929ec
PM
536static struct css_set *find_existing_css_set(
537 struct css_set *oldcg,
bd89aabc 538 struct cgroup *cgrp,
817929ec 539 struct cgroup_subsys_state *template[])
b4f48b63
PM
540{
541 int i;
bd89aabc 542 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
543 struct hlist_head *hhead;
544 struct hlist_node *node;
545 struct css_set *cg;
817929ec 546
aae8aab4
BB
547 /*
548 * Build the set of subsystem state objects that we want to see in the
549 * new css_set. while subsystems can change globally, the entries here
550 * won't change, so no need for locking.
551 */
817929ec 552 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 553 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
554 /* Subsystem is in this hierarchy. So we want
555 * the subsystem state from the new
556 * cgroup */
bd89aabc 557 template[i] = cgrp->subsys[i];
817929ec
PM
558 } else {
559 /* Subsystem is not in this hierarchy, so we
560 * don't want to change the subsystem state */
561 template[i] = oldcg->subsys[i];
562 }
563 }
564
472b1053
LZ
565 hhead = css_set_hash(template);
566 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
567 if (!compare_css_sets(cg, oldcg, cgrp, template))
568 continue;
569
570 /* This css_set matches what we need */
571 return cg;
472b1053 572 }
817929ec
PM
573
574 /* No existing cgroup group matched */
575 return NULL;
576}
577
36553434
LZ
578static void free_cg_links(struct list_head *tmp)
579{
580 struct cg_cgroup_link *link;
581 struct cg_cgroup_link *saved_link;
582
583 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
584 list_del(&link->cgrp_link_list);
585 kfree(link);
586 }
587}
588
817929ec
PM
589/*
590 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 591 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
592 * success or a negative error
593 */
817929ec
PM
594static int allocate_cg_links(int count, struct list_head *tmp)
595{
596 struct cg_cgroup_link *link;
597 int i;
598 INIT_LIST_HEAD(tmp);
599 for (i = 0; i < count; i++) {
600 link = kmalloc(sizeof(*link), GFP_KERNEL);
601 if (!link) {
36553434 602 free_cg_links(tmp);
817929ec
PM
603 return -ENOMEM;
604 }
bd89aabc 605 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
606 }
607 return 0;
608}
609
c12f65d4
LZ
610/**
611 * link_css_set - a helper function to link a css_set to a cgroup
612 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
613 * @cg: the css_set to be linked
614 * @cgrp: the destination cgroup
615 */
616static void link_css_set(struct list_head *tmp_cg_links,
617 struct css_set *cg, struct cgroup *cgrp)
618{
619 struct cg_cgroup_link *link;
620
621 BUG_ON(list_empty(tmp_cg_links));
622 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
623 cgrp_link_list);
624 link->cg = cg;
7717f7ba 625 link->cgrp = cgrp;
2c6ab6d2 626 atomic_inc(&cgrp->count);
c12f65d4 627 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
628 /*
629 * Always add links to the tail of the list so that the list
630 * is sorted by order of hierarchy creation
631 */
632 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
633}
634
817929ec
PM
635/*
636 * find_css_set() takes an existing cgroup group and a
637 * cgroup object, and returns a css_set object that's
638 * equivalent to the old group, but with the given cgroup
639 * substituted into the appropriate hierarchy. Must be called with
640 * cgroup_mutex held
641 */
817929ec 642static struct css_set *find_css_set(
bd89aabc 643 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
644{
645 struct css_set *res;
646 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
647
648 struct list_head tmp_cg_links;
817929ec 649
472b1053 650 struct hlist_head *hhead;
7717f7ba 651 struct cg_cgroup_link *link;
472b1053 652
817929ec
PM
653 /* First see if we already have a cgroup group that matches
654 * the desired set */
7e9abd89 655 read_lock(&css_set_lock);
bd89aabc 656 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
657 if (res)
658 get_css_set(res);
7e9abd89 659 read_unlock(&css_set_lock);
817929ec
PM
660
661 if (res)
662 return res;
663
664 res = kmalloc(sizeof(*res), GFP_KERNEL);
665 if (!res)
666 return NULL;
667
668 /* Allocate all the cg_cgroup_link objects that we'll need */
669 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
670 kfree(res);
671 return NULL;
672 }
673
146aa1bd 674 atomic_set(&res->refcount, 1);
817929ec
PM
675 INIT_LIST_HEAD(&res->cg_links);
676 INIT_LIST_HEAD(&res->tasks);
472b1053 677 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
678
679 /* Copy the set of subsystem state objects generated in
680 * find_existing_css_set() */
681 memcpy(res->subsys, template, sizeof(res->subsys));
682
683 write_lock(&css_set_lock);
684 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
685 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
686 struct cgroup *c = link->cgrp;
687 if (c->root == cgrp->root)
688 c = cgrp;
689 link_css_set(&tmp_cg_links, res, c);
690 }
817929ec
PM
691
692 BUG_ON(!list_empty(&tmp_cg_links));
693
817929ec 694 css_set_count++;
472b1053
LZ
695
696 /* Add this cgroup group to the hash table */
697 hhead = css_set_hash(res->subsys);
698 hlist_add_head(&res->hlist, hhead);
699
817929ec
PM
700 write_unlock(&css_set_lock);
701
702 return res;
b4f48b63
PM
703}
704
7717f7ba
PM
705/*
706 * Return the cgroup for "task" from the given hierarchy. Must be
707 * called with cgroup_mutex held.
708 */
709static struct cgroup *task_cgroup_from_root(struct task_struct *task,
710 struct cgroupfs_root *root)
711{
712 struct css_set *css;
713 struct cgroup *res = NULL;
714
715 BUG_ON(!mutex_is_locked(&cgroup_mutex));
716 read_lock(&css_set_lock);
717 /*
718 * No need to lock the task - since we hold cgroup_mutex the
719 * task can't change groups, so the only thing that can happen
720 * is that it exits and its css is set back to init_css_set.
721 */
722 css = task->cgroups;
723 if (css == &init_css_set) {
724 res = &root->top_cgroup;
725 } else {
726 struct cg_cgroup_link *link;
727 list_for_each_entry(link, &css->cg_links, cg_link_list) {
728 struct cgroup *c = link->cgrp;
729 if (c->root == root) {
730 res = c;
731 break;
732 }
733 }
734 }
735 read_unlock(&css_set_lock);
736 BUG_ON(!res);
737 return res;
738}
739
ddbcc7e8
PM
740/*
741 * There is one global cgroup mutex. We also require taking
742 * task_lock() when dereferencing a task's cgroup subsys pointers.
743 * See "The task_lock() exception", at the end of this comment.
744 *
745 * A task must hold cgroup_mutex to modify cgroups.
746 *
747 * Any task can increment and decrement the count field without lock.
748 * So in general, code holding cgroup_mutex can't rely on the count
749 * field not changing. However, if the count goes to zero, then only
956db3ca 750 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
751 * means that no tasks are currently attached, therefore there is no
752 * way a task attached to that cgroup can fork (the other way to
753 * increment the count). So code holding cgroup_mutex can safely
754 * assume that if the count is zero, it will stay zero. Similarly, if
755 * a task holds cgroup_mutex on a cgroup with zero count, it
756 * knows that the cgroup won't be removed, as cgroup_rmdir()
757 * needs that mutex.
758 *
ddbcc7e8
PM
759 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
760 * (usually) take cgroup_mutex. These are the two most performance
761 * critical pieces of code here. The exception occurs on cgroup_exit(),
762 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
763 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
764 * to the release agent with the name of the cgroup (path relative to
765 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
766 *
767 * A cgroup can only be deleted if both its 'count' of using tasks
768 * is zero, and its list of 'children' cgroups is empty. Since all
769 * tasks in the system use _some_ cgroup, and since there is always at
770 * least one task in the system (init, pid == 1), therefore, top_cgroup
771 * always has either children cgroups and/or using tasks. So we don't
772 * need a special hack to ensure that top_cgroup cannot be deleted.
773 *
774 * The task_lock() exception
775 *
776 * The need for this exception arises from the action of
956db3ca 777 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 778 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
779 * several performance critical places that need to reference
780 * task->cgroup without the expense of grabbing a system global
781 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 782 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
783 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
784 * the task_struct routinely used for such matters.
785 *
786 * P.S. One more locking exception. RCU is used to guard the
956db3ca 787 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
788 */
789
ddbcc7e8
PM
790/**
791 * cgroup_lock - lock out any changes to cgroup structures
792 *
793 */
ddbcc7e8
PM
794void cgroup_lock(void)
795{
796 mutex_lock(&cgroup_mutex);
797}
67523c48 798EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
799
800/**
801 * cgroup_unlock - release lock on cgroup changes
802 *
803 * Undo the lock taken in a previous cgroup_lock() call.
804 */
ddbcc7e8
PM
805void cgroup_unlock(void)
806{
807 mutex_unlock(&cgroup_mutex);
808}
67523c48 809EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
810
811/*
812 * A couple of forward declarations required, due to cyclic reference loop:
813 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
814 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
815 * -> cgroup_mkdir.
816 */
817
18bb1db3 818static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
c72a04e3 819static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
ddbcc7e8 820static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 821static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 822static const struct inode_operations cgroup_dir_inode_operations;
828c0950 823static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
824
825static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 826 .name = "cgroup",
e4ad08fe 827 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 828};
ddbcc7e8 829
38460b48
KH
830static int alloc_css_id(struct cgroup_subsys *ss,
831 struct cgroup *parent, struct cgroup *child);
832
a5e7ed32 833static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
834{
835 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
836
837 if (inode) {
85fe4025 838 inode->i_ino = get_next_ino();
ddbcc7e8 839 inode->i_mode = mode;
76aac0e9
DH
840 inode->i_uid = current_fsuid();
841 inode->i_gid = current_fsgid();
ddbcc7e8
PM
842 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
843 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
844 }
845 return inode;
846}
847
4fca88c8
KH
848/*
849 * Call subsys's pre_destroy handler.
850 * This is called before css refcnt check.
851 */
ec64f515 852static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
853{
854 struct cgroup_subsys *ss;
ec64f515
KH
855 int ret = 0;
856
48ddbe19
TH
857 for_each_subsys(cgrp->root, ss) {
858 if (!ss->pre_destroy)
859 continue;
860
861 ret = ss->pre_destroy(cgrp);
862 if (ret) {
863 /* ->pre_destroy() failure is being deprecated */
864 WARN_ON_ONCE(!ss->__DEPRECATED_clear_css_refs);
865 break;
ec64f515 866 }
48ddbe19 867 }
0dea1168 868
ec64f515 869 return ret;
4fca88c8
KH
870}
871
ddbcc7e8
PM
872static void cgroup_diput(struct dentry *dentry, struct inode *inode)
873{
874 /* is dentry a directory ? if so, kfree() associated cgroup */
875 if (S_ISDIR(inode->i_mode)) {
bd89aabc 876 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 877 struct cgroup_subsys *ss;
bd89aabc 878 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
879 /* It's possible for external users to be holding css
880 * reference counts on a cgroup; css_put() needs to
881 * be able to access the cgroup after decrementing
882 * the reference count in order to know if it needs to
883 * queue the cgroup to be handled by the release
884 * agent */
885 synchronize_rcu();
8dc4f3e1
PM
886
887 mutex_lock(&cgroup_mutex);
888 /*
889 * Release the subsystem state objects.
890 */
75139b82 891 for_each_subsys(cgrp->root, ss)
761b3ef5 892 ss->destroy(cgrp);
8dc4f3e1
PM
893
894 cgrp->root->number_of_cgroups--;
895 mutex_unlock(&cgroup_mutex);
896
a47295e6
PM
897 /*
898 * Drop the active superblock reference that we took when we
899 * created the cgroup
900 */
8dc4f3e1
PM
901 deactivate_super(cgrp->root->sb);
902
72a8cb30
BB
903 /*
904 * if we're getting rid of the cgroup, refcount should ensure
905 * that there are no pidlists left.
906 */
907 BUG_ON(!list_empty(&cgrp->pidlists));
908
f2da1c40 909 kfree_rcu(cgrp, rcu_head);
05ef1d7c
TH
910 } else {
911 struct cfent *cfe = __d_cfe(dentry);
912 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
913
914 WARN_ONCE(!list_empty(&cfe->node) &&
915 cgrp != &cgrp->root->top_cgroup,
916 "cfe still linked for %s\n", cfe->type->name);
917 kfree(cfe);
ddbcc7e8
PM
918 }
919 iput(inode);
920}
921
c72a04e3
AV
922static int cgroup_delete(const struct dentry *d)
923{
924 return 1;
925}
926
ddbcc7e8
PM
927static void remove_dir(struct dentry *d)
928{
929 struct dentry *parent = dget(d->d_parent);
930
931 d_delete(d);
932 simple_rmdir(parent->d_inode, d);
933 dput(parent);
934}
935
05ef1d7c
TH
936static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
937{
938 struct cfent *cfe;
939
940 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
941 lockdep_assert_held(&cgroup_mutex);
942
943 list_for_each_entry(cfe, &cgrp->files, node) {
944 struct dentry *d = cfe->dentry;
945
946 if (cft && cfe->type != cft)
947 continue;
948
949 dget(d);
950 d_delete(d);
951 simple_unlink(d->d_inode, d);
952 list_del_init(&cfe->node);
953 dput(d);
954
955 return 0;
ddbcc7e8 956 }
05ef1d7c
TH
957 return -ENOENT;
958}
959
960static void cgroup_clear_directory(struct dentry *dir)
961{
962 struct cgroup *cgrp = __d_cgrp(dir);
963
964 while (!list_empty(&cgrp->files))
965 cgroup_rm_file(cgrp, NULL);
ddbcc7e8
PM
966}
967
968/*
969 * NOTE : the dentry must have been dget()'ed
970 */
971static void cgroup_d_remove_dir(struct dentry *dentry)
972{
2fd6b7f5
NP
973 struct dentry *parent;
974
ddbcc7e8
PM
975 cgroup_clear_directory(dentry);
976
2fd6b7f5
NP
977 parent = dentry->d_parent;
978 spin_lock(&parent->d_lock);
3ec762ad 979 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 980 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
981 spin_unlock(&dentry->d_lock);
982 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
983 remove_dir(dentry);
984}
985
ec64f515
KH
986/*
987 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
988 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
989 * reference to css->refcnt. In general, this refcnt is expected to goes down
990 * to zero, soon.
991 *
88703267 992 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515 993 */
1c6c3fad 994static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
ec64f515 995
88703267 996static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 997{
88703267 998 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
999 wake_up_all(&cgroup_rmdir_waitq);
1000}
1001
88703267
KH
1002void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
1003{
1004 css_get(css);
1005}
1006
1007void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
1008{
1009 cgroup_wakeup_rmdir_waiter(css->cgroup);
1010 css_put(css);
1011}
1012
aae8aab4 1013/*
cf5d5941
BB
1014 * Call with cgroup_mutex held. Drops reference counts on modules, including
1015 * any duplicate ones that parse_cgroupfs_options took. If this function
1016 * returns an error, no reference counts are touched.
aae8aab4 1017 */
ddbcc7e8
PM
1018static int rebind_subsystems(struct cgroupfs_root *root,
1019 unsigned long final_bits)
1020{
1021 unsigned long added_bits, removed_bits;
bd89aabc 1022 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1023 int i;
1024
aae8aab4 1025 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1026 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1027
ddbcc7e8
PM
1028 removed_bits = root->actual_subsys_bits & ~final_bits;
1029 added_bits = final_bits & ~root->actual_subsys_bits;
1030 /* Check that any added subsystems are currently free */
1031 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 1032 unsigned long bit = 1UL << i;
ddbcc7e8
PM
1033 struct cgroup_subsys *ss = subsys[i];
1034 if (!(bit & added_bits))
1035 continue;
aae8aab4
BB
1036 /*
1037 * Nobody should tell us to do a subsys that doesn't exist:
1038 * parse_cgroupfs_options should catch that case and refcounts
1039 * ensure that subsystems won't disappear once selected.
1040 */
1041 BUG_ON(ss == NULL);
ddbcc7e8
PM
1042 if (ss->root != &rootnode) {
1043 /* Subsystem isn't free */
1044 return -EBUSY;
1045 }
1046 }
1047
1048 /* Currently we don't handle adding/removing subsystems when
1049 * any child cgroups exist. This is theoretically supportable
1050 * but involves complex error handling, so it's being left until
1051 * later */
307257cf 1052 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1053 return -EBUSY;
1054
1055 /* Process each subsystem */
1056 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1057 struct cgroup_subsys *ss = subsys[i];
1058 unsigned long bit = 1UL << i;
1059 if (bit & added_bits) {
1060 /* We're binding this subsystem to this hierarchy */
aae8aab4 1061 BUG_ON(ss == NULL);
bd89aabc 1062 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1063 BUG_ON(!dummytop->subsys[i]);
1064 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 1065 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
1066 cgrp->subsys[i] = dummytop->subsys[i];
1067 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1068 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1069 ss->root = root;
ddbcc7e8 1070 if (ss->bind)
761b3ef5 1071 ss->bind(cgrp);
999cd8a4 1072 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 1073 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
1074 } else if (bit & removed_bits) {
1075 /* We're removing this subsystem */
aae8aab4 1076 BUG_ON(ss == NULL);
bd89aabc
PM
1077 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1078 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1079 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8 1080 if (ss->bind)
761b3ef5 1081 ss->bind(dummytop);
ddbcc7e8 1082 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1083 cgrp->subsys[i] = NULL;
b2aa30f7 1084 subsys[i]->root = &rootnode;
33a68ac1 1085 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1086 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1087 /* subsystem is now free - drop reference on module */
1088 module_put(ss->module);
ddbcc7e8
PM
1089 } else if (bit & final_bits) {
1090 /* Subsystem state should already exist */
aae8aab4 1091 BUG_ON(ss == NULL);
bd89aabc 1092 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1093 /*
1094 * a refcount was taken, but we already had one, so
1095 * drop the extra reference.
1096 */
1097 module_put(ss->module);
1098#ifdef CONFIG_MODULE_UNLOAD
1099 BUG_ON(ss->module && !module_refcount(ss->module));
1100#endif
ddbcc7e8
PM
1101 } else {
1102 /* Subsystem state shouldn't exist */
bd89aabc 1103 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1104 }
1105 }
1106 root->subsys_bits = root->actual_subsys_bits = final_bits;
1107 synchronize_rcu();
1108
1109 return 0;
1110}
1111
34c80b1d 1112static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1113{
34c80b1d 1114 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1115 struct cgroup_subsys *ss;
1116
e25e2cbb 1117 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1118 for_each_subsys(root, ss)
1119 seq_printf(seq, ",%s", ss->name);
1120 if (test_bit(ROOT_NOPREFIX, &root->flags))
1121 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1122 if (strlen(root->release_agent_path))
1123 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1124 if (clone_children(&root->top_cgroup))
1125 seq_puts(seq, ",clone_children");
c6d57f33
PM
1126 if (strlen(root->name))
1127 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1128 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1129 return 0;
1130}
1131
1132struct cgroup_sb_opts {
1133 unsigned long subsys_bits;
1134 unsigned long flags;
81a6a5cd 1135 char *release_agent;
97978e6d 1136 bool clone_children;
c6d57f33 1137 char *name;
2c6ab6d2
PM
1138 /* User explicitly requested empty subsystem */
1139 bool none;
c6d57f33
PM
1140
1141 struct cgroupfs_root *new_root;
2c6ab6d2 1142
ddbcc7e8
PM
1143};
1144
aae8aab4
BB
1145/*
1146 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1147 * with cgroup_mutex held to protect the subsys[] array. This function takes
1148 * refcounts on subsystems to be used, unless it returns error, in which case
1149 * no refcounts are taken.
aae8aab4 1150 */
cf5d5941 1151static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1152{
32a8cf23
DL
1153 char *token, *o = data;
1154 bool all_ss = false, one_ss = false;
f9ab5b5b 1155 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1156 int i;
1157 bool module_pin_failed = false;
f9ab5b5b 1158
aae8aab4
BB
1159 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1160
f9ab5b5b
LZ
1161#ifdef CONFIG_CPUSETS
1162 mask = ~(1UL << cpuset_subsys_id);
1163#endif
ddbcc7e8 1164
c6d57f33 1165 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1166
1167 while ((token = strsep(&o, ",")) != NULL) {
1168 if (!*token)
1169 return -EINVAL;
32a8cf23 1170 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1171 /* Explicitly have no subsystems */
1172 opts->none = true;
32a8cf23
DL
1173 continue;
1174 }
1175 if (!strcmp(token, "all")) {
1176 /* Mutually exclusive option 'all' + subsystem name */
1177 if (one_ss)
1178 return -EINVAL;
1179 all_ss = true;
1180 continue;
1181 }
1182 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1183 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1184 continue;
1185 }
1186 if (!strcmp(token, "clone_children")) {
97978e6d 1187 opts->clone_children = true;
32a8cf23
DL
1188 continue;
1189 }
1190 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1191 /* Specifying two release agents is forbidden */
1192 if (opts->release_agent)
1193 return -EINVAL;
c6d57f33 1194 opts->release_agent =
e400c285 1195 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1196 if (!opts->release_agent)
1197 return -ENOMEM;
32a8cf23
DL
1198 continue;
1199 }
1200 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1201 const char *name = token + 5;
1202 /* Can't specify an empty name */
1203 if (!strlen(name))
1204 return -EINVAL;
1205 /* Must match [\w.-]+ */
1206 for (i = 0; i < strlen(name); i++) {
1207 char c = name[i];
1208 if (isalnum(c))
1209 continue;
1210 if ((c == '.') || (c == '-') || (c == '_'))
1211 continue;
1212 return -EINVAL;
1213 }
1214 /* Specifying two names is forbidden */
1215 if (opts->name)
1216 return -EINVAL;
1217 opts->name = kstrndup(name,
e400c285 1218 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1219 GFP_KERNEL);
1220 if (!opts->name)
1221 return -ENOMEM;
32a8cf23
DL
1222
1223 continue;
1224 }
1225
1226 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1227 struct cgroup_subsys *ss = subsys[i];
1228 if (ss == NULL)
1229 continue;
1230 if (strcmp(token, ss->name))
1231 continue;
1232 if (ss->disabled)
1233 continue;
1234
1235 /* Mutually exclusive option 'all' + subsystem name */
1236 if (all_ss)
1237 return -EINVAL;
1238 set_bit(i, &opts->subsys_bits);
1239 one_ss = true;
1240
1241 break;
1242 }
1243 if (i == CGROUP_SUBSYS_COUNT)
1244 return -ENOENT;
1245 }
1246
1247 /*
1248 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1249 * otherwise if 'none', 'name=' and a subsystem name options
1250 * were not specified, let's default to 'all'
32a8cf23 1251 */
0d19ea86 1252 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1253 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1254 struct cgroup_subsys *ss = subsys[i];
1255 if (ss == NULL)
1256 continue;
1257 if (ss->disabled)
1258 continue;
1259 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1260 }
1261 }
1262
2c6ab6d2
PM
1263 /* Consistency checks */
1264
f9ab5b5b
LZ
1265 /*
1266 * Option noprefix was introduced just for backward compatibility
1267 * with the old cpuset, so we allow noprefix only if mounting just
1268 * the cpuset subsystem.
1269 */
1270 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1271 (opts->subsys_bits & mask))
1272 return -EINVAL;
1273
2c6ab6d2
PM
1274
1275 /* Can't specify "none" and some subsystems */
1276 if (opts->subsys_bits && opts->none)
1277 return -EINVAL;
1278
1279 /*
1280 * We either have to specify by name or by subsystems. (So all
1281 * empty hierarchies must have a name).
1282 */
c6d57f33 1283 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1284 return -EINVAL;
1285
cf5d5941
BB
1286 /*
1287 * Grab references on all the modules we'll need, so the subsystems
1288 * don't dance around before rebind_subsystems attaches them. This may
1289 * take duplicate reference counts on a subsystem that's already used,
1290 * but rebind_subsystems handles this case.
1291 */
1292 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1293 unsigned long bit = 1UL << i;
1294
1295 if (!(bit & opts->subsys_bits))
1296 continue;
1297 if (!try_module_get(subsys[i]->module)) {
1298 module_pin_failed = true;
1299 break;
1300 }
1301 }
1302 if (module_pin_failed) {
1303 /*
1304 * oops, one of the modules was going away. this means that we
1305 * raced with a module_delete call, and to the user this is
1306 * essentially a "subsystem doesn't exist" case.
1307 */
1308 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1309 /* drop refcounts only on the ones we took */
1310 unsigned long bit = 1UL << i;
1311
1312 if (!(bit & opts->subsys_bits))
1313 continue;
1314 module_put(subsys[i]->module);
1315 }
1316 return -ENOENT;
1317 }
1318
ddbcc7e8
PM
1319 return 0;
1320}
1321
cf5d5941
BB
1322static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1323{
1324 int i;
1325 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1326 unsigned long bit = 1UL << i;
1327
1328 if (!(bit & subsys_bits))
1329 continue;
1330 module_put(subsys[i]->module);
1331 }
1332}
1333
ddbcc7e8
PM
1334static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1335{
1336 int ret = 0;
1337 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1338 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1339 struct cgroup_sb_opts opts;
1340
bd89aabc 1341 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1342 mutex_lock(&cgroup_mutex);
e25e2cbb 1343 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1344
1345 /* See what subsystems are wanted */
1346 ret = parse_cgroupfs_options(data, &opts);
1347 if (ret)
1348 goto out_unlock;
1349
8b5a5a9d
TH
1350 /* See feature-removal-schedule.txt */
1351 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1352 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1353 task_tgid_nr(current), current->comm);
1354
cf5d5941
BB
1355 /* Don't allow flags or name to change at remount */
1356 if (opts.flags != root->flags ||
1357 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1358 ret = -EINVAL;
cf5d5941 1359 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1360 goto out_unlock;
1361 }
1362
ddbcc7e8 1363 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1364 if (ret) {
1365 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1366 goto out_unlock;
cf5d5941 1367 }
ddbcc7e8 1368
ff4c8d50
TH
1369 /* clear out any existing files and repopulate subsystem files */
1370 cgroup_clear_directory(cgrp->dentry);
0670e08b 1371 cgroup_populate_dir(cgrp);
ddbcc7e8 1372
81a6a5cd
PM
1373 if (opts.release_agent)
1374 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1375 out_unlock:
66bdc9cf 1376 kfree(opts.release_agent);
c6d57f33 1377 kfree(opts.name);
e25e2cbb 1378 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1379 mutex_unlock(&cgroup_mutex);
bd89aabc 1380 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1381 return ret;
1382}
1383
b87221de 1384static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1385 .statfs = simple_statfs,
1386 .drop_inode = generic_delete_inode,
1387 .show_options = cgroup_show_options,
1388 .remount_fs = cgroup_remount,
1389};
1390
cc31edce
PM
1391static void init_cgroup_housekeeping(struct cgroup *cgrp)
1392{
1393 INIT_LIST_HEAD(&cgrp->sibling);
1394 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1395 INIT_LIST_HEAD(&cgrp->files);
cc31edce
PM
1396 INIT_LIST_HEAD(&cgrp->css_sets);
1397 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1398 INIT_LIST_HEAD(&cgrp->pidlists);
1399 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1400 INIT_LIST_HEAD(&cgrp->event_list);
1401 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1402}
c6d57f33 1403
ddbcc7e8
PM
1404static void init_cgroup_root(struct cgroupfs_root *root)
1405{
bd89aabc 1406 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1407
ddbcc7e8
PM
1408 INIT_LIST_HEAD(&root->subsys_list);
1409 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1410 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1411 root->number_of_cgroups = 1;
bd89aabc
PM
1412 cgrp->root = root;
1413 cgrp->top_cgroup = cgrp;
b0ca5a84 1414 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
cc31edce 1415 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1416}
1417
2c6ab6d2
PM
1418static bool init_root_id(struct cgroupfs_root *root)
1419{
1420 int ret = 0;
1421
1422 do {
1423 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1424 return false;
1425 spin_lock(&hierarchy_id_lock);
1426 /* Try to allocate the next unused ID */
1427 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1428 &root->hierarchy_id);
1429 if (ret == -ENOSPC)
1430 /* Try again starting from 0 */
1431 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1432 if (!ret) {
1433 next_hierarchy_id = root->hierarchy_id + 1;
1434 } else if (ret != -EAGAIN) {
1435 /* Can only get here if the 31-bit IDR is full ... */
1436 BUG_ON(ret);
1437 }
1438 spin_unlock(&hierarchy_id_lock);
1439 } while (ret);
1440 return true;
1441}
1442
ddbcc7e8
PM
1443static int cgroup_test_super(struct super_block *sb, void *data)
1444{
c6d57f33 1445 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1446 struct cgroupfs_root *root = sb->s_fs_info;
1447
c6d57f33
PM
1448 /* If we asked for a name then it must match */
1449 if (opts->name && strcmp(opts->name, root->name))
1450 return 0;
ddbcc7e8 1451
2c6ab6d2
PM
1452 /*
1453 * If we asked for subsystems (or explicitly for no
1454 * subsystems) then they must match
1455 */
1456 if ((opts->subsys_bits || opts->none)
1457 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1458 return 0;
1459
1460 return 1;
1461}
1462
c6d57f33
PM
1463static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1464{
1465 struct cgroupfs_root *root;
1466
2c6ab6d2 1467 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1468 return NULL;
1469
1470 root = kzalloc(sizeof(*root), GFP_KERNEL);
1471 if (!root)
1472 return ERR_PTR(-ENOMEM);
1473
2c6ab6d2
PM
1474 if (!init_root_id(root)) {
1475 kfree(root);
1476 return ERR_PTR(-ENOMEM);
1477 }
c6d57f33 1478 init_cgroup_root(root);
2c6ab6d2 1479
c6d57f33
PM
1480 root->subsys_bits = opts->subsys_bits;
1481 root->flags = opts->flags;
1482 if (opts->release_agent)
1483 strcpy(root->release_agent_path, opts->release_agent);
1484 if (opts->name)
1485 strcpy(root->name, opts->name);
97978e6d
DL
1486 if (opts->clone_children)
1487 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1488 return root;
1489}
1490
2c6ab6d2
PM
1491static void cgroup_drop_root(struct cgroupfs_root *root)
1492{
1493 if (!root)
1494 return;
1495
1496 BUG_ON(!root->hierarchy_id);
1497 spin_lock(&hierarchy_id_lock);
1498 ida_remove(&hierarchy_ida, root->hierarchy_id);
1499 spin_unlock(&hierarchy_id_lock);
1500 kfree(root);
1501}
1502
ddbcc7e8
PM
1503static int cgroup_set_super(struct super_block *sb, void *data)
1504{
1505 int ret;
c6d57f33
PM
1506 struct cgroup_sb_opts *opts = data;
1507
1508 /* If we don't have a new root, we can't set up a new sb */
1509 if (!opts->new_root)
1510 return -EINVAL;
1511
2c6ab6d2 1512 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1513
1514 ret = set_anon_super(sb, NULL);
1515 if (ret)
1516 return ret;
1517
c6d57f33
PM
1518 sb->s_fs_info = opts->new_root;
1519 opts->new_root->sb = sb;
ddbcc7e8
PM
1520
1521 sb->s_blocksize = PAGE_CACHE_SIZE;
1522 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1523 sb->s_magic = CGROUP_SUPER_MAGIC;
1524 sb->s_op = &cgroup_ops;
1525
1526 return 0;
1527}
1528
1529static int cgroup_get_rootdir(struct super_block *sb)
1530{
0df6a63f
AV
1531 static const struct dentry_operations cgroup_dops = {
1532 .d_iput = cgroup_diput,
c72a04e3 1533 .d_delete = cgroup_delete,
0df6a63f
AV
1534 };
1535
ddbcc7e8
PM
1536 struct inode *inode =
1537 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1538
1539 if (!inode)
1540 return -ENOMEM;
1541
ddbcc7e8
PM
1542 inode->i_fop = &simple_dir_operations;
1543 inode->i_op = &cgroup_dir_inode_operations;
1544 /* directories start off with i_nlink == 2 (for "." entry) */
1545 inc_nlink(inode);
48fde701
AV
1546 sb->s_root = d_make_root(inode);
1547 if (!sb->s_root)
ddbcc7e8 1548 return -ENOMEM;
0df6a63f
AV
1549 /* for everything else we want ->d_op set */
1550 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1551 return 0;
1552}
1553
f7e83571 1554static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1555 int flags, const char *unused_dev_name,
f7e83571 1556 void *data)
ddbcc7e8
PM
1557{
1558 struct cgroup_sb_opts opts;
c6d57f33 1559 struct cgroupfs_root *root;
ddbcc7e8
PM
1560 int ret = 0;
1561 struct super_block *sb;
c6d57f33 1562 struct cgroupfs_root *new_root;
e25e2cbb 1563 struct inode *inode;
ddbcc7e8
PM
1564
1565 /* First find the desired set of subsystems */
aae8aab4 1566 mutex_lock(&cgroup_mutex);
ddbcc7e8 1567 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1568 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1569 if (ret)
1570 goto out_err;
ddbcc7e8 1571
c6d57f33
PM
1572 /*
1573 * Allocate a new cgroup root. We may not need it if we're
1574 * reusing an existing hierarchy.
1575 */
1576 new_root = cgroup_root_from_opts(&opts);
1577 if (IS_ERR(new_root)) {
1578 ret = PTR_ERR(new_root);
cf5d5941 1579 goto drop_modules;
81a6a5cd 1580 }
c6d57f33 1581 opts.new_root = new_root;
ddbcc7e8 1582
c6d57f33
PM
1583 /* Locate an existing or new sb for this hierarchy */
1584 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1585 if (IS_ERR(sb)) {
c6d57f33 1586 ret = PTR_ERR(sb);
2c6ab6d2 1587 cgroup_drop_root(opts.new_root);
cf5d5941 1588 goto drop_modules;
ddbcc7e8
PM
1589 }
1590
c6d57f33
PM
1591 root = sb->s_fs_info;
1592 BUG_ON(!root);
1593 if (root == opts.new_root) {
1594 /* We used the new root structure, so this is a new hierarchy */
1595 struct list_head tmp_cg_links;
c12f65d4 1596 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1597 struct cgroupfs_root *existing_root;
2ce9738b 1598 const struct cred *cred;
28fd5dfc 1599 int i;
ddbcc7e8
PM
1600
1601 BUG_ON(sb->s_root != NULL);
1602
1603 ret = cgroup_get_rootdir(sb);
1604 if (ret)
1605 goto drop_new_super;
817929ec 1606 inode = sb->s_root->d_inode;
ddbcc7e8 1607
817929ec 1608 mutex_lock(&inode->i_mutex);
ddbcc7e8 1609 mutex_lock(&cgroup_mutex);
e25e2cbb 1610 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1611
e25e2cbb
TH
1612 /* Check for name clashes with existing mounts */
1613 ret = -EBUSY;
1614 if (strlen(root->name))
1615 for_each_active_root(existing_root)
1616 if (!strcmp(existing_root->name, root->name))
1617 goto unlock_drop;
c6d57f33 1618
817929ec
PM
1619 /*
1620 * We're accessing css_set_count without locking
1621 * css_set_lock here, but that's OK - it can only be
1622 * increased by someone holding cgroup_lock, and
1623 * that's us. The worst that can happen is that we
1624 * have some link structures left over
1625 */
1626 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1627 if (ret)
1628 goto unlock_drop;
817929ec 1629
ddbcc7e8
PM
1630 ret = rebind_subsystems(root, root->subsys_bits);
1631 if (ret == -EBUSY) {
c6d57f33 1632 free_cg_links(&tmp_cg_links);
e25e2cbb 1633 goto unlock_drop;
ddbcc7e8 1634 }
cf5d5941
BB
1635 /*
1636 * There must be no failure case after here, since rebinding
1637 * takes care of subsystems' refcounts, which are explicitly
1638 * dropped in the failure exit path.
1639 */
ddbcc7e8
PM
1640
1641 /* EBUSY should be the only error here */
1642 BUG_ON(ret);
1643
1644 list_add(&root->root_list, &roots);
817929ec 1645 root_count++;
ddbcc7e8 1646
c12f65d4 1647 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1648 root->top_cgroup.dentry = sb->s_root;
1649
817929ec
PM
1650 /* Link the top cgroup in this hierarchy into all
1651 * the css_set objects */
1652 write_lock(&css_set_lock);
28fd5dfc
LZ
1653 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1654 struct hlist_head *hhead = &css_set_table[i];
1655 struct hlist_node *node;
817929ec 1656 struct css_set *cg;
28fd5dfc 1657
c12f65d4
LZ
1658 hlist_for_each_entry(cg, node, hhead, hlist)
1659 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1660 }
817929ec
PM
1661 write_unlock(&css_set_lock);
1662
1663 free_cg_links(&tmp_cg_links);
1664
c12f65d4
LZ
1665 BUG_ON(!list_empty(&root_cgrp->sibling));
1666 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1667 BUG_ON(root->number_of_cgroups != 1);
1668
2ce9738b 1669 cred = override_creds(&init_cred);
c12f65d4 1670 cgroup_populate_dir(root_cgrp);
2ce9738b 1671 revert_creds(cred);
e25e2cbb 1672 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1673 mutex_unlock(&cgroup_mutex);
34f77a90 1674 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1675 } else {
1676 /*
1677 * We re-used an existing hierarchy - the new root (if
1678 * any) is not needed
1679 */
2c6ab6d2 1680 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1681 /* no subsys rebinding, so refcounts don't change */
1682 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1683 }
1684
c6d57f33
PM
1685 kfree(opts.release_agent);
1686 kfree(opts.name);
f7e83571 1687 return dget(sb->s_root);
ddbcc7e8 1688
e25e2cbb
TH
1689 unlock_drop:
1690 mutex_unlock(&cgroup_root_mutex);
1691 mutex_unlock(&cgroup_mutex);
1692 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1693 drop_new_super:
6f5bbff9 1694 deactivate_locked_super(sb);
cf5d5941
BB
1695 drop_modules:
1696 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1697 out_err:
1698 kfree(opts.release_agent);
1699 kfree(opts.name);
f7e83571 1700 return ERR_PTR(ret);
ddbcc7e8
PM
1701}
1702
1703static void cgroup_kill_sb(struct super_block *sb) {
1704 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1705 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1706 int ret;
71cbb949
KM
1707 struct cg_cgroup_link *link;
1708 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1709
1710 BUG_ON(!root);
1711
1712 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1713 BUG_ON(!list_empty(&cgrp->children));
1714 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1715
1716 mutex_lock(&cgroup_mutex);
e25e2cbb 1717 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1718
1719 /* Rebind all subsystems back to the default hierarchy */
1720 ret = rebind_subsystems(root, 0);
1721 /* Shouldn't be able to fail ... */
1722 BUG_ON(ret);
1723
817929ec
PM
1724 /*
1725 * Release all the links from css_sets to this hierarchy's
1726 * root cgroup
1727 */
1728 write_lock(&css_set_lock);
71cbb949
KM
1729
1730 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1731 cgrp_link_list) {
817929ec 1732 list_del(&link->cg_link_list);
bd89aabc 1733 list_del(&link->cgrp_link_list);
817929ec
PM
1734 kfree(link);
1735 }
1736 write_unlock(&css_set_lock);
1737
839ec545
PM
1738 if (!list_empty(&root->root_list)) {
1739 list_del(&root->root_list);
1740 root_count--;
1741 }
e5f6a860 1742
e25e2cbb 1743 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1744 mutex_unlock(&cgroup_mutex);
1745
ddbcc7e8 1746 kill_litter_super(sb);
2c6ab6d2 1747 cgroup_drop_root(root);
ddbcc7e8
PM
1748}
1749
1750static struct file_system_type cgroup_fs_type = {
1751 .name = "cgroup",
f7e83571 1752 .mount = cgroup_mount,
ddbcc7e8
PM
1753 .kill_sb = cgroup_kill_sb,
1754};
1755
676db4af
GKH
1756static struct kobject *cgroup_kobj;
1757
a043e3b2
LZ
1758/**
1759 * cgroup_path - generate the path of a cgroup
1760 * @cgrp: the cgroup in question
1761 * @buf: the buffer to write the path into
1762 * @buflen: the length of the buffer
1763 *
a47295e6
PM
1764 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1765 * reference. Writes path of cgroup into buf. Returns 0 on success,
1766 * -errno on error.
ddbcc7e8 1767 */
bd89aabc 1768int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1769{
1770 char *start;
9a9686b6 1771 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1772 cgroup_lock_is_held());
ddbcc7e8 1773
a47295e6 1774 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1775 /*
1776 * Inactive subsystems have no dentry for their root
1777 * cgroup
1778 */
1779 strcpy(buf, "/");
1780 return 0;
1781 }
1782
1783 start = buf + buflen;
1784
1785 *--start = '\0';
1786 for (;;) {
a47295e6 1787 int len = dentry->d_name.len;
9a9686b6 1788
ddbcc7e8
PM
1789 if ((start -= len) < buf)
1790 return -ENAMETOOLONG;
9a9686b6 1791 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1792 cgrp = cgrp->parent;
1793 if (!cgrp)
ddbcc7e8 1794 break;
9a9686b6
LZ
1795
1796 dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1797 cgroup_lock_is_held());
bd89aabc 1798 if (!cgrp->parent)
ddbcc7e8
PM
1799 continue;
1800 if (--start < buf)
1801 return -ENAMETOOLONG;
1802 *start = '/';
1803 }
1804 memmove(buf, start, buf + buflen - start);
1805 return 0;
1806}
67523c48 1807EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1808
2f7ee569
TH
1809/*
1810 * Control Group taskset
1811 */
134d3373
TH
1812struct task_and_cgroup {
1813 struct task_struct *task;
1814 struct cgroup *cgrp;
61d1d219 1815 struct css_set *cg;
134d3373
TH
1816};
1817
2f7ee569
TH
1818struct cgroup_taskset {
1819 struct task_and_cgroup single;
1820 struct flex_array *tc_array;
1821 int tc_array_len;
1822 int idx;
1823 struct cgroup *cur_cgrp;
1824};
1825
1826/**
1827 * cgroup_taskset_first - reset taskset and return the first task
1828 * @tset: taskset of interest
1829 *
1830 * @tset iteration is initialized and the first task is returned.
1831 */
1832struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1833{
1834 if (tset->tc_array) {
1835 tset->idx = 0;
1836 return cgroup_taskset_next(tset);
1837 } else {
1838 tset->cur_cgrp = tset->single.cgrp;
1839 return tset->single.task;
1840 }
1841}
1842EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1843
1844/**
1845 * cgroup_taskset_next - iterate to the next task in taskset
1846 * @tset: taskset of interest
1847 *
1848 * Return the next task in @tset. Iteration must have been initialized
1849 * with cgroup_taskset_first().
1850 */
1851struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1852{
1853 struct task_and_cgroup *tc;
1854
1855 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1856 return NULL;
1857
1858 tc = flex_array_get(tset->tc_array, tset->idx++);
1859 tset->cur_cgrp = tc->cgrp;
1860 return tc->task;
1861}
1862EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1863
1864/**
1865 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1866 * @tset: taskset of interest
1867 *
1868 * Return the cgroup for the current (last returned) task of @tset. This
1869 * function must be preceded by either cgroup_taskset_first() or
1870 * cgroup_taskset_next().
1871 */
1872struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1873{
1874 return tset->cur_cgrp;
1875}
1876EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1877
1878/**
1879 * cgroup_taskset_size - return the number of tasks in taskset
1880 * @tset: taskset of interest
1881 */
1882int cgroup_taskset_size(struct cgroup_taskset *tset)
1883{
1884 return tset->tc_array ? tset->tc_array_len : 1;
1885}
1886EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1887
1888
74a1166d
BB
1889/*
1890 * cgroup_task_migrate - move a task from one cgroup to another.
1891 *
1892 * 'guarantee' is set if the caller promises that a new css_set for the task
1893 * will already exist. If not set, this function might sleep, and can fail with
cd3d0952 1894 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1895 */
61d1d219
MSB
1896static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1897 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1898{
1899 struct css_set *oldcg;
74a1166d
BB
1900
1901 /*
026085ef
MSB
1902 * We are synchronized through threadgroup_lock() against PF_EXITING
1903 * setting such that we can't race against cgroup_exit() changing the
1904 * css_set to init_css_set and dropping the old one.
74a1166d 1905 */
c84cdf75 1906 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1907 oldcg = tsk->cgroups;
74a1166d 1908
74a1166d 1909 task_lock(tsk);
74a1166d
BB
1910 rcu_assign_pointer(tsk->cgroups, newcg);
1911 task_unlock(tsk);
1912
1913 /* Update the css_set linked lists if we're using them */
1914 write_lock(&css_set_lock);
1915 if (!list_empty(&tsk->cg_list))
1916 list_move(&tsk->cg_list, &newcg->tasks);
1917 write_unlock(&css_set_lock);
1918
1919 /*
1920 * We just gained a reference on oldcg by taking it from the task. As
1921 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1922 * it here; it will be freed under RCU.
1923 */
1924 put_css_set(oldcg);
1925
1926 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
74a1166d
BB
1927}
1928
a043e3b2
LZ
1929/**
1930 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1931 * @cgrp: the cgroup the task is attaching to
1932 * @tsk: the task to be attached
bbcb81d0 1933 *
cd3d0952
TH
1934 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1935 * @tsk during call.
bbcb81d0 1936 */
956db3ca 1937int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0 1938{
8f121918 1939 int retval = 0;
2468c723 1940 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1941 struct cgroup *oldcgrp;
bd89aabc 1942 struct cgroupfs_root *root = cgrp->root;
2f7ee569 1943 struct cgroup_taskset tset = { };
61d1d219 1944 struct css_set *newcg;
bbcb81d0 1945
cd3d0952
TH
1946 /* @tsk either already exited or can't exit until the end */
1947 if (tsk->flags & PF_EXITING)
1948 return -ESRCH;
bbcb81d0
PM
1949
1950 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1951 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1952 if (cgrp == oldcgrp)
bbcb81d0
PM
1953 return 0;
1954
2f7ee569
TH
1955 tset.single.task = tsk;
1956 tset.single.cgrp = oldcgrp;
1957
bbcb81d0
PM
1958 for_each_subsys(root, ss) {
1959 if (ss->can_attach) {
761b3ef5 1960 retval = ss->can_attach(cgrp, &tset);
2468c723
DN
1961 if (retval) {
1962 /*
1963 * Remember on which subsystem the can_attach()
1964 * failed, so that we only call cancel_attach()
1965 * against the subsystems whose can_attach()
1966 * succeeded. (See below)
1967 */
1968 failed_ss = ss;
1969 goto out;
1970 }
bbcb81d0
PM
1971 }
1972 }
1973
61d1d219
MSB
1974 newcg = find_css_set(tsk->cgroups, cgrp);
1975 if (!newcg) {
1976 retval = -ENOMEM;
2468c723 1977 goto out;
61d1d219
MSB
1978 }
1979
1980 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
817929ec 1981
bbcb81d0 1982 for_each_subsys(root, ss) {
e18f6318 1983 if (ss->attach)
761b3ef5 1984 ss->attach(cgrp, &tset);
bbcb81d0 1985 }
74a1166d 1986
bbcb81d0 1987 synchronize_rcu();
ec64f515
KH
1988
1989 /*
1990 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1991 * is no longer empty.
1992 */
88703267 1993 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1994out:
1995 if (retval) {
1996 for_each_subsys(root, ss) {
1997 if (ss == failed_ss)
1998 /*
1999 * This subsystem was the one that failed the
2000 * can_attach() check earlier, so we don't need
2001 * to call cancel_attach() against it or any
2002 * remaining subsystems.
2003 */
2004 break;
2005 if (ss->cancel_attach)
761b3ef5 2006 ss->cancel_attach(cgrp, &tset);
2468c723
DN
2007 }
2008 }
2009 return retval;
bbcb81d0
PM
2010}
2011
d7926ee3 2012/**
31583bb0
MT
2013 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2014 * @from: attach to all cgroups of a given task
d7926ee3
SS
2015 * @tsk: the task to be attached
2016 */
31583bb0 2017int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
2018{
2019 struct cgroupfs_root *root;
d7926ee3
SS
2020 int retval = 0;
2021
2022 cgroup_lock();
2023 for_each_active_root(root) {
31583bb0
MT
2024 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2025
2026 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
2027 if (retval)
2028 break;
2029 }
2030 cgroup_unlock();
2031
2032 return retval;
2033}
31583bb0 2034EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 2035
74a1166d
BB
2036/**
2037 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2038 * @cgrp: the cgroup to attach to
2039 * @leader: the threadgroup leader task_struct of the group to be attached
2040 *
257058ae
TH
2041 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2042 * task_lock of each thread in leader's threadgroup individually in turn.
74a1166d 2043 */
1c6c3fad 2044static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
74a1166d
BB
2045{
2046 int retval, i, group_size;
2047 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d 2048 /* guaranteed to be initialized later, but the compiler needs this */
74a1166d
BB
2049 struct cgroupfs_root *root = cgrp->root;
2050 /* threadgroup list cursor and array */
2051 struct task_struct *tsk;
134d3373 2052 struct task_and_cgroup *tc;
d846687d 2053 struct flex_array *group;
2f7ee569 2054 struct cgroup_taskset tset = { };
74a1166d
BB
2055
2056 /*
2057 * step 0: in order to do expensive, possibly blocking operations for
2058 * every thread, we cannot iterate the thread group list, since it needs
2059 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2060 * group - group_rwsem prevents new threads from appearing, and if
2061 * threads exit, this will just be an over-estimate.
74a1166d
BB
2062 */
2063 group_size = get_nr_threads(leader);
d846687d 2064 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2065 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2066 if (!group)
2067 return -ENOMEM;
d846687d
BB
2068 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2069 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2070 if (retval)
2071 goto out_free_group_list;
74a1166d 2072
74a1166d
BB
2073 tsk = leader;
2074 i = 0;
fb5d2b4c
MSB
2075 /*
2076 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2077 * already PF_EXITING could be freed from underneath us unless we
2078 * take an rcu_read_lock.
2079 */
2080 rcu_read_lock();
74a1166d 2081 do {
134d3373
TH
2082 struct task_and_cgroup ent;
2083
cd3d0952
TH
2084 /* @tsk either already exited or can't exit until the end */
2085 if (tsk->flags & PF_EXITING)
2086 continue;
2087
74a1166d
BB
2088 /* as per above, nr_threads may decrease, but not increase. */
2089 BUG_ON(i >= group_size);
134d3373
TH
2090 ent.task = tsk;
2091 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2092 /* nothing to do if this task is already in the cgroup */
2093 if (ent.cgrp == cgrp)
2094 continue;
61d1d219
MSB
2095 /*
2096 * saying GFP_ATOMIC has no effect here because we did prealloc
2097 * earlier, but it's good form to communicate our expectations.
2098 */
134d3373 2099 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2100 BUG_ON(retval != 0);
74a1166d
BB
2101 i++;
2102 } while_each_thread(leader, tsk);
fb5d2b4c 2103 rcu_read_unlock();
74a1166d
BB
2104 /* remember the number of threads in the array for later. */
2105 group_size = i;
2f7ee569
TH
2106 tset.tc_array = group;
2107 tset.tc_array_len = group_size;
74a1166d 2108
134d3373
TH
2109 /* methods shouldn't be called if no task is actually migrating */
2110 retval = 0;
892a2b90 2111 if (!group_size)
b07ef774 2112 goto out_free_group_list;
134d3373 2113
74a1166d
BB
2114 /*
2115 * step 1: check that we can legitimately attach to the cgroup.
2116 */
2117 for_each_subsys(root, ss) {
2118 if (ss->can_attach) {
761b3ef5 2119 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2120 if (retval) {
2121 failed_ss = ss;
2122 goto out_cancel_attach;
2123 }
2124 }
74a1166d
BB
2125 }
2126
2127 /*
2128 * step 2: make sure css_sets exist for all threads to be migrated.
2129 * we use find_css_set, which allocates a new one if necessary.
2130 */
74a1166d 2131 for (i = 0; i < group_size; i++) {
134d3373 2132 tc = flex_array_get(group, i);
61d1d219
MSB
2133 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2134 if (!tc->cg) {
2135 retval = -ENOMEM;
2136 goto out_put_css_set_refs;
74a1166d
BB
2137 }
2138 }
2139
2140 /*
494c167c
TH
2141 * step 3: now that we're guaranteed success wrt the css_sets,
2142 * proceed to move all tasks to the new cgroup. There are no
2143 * failure cases after here, so this is the commit point.
74a1166d 2144 */
74a1166d 2145 for (i = 0; i < group_size; i++) {
134d3373 2146 tc = flex_array_get(group, i);
61d1d219 2147 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2148 }
2149 /* nothing is sensitive to fork() after this point. */
2150
2151 /*
494c167c 2152 * step 4: do subsystem attach callbacks.
74a1166d
BB
2153 */
2154 for_each_subsys(root, ss) {
2155 if (ss->attach)
761b3ef5 2156 ss->attach(cgrp, &tset);
74a1166d
BB
2157 }
2158
2159 /*
2160 * step 5: success! and cleanup
2161 */
2162 synchronize_rcu();
2163 cgroup_wakeup_rmdir_waiter(cgrp);
2164 retval = 0;
61d1d219
MSB
2165out_put_css_set_refs:
2166 if (retval) {
2167 for (i = 0; i < group_size; i++) {
2168 tc = flex_array_get(group, i);
2169 if (!tc->cg)
2170 break;
2171 put_css_set(tc->cg);
2172 }
74a1166d
BB
2173 }
2174out_cancel_attach:
74a1166d
BB
2175 if (retval) {
2176 for_each_subsys(root, ss) {
494c167c 2177 if (ss == failed_ss)
74a1166d 2178 break;
74a1166d 2179 if (ss->cancel_attach)
761b3ef5 2180 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2181 }
2182 }
74a1166d 2183out_free_group_list:
d846687d 2184 flex_array_free(group);
74a1166d
BB
2185 return retval;
2186}
2187
2188/*
2189 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2190 * function to attach either it or all tasks in its threadgroup. Will lock
2191 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2192 */
74a1166d 2193static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2194{
bbcb81d0 2195 struct task_struct *tsk;
c69e8d9c 2196 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2197 int ret;
2198
74a1166d
BB
2199 if (!cgroup_lock_live_group(cgrp))
2200 return -ENODEV;
2201
b78949eb
MSB
2202retry_find_task:
2203 rcu_read_lock();
bbcb81d0 2204 if (pid) {
73507f33 2205 tsk = find_task_by_vpid(pid);
74a1166d
BB
2206 if (!tsk) {
2207 rcu_read_unlock();
b78949eb
MSB
2208 ret= -ESRCH;
2209 goto out_unlock_cgroup;
bbcb81d0 2210 }
74a1166d
BB
2211 /*
2212 * even if we're attaching all tasks in the thread group, we
2213 * only need to check permissions on one of them.
2214 */
c69e8d9c
DH
2215 tcred = __task_cred(tsk);
2216 if (cred->euid &&
2217 cred->euid != tcred->uid &&
2218 cred->euid != tcred->suid) {
2219 rcu_read_unlock();
b78949eb
MSB
2220 ret = -EACCES;
2221 goto out_unlock_cgroup;
bbcb81d0 2222 }
b78949eb
MSB
2223 } else
2224 tsk = current;
cd3d0952
TH
2225
2226 if (threadgroup)
b78949eb
MSB
2227 tsk = tsk->group_leader;
2228 get_task_struct(tsk);
2229 rcu_read_unlock();
2230
2231 threadgroup_lock(tsk);
2232 if (threadgroup) {
2233 if (!thread_group_leader(tsk)) {
2234 /*
2235 * a race with de_thread from another thread's exec()
2236 * may strip us of our leadership, if this happens,
2237 * there is no choice but to throw this task away and
2238 * try again; this is
2239 * "double-double-toil-and-trouble-check locking".
2240 */
2241 threadgroup_unlock(tsk);
2242 put_task_struct(tsk);
2243 goto retry_find_task;
2244 }
74a1166d 2245 ret = cgroup_attach_proc(cgrp, tsk);
b78949eb 2246 } else
74a1166d 2247 ret = cgroup_attach_task(cgrp, tsk);
cd3d0952
TH
2248 threadgroup_unlock(tsk);
2249
bbcb81d0 2250 put_task_struct(tsk);
b78949eb 2251out_unlock_cgroup:
74a1166d 2252 cgroup_unlock();
bbcb81d0
PM
2253 return ret;
2254}
2255
af351026 2256static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2257{
2258 return attach_task_by_pid(cgrp, pid, false);
2259}
2260
2261static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2262{
b78949eb 2263 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2264}
2265
e788e066
PM
2266/**
2267 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2268 * @cgrp: the cgroup to be checked for liveness
2269 *
84eea842
PM
2270 * On success, returns true; the lock should be later released with
2271 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 2272 */
84eea842 2273bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
2274{
2275 mutex_lock(&cgroup_mutex);
2276 if (cgroup_is_removed(cgrp)) {
2277 mutex_unlock(&cgroup_mutex);
2278 return false;
2279 }
2280 return true;
2281}
67523c48 2282EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
2283
2284static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2285 const char *buffer)
2286{
2287 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2288 if (strlen(buffer) >= PATH_MAX)
2289 return -EINVAL;
e788e066
PM
2290 if (!cgroup_lock_live_group(cgrp))
2291 return -ENODEV;
e25e2cbb 2292 mutex_lock(&cgroup_root_mutex);
e788e066 2293 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2294 mutex_unlock(&cgroup_root_mutex);
84eea842 2295 cgroup_unlock();
e788e066
PM
2296 return 0;
2297}
2298
2299static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2300 struct seq_file *seq)
2301{
2302 if (!cgroup_lock_live_group(cgrp))
2303 return -ENODEV;
2304 seq_puts(seq, cgrp->root->release_agent_path);
2305 seq_putc(seq, '\n');
84eea842 2306 cgroup_unlock();
e788e066
PM
2307 return 0;
2308}
2309
84eea842
PM
2310/* A buffer size big enough for numbers or short strings */
2311#define CGROUP_LOCAL_BUFFER_SIZE 64
2312
e73d2c61 2313static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2314 struct file *file,
2315 const char __user *userbuf,
2316 size_t nbytes, loff_t *unused_ppos)
355e0c48 2317{
84eea842 2318 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2319 int retval = 0;
355e0c48
PM
2320 char *end;
2321
2322 if (!nbytes)
2323 return -EINVAL;
2324 if (nbytes >= sizeof(buffer))
2325 return -E2BIG;
2326 if (copy_from_user(buffer, userbuf, nbytes))
2327 return -EFAULT;
2328
2329 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2330 if (cft->write_u64) {
478988d3 2331 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2332 if (*end)
2333 return -EINVAL;
2334 retval = cft->write_u64(cgrp, cft, val);
2335 } else {
478988d3 2336 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2337 if (*end)
2338 return -EINVAL;
2339 retval = cft->write_s64(cgrp, cft, val);
2340 }
355e0c48
PM
2341 if (!retval)
2342 retval = nbytes;
2343 return retval;
2344}
2345
db3b1497
PM
2346static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2347 struct file *file,
2348 const char __user *userbuf,
2349 size_t nbytes, loff_t *unused_ppos)
2350{
84eea842 2351 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2352 int retval = 0;
2353 size_t max_bytes = cft->max_write_len;
2354 char *buffer = local_buffer;
2355
2356 if (!max_bytes)
2357 max_bytes = sizeof(local_buffer) - 1;
2358 if (nbytes >= max_bytes)
2359 return -E2BIG;
2360 /* Allocate a dynamic buffer if we need one */
2361 if (nbytes >= sizeof(local_buffer)) {
2362 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2363 if (buffer == NULL)
2364 return -ENOMEM;
2365 }
5a3eb9f6
LZ
2366 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2367 retval = -EFAULT;
2368 goto out;
2369 }
db3b1497
PM
2370
2371 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2372 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2373 if (!retval)
2374 retval = nbytes;
5a3eb9f6 2375out:
db3b1497
PM
2376 if (buffer != local_buffer)
2377 kfree(buffer);
2378 return retval;
2379}
2380
ddbcc7e8
PM
2381static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2382 size_t nbytes, loff_t *ppos)
2383{
2384 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2385 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2386
75139b82 2387 if (cgroup_is_removed(cgrp))
ddbcc7e8 2388 return -ENODEV;
355e0c48 2389 if (cft->write)
bd89aabc 2390 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2391 if (cft->write_u64 || cft->write_s64)
2392 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2393 if (cft->write_string)
2394 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2395 if (cft->trigger) {
2396 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2397 return ret ? ret : nbytes;
2398 }
355e0c48 2399 return -EINVAL;
ddbcc7e8
PM
2400}
2401
f4c753b7
PM
2402static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2403 struct file *file,
2404 char __user *buf, size_t nbytes,
2405 loff_t *ppos)
ddbcc7e8 2406{
84eea842 2407 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2408 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2409 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2410
2411 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2412}
2413
e73d2c61
PM
2414static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2415 struct file *file,
2416 char __user *buf, size_t nbytes,
2417 loff_t *ppos)
2418{
84eea842 2419 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2420 s64 val = cft->read_s64(cgrp, cft);
2421 int len = sprintf(tmp, "%lld\n", (long long) val);
2422
2423 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2424}
2425
ddbcc7e8
PM
2426static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2427 size_t nbytes, loff_t *ppos)
2428{
2429 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2430 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2431
75139b82 2432 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2433 return -ENODEV;
2434
2435 if (cft->read)
bd89aabc 2436 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2437 if (cft->read_u64)
2438 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2439 if (cft->read_s64)
2440 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2441 return -EINVAL;
2442}
2443
91796569
PM
2444/*
2445 * seqfile ops/methods for returning structured data. Currently just
2446 * supports string->u64 maps, but can be extended in future.
2447 */
2448
2449struct cgroup_seqfile_state {
2450 struct cftype *cft;
2451 struct cgroup *cgroup;
2452};
2453
2454static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2455{
2456 struct seq_file *sf = cb->state;
2457 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2458}
2459
2460static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2461{
2462 struct cgroup_seqfile_state *state = m->private;
2463 struct cftype *cft = state->cft;
29486df3
SH
2464 if (cft->read_map) {
2465 struct cgroup_map_cb cb = {
2466 .fill = cgroup_map_add,
2467 .state = m,
2468 };
2469 return cft->read_map(state->cgroup, cft, &cb);
2470 }
2471 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2472}
2473
96930a63 2474static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2475{
2476 struct seq_file *seq = file->private_data;
2477 kfree(seq->private);
2478 return single_release(inode, file);
2479}
2480
828c0950 2481static const struct file_operations cgroup_seqfile_operations = {
91796569 2482 .read = seq_read,
e788e066 2483 .write = cgroup_file_write,
91796569
PM
2484 .llseek = seq_lseek,
2485 .release = cgroup_seqfile_release,
2486};
2487
ddbcc7e8
PM
2488static int cgroup_file_open(struct inode *inode, struct file *file)
2489{
2490 int err;
2491 struct cftype *cft;
2492
2493 err = generic_file_open(inode, file);
2494 if (err)
2495 return err;
ddbcc7e8 2496 cft = __d_cft(file->f_dentry);
75139b82 2497
29486df3 2498 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2499 struct cgroup_seqfile_state *state =
2500 kzalloc(sizeof(*state), GFP_USER);
2501 if (!state)
2502 return -ENOMEM;
2503 state->cft = cft;
2504 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2505 file->f_op = &cgroup_seqfile_operations;
2506 err = single_open(file, cgroup_seqfile_show, state);
2507 if (err < 0)
2508 kfree(state);
2509 } else if (cft->open)
ddbcc7e8
PM
2510 err = cft->open(inode, file);
2511 else
2512 err = 0;
2513
2514 return err;
2515}
2516
2517static int cgroup_file_release(struct inode *inode, struct file *file)
2518{
2519 struct cftype *cft = __d_cft(file->f_dentry);
2520 if (cft->release)
2521 return cft->release(inode, file);
2522 return 0;
2523}
2524
2525/*
2526 * cgroup_rename - Only allow simple rename of directories in place.
2527 */
2528static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2529 struct inode *new_dir, struct dentry *new_dentry)
2530{
2531 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2532 return -ENOTDIR;
2533 if (new_dentry->d_inode)
2534 return -EEXIST;
2535 if (old_dir != new_dir)
2536 return -EIO;
2537 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2538}
2539
828c0950 2540static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2541 .read = cgroup_file_read,
2542 .write = cgroup_file_write,
2543 .llseek = generic_file_llseek,
2544 .open = cgroup_file_open,
2545 .release = cgroup_file_release,
2546};
2547
6e1d5dcc 2548static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2549 .lookup = cgroup_lookup,
ddbcc7e8
PM
2550 .mkdir = cgroup_mkdir,
2551 .rmdir = cgroup_rmdir,
2552 .rename = cgroup_rename,
2553};
2554
c72a04e3
AV
2555static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2556{
2557 if (dentry->d_name.len > NAME_MAX)
2558 return ERR_PTR(-ENAMETOOLONG);
2559 d_add(dentry, NULL);
2560 return NULL;
2561}
2562
0dea1168
KS
2563/*
2564 * Check if a file is a control file
2565 */
2566static inline struct cftype *__file_cft(struct file *file)
2567{
2568 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2569 return ERR_PTR(-EINVAL);
2570 return __d_cft(file->f_dentry);
2571}
2572
a5e7ed32 2573static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2574 struct super_block *sb)
2575{
ddbcc7e8
PM
2576 struct inode *inode;
2577
2578 if (!dentry)
2579 return -ENOENT;
2580 if (dentry->d_inode)
2581 return -EEXIST;
2582
2583 inode = cgroup_new_inode(mode, sb);
2584 if (!inode)
2585 return -ENOMEM;
2586
2587 if (S_ISDIR(mode)) {
2588 inode->i_op = &cgroup_dir_inode_operations;
2589 inode->i_fop = &simple_dir_operations;
2590
2591 /* start off with i_nlink == 2 (for "." entry) */
2592 inc_nlink(inode);
2593
2594 /* start with the directory inode held, so that we can
2595 * populate it without racing with another mkdir */
817929ec 2596 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2597 } else if (S_ISREG(mode)) {
2598 inode->i_size = 0;
2599 inode->i_fop = &cgroup_file_operations;
2600 }
ddbcc7e8
PM
2601 d_instantiate(dentry, inode);
2602 dget(dentry); /* Extra count - pin the dentry in core */
2603 return 0;
2604}
2605
2606/*
a043e3b2
LZ
2607 * cgroup_create_dir - create a directory for an object.
2608 * @cgrp: the cgroup we create the directory for. It must have a valid
2609 * ->parent field. And we are going to fill its ->dentry field.
2610 * @dentry: dentry of the new cgroup
2611 * @mode: mode to set on new directory.
ddbcc7e8 2612 */
bd89aabc 2613static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
a5e7ed32 2614 umode_t mode)
ddbcc7e8
PM
2615{
2616 struct dentry *parent;
2617 int error = 0;
2618
bd89aabc
PM
2619 parent = cgrp->parent->dentry;
2620 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2621 if (!error) {
bd89aabc 2622 dentry->d_fsdata = cgrp;
ddbcc7e8 2623 inc_nlink(parent->d_inode);
a47295e6 2624 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2625 dget(dentry);
2626 }
2627 dput(dentry);
2628
2629 return error;
2630}
2631
099fca32
LZ
2632/**
2633 * cgroup_file_mode - deduce file mode of a control file
2634 * @cft: the control file in question
2635 *
2636 * returns cft->mode if ->mode is not 0
2637 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2638 * returns S_IRUGO if it has only a read handler
2639 * returns S_IWUSR if it has only a write hander
2640 */
a5e7ed32 2641static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2642{
a5e7ed32 2643 umode_t mode = 0;
099fca32
LZ
2644
2645 if (cft->mode)
2646 return cft->mode;
2647
2648 if (cft->read || cft->read_u64 || cft->read_s64 ||
2649 cft->read_map || cft->read_seq_string)
2650 mode |= S_IRUGO;
2651
2652 if (cft->write || cft->write_u64 || cft->write_s64 ||
2653 cft->write_string || cft->trigger)
2654 mode |= S_IWUSR;
2655
2656 return mode;
2657}
2658
db0416b6
TH
2659static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2660 const struct cftype *cft)
ddbcc7e8 2661{
bd89aabc 2662 struct dentry *dir = cgrp->dentry;
05ef1d7c 2663 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2664 struct dentry *dentry;
05ef1d7c 2665 struct cfent *cfe;
ddbcc7e8 2666 int error;
a5e7ed32 2667 umode_t mode;
ddbcc7e8 2668 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541
TH
2669
2670 /* does @cft->flags tell us to skip creation on @cgrp? */
2671 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2672 return 0;
2673 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2674 return 0;
2675
bd89aabc 2676 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2677 strcpy(name, subsys->name);
2678 strcat(name, ".");
2679 }
2680 strcat(name, cft->name);
05ef1d7c 2681
ddbcc7e8 2682 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2683
2684 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2685 if (!cfe)
2686 return -ENOMEM;
2687
ddbcc7e8 2688 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2689 if (IS_ERR(dentry)) {
ddbcc7e8 2690 error = PTR_ERR(dentry);
05ef1d7c
TH
2691 goto out;
2692 }
2693
2694 mode = cgroup_file_mode(cft);
2695 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2696 if (!error) {
2697 cfe->type = (void *)cft;
2698 cfe->dentry = dentry;
2699 dentry->d_fsdata = cfe;
2700 list_add_tail(&cfe->node, &parent->files);
2701 cfe = NULL;
2702 }
2703 dput(dentry);
2704out:
2705 kfree(cfe);
ddbcc7e8
PM
2706 return error;
2707}
2708
79578621
TH
2709static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2710 const struct cftype cfts[], bool is_add)
ddbcc7e8 2711{
db0416b6
TH
2712 const struct cftype *cft;
2713 int err, ret = 0;
2714
2715 for (cft = cfts; cft->name[0] != '\0'; cft++) {
79578621
TH
2716 if (is_add)
2717 err = cgroup_add_file(cgrp, subsys, cft);
2718 else
2719 err = cgroup_rm_file(cgrp, cft);
db0416b6 2720 if (err) {
79578621
TH
2721 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2722 is_add ? "add" : "remove", cft->name, err);
db0416b6
TH
2723 ret = err;
2724 }
ddbcc7e8 2725 }
db0416b6 2726 return ret;
ddbcc7e8
PM
2727}
2728
8e3f6541
TH
2729static DEFINE_MUTEX(cgroup_cft_mutex);
2730
2731static void cgroup_cfts_prepare(void)
2732 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2733{
2734 /*
2735 * Thanks to the entanglement with vfs inode locking, we can't walk
2736 * the existing cgroups under cgroup_mutex and create files.
2737 * Instead, we increment reference on all cgroups and build list of
2738 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2739 * exclusive access to the field.
2740 */
2741 mutex_lock(&cgroup_cft_mutex);
2742 mutex_lock(&cgroup_mutex);
2743}
2744
2745static void cgroup_cfts_commit(struct cgroup_subsys *ss,
79578621 2746 const struct cftype *cfts, bool is_add)
8e3f6541
TH
2747 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2748{
2749 LIST_HEAD(pending);
2750 struct cgroup *cgrp, *n;
8e3f6541
TH
2751
2752 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2753 if (cfts && ss->root != &rootnode) {
2754 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2755 dget(cgrp->dentry);
2756 list_add_tail(&cgrp->cft_q_node, &pending);
2757 }
2758 }
2759
2760 mutex_unlock(&cgroup_mutex);
2761
2762 /*
2763 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2764 * files for all cgroups which were created before.
2765 */
2766 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2767 struct inode *inode = cgrp->dentry->d_inode;
2768
2769 mutex_lock(&inode->i_mutex);
2770 mutex_lock(&cgroup_mutex);
2771 if (!cgroup_is_removed(cgrp))
79578621 2772 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2773 mutex_unlock(&cgroup_mutex);
2774 mutex_unlock(&inode->i_mutex);
2775
2776 list_del_init(&cgrp->cft_q_node);
2777 dput(cgrp->dentry);
2778 }
2779
2780 mutex_unlock(&cgroup_cft_mutex);
2781}
2782
2783/**
2784 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2785 * @ss: target cgroup subsystem
2786 * @cfts: zero-length name terminated array of cftypes
2787 *
2788 * Register @cfts to @ss. Files described by @cfts are created for all
2789 * existing cgroups to which @ss is attached and all future cgroups will
2790 * have them too. This function can be called anytime whether @ss is
2791 * attached or not.
2792 *
2793 * Returns 0 on successful registration, -errno on failure. Note that this
2794 * function currently returns 0 as long as @cfts registration is successful
2795 * even if some file creation attempts on existing cgroups fail.
2796 */
2797int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2798{
2799 struct cftype_set *set;
2800
2801 set = kzalloc(sizeof(*set), GFP_KERNEL);
2802 if (!set)
2803 return -ENOMEM;
2804
2805 cgroup_cfts_prepare();
2806 set->cfts = cfts;
2807 list_add_tail(&set->node, &ss->cftsets);
79578621 2808 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2809
2810 return 0;
2811}
2812EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2813
79578621
TH
2814/**
2815 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2816 * @ss: target cgroup subsystem
2817 * @cfts: zero-length name terminated array of cftypes
2818 *
2819 * Unregister @cfts from @ss. Files described by @cfts are removed from
2820 * all existing cgroups to which @ss is attached and all future cgroups
2821 * won't have them either. This function can be called anytime whether @ss
2822 * is attached or not.
2823 *
2824 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2825 * registered with @ss.
2826 */
2827int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2828{
2829 struct cftype_set *set;
2830
2831 cgroup_cfts_prepare();
2832
2833 list_for_each_entry(set, &ss->cftsets, node) {
2834 if (set->cfts == cfts) {
2835 list_del_init(&set->node);
2836 cgroup_cfts_commit(ss, cfts, false);
2837 return 0;
2838 }
2839 }
2840
2841 cgroup_cfts_commit(ss, NULL, false);
2842 return -ENOENT;
2843}
2844
a043e3b2
LZ
2845/**
2846 * cgroup_task_count - count the number of tasks in a cgroup.
2847 * @cgrp: the cgroup in question
2848 *
2849 * Return the number of tasks in the cgroup.
2850 */
bd89aabc 2851int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2852{
2853 int count = 0;
71cbb949 2854 struct cg_cgroup_link *link;
817929ec
PM
2855
2856 read_lock(&css_set_lock);
71cbb949 2857 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2858 count += atomic_read(&link->cg->refcount);
817929ec
PM
2859 }
2860 read_unlock(&css_set_lock);
bbcb81d0
PM
2861 return count;
2862}
2863
817929ec
PM
2864/*
2865 * Advance a list_head iterator. The iterator should be positioned at
2866 * the start of a css_set
2867 */
bd89aabc 2868static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2869 struct cgroup_iter *it)
817929ec
PM
2870{
2871 struct list_head *l = it->cg_link;
2872 struct cg_cgroup_link *link;
2873 struct css_set *cg;
2874
2875 /* Advance to the next non-empty css_set */
2876 do {
2877 l = l->next;
bd89aabc 2878 if (l == &cgrp->css_sets) {
817929ec
PM
2879 it->cg_link = NULL;
2880 return;
2881 }
bd89aabc 2882 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2883 cg = link->cg;
2884 } while (list_empty(&cg->tasks));
2885 it->cg_link = l;
2886 it->task = cg->tasks.next;
2887}
2888
31a7df01
CW
2889/*
2890 * To reduce the fork() overhead for systems that are not actually
2891 * using their cgroups capability, we don't maintain the lists running
2892 * through each css_set to its tasks until we see the list actually
2893 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2894 */
3df91fe3 2895static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2896{
2897 struct task_struct *p, *g;
2898 write_lock(&css_set_lock);
2899 use_task_css_set_links = 1;
3ce3230a
FW
2900 /*
2901 * We need tasklist_lock because RCU is not safe against
2902 * while_each_thread(). Besides, a forking task that has passed
2903 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2904 * is not guaranteed to have its child immediately visible in the
2905 * tasklist if we walk through it with RCU.
2906 */
2907 read_lock(&tasklist_lock);
31a7df01
CW
2908 do_each_thread(g, p) {
2909 task_lock(p);
0e04388f
LZ
2910 /*
2911 * We should check if the process is exiting, otherwise
2912 * it will race with cgroup_exit() in that the list
2913 * entry won't be deleted though the process has exited.
2914 */
2915 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2916 list_add(&p->cg_list, &p->cgroups->tasks);
2917 task_unlock(p);
2918 } while_each_thread(g, p);
3ce3230a 2919 read_unlock(&tasklist_lock);
31a7df01
CW
2920 write_unlock(&css_set_lock);
2921}
2922
bd89aabc 2923void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2924 __acquires(css_set_lock)
817929ec
PM
2925{
2926 /*
2927 * The first time anyone tries to iterate across a cgroup,
2928 * we need to enable the list linking each css_set to its
2929 * tasks, and fix up all existing tasks.
2930 */
31a7df01
CW
2931 if (!use_task_css_set_links)
2932 cgroup_enable_task_cg_lists();
2933
817929ec 2934 read_lock(&css_set_lock);
bd89aabc
PM
2935 it->cg_link = &cgrp->css_sets;
2936 cgroup_advance_iter(cgrp, it);
817929ec
PM
2937}
2938
bd89aabc 2939struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2940 struct cgroup_iter *it)
2941{
2942 struct task_struct *res;
2943 struct list_head *l = it->task;
2019f634 2944 struct cg_cgroup_link *link;
817929ec
PM
2945
2946 /* If the iterator cg is NULL, we have no tasks */
2947 if (!it->cg_link)
2948 return NULL;
2949 res = list_entry(l, struct task_struct, cg_list);
2950 /* Advance iterator to find next entry */
2951 l = l->next;
2019f634
LJ
2952 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2953 if (l == &link->cg->tasks) {
817929ec
PM
2954 /* We reached the end of this task list - move on to
2955 * the next cg_cgroup_link */
bd89aabc 2956 cgroup_advance_iter(cgrp, it);
817929ec
PM
2957 } else {
2958 it->task = l;
2959 }
2960 return res;
2961}
2962
bd89aabc 2963void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2964 __releases(css_set_lock)
817929ec
PM
2965{
2966 read_unlock(&css_set_lock);
2967}
2968
31a7df01
CW
2969static inline int started_after_time(struct task_struct *t1,
2970 struct timespec *time,
2971 struct task_struct *t2)
2972{
2973 int start_diff = timespec_compare(&t1->start_time, time);
2974 if (start_diff > 0) {
2975 return 1;
2976 } else if (start_diff < 0) {
2977 return 0;
2978 } else {
2979 /*
2980 * Arbitrarily, if two processes started at the same
2981 * time, we'll say that the lower pointer value
2982 * started first. Note that t2 may have exited by now
2983 * so this may not be a valid pointer any longer, but
2984 * that's fine - it still serves to distinguish
2985 * between two tasks started (effectively) simultaneously.
2986 */
2987 return t1 > t2;
2988 }
2989}
2990
2991/*
2992 * This function is a callback from heap_insert() and is used to order
2993 * the heap.
2994 * In this case we order the heap in descending task start time.
2995 */
2996static inline int started_after(void *p1, void *p2)
2997{
2998 struct task_struct *t1 = p1;
2999 struct task_struct *t2 = p2;
3000 return started_after_time(t1, &t2->start_time, t2);
3001}
3002
3003/**
3004 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3005 * @scan: struct cgroup_scanner containing arguments for the scan
3006 *
3007 * Arguments include pointers to callback functions test_task() and
3008 * process_task().
3009 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3010 * and if it returns true, call process_task() for it also.
3011 * The test_task pointer may be NULL, meaning always true (select all tasks).
3012 * Effectively duplicates cgroup_iter_{start,next,end}()
3013 * but does not lock css_set_lock for the call to process_task().
3014 * The struct cgroup_scanner may be embedded in any structure of the caller's
3015 * creation.
3016 * It is guaranteed that process_task() will act on every task that
3017 * is a member of the cgroup for the duration of this call. This
3018 * function may or may not call process_task() for tasks that exit
3019 * or move to a different cgroup during the call, or are forked or
3020 * move into the cgroup during the call.
3021 *
3022 * Note that test_task() may be called with locks held, and may in some
3023 * situations be called multiple times for the same task, so it should
3024 * be cheap.
3025 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3026 * pre-allocated and will be used for heap operations (and its "gt" member will
3027 * be overwritten), else a temporary heap will be used (allocation of which
3028 * may cause this function to fail).
3029 */
3030int cgroup_scan_tasks(struct cgroup_scanner *scan)
3031{
3032 int retval, i;
3033 struct cgroup_iter it;
3034 struct task_struct *p, *dropped;
3035 /* Never dereference latest_task, since it's not refcounted */
3036 struct task_struct *latest_task = NULL;
3037 struct ptr_heap tmp_heap;
3038 struct ptr_heap *heap;
3039 struct timespec latest_time = { 0, 0 };
3040
3041 if (scan->heap) {
3042 /* The caller supplied our heap and pre-allocated its memory */
3043 heap = scan->heap;
3044 heap->gt = &started_after;
3045 } else {
3046 /* We need to allocate our own heap memory */
3047 heap = &tmp_heap;
3048 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3049 if (retval)
3050 /* cannot allocate the heap */
3051 return retval;
3052 }
3053
3054 again:
3055 /*
3056 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3057 * to determine which are of interest, and using the scanner's
3058 * "process_task" callback to process any of them that need an update.
3059 * Since we don't want to hold any locks during the task updates,
3060 * gather tasks to be processed in a heap structure.
3061 * The heap is sorted by descending task start time.
3062 * If the statically-sized heap fills up, we overflow tasks that
3063 * started later, and in future iterations only consider tasks that
3064 * started after the latest task in the previous pass. This
3065 * guarantees forward progress and that we don't miss any tasks.
3066 */
3067 heap->size = 0;
3068 cgroup_iter_start(scan->cg, &it);
3069 while ((p = cgroup_iter_next(scan->cg, &it))) {
3070 /*
3071 * Only affect tasks that qualify per the caller's callback,
3072 * if he provided one
3073 */
3074 if (scan->test_task && !scan->test_task(p, scan))
3075 continue;
3076 /*
3077 * Only process tasks that started after the last task
3078 * we processed
3079 */
3080 if (!started_after_time(p, &latest_time, latest_task))
3081 continue;
3082 dropped = heap_insert(heap, p);
3083 if (dropped == NULL) {
3084 /*
3085 * The new task was inserted; the heap wasn't
3086 * previously full
3087 */
3088 get_task_struct(p);
3089 } else if (dropped != p) {
3090 /*
3091 * The new task was inserted, and pushed out a
3092 * different task
3093 */
3094 get_task_struct(p);
3095 put_task_struct(dropped);
3096 }
3097 /*
3098 * Else the new task was newer than anything already in
3099 * the heap and wasn't inserted
3100 */
3101 }
3102 cgroup_iter_end(scan->cg, &it);
3103
3104 if (heap->size) {
3105 for (i = 0; i < heap->size; i++) {
4fe91d51 3106 struct task_struct *q = heap->ptrs[i];
31a7df01 3107 if (i == 0) {
4fe91d51
PJ
3108 latest_time = q->start_time;
3109 latest_task = q;
31a7df01
CW
3110 }
3111 /* Process the task per the caller's callback */
4fe91d51
PJ
3112 scan->process_task(q, scan);
3113 put_task_struct(q);
31a7df01
CW
3114 }
3115 /*
3116 * If we had to process any tasks at all, scan again
3117 * in case some of them were in the middle of forking
3118 * children that didn't get processed.
3119 * Not the most efficient way to do it, but it avoids
3120 * having to take callback_mutex in the fork path
3121 */
3122 goto again;
3123 }
3124 if (heap == &tmp_heap)
3125 heap_free(&tmp_heap);
3126 return 0;
3127}
3128
bbcb81d0 3129/*
102a775e 3130 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3131 *
3132 * Reading this file can return large amounts of data if a cgroup has
3133 * *lots* of attached tasks. So it may need several calls to read(),
3134 * but we cannot guarantee that the information we produce is correct
3135 * unless we produce it entirely atomically.
3136 *
bbcb81d0 3137 */
bbcb81d0 3138
24528255
LZ
3139/* which pidlist file are we talking about? */
3140enum cgroup_filetype {
3141 CGROUP_FILE_PROCS,
3142 CGROUP_FILE_TASKS,
3143};
3144
3145/*
3146 * A pidlist is a list of pids that virtually represents the contents of one
3147 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3148 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3149 * to the cgroup.
3150 */
3151struct cgroup_pidlist {
3152 /*
3153 * used to find which pidlist is wanted. doesn't change as long as
3154 * this particular list stays in the list.
3155 */
3156 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3157 /* array of xids */
3158 pid_t *list;
3159 /* how many elements the above list has */
3160 int length;
3161 /* how many files are using the current array */
3162 int use_count;
3163 /* each of these stored in a list by its cgroup */
3164 struct list_head links;
3165 /* pointer to the cgroup we belong to, for list removal purposes */
3166 struct cgroup *owner;
3167 /* protects the other fields */
3168 struct rw_semaphore mutex;
3169};
3170
d1d9fd33
BB
3171/*
3172 * The following two functions "fix" the issue where there are more pids
3173 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3174 * TODO: replace with a kernel-wide solution to this problem
3175 */
3176#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3177static void *pidlist_allocate(int count)
3178{
3179 if (PIDLIST_TOO_LARGE(count))
3180 return vmalloc(count * sizeof(pid_t));
3181 else
3182 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3183}
3184static void pidlist_free(void *p)
3185{
3186 if (is_vmalloc_addr(p))
3187 vfree(p);
3188 else
3189 kfree(p);
3190}
3191static void *pidlist_resize(void *p, int newcount)
3192{
3193 void *newlist;
3194 /* note: if new alloc fails, old p will still be valid either way */
3195 if (is_vmalloc_addr(p)) {
3196 newlist = vmalloc(newcount * sizeof(pid_t));
3197 if (!newlist)
3198 return NULL;
3199 memcpy(newlist, p, newcount * sizeof(pid_t));
3200 vfree(p);
3201 } else {
3202 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3203 }
3204 return newlist;
3205}
3206
bbcb81d0 3207/*
102a775e
BB
3208 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3209 * If the new stripped list is sufficiently smaller and there's enough memory
3210 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3211 * number of unique elements.
bbcb81d0 3212 */
102a775e
BB
3213/* is the size difference enough that we should re-allocate the array? */
3214#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3215static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 3216{
102a775e
BB
3217 int src, dest = 1;
3218 pid_t *list = *p;
3219 pid_t *newlist;
3220
3221 /*
3222 * we presume the 0th element is unique, so i starts at 1. trivial
3223 * edge cases first; no work needs to be done for either
3224 */
3225 if (length == 0 || length == 1)
3226 return length;
3227 /* src and dest walk down the list; dest counts unique elements */
3228 for (src = 1; src < length; src++) {
3229 /* find next unique element */
3230 while (list[src] == list[src-1]) {
3231 src++;
3232 if (src == length)
3233 goto after;
3234 }
3235 /* dest always points to where the next unique element goes */
3236 list[dest] = list[src];
3237 dest++;
3238 }
3239after:
3240 /*
3241 * if the length difference is large enough, we want to allocate a
3242 * smaller buffer to save memory. if this fails due to out of memory,
3243 * we'll just stay with what we've got.
3244 */
3245 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 3246 newlist = pidlist_resize(list, dest);
102a775e
BB
3247 if (newlist)
3248 *p = newlist;
3249 }
3250 return dest;
3251}
3252
3253static int cmppid(const void *a, const void *b)
3254{
3255 return *(pid_t *)a - *(pid_t *)b;
3256}
3257
72a8cb30
BB
3258/*
3259 * find the appropriate pidlist for our purpose (given procs vs tasks)
3260 * returns with the lock on that pidlist already held, and takes care
3261 * of the use count, or returns NULL with no locks held if we're out of
3262 * memory.
3263 */
3264static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3265 enum cgroup_filetype type)
3266{
3267 struct cgroup_pidlist *l;
3268 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
3269 struct pid_namespace *ns = current->nsproxy->pid_ns;
3270
72a8cb30
BB
3271 /*
3272 * We can't drop the pidlist_mutex before taking the l->mutex in case
3273 * the last ref-holder is trying to remove l from the list at the same
3274 * time. Holding the pidlist_mutex precludes somebody taking whichever
3275 * list we find out from under us - compare release_pid_array().
3276 */
3277 mutex_lock(&cgrp->pidlist_mutex);
3278 list_for_each_entry(l, &cgrp->pidlists, links) {
3279 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3280 /* make sure l doesn't vanish out from under us */
3281 down_write(&l->mutex);
3282 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3283 return l;
3284 }
3285 }
3286 /* entry not found; create a new one */
3287 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3288 if (!l) {
3289 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3290 return l;
3291 }
3292 init_rwsem(&l->mutex);
3293 down_write(&l->mutex);
3294 l->key.type = type;
b70cc5fd 3295 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3296 l->use_count = 0; /* don't increment here */
3297 l->list = NULL;
3298 l->owner = cgrp;
3299 list_add(&l->links, &cgrp->pidlists);
3300 mutex_unlock(&cgrp->pidlist_mutex);
3301 return l;
3302}
3303
102a775e
BB
3304/*
3305 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3306 */
72a8cb30
BB
3307static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3308 struct cgroup_pidlist **lp)
102a775e
BB
3309{
3310 pid_t *array;
3311 int length;
3312 int pid, n = 0; /* used for populating the array */
817929ec
PM
3313 struct cgroup_iter it;
3314 struct task_struct *tsk;
102a775e
BB
3315 struct cgroup_pidlist *l;
3316
3317 /*
3318 * If cgroup gets more users after we read count, we won't have
3319 * enough space - tough. This race is indistinguishable to the
3320 * caller from the case that the additional cgroup users didn't
3321 * show up until sometime later on.
3322 */
3323 length = cgroup_task_count(cgrp);
d1d9fd33 3324 array = pidlist_allocate(length);
102a775e
BB
3325 if (!array)
3326 return -ENOMEM;
3327 /* now, populate the array */
bd89aabc
PM
3328 cgroup_iter_start(cgrp, &it);
3329 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3330 if (unlikely(n == length))
817929ec 3331 break;
102a775e 3332 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3333 if (type == CGROUP_FILE_PROCS)
3334 pid = task_tgid_vnr(tsk);
3335 else
3336 pid = task_pid_vnr(tsk);
102a775e
BB
3337 if (pid > 0) /* make sure to only use valid results */
3338 array[n++] = pid;
817929ec 3339 }
bd89aabc 3340 cgroup_iter_end(cgrp, &it);
102a775e
BB
3341 length = n;
3342 /* now sort & (if procs) strip out duplicates */
3343 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3344 if (type == CGROUP_FILE_PROCS)
102a775e 3345 length = pidlist_uniq(&array, length);
72a8cb30
BB
3346 l = cgroup_pidlist_find(cgrp, type);
3347 if (!l) {
d1d9fd33 3348 pidlist_free(array);
72a8cb30 3349 return -ENOMEM;
102a775e 3350 }
72a8cb30 3351 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3352 pidlist_free(l->list);
102a775e
BB
3353 l->list = array;
3354 l->length = length;
3355 l->use_count++;
3356 up_write(&l->mutex);
72a8cb30 3357 *lp = l;
102a775e 3358 return 0;
bbcb81d0
PM
3359}
3360
846c7bb0 3361/**
a043e3b2 3362 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3363 * @stats: cgroupstats to fill information into
3364 * @dentry: A dentry entry belonging to the cgroup for which stats have
3365 * been requested.
a043e3b2
LZ
3366 *
3367 * Build and fill cgroupstats so that taskstats can export it to user
3368 * space.
846c7bb0
BS
3369 */
3370int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3371{
3372 int ret = -EINVAL;
bd89aabc 3373 struct cgroup *cgrp;
846c7bb0
BS
3374 struct cgroup_iter it;
3375 struct task_struct *tsk;
33d283be 3376
846c7bb0 3377 /*
33d283be
LZ
3378 * Validate dentry by checking the superblock operations,
3379 * and make sure it's a directory.
846c7bb0 3380 */
33d283be
LZ
3381 if (dentry->d_sb->s_op != &cgroup_ops ||
3382 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3383 goto err;
3384
3385 ret = 0;
bd89aabc 3386 cgrp = dentry->d_fsdata;
846c7bb0 3387
bd89aabc
PM
3388 cgroup_iter_start(cgrp, &it);
3389 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3390 switch (tsk->state) {
3391 case TASK_RUNNING:
3392 stats->nr_running++;
3393 break;
3394 case TASK_INTERRUPTIBLE:
3395 stats->nr_sleeping++;
3396 break;
3397 case TASK_UNINTERRUPTIBLE:
3398 stats->nr_uninterruptible++;
3399 break;
3400 case TASK_STOPPED:
3401 stats->nr_stopped++;
3402 break;
3403 default:
3404 if (delayacct_is_task_waiting_on_io(tsk))
3405 stats->nr_io_wait++;
3406 break;
3407 }
3408 }
bd89aabc 3409 cgroup_iter_end(cgrp, &it);
846c7bb0 3410
846c7bb0
BS
3411err:
3412 return ret;
3413}
3414
8f3ff208 3415
bbcb81d0 3416/*
102a775e 3417 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3418 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3419 * in the cgroup->l->list array.
bbcb81d0 3420 */
cc31edce 3421
102a775e 3422static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3423{
cc31edce
PM
3424 /*
3425 * Initially we receive a position value that corresponds to
3426 * one more than the last pid shown (or 0 on the first call or
3427 * after a seek to the start). Use a binary-search to find the
3428 * next pid to display, if any
3429 */
102a775e 3430 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3431 int index = 0, pid = *pos;
3432 int *iter;
3433
102a775e 3434 down_read(&l->mutex);
cc31edce 3435 if (pid) {
102a775e 3436 int end = l->length;
20777766 3437
cc31edce
PM
3438 while (index < end) {
3439 int mid = (index + end) / 2;
102a775e 3440 if (l->list[mid] == pid) {
cc31edce
PM
3441 index = mid;
3442 break;
102a775e 3443 } else if (l->list[mid] <= pid)
cc31edce
PM
3444 index = mid + 1;
3445 else
3446 end = mid;
3447 }
3448 }
3449 /* If we're off the end of the array, we're done */
102a775e 3450 if (index >= l->length)
cc31edce
PM
3451 return NULL;
3452 /* Update the abstract position to be the actual pid that we found */
102a775e 3453 iter = l->list + index;
cc31edce
PM
3454 *pos = *iter;
3455 return iter;
3456}
3457
102a775e 3458static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3459{
102a775e
BB
3460 struct cgroup_pidlist *l = s->private;
3461 up_read(&l->mutex);
cc31edce
PM
3462}
3463
102a775e 3464static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3465{
102a775e
BB
3466 struct cgroup_pidlist *l = s->private;
3467 pid_t *p = v;
3468 pid_t *end = l->list + l->length;
cc31edce
PM
3469 /*
3470 * Advance to the next pid in the array. If this goes off the
3471 * end, we're done
3472 */
3473 p++;
3474 if (p >= end) {
3475 return NULL;
3476 } else {
3477 *pos = *p;
3478 return p;
3479 }
3480}
3481
102a775e 3482static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3483{
3484 return seq_printf(s, "%d\n", *(int *)v);
3485}
bbcb81d0 3486
102a775e
BB
3487/*
3488 * seq_operations functions for iterating on pidlists through seq_file -
3489 * independent of whether it's tasks or procs
3490 */
3491static const struct seq_operations cgroup_pidlist_seq_operations = {
3492 .start = cgroup_pidlist_start,
3493 .stop = cgroup_pidlist_stop,
3494 .next = cgroup_pidlist_next,
3495 .show = cgroup_pidlist_show,
cc31edce
PM
3496};
3497
102a775e 3498static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3499{
72a8cb30
BB
3500 /*
3501 * the case where we're the last user of this particular pidlist will
3502 * have us remove it from the cgroup's list, which entails taking the
3503 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3504 * pidlist_mutex, we have to take pidlist_mutex first.
3505 */
3506 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3507 down_write(&l->mutex);
3508 BUG_ON(!l->use_count);
3509 if (!--l->use_count) {
72a8cb30
BB
3510 /* we're the last user if refcount is 0; remove and free */
3511 list_del(&l->links);
3512 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3513 pidlist_free(l->list);
72a8cb30
BB
3514 put_pid_ns(l->key.ns);
3515 up_write(&l->mutex);
3516 kfree(l);
3517 return;
cc31edce 3518 }
72a8cb30 3519 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3520 up_write(&l->mutex);
bbcb81d0
PM
3521}
3522
102a775e 3523static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3524{
102a775e 3525 struct cgroup_pidlist *l;
cc31edce
PM
3526 if (!(file->f_mode & FMODE_READ))
3527 return 0;
102a775e
BB
3528 /*
3529 * the seq_file will only be initialized if the file was opened for
3530 * reading; hence we check if it's not null only in that case.
3531 */
3532 l = ((struct seq_file *)file->private_data)->private;
3533 cgroup_release_pid_array(l);
cc31edce
PM
3534 return seq_release(inode, file);
3535}
3536
102a775e 3537static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3538 .read = seq_read,
3539 .llseek = seq_lseek,
3540 .write = cgroup_file_write,
102a775e 3541 .release = cgroup_pidlist_release,
cc31edce
PM
3542};
3543
bbcb81d0 3544/*
102a775e
BB
3545 * The following functions handle opens on a file that displays a pidlist
3546 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3547 * in the cgroup.
bbcb81d0 3548 */
102a775e 3549/* helper function for the two below it */
72a8cb30 3550static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3551{
bd89aabc 3552 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3553 struct cgroup_pidlist *l;
cc31edce 3554 int retval;
bbcb81d0 3555
cc31edce 3556 /* Nothing to do for write-only files */
bbcb81d0
PM
3557 if (!(file->f_mode & FMODE_READ))
3558 return 0;
3559
102a775e 3560 /* have the array populated */
72a8cb30 3561 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3562 if (retval)
3563 return retval;
3564 /* configure file information */
3565 file->f_op = &cgroup_pidlist_operations;
cc31edce 3566
102a775e 3567 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3568 if (retval) {
102a775e 3569 cgroup_release_pid_array(l);
cc31edce 3570 return retval;
bbcb81d0 3571 }
102a775e 3572 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3573 return 0;
3574}
102a775e
BB
3575static int cgroup_tasks_open(struct inode *unused, struct file *file)
3576{
72a8cb30 3577 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3578}
3579static int cgroup_procs_open(struct inode *unused, struct file *file)
3580{
72a8cb30 3581 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3582}
bbcb81d0 3583
bd89aabc 3584static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3585 struct cftype *cft)
3586{
bd89aabc 3587 return notify_on_release(cgrp);
81a6a5cd
PM
3588}
3589
6379c106
PM
3590static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3591 struct cftype *cft,
3592 u64 val)
3593{
3594 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3595 if (val)
3596 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3597 else
3598 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3599 return 0;
3600}
3601
0dea1168
KS
3602/*
3603 * Unregister event and free resources.
3604 *
3605 * Gets called from workqueue.
3606 */
3607static void cgroup_event_remove(struct work_struct *work)
3608{
3609 struct cgroup_event *event = container_of(work, struct cgroup_event,
3610 remove);
3611 struct cgroup *cgrp = event->cgrp;
3612
0dea1168
KS
3613 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3614
3615 eventfd_ctx_put(event->eventfd);
0dea1168 3616 kfree(event);
a0a4db54 3617 dput(cgrp->dentry);
0dea1168
KS
3618}
3619
3620/*
3621 * Gets called on POLLHUP on eventfd when user closes it.
3622 *
3623 * Called with wqh->lock held and interrupts disabled.
3624 */
3625static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3626 int sync, void *key)
3627{
3628 struct cgroup_event *event = container_of(wait,
3629 struct cgroup_event, wait);
3630 struct cgroup *cgrp = event->cgrp;
3631 unsigned long flags = (unsigned long)key;
3632
3633 if (flags & POLLHUP) {
a93d2f17 3634 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3635 spin_lock(&cgrp->event_list_lock);
3636 list_del(&event->list);
3637 spin_unlock(&cgrp->event_list_lock);
3638 /*
3639 * We are in atomic context, but cgroup_event_remove() may
3640 * sleep, so we have to call it in workqueue.
3641 */
3642 schedule_work(&event->remove);
3643 }
3644
3645 return 0;
3646}
3647
3648static void cgroup_event_ptable_queue_proc(struct file *file,
3649 wait_queue_head_t *wqh, poll_table *pt)
3650{
3651 struct cgroup_event *event = container_of(pt,
3652 struct cgroup_event, pt);
3653
3654 event->wqh = wqh;
3655 add_wait_queue(wqh, &event->wait);
3656}
3657
3658/*
3659 * Parse input and register new cgroup event handler.
3660 *
3661 * Input must be in format '<event_fd> <control_fd> <args>'.
3662 * Interpretation of args is defined by control file implementation.
3663 */
3664static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3665 const char *buffer)
3666{
3667 struct cgroup_event *event = NULL;
3668 unsigned int efd, cfd;
3669 struct file *efile = NULL;
3670 struct file *cfile = NULL;
3671 char *endp;
3672 int ret;
3673
3674 efd = simple_strtoul(buffer, &endp, 10);
3675 if (*endp != ' ')
3676 return -EINVAL;
3677 buffer = endp + 1;
3678
3679 cfd = simple_strtoul(buffer, &endp, 10);
3680 if ((*endp != ' ') && (*endp != '\0'))
3681 return -EINVAL;
3682 buffer = endp + 1;
3683
3684 event = kzalloc(sizeof(*event), GFP_KERNEL);
3685 if (!event)
3686 return -ENOMEM;
3687 event->cgrp = cgrp;
3688 INIT_LIST_HEAD(&event->list);
3689 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3690 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3691 INIT_WORK(&event->remove, cgroup_event_remove);
3692
3693 efile = eventfd_fget(efd);
3694 if (IS_ERR(efile)) {
3695 ret = PTR_ERR(efile);
3696 goto fail;
3697 }
3698
3699 event->eventfd = eventfd_ctx_fileget(efile);
3700 if (IS_ERR(event->eventfd)) {
3701 ret = PTR_ERR(event->eventfd);
3702 goto fail;
3703 }
3704
3705 cfile = fget(cfd);
3706 if (!cfile) {
3707 ret = -EBADF;
3708 goto fail;
3709 }
3710
3711 /* the process need read permission on control file */
3bfa784a
AV
3712 /* AV: shouldn't we check that it's been opened for read instead? */
3713 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
0dea1168
KS
3714 if (ret < 0)
3715 goto fail;
3716
3717 event->cft = __file_cft(cfile);
3718 if (IS_ERR(event->cft)) {
3719 ret = PTR_ERR(event->cft);
3720 goto fail;
3721 }
3722
3723 if (!event->cft->register_event || !event->cft->unregister_event) {
3724 ret = -EINVAL;
3725 goto fail;
3726 }
3727
3728 ret = event->cft->register_event(cgrp, event->cft,
3729 event->eventfd, buffer);
3730 if (ret)
3731 goto fail;
3732
3733 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3734 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3735 ret = 0;
3736 goto fail;
3737 }
3738
a0a4db54
KS
3739 /*
3740 * Events should be removed after rmdir of cgroup directory, but before
3741 * destroying subsystem state objects. Let's take reference to cgroup
3742 * directory dentry to do that.
3743 */
3744 dget(cgrp->dentry);
3745
0dea1168
KS
3746 spin_lock(&cgrp->event_list_lock);
3747 list_add(&event->list, &cgrp->event_list);
3748 spin_unlock(&cgrp->event_list_lock);
3749
3750 fput(cfile);
3751 fput(efile);
3752
3753 return 0;
3754
3755fail:
3756 if (cfile)
3757 fput(cfile);
3758
3759 if (event && event->eventfd && !IS_ERR(event->eventfd))
3760 eventfd_ctx_put(event->eventfd);
3761
3762 if (!IS_ERR_OR_NULL(efile))
3763 fput(efile);
3764
3765 kfree(event);
3766
3767 return ret;
3768}
3769
97978e6d
DL
3770static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3771 struct cftype *cft)
3772{
3773 return clone_children(cgrp);
3774}
3775
3776static int cgroup_clone_children_write(struct cgroup *cgrp,
3777 struct cftype *cft,
3778 u64 val)
3779{
3780 if (val)
3781 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3782 else
3783 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3784 return 0;
3785}
3786
bbcb81d0
PM
3787/*
3788 * for the common functions, 'private' gives the type of file
3789 */
102a775e
BB
3790/* for hysterical raisins, we can't put this on the older files */
3791#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3792static struct cftype files[] = {
3793 {
3794 .name = "tasks",
3795 .open = cgroup_tasks_open,
af351026 3796 .write_u64 = cgroup_tasks_write,
102a775e 3797 .release = cgroup_pidlist_release,
099fca32 3798 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3799 },
102a775e
BB
3800 {
3801 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3802 .open = cgroup_procs_open,
74a1166d 3803 .write_u64 = cgroup_procs_write,
102a775e 3804 .release = cgroup_pidlist_release,
74a1166d 3805 .mode = S_IRUGO | S_IWUSR,
102a775e 3806 },
81a6a5cd
PM
3807 {
3808 .name = "notify_on_release",
f4c753b7 3809 .read_u64 = cgroup_read_notify_on_release,
6379c106 3810 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3811 },
0dea1168
KS
3812 {
3813 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3814 .write_string = cgroup_write_event_control,
3815 .mode = S_IWUGO,
3816 },
97978e6d
DL
3817 {
3818 .name = "cgroup.clone_children",
3819 .read_u64 = cgroup_clone_children_read,
3820 .write_u64 = cgroup_clone_children_write,
3821 },
6e6ff25b
TH
3822 {
3823 .name = "release_agent",
3824 .flags = CFTYPE_ONLY_ON_ROOT,
3825 .read_seq_string = cgroup_release_agent_show,
3826 .write_string = cgroup_release_agent_write,
3827 .max_write_len = PATH_MAX,
3828 },
db0416b6 3829 { } /* terminate */
bbcb81d0
PM
3830};
3831
bd89aabc 3832static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3833{
3834 int err;
3835 struct cgroup_subsys *ss;
3836
79578621 3837 err = cgroup_addrm_files(cgrp, NULL, files, true);
bbcb81d0
PM
3838 if (err < 0)
3839 return err;
3840
8e3f6541 3841 /* process cftsets of each subsystem */
bd89aabc 3842 for_each_subsys(cgrp->root, ss) {
8e3f6541
TH
3843 struct cftype_set *set;
3844
db0416b6 3845 list_for_each_entry(set, &ss->cftsets, node)
79578621 3846 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 3847 }
8e3f6541 3848
38460b48
KH
3849 /* This cgroup is ready now */
3850 for_each_subsys(cgrp->root, ss) {
3851 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3852 /*
3853 * Update id->css pointer and make this css visible from
3854 * CSS ID functions. This pointer will be dereferened
3855 * from RCU-read-side without locks.
3856 */
3857 if (css->id)
3858 rcu_assign_pointer(css->id->css, css);
3859 }
ddbcc7e8
PM
3860
3861 return 0;
3862}
3863
48ddbe19
TH
3864static void css_dput_fn(struct work_struct *work)
3865{
3866 struct cgroup_subsys_state *css =
3867 container_of(work, struct cgroup_subsys_state, dput_work);
3868
3869 dput(css->cgroup->dentry);
3870}
3871
ddbcc7e8
PM
3872static void init_cgroup_css(struct cgroup_subsys_state *css,
3873 struct cgroup_subsys *ss,
bd89aabc 3874 struct cgroup *cgrp)
ddbcc7e8 3875{
bd89aabc 3876 css->cgroup = cgrp;
e7c5ec91 3877 atomic_set(&css->refcnt, 1);
ddbcc7e8 3878 css->flags = 0;
38460b48 3879 css->id = NULL;
bd89aabc 3880 if (cgrp == dummytop)
ddbcc7e8 3881 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3882 BUG_ON(cgrp->subsys[ss->subsys_id]);
3883 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
3884
3885 /*
3886 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
3887 * which is put on the last css_put(). dput() requires process
3888 * context, which css_put() may be called without. @css->dput_work
3889 * will be used to invoke dput() asynchronously from css_put().
3890 */
3891 INIT_WORK(&css->dput_work, css_dput_fn);
3892 if (ss->__DEPRECATED_clear_css_refs)
3893 set_bit(CSS_CLEAR_CSS_REFS, &css->flags);
ddbcc7e8
PM
3894}
3895
999cd8a4
PM
3896static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3897{
3898 /* We need to take each hierarchy_mutex in a consistent order */
3899 int i;
3900
aae8aab4
BB
3901 /*
3902 * No worry about a race with rebind_subsystems that might mess up the
3903 * locking order, since both parties are under cgroup_mutex.
3904 */
999cd8a4
PM
3905 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3906 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3907 if (ss == NULL)
3908 continue;
999cd8a4 3909 if (ss->root == root)
cfebe563 3910 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3911 }
3912}
3913
3914static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3915{
3916 int i;
3917
3918 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3919 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3920 if (ss == NULL)
3921 continue;
999cd8a4
PM
3922 if (ss->root == root)
3923 mutex_unlock(&ss->hierarchy_mutex);
3924 }
3925}
3926
ddbcc7e8 3927/*
a043e3b2
LZ
3928 * cgroup_create - create a cgroup
3929 * @parent: cgroup that will be parent of the new cgroup
3930 * @dentry: dentry of the new cgroup
3931 * @mode: mode to set on new inode
ddbcc7e8 3932 *
a043e3b2 3933 * Must be called with the mutex on the parent inode held
ddbcc7e8 3934 */
ddbcc7e8 3935static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 3936 umode_t mode)
ddbcc7e8 3937{
bd89aabc 3938 struct cgroup *cgrp;
ddbcc7e8
PM
3939 struct cgroupfs_root *root = parent->root;
3940 int err = 0;
3941 struct cgroup_subsys *ss;
3942 struct super_block *sb = root->sb;
3943
bd89aabc
PM
3944 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3945 if (!cgrp)
ddbcc7e8
PM
3946 return -ENOMEM;
3947
3948 /* Grab a reference on the superblock so the hierarchy doesn't
3949 * get deleted on unmount if there are child cgroups. This
3950 * can be done outside cgroup_mutex, since the sb can't
3951 * disappear while someone has an open control file on the
3952 * fs */
3953 atomic_inc(&sb->s_active);
3954
3955 mutex_lock(&cgroup_mutex);
3956
cc31edce 3957 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3958
bd89aabc
PM
3959 cgrp->parent = parent;
3960 cgrp->root = parent->root;
3961 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3962
b6abdb0e
LZ
3963 if (notify_on_release(parent))
3964 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3965
97978e6d
DL
3966 if (clone_children(parent))
3967 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3968
ddbcc7e8 3969 for_each_subsys(root, ss) {
761b3ef5 3970 struct cgroup_subsys_state *css = ss->create(cgrp);
4528fd05 3971
ddbcc7e8
PM
3972 if (IS_ERR(css)) {
3973 err = PTR_ERR(css);
3974 goto err_destroy;
3975 }
bd89aabc 3976 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3977 if (ss->use_id) {
3978 err = alloc_css_id(ss, parent, cgrp);
3979 if (err)
38460b48 3980 goto err_destroy;
4528fd05 3981 }
38460b48 3982 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d 3983 if (clone_children(parent) && ss->post_clone)
761b3ef5 3984 ss->post_clone(cgrp);
ddbcc7e8
PM
3985 }
3986
999cd8a4 3987 cgroup_lock_hierarchy(root);
bd89aabc 3988 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3989 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3990 root->number_of_cgroups++;
3991
bd89aabc 3992 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3993 if (err < 0)
3994 goto err_remove;
3995
48ddbe19
TH
3996 /* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
3997 for_each_subsys(root, ss)
3998 if (!ss->__DEPRECATED_clear_css_refs)
3999 dget(dentry);
4000
ddbcc7e8 4001 /* The cgroup directory was pre-locked for us */
bd89aabc 4002 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 4003
b0ca5a84
TH
4004 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4005
bd89aabc 4006 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
4007 /* If err < 0, we have a half-filled directory - oh well ;) */
4008
4009 mutex_unlock(&cgroup_mutex);
bd89aabc 4010 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4011
4012 return 0;
4013
4014 err_remove:
4015
baef99a0 4016 cgroup_lock_hierarchy(root);
bd89aabc 4017 list_del(&cgrp->sibling);
baef99a0 4018 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
4019 root->number_of_cgroups--;
4020
4021 err_destroy:
4022
4023 for_each_subsys(root, ss) {
bd89aabc 4024 if (cgrp->subsys[ss->subsys_id])
761b3ef5 4025 ss->destroy(cgrp);
ddbcc7e8
PM
4026 }
4027
4028 mutex_unlock(&cgroup_mutex);
4029
4030 /* Release the reference count that we took on the superblock */
4031 deactivate_super(sb);
4032
bd89aabc 4033 kfree(cgrp);
ddbcc7e8
PM
4034 return err;
4035}
4036
18bb1db3 4037static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4038{
4039 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4040
4041 /* the vfs holds inode->i_mutex already */
4042 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4043}
4044
28b4c27b
TH
4045/*
4046 * Check the reference count on each subsystem. Since we already
4047 * established that there are no tasks in the cgroup, if the css refcount
4048 * is also 1, then there should be no outstanding references, so the
4049 * subsystem is safe to destroy. We scan across all subsystems rather than
4050 * using the per-hierarchy linked list of mounted subsystems since we can
4051 * be called via check_for_release() with no synchronization other than
4052 * RCU, and the subsystem linked list isn't RCU-safe.
4053 */
55b6fd01 4054static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd 4055{
81a6a5cd 4056 int i;
28b4c27b 4057
aae8aab4
BB
4058 /*
4059 * We won't need to lock the subsys array, because the subsystems
4060 * we're concerned about aren't going anywhere since our cgroup root
4061 * has a reference on them.
4062 */
81a6a5cd
PM
4063 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4064 struct cgroup_subsys *ss = subsys[i];
4065 struct cgroup_subsys_state *css;
28b4c27b 4066
aae8aab4
BB
4067 /* Skip subsystems not present or not in this hierarchy */
4068 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 4069 continue;
28b4c27b 4070
bd89aabc 4071 css = cgrp->subsys[ss->subsys_id];
28b4c27b
TH
4072 /*
4073 * When called from check_for_release() it's possible
81a6a5cd
PM
4074 * that by this point the cgroup has been removed
4075 * and the css deleted. But a false-positive doesn't
4076 * matter, since it can only happen if the cgroup
4077 * has been deleted and hence no longer needs the
28b4c27b
TH
4078 * release agent to be called anyway.
4079 */
4080 if (css && css_refcnt(css) > 1)
81a6a5cd 4081 return 1;
81a6a5cd
PM
4082 }
4083 return 0;
4084}
4085
e7c5ec91
PM
4086/*
4087 * Atomically mark all (or else none) of the cgroup's CSS objects as
4088 * CSS_REMOVED. Return true on success, or false if the cgroup has
4089 * busy subsystems. Call with cgroup_mutex held
48ddbe19
TH
4090 *
4091 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
4092 * not, cgroup removal behaves differently.
4093 *
4094 * If clear is set, css refcnt for the subsystem should be zero before
4095 * cgroup removal can be committed. This is implemented by
4096 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
4097 * called multiple times until all css refcnts reach zero and is allowed to
4098 * veto removal on any invocation. This behavior is deprecated and will be
4099 * removed as soon as the existing user (memcg) is updated.
4100 *
4101 * If clear is not set, each css holds an extra reference to the cgroup's
4102 * dentry and cgroup removal proceeds regardless of css refs.
4103 * ->pre_destroy() will be called at least once and is not allowed to fail.
4104 * On the last put of each css, whenever that may be, the extra dentry ref
4105 * is put so that dentry destruction happens only after all css's are
4106 * released.
e7c5ec91 4107 */
e7c5ec91
PM
4108static int cgroup_clear_css_refs(struct cgroup *cgrp)
4109{
4110 struct cgroup_subsys *ss;
4111 unsigned long flags;
4112 bool failed = false;
28b4c27b 4113
e7c5ec91 4114 local_irq_save(flags);
28b4c27b
TH
4115
4116 /*
4117 * Block new css_tryget() by deactivating refcnt. If all refcnts
48ddbe19
TH
4118 * for subsystems w/ clear_css_refs set were 1 at the moment of
4119 * deactivation, we succeeded.
28b4c27b 4120 */
e7c5ec91
PM
4121 for_each_subsys(cgrp->root, ss) {
4122 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
28b4c27b
TH
4123
4124 WARN_ON(atomic_read(&css->refcnt) < 0);
4125 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
48ddbe19
TH
4126
4127 if (ss->__DEPRECATED_clear_css_refs)
4128 failed |= css_refcnt(css) != 1;
e7c5ec91 4129 }
28b4c27b
TH
4130
4131 /*
4132 * If succeeded, set REMOVED and put all the base refs; otherwise,
4133 * restore refcnts to positive values. Either way, all in-progress
4134 * css_tryget() will be released.
4135 */
e7c5ec91
PM
4136 for_each_subsys(cgrp->root, ss) {
4137 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
28b4c27b
TH
4138
4139 if (!failed) {
e7c5ec91 4140 set_bit(CSS_REMOVED, &css->flags);
28b4c27b
TH
4141 css_put(css);
4142 } else {
4143 atomic_sub(CSS_DEACT_BIAS, &css->refcnt);
e7c5ec91
PM
4144 }
4145 }
28b4c27b 4146
e7c5ec91
PM
4147 local_irq_restore(flags);
4148 return !failed;
4149}
4150
ddbcc7e8
PM
4151static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4152{
bd89aabc 4153 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
4154 struct dentry *d;
4155 struct cgroup *parent;
ec64f515 4156 DEFINE_WAIT(wait);
4ab78683 4157 struct cgroup_event *event, *tmp;
ec64f515 4158 int ret;
ddbcc7e8
PM
4159
4160 /* the vfs holds both inode->i_mutex already */
ec64f515 4161again:
ddbcc7e8 4162 mutex_lock(&cgroup_mutex);
bd89aabc 4163 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
4164 mutex_unlock(&cgroup_mutex);
4165 return -EBUSY;
4166 }
bd89aabc 4167 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
4168 mutex_unlock(&cgroup_mutex);
4169 return -EBUSY;
4170 }
3fa59dfb 4171 mutex_unlock(&cgroup_mutex);
a043e3b2 4172
88703267
KH
4173 /*
4174 * In general, subsystem has no css->refcnt after pre_destroy(). But
4175 * in racy cases, subsystem may have to get css->refcnt after
4176 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4177 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4178 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4179 * and subsystem's reference count handling. Please see css_get/put
4180 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4181 */
4182 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4183
4fca88c8 4184 /*
a043e3b2
LZ
4185 * Call pre_destroy handlers of subsys. Notify subsystems
4186 * that rmdir() request comes.
4fca88c8 4187 */
ec64f515 4188 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
4189 if (ret) {
4190 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 4191 return ret;
88703267 4192 }
ddbcc7e8 4193
3fa59dfb
KH
4194 mutex_lock(&cgroup_mutex);
4195 parent = cgrp->parent;
ec64f515 4196 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 4197 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
4198 mutex_unlock(&cgroup_mutex);
4199 return -EBUSY;
4200 }
ec64f515 4201 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
4202 if (!cgroup_clear_css_refs(cgrp)) {
4203 mutex_unlock(&cgroup_mutex);
88703267
KH
4204 /*
4205 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4206 * prepare_to_wait(), we need to check this flag.
4207 */
4208 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4209 schedule();
ec64f515
KH
4210 finish_wait(&cgroup_rmdir_waitq, &wait);
4211 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4212 if (signal_pending(current))
4213 return -EINTR;
4214 goto again;
4215 }
4216 /* NO css_tryget() can success after here. */
4217 finish_wait(&cgroup_rmdir_waitq, &wait);
4218 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 4219
cdcc136f 4220 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4221 set_bit(CGRP_REMOVED, &cgrp->flags);
4222 if (!list_empty(&cgrp->release_list))
8d258797 4223 list_del_init(&cgrp->release_list);
cdcc136f 4224 raw_spin_unlock(&release_list_lock);
999cd8a4
PM
4225
4226 cgroup_lock_hierarchy(cgrp->root);
4227 /* delete this cgroup from parent->children */
8d258797 4228 list_del_init(&cgrp->sibling);
999cd8a4
PM
4229 cgroup_unlock_hierarchy(cgrp->root);
4230
b0ca5a84
TH
4231 list_del_init(&cgrp->allcg_node);
4232
bd89aabc 4233 d = dget(cgrp->dentry);
ddbcc7e8
PM
4234
4235 cgroup_d_remove_dir(d);
4236 dput(d);
ddbcc7e8 4237
bd89aabc 4238 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4239 check_for_release(parent);
4240
4ab78683
KS
4241 /*
4242 * Unregister events and notify userspace.
4243 * Notify userspace about cgroup removing only after rmdir of cgroup
4244 * directory to avoid race between userspace and kernelspace
4245 */
4246 spin_lock(&cgrp->event_list_lock);
4247 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4248 list_del(&event->list);
4249 remove_wait_queue(event->wqh, &event->wait);
4250 eventfd_signal(event->eventfd, 1);
4251 schedule_work(&event->remove);
4252 }
4253 spin_unlock(&cgrp->event_list_lock);
4254
ddbcc7e8 4255 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4256 return 0;
4257}
4258
8e3f6541
TH
4259static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4260{
4261 INIT_LIST_HEAD(&ss->cftsets);
4262
4263 /*
4264 * base_cftset is embedded in subsys itself, no need to worry about
4265 * deregistration.
4266 */
4267 if (ss->base_cftypes) {
4268 ss->base_cftset.cfts = ss->base_cftypes;
4269 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4270 }
4271}
4272
06a11920 4273static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4274{
ddbcc7e8 4275 struct cgroup_subsys_state *css;
cfe36bde
DC
4276
4277 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4278
8e3f6541
TH
4279 /* init base cftset */
4280 cgroup_init_cftsets(ss);
4281
ddbcc7e8 4282 /* Create the top cgroup state for this subsystem */
33a68ac1 4283 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4284 ss->root = &rootnode;
761b3ef5 4285 css = ss->create(dummytop);
ddbcc7e8
PM
4286 /* We don't handle early failures gracefully */
4287 BUG_ON(IS_ERR(css));
4288 init_cgroup_css(css, ss, dummytop);
4289
e8d55fde 4290 /* Update the init_css_set to contain a subsys
817929ec 4291 * pointer to this state - since the subsystem is
e8d55fde
LZ
4292 * newly registered, all tasks and hence the
4293 * init_css_set is in the subsystem's top cgroup. */
4294 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
4295
4296 need_forkexit_callback |= ss->fork || ss->exit;
4297
e8d55fde
LZ
4298 /* At system boot, before all subsystems have been
4299 * registered, no tasks have been forked, so we don't
4300 * need to invoke fork callbacks here. */
4301 BUG_ON(!list_empty(&init_task.tasks));
4302
999cd8a4 4303 mutex_init(&ss->hierarchy_mutex);
cfebe563 4304 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 4305 ss->active = 1;
e6a1105b
BB
4306
4307 /* this function shouldn't be used with modular subsystems, since they
4308 * need to register a subsys_id, among other things */
4309 BUG_ON(ss->module);
4310}
4311
4312/**
4313 * cgroup_load_subsys: load and register a modular subsystem at runtime
4314 * @ss: the subsystem to load
4315 *
4316 * This function should be called in a modular subsystem's initcall. If the
88393161 4317 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4318 * up for use. If the subsystem is built-in anyway, work is delegated to the
4319 * simpler cgroup_init_subsys.
4320 */
4321int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4322{
4323 int i;
4324 struct cgroup_subsys_state *css;
4325
4326 /* check name and function validity */
4327 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4328 ss->create == NULL || ss->destroy == NULL)
4329 return -EINVAL;
4330
4331 /*
4332 * we don't support callbacks in modular subsystems. this check is
4333 * before the ss->module check for consistency; a subsystem that could
4334 * be a module should still have no callbacks even if the user isn't
4335 * compiling it as one.
4336 */
4337 if (ss->fork || ss->exit)
4338 return -EINVAL;
4339
4340 /*
4341 * an optionally modular subsystem is built-in: we want to do nothing,
4342 * since cgroup_init_subsys will have already taken care of it.
4343 */
4344 if (ss->module == NULL) {
4345 /* a few sanity checks */
4346 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4347 BUG_ON(subsys[ss->subsys_id] != ss);
4348 return 0;
4349 }
4350
8e3f6541
TH
4351 /* init base cftset */
4352 cgroup_init_cftsets(ss);
4353
e6a1105b
BB
4354 /*
4355 * need to register a subsys id before anything else - for example,
4356 * init_cgroup_css needs it.
4357 */
4358 mutex_lock(&cgroup_mutex);
4359 /* find the first empty slot in the array */
4360 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4361 if (subsys[i] == NULL)
4362 break;
4363 }
4364 if (i == CGROUP_SUBSYS_COUNT) {
4365 /* maximum number of subsystems already registered! */
4366 mutex_unlock(&cgroup_mutex);
4367 return -EBUSY;
4368 }
4369 /* assign ourselves the subsys_id */
4370 ss->subsys_id = i;
4371 subsys[i] = ss;
4372
4373 /*
4374 * no ss->create seems to need anything important in the ss struct, so
4375 * this can happen first (i.e. before the rootnode attachment).
4376 */
761b3ef5 4377 css = ss->create(dummytop);
e6a1105b
BB
4378 if (IS_ERR(css)) {
4379 /* failure case - need to deassign the subsys[] slot. */
4380 subsys[i] = NULL;
4381 mutex_unlock(&cgroup_mutex);
4382 return PTR_ERR(css);
4383 }
4384
4385 list_add(&ss->sibling, &rootnode.subsys_list);
4386 ss->root = &rootnode;
4387
4388 /* our new subsystem will be attached to the dummy hierarchy. */
4389 init_cgroup_css(css, ss, dummytop);
4390 /* init_idr must be after init_cgroup_css because it sets css->id. */
4391 if (ss->use_id) {
4392 int ret = cgroup_init_idr(ss, css);
4393 if (ret) {
4394 dummytop->subsys[ss->subsys_id] = NULL;
761b3ef5 4395 ss->destroy(dummytop);
e6a1105b
BB
4396 subsys[i] = NULL;
4397 mutex_unlock(&cgroup_mutex);
4398 return ret;
4399 }
4400 }
4401
4402 /*
4403 * Now we need to entangle the css into the existing css_sets. unlike
4404 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4405 * will need a new pointer to it; done by iterating the css_set_table.
4406 * furthermore, modifying the existing css_sets will corrupt the hash
4407 * table state, so each changed css_set will need its hash recomputed.
4408 * this is all done under the css_set_lock.
4409 */
4410 write_lock(&css_set_lock);
4411 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4412 struct css_set *cg;
4413 struct hlist_node *node, *tmp;
4414 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4415
4416 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4417 /* skip entries that we already rehashed */
4418 if (cg->subsys[ss->subsys_id])
4419 continue;
4420 /* remove existing entry */
4421 hlist_del(&cg->hlist);
4422 /* set new value */
4423 cg->subsys[ss->subsys_id] = css;
4424 /* recompute hash and restore entry */
4425 new_bucket = css_set_hash(cg->subsys);
4426 hlist_add_head(&cg->hlist, new_bucket);
4427 }
4428 }
4429 write_unlock(&css_set_lock);
4430
4431 mutex_init(&ss->hierarchy_mutex);
4432 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4433 ss->active = 1;
4434
e6a1105b
BB
4435 /* success! */
4436 mutex_unlock(&cgroup_mutex);
4437 return 0;
ddbcc7e8 4438}
e6a1105b 4439EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4440
cf5d5941
BB
4441/**
4442 * cgroup_unload_subsys: unload a modular subsystem
4443 * @ss: the subsystem to unload
4444 *
4445 * This function should be called in a modular subsystem's exitcall. When this
4446 * function is invoked, the refcount on the subsystem's module will be 0, so
4447 * the subsystem will not be attached to any hierarchy.
4448 */
4449void cgroup_unload_subsys(struct cgroup_subsys *ss)
4450{
4451 struct cg_cgroup_link *link;
4452 struct hlist_head *hhead;
4453
4454 BUG_ON(ss->module == NULL);
4455
4456 /*
4457 * we shouldn't be called if the subsystem is in use, and the use of
4458 * try_module_get in parse_cgroupfs_options should ensure that it
4459 * doesn't start being used while we're killing it off.
4460 */
4461 BUG_ON(ss->root != &rootnode);
4462
4463 mutex_lock(&cgroup_mutex);
4464 /* deassign the subsys_id */
4465 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4466 subsys[ss->subsys_id] = NULL;
4467
4468 /* remove subsystem from rootnode's list of subsystems */
8d258797 4469 list_del_init(&ss->sibling);
cf5d5941
BB
4470
4471 /*
4472 * disentangle the css from all css_sets attached to the dummytop. as
4473 * in loading, we need to pay our respects to the hashtable gods.
4474 */
4475 write_lock(&css_set_lock);
4476 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4477 struct css_set *cg = link->cg;
4478
4479 hlist_del(&cg->hlist);
4480 BUG_ON(!cg->subsys[ss->subsys_id]);
4481 cg->subsys[ss->subsys_id] = NULL;
4482 hhead = css_set_hash(cg->subsys);
4483 hlist_add_head(&cg->hlist, hhead);
4484 }
4485 write_unlock(&css_set_lock);
4486
4487 /*
4488 * remove subsystem's css from the dummytop and free it - need to free
4489 * before marking as null because ss->destroy needs the cgrp->subsys
4490 * pointer to find their state. note that this also takes care of
4491 * freeing the css_id.
4492 */
761b3ef5 4493 ss->destroy(dummytop);
cf5d5941
BB
4494 dummytop->subsys[ss->subsys_id] = NULL;
4495
4496 mutex_unlock(&cgroup_mutex);
4497}
4498EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4499
ddbcc7e8 4500/**
a043e3b2
LZ
4501 * cgroup_init_early - cgroup initialization at system boot
4502 *
4503 * Initialize cgroups at system boot, and initialize any
4504 * subsystems that request early init.
ddbcc7e8
PM
4505 */
4506int __init cgroup_init_early(void)
4507{
4508 int i;
146aa1bd 4509 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4510 INIT_LIST_HEAD(&init_css_set.cg_links);
4511 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4512 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4513 css_set_count = 1;
ddbcc7e8 4514 init_cgroup_root(&rootnode);
817929ec
PM
4515 root_count = 1;
4516 init_task.cgroups = &init_css_set;
4517
4518 init_css_set_link.cg = &init_css_set;
7717f7ba 4519 init_css_set_link.cgrp = dummytop;
bd89aabc 4520 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4521 &rootnode.top_cgroup.css_sets);
4522 list_add(&init_css_set_link.cg_link_list,
4523 &init_css_set.cg_links);
ddbcc7e8 4524
472b1053
LZ
4525 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4526 INIT_HLIST_HEAD(&css_set_table[i]);
4527
aae8aab4
BB
4528 /* at bootup time, we don't worry about modular subsystems */
4529 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4530 struct cgroup_subsys *ss = subsys[i];
4531
4532 BUG_ON(!ss->name);
4533 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4534 BUG_ON(!ss->create);
4535 BUG_ON(!ss->destroy);
4536 if (ss->subsys_id != i) {
cfe36bde 4537 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4538 ss->name, ss->subsys_id);
4539 BUG();
4540 }
4541
4542 if (ss->early_init)
4543 cgroup_init_subsys(ss);
4544 }
4545 return 0;
4546}
4547
4548/**
a043e3b2
LZ
4549 * cgroup_init - cgroup initialization
4550 *
4551 * Register cgroup filesystem and /proc file, and initialize
4552 * any subsystems that didn't request early init.
ddbcc7e8
PM
4553 */
4554int __init cgroup_init(void)
4555{
4556 int err;
4557 int i;
472b1053 4558 struct hlist_head *hhead;
a424316c
PM
4559
4560 err = bdi_init(&cgroup_backing_dev_info);
4561 if (err)
4562 return err;
ddbcc7e8 4563
aae8aab4
BB
4564 /* at bootup time, we don't worry about modular subsystems */
4565 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4566 struct cgroup_subsys *ss = subsys[i];
4567 if (!ss->early_init)
4568 cgroup_init_subsys(ss);
38460b48 4569 if (ss->use_id)
e6a1105b 4570 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4571 }
4572
472b1053
LZ
4573 /* Add init_css_set to the hash table */
4574 hhead = css_set_hash(init_css_set.subsys);
4575 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 4576 BUG_ON(!init_root_id(&rootnode));
676db4af
GKH
4577
4578 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4579 if (!cgroup_kobj) {
4580 err = -ENOMEM;
4581 goto out;
4582 }
4583
ddbcc7e8 4584 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4585 if (err < 0) {
4586 kobject_put(cgroup_kobj);
ddbcc7e8 4587 goto out;
676db4af 4588 }
ddbcc7e8 4589
46ae220b 4590 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4591
ddbcc7e8 4592out:
a424316c
PM
4593 if (err)
4594 bdi_destroy(&cgroup_backing_dev_info);
4595
ddbcc7e8
PM
4596 return err;
4597}
b4f48b63 4598
a424316c
PM
4599/*
4600 * proc_cgroup_show()
4601 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4602 * - Used for /proc/<pid>/cgroup.
4603 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4604 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4605 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4606 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4607 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4608 * cgroup to top_cgroup.
4609 */
4610
4611/* TODO: Use a proper seq_file iterator */
4612static int proc_cgroup_show(struct seq_file *m, void *v)
4613{
4614 struct pid *pid;
4615 struct task_struct *tsk;
4616 char *buf;
4617 int retval;
4618 struct cgroupfs_root *root;
4619
4620 retval = -ENOMEM;
4621 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4622 if (!buf)
4623 goto out;
4624
4625 retval = -ESRCH;
4626 pid = m->private;
4627 tsk = get_pid_task(pid, PIDTYPE_PID);
4628 if (!tsk)
4629 goto out_free;
4630
4631 retval = 0;
4632
4633 mutex_lock(&cgroup_mutex);
4634
e5f6a860 4635 for_each_active_root(root) {
a424316c 4636 struct cgroup_subsys *ss;
bd89aabc 4637 struct cgroup *cgrp;
a424316c
PM
4638 int count = 0;
4639
2c6ab6d2 4640 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4641 for_each_subsys(root, ss)
4642 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4643 if (strlen(root->name))
4644 seq_printf(m, "%sname=%s", count ? "," : "",
4645 root->name);
a424316c 4646 seq_putc(m, ':');
7717f7ba 4647 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4648 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4649 if (retval < 0)
4650 goto out_unlock;
4651 seq_puts(m, buf);
4652 seq_putc(m, '\n');
4653 }
4654
4655out_unlock:
4656 mutex_unlock(&cgroup_mutex);
4657 put_task_struct(tsk);
4658out_free:
4659 kfree(buf);
4660out:
4661 return retval;
4662}
4663
4664static int cgroup_open(struct inode *inode, struct file *file)
4665{
4666 struct pid *pid = PROC_I(inode)->pid;
4667 return single_open(file, proc_cgroup_show, pid);
4668}
4669
828c0950 4670const struct file_operations proc_cgroup_operations = {
a424316c
PM
4671 .open = cgroup_open,
4672 .read = seq_read,
4673 .llseek = seq_lseek,
4674 .release = single_release,
4675};
4676
4677/* Display information about each subsystem and each hierarchy */
4678static int proc_cgroupstats_show(struct seq_file *m, void *v)
4679{
4680 int i;
a424316c 4681
8bab8dde 4682 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4683 /*
4684 * ideally we don't want subsystems moving around while we do this.
4685 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4686 * subsys/hierarchy state.
4687 */
a424316c 4688 mutex_lock(&cgroup_mutex);
a424316c
PM
4689 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4690 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4691 if (ss == NULL)
4692 continue;
2c6ab6d2
PM
4693 seq_printf(m, "%s\t%d\t%d\t%d\n",
4694 ss->name, ss->root->hierarchy_id,
8bab8dde 4695 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4696 }
4697 mutex_unlock(&cgroup_mutex);
4698 return 0;
4699}
4700
4701static int cgroupstats_open(struct inode *inode, struct file *file)
4702{
9dce07f1 4703 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4704}
4705
828c0950 4706static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4707 .open = cgroupstats_open,
4708 .read = seq_read,
4709 .llseek = seq_lseek,
4710 .release = single_release,
4711};
4712
b4f48b63
PM
4713/**
4714 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4715 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4716 *
4717 * Description: A task inherits its parent's cgroup at fork().
4718 *
4719 * A pointer to the shared css_set was automatically copied in
4720 * fork.c by dup_task_struct(). However, we ignore that copy, since
7e381b0e
FW
4721 * it was not made under the protection of RCU, cgroup_mutex or
4722 * threadgroup_change_begin(), so it might no longer be a valid
4723 * cgroup pointer. cgroup_attach_task() might have already changed
4724 * current->cgroups, allowing the previously referenced cgroup
4725 * group to be removed and freed.
4726 *
4727 * Outside the pointer validity we also need to process the css_set
4728 * inheritance between threadgoup_change_begin() and
4729 * threadgoup_change_end(), this way there is no leak in any process
4730 * wide migration performed by cgroup_attach_proc() that could otherwise
4731 * miss a thread because it is too early or too late in the fork stage.
b4f48b63
PM
4732 *
4733 * At the point that cgroup_fork() is called, 'current' is the parent
4734 * task, and the passed argument 'child' points to the child task.
4735 */
4736void cgroup_fork(struct task_struct *child)
4737{
7e381b0e
FW
4738 /*
4739 * We don't need to task_lock() current because current->cgroups
4740 * can't be changed concurrently here. The parent obviously hasn't
4741 * exited and called cgroup_exit(), and we are synchronized against
4742 * cgroup migration through threadgroup_change_begin().
4743 */
817929ec
PM
4744 child->cgroups = current->cgroups;
4745 get_css_set(child->cgroups);
817929ec 4746 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4747}
4748
4749/**
a043e3b2
LZ
4750 * cgroup_fork_callbacks - run fork callbacks
4751 * @child: the new task
4752 *
4753 * Called on a new task very soon before adding it to the
4754 * tasklist. No need to take any locks since no-one can
4755 * be operating on this task.
b4f48b63
PM
4756 */
4757void cgroup_fork_callbacks(struct task_struct *child)
4758{
4759 if (need_forkexit_callback) {
4760 int i;
aae8aab4
BB
4761 /*
4762 * forkexit callbacks are only supported for builtin
4763 * subsystems, and the builtin section of the subsys array is
4764 * immutable, so we don't need to lock the subsys array here.
4765 */
4766 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4767 struct cgroup_subsys *ss = subsys[i];
4768 if (ss->fork)
761b3ef5 4769 ss->fork(child);
b4f48b63
PM
4770 }
4771 }
4772}
4773
817929ec 4774/**
a043e3b2
LZ
4775 * cgroup_post_fork - called on a new task after adding it to the task list
4776 * @child: the task in question
4777 *
4778 * Adds the task to the list running through its css_set if necessary.
4779 * Has to be after the task is visible on the task list in case we race
4780 * with the first call to cgroup_iter_start() - to guarantee that the
4781 * new task ends up on its list.
4782 */
817929ec
PM
4783void cgroup_post_fork(struct task_struct *child)
4784{
3ce3230a
FW
4785 /*
4786 * use_task_css_set_links is set to 1 before we walk the tasklist
4787 * under the tasklist_lock and we read it here after we added the child
4788 * to the tasklist under the tasklist_lock as well. If the child wasn't
4789 * yet in the tasklist when we walked through it from
4790 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4791 * should be visible now due to the paired locking and barriers implied
4792 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4793 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4794 * lock on fork.
4795 */
817929ec
PM
4796 if (use_task_css_set_links) {
4797 write_lock(&css_set_lock);
7e3aa30a
FW
4798 if (list_empty(&child->cg_list)) {
4799 /*
4800 * It's safe to use child->cgroups without task_lock()
4801 * here because we are protected through
4802 * threadgroup_change_begin() against concurrent
4803 * css_set change in cgroup_task_migrate(). Also
4804 * the task can't exit at that point until
4805 * wake_up_new_task() is called, so we are protected
4806 * against cgroup_exit() setting child->cgroup to
4807 * init_css_set.
4808 */
817929ec 4809 list_add(&child->cg_list, &child->cgroups->tasks);
7e3aa30a 4810 }
817929ec
PM
4811 write_unlock(&css_set_lock);
4812 }
4813}
b4f48b63
PM
4814/**
4815 * cgroup_exit - detach cgroup from exiting task
4816 * @tsk: pointer to task_struct of exiting process
a043e3b2 4817 * @run_callback: run exit callbacks?
b4f48b63
PM
4818 *
4819 * Description: Detach cgroup from @tsk and release it.
4820 *
4821 * Note that cgroups marked notify_on_release force every task in
4822 * them to take the global cgroup_mutex mutex when exiting.
4823 * This could impact scaling on very large systems. Be reluctant to
4824 * use notify_on_release cgroups where very high task exit scaling
4825 * is required on large systems.
4826 *
4827 * the_top_cgroup_hack:
4828 *
4829 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4830 *
4831 * We call cgroup_exit() while the task is still competent to
4832 * handle notify_on_release(), then leave the task attached to the
4833 * root cgroup in each hierarchy for the remainder of its exit.
4834 *
4835 * To do this properly, we would increment the reference count on
4836 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4837 * code we would add a second cgroup function call, to drop that
4838 * reference. This would just create an unnecessary hot spot on
4839 * the top_cgroup reference count, to no avail.
4840 *
4841 * Normally, holding a reference to a cgroup without bumping its
4842 * count is unsafe. The cgroup could go away, or someone could
4843 * attach us to a different cgroup, decrementing the count on
4844 * the first cgroup that we never incremented. But in this case,
4845 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4846 * which wards off any cgroup_attach_task() attempts, or task is a failed
4847 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4848 */
4849void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4850{
817929ec 4851 struct css_set *cg;
d41d5a01 4852 int i;
817929ec
PM
4853
4854 /*
4855 * Unlink from the css_set task list if necessary.
4856 * Optimistically check cg_list before taking
4857 * css_set_lock
4858 */
4859 if (!list_empty(&tsk->cg_list)) {
4860 write_lock(&css_set_lock);
4861 if (!list_empty(&tsk->cg_list))
8d258797 4862 list_del_init(&tsk->cg_list);
817929ec
PM
4863 write_unlock(&css_set_lock);
4864 }
4865
b4f48b63
PM
4866 /* Reassign the task to the init_css_set. */
4867 task_lock(tsk);
817929ec
PM
4868 cg = tsk->cgroups;
4869 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4870
4871 if (run_callbacks && need_forkexit_callback) {
4872 /*
4873 * modular subsystems can't use callbacks, so no need to lock
4874 * the subsys array
4875 */
4876 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4877 struct cgroup_subsys *ss = subsys[i];
4878 if (ss->exit) {
4879 struct cgroup *old_cgrp =
4880 rcu_dereference_raw(cg->subsys[i])->cgroup;
4881 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4882 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4883 }
4884 }
4885 }
b4f48b63 4886 task_unlock(tsk);
d41d5a01 4887
817929ec 4888 if (cg)
81a6a5cd 4889 put_css_set_taskexit(cg);
b4f48b63 4890}
697f4161 4891
a043e3b2 4892/**
313e924c 4893 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4894 * @cgrp: the cgroup in question
313e924c 4895 * @task: the task in question
a043e3b2 4896 *
313e924c
GN
4897 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4898 * hierarchy.
697f4161
PM
4899 *
4900 * If we are sending in dummytop, then presumably we are creating
4901 * the top cgroup in the subsystem.
4902 *
4903 * Called only by the ns (nsproxy) cgroup.
4904 */
313e924c 4905int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4906{
4907 int ret;
4908 struct cgroup *target;
697f4161 4909
bd89aabc 4910 if (cgrp == dummytop)
697f4161
PM
4911 return 1;
4912
7717f7ba 4913 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4914 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4915 cgrp = cgrp->parent;
4916 ret = (cgrp == target);
697f4161
PM
4917 return ret;
4918}
81a6a5cd 4919
bd89aabc 4920static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4921{
4922 /* All of these checks rely on RCU to keep the cgroup
4923 * structure alive */
bd89aabc
PM
4924 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4925 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4926 /* Control Group is currently removeable. If it's not
4927 * already queued for a userspace notification, queue
4928 * it now */
4929 int need_schedule_work = 0;
cdcc136f 4930 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4931 if (!cgroup_is_removed(cgrp) &&
4932 list_empty(&cgrp->release_list)) {
4933 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4934 need_schedule_work = 1;
4935 }
cdcc136f 4936 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4937 if (need_schedule_work)
4938 schedule_work(&release_agent_work);
4939 }
4940}
4941
d7b9fff7 4942/* Caller must verify that the css is not for root cgroup */
28b4c27b
TH
4943bool __css_tryget(struct cgroup_subsys_state *css)
4944{
4945 do {
4946 int v = css_refcnt(css);
4947
4948 if (atomic_cmpxchg(&css->refcnt, v, v + 1) == v)
4949 return true;
4950 cpu_relax();
4951 } while (!test_bit(CSS_REMOVED, &css->flags));
4952
4953 return false;
4954}
4955EXPORT_SYMBOL_GPL(__css_tryget);
4956
4957/* Caller must verify that the css is not for root cgroup */
4958void __css_put(struct cgroup_subsys_state *css)
81a6a5cd 4959{
bd89aabc 4960 struct cgroup *cgrp = css->cgroup;
28b4c27b 4961
81a6a5cd 4962 rcu_read_lock();
28b4c27b 4963 atomic_dec(&css->refcnt);
48ddbe19
TH
4964 switch (css_refcnt(css)) {
4965 case 1:
ec64f515
KH
4966 if (notify_on_release(cgrp)) {
4967 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4968 check_for_release(cgrp);
4969 }
88703267 4970 cgroup_wakeup_rmdir_waiter(cgrp);
48ddbe19
TH
4971 break;
4972 case 0:
4973 if (!test_bit(CSS_CLEAR_CSS_REFS, &css->flags))
4974 schedule_work(&css->dput_work);
4975 break;
81a6a5cd
PM
4976 }
4977 rcu_read_unlock();
4978}
67523c48 4979EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4980
4981/*
4982 * Notify userspace when a cgroup is released, by running the
4983 * configured release agent with the name of the cgroup (path
4984 * relative to the root of cgroup file system) as the argument.
4985 *
4986 * Most likely, this user command will try to rmdir this cgroup.
4987 *
4988 * This races with the possibility that some other task will be
4989 * attached to this cgroup before it is removed, or that some other
4990 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4991 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4992 * unused, and this cgroup will be reprieved from its death sentence,
4993 * to continue to serve a useful existence. Next time it's released,
4994 * we will get notified again, if it still has 'notify_on_release' set.
4995 *
4996 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4997 * means only wait until the task is successfully execve()'d. The
4998 * separate release agent task is forked by call_usermodehelper(),
4999 * then control in this thread returns here, without waiting for the
5000 * release agent task. We don't bother to wait because the caller of
5001 * this routine has no use for the exit status of the release agent
5002 * task, so no sense holding our caller up for that.
81a6a5cd 5003 */
81a6a5cd
PM
5004static void cgroup_release_agent(struct work_struct *work)
5005{
5006 BUG_ON(work != &release_agent_work);
5007 mutex_lock(&cgroup_mutex);
cdcc136f 5008 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5009 while (!list_empty(&release_list)) {
5010 char *argv[3], *envp[3];
5011 int i;
e788e066 5012 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5013 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5014 struct cgroup,
5015 release_list);
bd89aabc 5016 list_del_init(&cgrp->release_list);
cdcc136f 5017 raw_spin_unlock(&release_list_lock);
81a6a5cd 5018 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5019 if (!pathbuf)
5020 goto continue_free;
5021 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5022 goto continue_free;
5023 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5024 if (!agentbuf)
5025 goto continue_free;
81a6a5cd
PM
5026
5027 i = 0;
e788e066
PM
5028 argv[i++] = agentbuf;
5029 argv[i++] = pathbuf;
81a6a5cd
PM
5030 argv[i] = NULL;
5031
5032 i = 0;
5033 /* minimal command environment */
5034 envp[i++] = "HOME=/";
5035 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5036 envp[i] = NULL;
5037
5038 /* Drop the lock while we invoke the usermode helper,
5039 * since the exec could involve hitting disk and hence
5040 * be a slow process */
5041 mutex_unlock(&cgroup_mutex);
5042 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5043 mutex_lock(&cgroup_mutex);
e788e066
PM
5044 continue_free:
5045 kfree(pathbuf);
5046 kfree(agentbuf);
cdcc136f 5047 raw_spin_lock(&release_list_lock);
81a6a5cd 5048 }
cdcc136f 5049 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5050 mutex_unlock(&cgroup_mutex);
5051}
8bab8dde
PM
5052
5053static int __init cgroup_disable(char *str)
5054{
5055 int i;
5056 char *token;
5057
5058 while ((token = strsep(&str, ",")) != NULL) {
5059 if (!*token)
5060 continue;
aae8aab4
BB
5061 /*
5062 * cgroup_disable, being at boot time, can't know about module
5063 * subsystems, so we don't worry about them.
5064 */
5065 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
5066 struct cgroup_subsys *ss = subsys[i];
5067
5068 if (!strcmp(token, ss->name)) {
5069 ss->disabled = 1;
5070 printk(KERN_INFO "Disabling %s control group"
5071 " subsystem\n", ss->name);
5072 break;
5073 }
5074 }
5075 }
5076 return 1;
5077}
5078__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5079
5080/*
5081 * Functons for CSS ID.
5082 */
5083
5084/*
5085 *To get ID other than 0, this should be called when !cgroup_is_removed().
5086 */
5087unsigned short css_id(struct cgroup_subsys_state *css)
5088{
7f0f1546
KH
5089 struct css_id *cssid;
5090
5091 /*
5092 * This css_id() can return correct value when somone has refcnt
5093 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5094 * it's unchanged until freed.
5095 */
28b4c27b 5096 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5097
5098 if (cssid)
5099 return cssid->id;
5100 return 0;
5101}
67523c48 5102EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
5103
5104unsigned short css_depth(struct cgroup_subsys_state *css)
5105{
7f0f1546
KH
5106 struct css_id *cssid;
5107
28b4c27b 5108 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5109
5110 if (cssid)
5111 return cssid->depth;
5112 return 0;
5113}
67523c48 5114EXPORT_SYMBOL_GPL(css_depth);
38460b48 5115
747388d7
KH
5116/**
5117 * css_is_ancestor - test "root" css is an ancestor of "child"
5118 * @child: the css to be tested.
5119 * @root: the css supporsed to be an ancestor of the child.
5120 *
5121 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5122 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
5123 * But, considering usual usage, the csses should be valid objects after test.
5124 * Assuming that the caller will do some action to the child if this returns
5125 * returns true, the caller must take "child";s reference count.
5126 * If "child" is valid object and this returns true, "root" is valid, too.
5127 */
5128
38460b48 5129bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5130 const struct cgroup_subsys_state *root)
38460b48 5131{
747388d7
KH
5132 struct css_id *child_id;
5133 struct css_id *root_id;
5134 bool ret = true;
38460b48 5135
747388d7
KH
5136 rcu_read_lock();
5137 child_id = rcu_dereference(child->id);
5138 root_id = rcu_dereference(root->id);
5139 if (!child_id
5140 || !root_id
5141 || (child_id->depth < root_id->depth)
5142 || (child_id->stack[root_id->depth] != root_id->id))
5143 ret = false;
5144 rcu_read_unlock();
5145 return ret;
38460b48
KH
5146}
5147
38460b48
KH
5148void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5149{
5150 struct css_id *id = css->id;
5151 /* When this is called before css_id initialization, id can be NULL */
5152 if (!id)
5153 return;
5154
5155 BUG_ON(!ss->use_id);
5156
5157 rcu_assign_pointer(id->css, NULL);
5158 rcu_assign_pointer(css->id, NULL);
42aee6c4 5159 spin_lock(&ss->id_lock);
38460b48 5160 idr_remove(&ss->idr, id->id);
42aee6c4 5161 spin_unlock(&ss->id_lock);
025cea99 5162 kfree_rcu(id, rcu_head);
38460b48 5163}
67523c48 5164EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5165
5166/*
5167 * This is called by init or create(). Then, calls to this function are
5168 * always serialized (By cgroup_mutex() at create()).
5169 */
5170
5171static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5172{
5173 struct css_id *newid;
5174 int myid, error, size;
5175
5176 BUG_ON(!ss->use_id);
5177
5178 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5179 newid = kzalloc(size, GFP_KERNEL);
5180 if (!newid)
5181 return ERR_PTR(-ENOMEM);
5182 /* get id */
5183 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5184 error = -ENOMEM;
5185 goto err_out;
5186 }
42aee6c4 5187 spin_lock(&ss->id_lock);
38460b48
KH
5188 /* Don't use 0. allocates an ID of 1-65535 */
5189 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
42aee6c4 5190 spin_unlock(&ss->id_lock);
38460b48
KH
5191
5192 /* Returns error when there are no free spaces for new ID.*/
5193 if (error) {
5194 error = -ENOSPC;
5195 goto err_out;
5196 }
5197 if (myid > CSS_ID_MAX)
5198 goto remove_idr;
5199
5200 newid->id = myid;
5201 newid->depth = depth;
5202 return newid;
5203remove_idr:
5204 error = -ENOSPC;
42aee6c4 5205 spin_lock(&ss->id_lock);
38460b48 5206 idr_remove(&ss->idr, myid);
42aee6c4 5207 spin_unlock(&ss->id_lock);
38460b48
KH
5208err_out:
5209 kfree(newid);
5210 return ERR_PTR(error);
5211
5212}
5213
e6a1105b
BB
5214static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5215 struct cgroup_subsys_state *rootcss)
38460b48
KH
5216{
5217 struct css_id *newid;
38460b48 5218
42aee6c4 5219 spin_lock_init(&ss->id_lock);
38460b48
KH
5220 idr_init(&ss->idr);
5221
38460b48
KH
5222 newid = get_new_cssid(ss, 0);
5223 if (IS_ERR(newid))
5224 return PTR_ERR(newid);
5225
5226 newid->stack[0] = newid->id;
5227 newid->css = rootcss;
5228 rootcss->id = newid;
5229 return 0;
5230}
5231
5232static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5233 struct cgroup *child)
5234{
5235 int subsys_id, i, depth = 0;
5236 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5237 struct css_id *child_id, *parent_id;
38460b48
KH
5238
5239 subsys_id = ss->subsys_id;
5240 parent_css = parent->subsys[subsys_id];
5241 child_css = child->subsys[subsys_id];
38460b48 5242 parent_id = parent_css->id;
94b3dd0f 5243 depth = parent_id->depth + 1;
38460b48
KH
5244
5245 child_id = get_new_cssid(ss, depth);
5246 if (IS_ERR(child_id))
5247 return PTR_ERR(child_id);
5248
5249 for (i = 0; i < depth; i++)
5250 child_id->stack[i] = parent_id->stack[i];
5251 child_id->stack[depth] = child_id->id;
5252 /*
5253 * child_id->css pointer will be set after this cgroup is available
5254 * see cgroup_populate_dir()
5255 */
5256 rcu_assign_pointer(child_css->id, child_id);
5257
5258 return 0;
5259}
5260
5261/**
5262 * css_lookup - lookup css by id
5263 * @ss: cgroup subsys to be looked into.
5264 * @id: the id
5265 *
5266 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5267 * NULL if not. Should be called under rcu_read_lock()
5268 */
5269struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5270{
5271 struct css_id *cssid = NULL;
5272
5273 BUG_ON(!ss->use_id);
5274 cssid = idr_find(&ss->idr, id);
5275
5276 if (unlikely(!cssid))
5277 return NULL;
5278
5279 return rcu_dereference(cssid->css);
5280}
67523c48 5281EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5282
5283/**
5284 * css_get_next - lookup next cgroup under specified hierarchy.
5285 * @ss: pointer to subsystem
5286 * @id: current position of iteration.
5287 * @root: pointer to css. search tree under this.
5288 * @foundid: position of found object.
5289 *
5290 * Search next css under the specified hierarchy of rootid. Calling under
5291 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5292 */
5293struct cgroup_subsys_state *
5294css_get_next(struct cgroup_subsys *ss, int id,
5295 struct cgroup_subsys_state *root, int *foundid)
5296{
5297 struct cgroup_subsys_state *ret = NULL;
5298 struct css_id *tmp;
5299 int tmpid;
5300 int rootid = css_id(root);
5301 int depth = css_depth(root);
5302
5303 if (!rootid)
5304 return NULL;
5305
5306 BUG_ON(!ss->use_id);
ca464d69
HD
5307 WARN_ON_ONCE(!rcu_read_lock_held());
5308
38460b48
KH
5309 /* fill start point for scan */
5310 tmpid = id;
5311 while (1) {
5312 /*
5313 * scan next entry from bitmap(tree), tmpid is updated after
5314 * idr_get_next().
5315 */
38460b48 5316 tmp = idr_get_next(&ss->idr, &tmpid);
38460b48
KH
5317 if (!tmp)
5318 break;
5319 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5320 ret = rcu_dereference(tmp->css);
5321 if (ret) {
5322 *foundid = tmpid;
5323 break;
5324 }
5325 }
5326 /* continue to scan from next id */
5327 tmpid = tmpid + 1;
5328 }
5329 return ret;
5330}
5331
e5d1367f
SE
5332/*
5333 * get corresponding css from file open on cgroupfs directory
5334 */
5335struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5336{
5337 struct cgroup *cgrp;
5338 struct inode *inode;
5339 struct cgroup_subsys_state *css;
5340
5341 inode = f->f_dentry->d_inode;
5342 /* check in cgroup filesystem dir */
5343 if (inode->i_op != &cgroup_dir_inode_operations)
5344 return ERR_PTR(-EBADF);
5345
5346 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5347 return ERR_PTR(-EINVAL);
5348
5349 /* get cgroup */
5350 cgrp = __d_cgrp(f->f_dentry);
5351 css = cgrp->subsys[id];
5352 return css ? css : ERR_PTR(-ENOENT);
5353}
5354
fe693435 5355#ifdef CONFIG_CGROUP_DEBUG
761b3ef5 5356static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
fe693435
PM
5357{
5358 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5359
5360 if (!css)
5361 return ERR_PTR(-ENOMEM);
5362
5363 return css;
5364}
5365
761b3ef5 5366static void debug_destroy(struct cgroup *cont)
fe693435
PM
5367{
5368 kfree(cont->subsys[debug_subsys_id]);
5369}
5370
5371static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5372{
5373 return atomic_read(&cont->count);
5374}
5375
5376static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5377{
5378 return cgroup_task_count(cont);
5379}
5380
5381static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5382{
5383 return (u64)(unsigned long)current->cgroups;
5384}
5385
5386static u64 current_css_set_refcount_read(struct cgroup *cont,
5387 struct cftype *cft)
5388{
5389 u64 count;
5390
5391 rcu_read_lock();
5392 count = atomic_read(&current->cgroups->refcount);
5393 rcu_read_unlock();
5394 return count;
5395}
5396
7717f7ba
PM
5397static int current_css_set_cg_links_read(struct cgroup *cont,
5398 struct cftype *cft,
5399 struct seq_file *seq)
5400{
5401 struct cg_cgroup_link *link;
5402 struct css_set *cg;
5403
5404 read_lock(&css_set_lock);
5405 rcu_read_lock();
5406 cg = rcu_dereference(current->cgroups);
5407 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5408 struct cgroup *c = link->cgrp;
5409 const char *name;
5410
5411 if (c->dentry)
5412 name = c->dentry->d_name.name;
5413 else
5414 name = "?";
2c6ab6d2
PM
5415 seq_printf(seq, "Root %d group %s\n",
5416 c->root->hierarchy_id, name);
7717f7ba
PM
5417 }
5418 rcu_read_unlock();
5419 read_unlock(&css_set_lock);
5420 return 0;
5421}
5422
5423#define MAX_TASKS_SHOWN_PER_CSS 25
5424static int cgroup_css_links_read(struct cgroup *cont,
5425 struct cftype *cft,
5426 struct seq_file *seq)
5427{
5428 struct cg_cgroup_link *link;
5429
5430 read_lock(&css_set_lock);
5431 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5432 struct css_set *cg = link->cg;
5433 struct task_struct *task;
5434 int count = 0;
5435 seq_printf(seq, "css_set %p\n", cg);
5436 list_for_each_entry(task, &cg->tasks, cg_list) {
5437 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5438 seq_puts(seq, " ...\n");
5439 break;
5440 } else {
5441 seq_printf(seq, " task %d\n",
5442 task_pid_vnr(task));
5443 }
5444 }
5445 }
5446 read_unlock(&css_set_lock);
5447 return 0;
5448}
5449
fe693435
PM
5450static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5451{
5452 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5453}
5454
5455static struct cftype debug_files[] = {
5456 {
5457 .name = "cgroup_refcount",
5458 .read_u64 = cgroup_refcount_read,
5459 },
5460 {
5461 .name = "taskcount",
5462 .read_u64 = debug_taskcount_read,
5463 },
5464
5465 {
5466 .name = "current_css_set",
5467 .read_u64 = current_css_set_read,
5468 },
5469
5470 {
5471 .name = "current_css_set_refcount",
5472 .read_u64 = current_css_set_refcount_read,
5473 },
5474
7717f7ba
PM
5475 {
5476 .name = "current_css_set_cg_links",
5477 .read_seq_string = current_css_set_cg_links_read,
5478 },
5479
5480 {
5481 .name = "cgroup_css_links",
5482 .read_seq_string = cgroup_css_links_read,
5483 },
5484
fe693435
PM
5485 {
5486 .name = "releasable",
5487 .read_u64 = releasable_read,
5488 },
fe693435 5489
4baf6e33
TH
5490 { } /* terminate */
5491};
fe693435
PM
5492
5493struct cgroup_subsys debug_subsys = {
5494 .name = "debug",
5495 .create = debug_create,
5496 .destroy = debug_destroy,
fe693435 5497 .subsys_id = debug_subsys_id,
4baf6e33 5498 .base_cftypes = debug_files,
fe693435
PM
5499};
5500#endif /* CONFIG_CGROUP_DEBUG */