cgroup: make sure parent won't be destroyed before its children
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
081aa458 62#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 63#include <linux/kthread.h>
846c7bb0 64
60063497 65#include <linux/atomic.h>
ddbcc7e8 66
28b4c27b
TH
67/* css deactivation bias, makes css->refcnt negative to deny new trygets */
68#define CSS_DEACT_BIAS INT_MIN
69
e25e2cbb
TH
70/*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
2219449a
TH
86#ifdef CONFIG_PROVE_RCU
87DEFINE_MUTEX(cgroup_mutex);
88EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
91#endif
92
e25e2cbb 93static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 94
aae8aab4
BB
95/*
96 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 97 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
98 * registered after that. The mutable section of this array is protected by
99 * cgroup_mutex.
100 */
80f4c877 101#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 102#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
aae8aab4 103static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
104#include <linux/cgroup_subsys.h>
105};
106
c6d57f33
PM
107#define MAX_CGROUP_ROOT_NAMELEN 64
108
ddbcc7e8
PM
109/*
110 * A cgroupfs_root represents the root of a cgroup hierarchy,
111 * and may be associated with a superblock to form an active
112 * hierarchy
113 */
114struct cgroupfs_root {
115 struct super_block *sb;
116
117 /*
118 * The bitmask of subsystems intended to be attached to this
119 * hierarchy
120 */
a1a71b45 121 unsigned long subsys_mask;
ddbcc7e8 122
2c6ab6d2
PM
123 /* Unique id for this hierarchy. */
124 int hierarchy_id;
125
ddbcc7e8 126 /* The bitmask of subsystems currently attached to this hierarchy */
a1a71b45 127 unsigned long actual_subsys_mask;
ddbcc7e8
PM
128
129 /* A list running through the attached subsystems */
130 struct list_head subsys_list;
131
132 /* The root cgroup for this hierarchy */
133 struct cgroup top_cgroup;
134
135 /* Tracks how many cgroups are currently defined in hierarchy.*/
136 int number_of_cgroups;
137
e5f6a860 138 /* A list running through the active hierarchies */
ddbcc7e8
PM
139 struct list_head root_list;
140
b0ca5a84
TH
141 /* All cgroups on this root, cgroup_mutex protected */
142 struct list_head allcg_list;
143
ddbcc7e8
PM
144 /* Hierarchy-specific flags */
145 unsigned long flags;
81a6a5cd 146
0a950f65
TH
147 /* IDs for cgroups in this hierarchy */
148 struct ida cgroup_ida;
149
e788e066 150 /* The path to use for release notifications. */
81a6a5cd 151 char release_agent_path[PATH_MAX];
c6d57f33
PM
152
153 /* The name for this hierarchy - may be empty */
154 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
155};
156
ddbcc7e8
PM
157/*
158 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
159 * subsystems that are otherwise unattached - it never has more than a
160 * single cgroup, and all tasks are part of that cgroup.
161 */
162static struct cgroupfs_root rootnode;
163
05ef1d7c
TH
164/*
165 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
166 */
167struct cfent {
168 struct list_head node;
169 struct dentry *dentry;
170 struct cftype *type;
171};
172
38460b48
KH
173/*
174 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
175 * cgroup_subsys->use_id != 0.
176 */
177#define CSS_ID_MAX (65535)
178struct css_id {
179 /*
180 * The css to which this ID points. This pointer is set to valid value
181 * after cgroup is populated. If cgroup is removed, this will be NULL.
182 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
183 * is called after synchronize_rcu(). But for safe use, css_tryget()
184 * should be used for avoiding race.
38460b48 185 */
2c392b8c 186 struct cgroup_subsys_state __rcu *css;
38460b48
KH
187 /*
188 * ID of this css.
189 */
190 unsigned short id;
191 /*
192 * Depth in hierarchy which this ID belongs to.
193 */
194 unsigned short depth;
195 /*
196 * ID is freed by RCU. (and lookup routine is RCU safe.)
197 */
198 struct rcu_head rcu_head;
199 /*
200 * Hierarchy of CSS ID belongs to.
201 */
202 unsigned short stack[0]; /* Array of Length (depth+1) */
203};
204
0dea1168 205/*
25985edc 206 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
207 */
208struct cgroup_event {
209 /*
210 * Cgroup which the event belongs to.
211 */
212 struct cgroup *cgrp;
213 /*
214 * Control file which the event associated.
215 */
216 struct cftype *cft;
217 /*
218 * eventfd to signal userspace about the event.
219 */
220 struct eventfd_ctx *eventfd;
221 /*
222 * Each of these stored in a list by the cgroup.
223 */
224 struct list_head list;
225 /*
226 * All fields below needed to unregister event when
227 * userspace closes eventfd.
228 */
229 poll_table pt;
230 wait_queue_head_t *wqh;
231 wait_queue_t wait;
232 struct work_struct remove;
233};
38460b48 234
ddbcc7e8
PM
235/* The list of hierarchy roots */
236
237static LIST_HEAD(roots);
817929ec 238static int root_count;
ddbcc7e8 239
2c6ab6d2
PM
240static DEFINE_IDA(hierarchy_ida);
241static int next_hierarchy_id;
242static DEFINE_SPINLOCK(hierarchy_id_lock);
243
ddbcc7e8
PM
244/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
245#define dummytop (&rootnode.top_cgroup)
246
65dff759
LZ
247static struct cgroup_name root_cgroup_name = { .name = "/" };
248
ddbcc7e8 249/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
250 * check for fork/exit handlers to call. This avoids us having to do
251 * extra work in the fork/exit path if none of the subsystems need to
252 * be called.
ddbcc7e8 253 */
8947f9d5 254static int need_forkexit_callback __read_mostly;
ddbcc7e8 255
42809dd4 256static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
257static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
258 struct cftype cfts[], bool is_add);
42809dd4 259
8e3bbf42
SQ
260static int css_unbias_refcnt(int refcnt)
261{
262 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
263}
264
28b4c27b
TH
265/* the current nr of refs, always >= 0 whether @css is deactivated or not */
266static int css_refcnt(struct cgroup_subsys_state *css)
267{
268 int v = atomic_read(&css->refcnt);
269
8e3bbf42 270 return css_unbias_refcnt(v);
28b4c27b
TH
271}
272
ddbcc7e8 273/* convenient tests for these bits */
bd89aabc 274inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 275{
bd89aabc 276 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
277}
278
279/* bits in struct cgroupfs_root flags field */
280enum {
03b1cde6
AR
281 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
282 ROOT_XATTR, /* supports extended attributes */
ddbcc7e8
PM
283};
284
e9685a03 285static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
286{
287 const int bits =
bd89aabc
PM
288 (1 << CGRP_RELEASABLE) |
289 (1 << CGRP_NOTIFY_ON_RELEASE);
290 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
291}
292
e9685a03 293static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 294{
bd89aabc 295 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
296}
297
ddbcc7e8
PM
298/*
299 * for_each_subsys() allows you to iterate on each subsystem attached to
300 * an active hierarchy
301 */
302#define for_each_subsys(_root, _ss) \
303list_for_each_entry(_ss, &_root->subsys_list, sibling)
304
e5f6a860
LZ
305/* for_each_active_root() allows you to iterate across the active hierarchies */
306#define for_each_active_root(_root) \
ddbcc7e8
PM
307list_for_each_entry(_root, &roots, root_list)
308
f6ea9372
TH
309static inline struct cgroup *__d_cgrp(struct dentry *dentry)
310{
311 return dentry->d_fsdata;
312}
313
05ef1d7c 314static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
315{
316 return dentry->d_fsdata;
317}
318
05ef1d7c
TH
319static inline struct cftype *__d_cft(struct dentry *dentry)
320{
321 return __d_cfe(dentry)->type;
322}
323
7ae1bad9
TH
324/**
325 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
326 * @cgrp: the cgroup to be checked for liveness
327 *
47cfcd09
TH
328 * On success, returns true; the mutex should be later unlocked. On
329 * failure returns false with no lock held.
7ae1bad9 330 */
b9777cf8 331static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
332{
333 mutex_lock(&cgroup_mutex);
334 if (cgroup_is_removed(cgrp)) {
335 mutex_unlock(&cgroup_mutex);
336 return false;
337 }
338 return true;
339}
7ae1bad9 340
81a6a5cd
PM
341/* the list of cgroups eligible for automatic release. Protected by
342 * release_list_lock */
343static LIST_HEAD(release_list);
cdcc136f 344static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
345static void cgroup_release_agent(struct work_struct *work);
346static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 347static void check_for_release(struct cgroup *cgrp);
81a6a5cd 348
817929ec
PM
349/* Link structure for associating css_set objects with cgroups */
350struct cg_cgroup_link {
351 /*
352 * List running through cg_cgroup_links associated with a
353 * cgroup, anchored on cgroup->css_sets
354 */
bd89aabc 355 struct list_head cgrp_link_list;
7717f7ba 356 struct cgroup *cgrp;
817929ec
PM
357 /*
358 * List running through cg_cgroup_links pointing at a
359 * single css_set object, anchored on css_set->cg_links
360 */
361 struct list_head cg_link_list;
362 struct css_set *cg;
363};
364
365/* The default css_set - used by init and its children prior to any
366 * hierarchies being mounted. It contains a pointer to the root state
367 * for each subsystem. Also used to anchor the list of css_sets. Not
368 * reference-counted, to improve performance when child cgroups
369 * haven't been created.
370 */
371
372static struct css_set init_css_set;
373static struct cg_cgroup_link init_css_set_link;
374
e6a1105b
BB
375static int cgroup_init_idr(struct cgroup_subsys *ss,
376 struct cgroup_subsys_state *css);
38460b48 377
817929ec
PM
378/* css_set_lock protects the list of css_set objects, and the
379 * chain of tasks off each css_set. Nests outside task->alloc_lock
380 * due to cgroup_iter_start() */
381static DEFINE_RWLOCK(css_set_lock);
382static int css_set_count;
383
7717f7ba
PM
384/*
385 * hash table for cgroup groups. This improves the performance to find
386 * an existing css_set. This hash doesn't (currently) take into
387 * account cgroups in empty hierarchies.
388 */
472b1053 389#define CSS_SET_HASH_BITS 7
0ac801fe 390static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 391
0ac801fe 392static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053
LZ
393{
394 int i;
0ac801fe 395 unsigned long key = 0UL;
472b1053
LZ
396
397 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
0ac801fe
LZ
398 key += (unsigned long)css[i];
399 key = (key >> 16) ^ key;
472b1053 400
0ac801fe 401 return key;
472b1053
LZ
402}
403
817929ec
PM
404/* We don't maintain the lists running through each css_set to its
405 * task until after the first call to cgroup_iter_start(). This
406 * reduces the fork()/exit() overhead for people who have cgroups
407 * compiled into their kernel but not actually in use */
8947f9d5 408static int use_task_css_set_links __read_mostly;
817929ec 409
2c6ab6d2 410static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 411{
71cbb949
KM
412 struct cg_cgroup_link *link;
413 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
414 /*
415 * Ensure that the refcount doesn't hit zero while any readers
416 * can see it. Similar to atomic_dec_and_lock(), but for an
417 * rwlock
418 */
419 if (atomic_add_unless(&cg->refcount, -1, 1))
420 return;
421 write_lock(&css_set_lock);
422 if (!atomic_dec_and_test(&cg->refcount)) {
423 write_unlock(&css_set_lock);
424 return;
425 }
81a6a5cd 426
2c6ab6d2 427 /* This css_set is dead. unlink it and release cgroup refcounts */
0ac801fe 428 hash_del(&cg->hlist);
2c6ab6d2
PM
429 css_set_count--;
430
431 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
432 cg_link_list) {
433 struct cgroup *cgrp = link->cgrp;
434 list_del(&link->cg_link_list);
435 list_del(&link->cgrp_link_list);
71b5707e
LZ
436
437 /*
438 * We may not be holding cgroup_mutex, and if cgrp->count is
439 * dropped to 0 the cgroup can be destroyed at any time, hence
440 * rcu_read_lock is used to keep it alive.
441 */
442 rcu_read_lock();
bd89aabc
PM
443 if (atomic_dec_and_test(&cgrp->count) &&
444 notify_on_release(cgrp)) {
81a6a5cd 445 if (taskexit)
bd89aabc
PM
446 set_bit(CGRP_RELEASABLE, &cgrp->flags);
447 check_for_release(cgrp);
81a6a5cd 448 }
71b5707e 449 rcu_read_unlock();
2c6ab6d2
PM
450
451 kfree(link);
81a6a5cd 452 }
2c6ab6d2
PM
453
454 write_unlock(&css_set_lock);
30088ad8 455 kfree_rcu(cg, rcu_head);
b4f48b63
PM
456}
457
817929ec
PM
458/*
459 * refcounted get/put for css_set objects
460 */
461static inline void get_css_set(struct css_set *cg)
462{
146aa1bd 463 atomic_inc(&cg->refcount);
817929ec
PM
464}
465
466static inline void put_css_set(struct css_set *cg)
467{
146aa1bd 468 __put_css_set(cg, 0);
817929ec
PM
469}
470
81a6a5cd
PM
471static inline void put_css_set_taskexit(struct css_set *cg)
472{
146aa1bd 473 __put_css_set(cg, 1);
81a6a5cd
PM
474}
475
7717f7ba
PM
476/*
477 * compare_css_sets - helper function for find_existing_css_set().
478 * @cg: candidate css_set being tested
479 * @old_cg: existing css_set for a task
480 * @new_cgrp: cgroup that's being entered by the task
481 * @template: desired set of css pointers in css_set (pre-calculated)
482 *
483 * Returns true if "cg" matches "old_cg" except for the hierarchy
484 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
485 */
486static bool compare_css_sets(struct css_set *cg,
487 struct css_set *old_cg,
488 struct cgroup *new_cgrp,
489 struct cgroup_subsys_state *template[])
490{
491 struct list_head *l1, *l2;
492
493 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
494 /* Not all subsystems matched */
495 return false;
496 }
497
498 /*
499 * Compare cgroup pointers in order to distinguish between
500 * different cgroups in heirarchies with no subsystems. We
501 * could get by with just this check alone (and skip the
502 * memcmp above) but on most setups the memcmp check will
503 * avoid the need for this more expensive check on almost all
504 * candidates.
505 */
506
507 l1 = &cg->cg_links;
508 l2 = &old_cg->cg_links;
509 while (1) {
510 struct cg_cgroup_link *cgl1, *cgl2;
511 struct cgroup *cg1, *cg2;
512
513 l1 = l1->next;
514 l2 = l2->next;
515 /* See if we reached the end - both lists are equal length. */
516 if (l1 == &cg->cg_links) {
517 BUG_ON(l2 != &old_cg->cg_links);
518 break;
519 } else {
520 BUG_ON(l2 == &old_cg->cg_links);
521 }
522 /* Locate the cgroups associated with these links. */
523 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
524 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
525 cg1 = cgl1->cgrp;
526 cg2 = cgl2->cgrp;
527 /* Hierarchies should be linked in the same order. */
528 BUG_ON(cg1->root != cg2->root);
529
530 /*
531 * If this hierarchy is the hierarchy of the cgroup
532 * that's changing, then we need to check that this
533 * css_set points to the new cgroup; if it's any other
534 * hierarchy, then this css_set should point to the
535 * same cgroup as the old css_set.
536 */
537 if (cg1->root == new_cgrp->root) {
538 if (cg1 != new_cgrp)
539 return false;
540 } else {
541 if (cg1 != cg2)
542 return false;
543 }
544 }
545 return true;
546}
547
817929ec
PM
548/*
549 * find_existing_css_set() is a helper for
550 * find_css_set(), and checks to see whether an existing
472b1053 551 * css_set is suitable.
817929ec
PM
552 *
553 * oldcg: the cgroup group that we're using before the cgroup
554 * transition
555 *
bd89aabc 556 * cgrp: the cgroup that we're moving into
817929ec
PM
557 *
558 * template: location in which to build the desired set of subsystem
559 * state objects for the new cgroup group
560 */
817929ec
PM
561static struct css_set *find_existing_css_set(
562 struct css_set *oldcg,
bd89aabc 563 struct cgroup *cgrp,
817929ec 564 struct cgroup_subsys_state *template[])
b4f48b63
PM
565{
566 int i;
bd89aabc 567 struct cgroupfs_root *root = cgrp->root;
472b1053 568 struct css_set *cg;
0ac801fe 569 unsigned long key;
817929ec 570
aae8aab4
BB
571 /*
572 * Build the set of subsystem state objects that we want to see in the
573 * new css_set. while subsystems can change globally, the entries here
574 * won't change, so no need for locking.
575 */
817929ec 576 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a1a71b45 577 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
578 /* Subsystem is in this hierarchy. So we want
579 * the subsystem state from the new
580 * cgroup */
bd89aabc 581 template[i] = cgrp->subsys[i];
817929ec
PM
582 } else {
583 /* Subsystem is not in this hierarchy, so we
584 * don't want to change the subsystem state */
585 template[i] = oldcg->subsys[i];
586 }
587 }
588
0ac801fe 589 key = css_set_hash(template);
b67bfe0d 590 hash_for_each_possible(css_set_table, cg, hlist, key) {
7717f7ba
PM
591 if (!compare_css_sets(cg, oldcg, cgrp, template))
592 continue;
593
594 /* This css_set matches what we need */
595 return cg;
472b1053 596 }
817929ec
PM
597
598 /* No existing cgroup group matched */
599 return NULL;
600}
601
36553434
LZ
602static void free_cg_links(struct list_head *tmp)
603{
604 struct cg_cgroup_link *link;
605 struct cg_cgroup_link *saved_link;
606
607 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
608 list_del(&link->cgrp_link_list);
609 kfree(link);
610 }
611}
612
817929ec
PM
613/*
614 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 615 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
616 * success or a negative error
617 */
817929ec
PM
618static int allocate_cg_links(int count, struct list_head *tmp)
619{
620 struct cg_cgroup_link *link;
621 int i;
622 INIT_LIST_HEAD(tmp);
623 for (i = 0; i < count; i++) {
624 link = kmalloc(sizeof(*link), GFP_KERNEL);
625 if (!link) {
36553434 626 free_cg_links(tmp);
817929ec
PM
627 return -ENOMEM;
628 }
bd89aabc 629 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
630 }
631 return 0;
632}
633
c12f65d4
LZ
634/**
635 * link_css_set - a helper function to link a css_set to a cgroup
636 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
637 * @cg: the css_set to be linked
638 * @cgrp: the destination cgroup
639 */
640static void link_css_set(struct list_head *tmp_cg_links,
641 struct css_set *cg, struct cgroup *cgrp)
642{
643 struct cg_cgroup_link *link;
644
645 BUG_ON(list_empty(tmp_cg_links));
646 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
647 cgrp_link_list);
648 link->cg = cg;
7717f7ba 649 link->cgrp = cgrp;
2c6ab6d2 650 atomic_inc(&cgrp->count);
c12f65d4 651 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
652 /*
653 * Always add links to the tail of the list so that the list
654 * is sorted by order of hierarchy creation
655 */
656 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
657}
658
817929ec
PM
659/*
660 * find_css_set() takes an existing cgroup group and a
661 * cgroup object, and returns a css_set object that's
662 * equivalent to the old group, but with the given cgroup
663 * substituted into the appropriate hierarchy. Must be called with
664 * cgroup_mutex held
665 */
817929ec 666static struct css_set *find_css_set(
bd89aabc 667 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
668{
669 struct css_set *res;
670 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
671
672 struct list_head tmp_cg_links;
817929ec 673
7717f7ba 674 struct cg_cgroup_link *link;
0ac801fe 675 unsigned long key;
472b1053 676
817929ec
PM
677 /* First see if we already have a cgroup group that matches
678 * the desired set */
7e9abd89 679 read_lock(&css_set_lock);
bd89aabc 680 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
681 if (res)
682 get_css_set(res);
7e9abd89 683 read_unlock(&css_set_lock);
817929ec
PM
684
685 if (res)
686 return res;
687
688 res = kmalloc(sizeof(*res), GFP_KERNEL);
689 if (!res)
690 return NULL;
691
692 /* Allocate all the cg_cgroup_link objects that we'll need */
693 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
694 kfree(res);
695 return NULL;
696 }
697
146aa1bd 698 atomic_set(&res->refcount, 1);
817929ec
PM
699 INIT_LIST_HEAD(&res->cg_links);
700 INIT_LIST_HEAD(&res->tasks);
472b1053 701 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
702
703 /* Copy the set of subsystem state objects generated in
704 * find_existing_css_set() */
705 memcpy(res->subsys, template, sizeof(res->subsys));
706
707 write_lock(&css_set_lock);
708 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
709 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
710 struct cgroup *c = link->cgrp;
711 if (c->root == cgrp->root)
712 c = cgrp;
713 link_css_set(&tmp_cg_links, res, c);
714 }
817929ec
PM
715
716 BUG_ON(!list_empty(&tmp_cg_links));
717
817929ec 718 css_set_count++;
472b1053
LZ
719
720 /* Add this cgroup group to the hash table */
0ac801fe
LZ
721 key = css_set_hash(res->subsys);
722 hash_add(css_set_table, &res->hlist, key);
472b1053 723
817929ec
PM
724 write_unlock(&css_set_lock);
725
726 return res;
b4f48b63
PM
727}
728
7717f7ba
PM
729/*
730 * Return the cgroup for "task" from the given hierarchy. Must be
731 * called with cgroup_mutex held.
732 */
733static struct cgroup *task_cgroup_from_root(struct task_struct *task,
734 struct cgroupfs_root *root)
735{
736 struct css_set *css;
737 struct cgroup *res = NULL;
738
739 BUG_ON(!mutex_is_locked(&cgroup_mutex));
740 read_lock(&css_set_lock);
741 /*
742 * No need to lock the task - since we hold cgroup_mutex the
743 * task can't change groups, so the only thing that can happen
744 * is that it exits and its css is set back to init_css_set.
745 */
746 css = task->cgroups;
747 if (css == &init_css_set) {
748 res = &root->top_cgroup;
749 } else {
750 struct cg_cgroup_link *link;
751 list_for_each_entry(link, &css->cg_links, cg_link_list) {
752 struct cgroup *c = link->cgrp;
753 if (c->root == root) {
754 res = c;
755 break;
756 }
757 }
758 }
759 read_unlock(&css_set_lock);
760 BUG_ON(!res);
761 return res;
762}
763
ddbcc7e8
PM
764/*
765 * There is one global cgroup mutex. We also require taking
766 * task_lock() when dereferencing a task's cgroup subsys pointers.
767 * See "The task_lock() exception", at the end of this comment.
768 *
769 * A task must hold cgroup_mutex to modify cgroups.
770 *
771 * Any task can increment and decrement the count field without lock.
772 * So in general, code holding cgroup_mutex can't rely on the count
773 * field not changing. However, if the count goes to zero, then only
956db3ca 774 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
775 * means that no tasks are currently attached, therefore there is no
776 * way a task attached to that cgroup can fork (the other way to
777 * increment the count). So code holding cgroup_mutex can safely
778 * assume that if the count is zero, it will stay zero. Similarly, if
779 * a task holds cgroup_mutex on a cgroup with zero count, it
780 * knows that the cgroup won't be removed, as cgroup_rmdir()
781 * needs that mutex.
782 *
ddbcc7e8
PM
783 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
784 * (usually) take cgroup_mutex. These are the two most performance
785 * critical pieces of code here. The exception occurs on cgroup_exit(),
786 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
787 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
788 * to the release agent with the name of the cgroup (path relative to
789 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
790 *
791 * A cgroup can only be deleted if both its 'count' of using tasks
792 * is zero, and its list of 'children' cgroups is empty. Since all
793 * tasks in the system use _some_ cgroup, and since there is always at
794 * least one task in the system (init, pid == 1), therefore, top_cgroup
795 * always has either children cgroups and/or using tasks. So we don't
796 * need a special hack to ensure that top_cgroup cannot be deleted.
797 *
798 * The task_lock() exception
799 *
800 * The need for this exception arises from the action of
d0b2fdd2 801 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 802 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
803 * several performance critical places that need to reference
804 * task->cgroup without the expense of grabbing a system global
805 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 806 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
807 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
808 * the task_struct routinely used for such matters.
809 *
810 * P.S. One more locking exception. RCU is used to guard the
956db3ca 811 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
812 */
813
ddbcc7e8
PM
814/*
815 * A couple of forward declarations required, due to cyclic reference loop:
816 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
817 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
818 * -> cgroup_mkdir.
819 */
820
18bb1db3 821static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 822static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 823static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
824static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
825 unsigned long subsys_mask);
6e1d5dcc 826static const struct inode_operations cgroup_dir_inode_operations;
828c0950 827static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
828
829static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 830 .name = "cgroup",
e4ad08fe 831 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 832};
ddbcc7e8 833
38460b48
KH
834static int alloc_css_id(struct cgroup_subsys *ss,
835 struct cgroup *parent, struct cgroup *child);
836
a5e7ed32 837static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
838{
839 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
840
841 if (inode) {
85fe4025 842 inode->i_ino = get_next_ino();
ddbcc7e8 843 inode->i_mode = mode;
76aac0e9
DH
844 inode->i_uid = current_fsuid();
845 inode->i_gid = current_fsgid();
ddbcc7e8
PM
846 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
847 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
848 }
849 return inode;
850}
851
65dff759
LZ
852static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
853{
854 struct cgroup_name *name;
855
856 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
857 if (!name)
858 return NULL;
859 strcpy(name->name, dentry->d_name.name);
860 return name;
861}
862
be445626
LZ
863static void cgroup_free_fn(struct work_struct *work)
864{
865 struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
866 struct cgroup_subsys *ss;
867
868 mutex_lock(&cgroup_mutex);
869 /*
870 * Release the subsystem state objects.
871 */
872 for_each_subsys(cgrp->root, ss)
873 ss->css_free(cgrp);
874
875 cgrp->root->number_of_cgroups--;
876 mutex_unlock(&cgroup_mutex);
877
415cf07a
LZ
878 /*
879 * We get a ref to the parent's dentry, and put the ref when
880 * this cgroup is being freed, so it's guaranteed that the
881 * parent won't be destroyed before its children.
882 */
883 dput(cgrp->parent->dentry);
884
be445626
LZ
885 /*
886 * Drop the active superblock reference that we took when we
887 * created the cgroup
888 */
889 deactivate_super(cgrp->root->sb);
890
891 /*
892 * if we're getting rid of the cgroup, refcount should ensure
893 * that there are no pidlists left.
894 */
895 BUG_ON(!list_empty(&cgrp->pidlists));
896
897 simple_xattrs_free(&cgrp->xattrs);
898
899 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
65dff759 900 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
901 kfree(cgrp);
902}
903
904static void cgroup_free_rcu(struct rcu_head *head)
905{
906 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
907
908 schedule_work(&cgrp->free_work);
909}
910
ddbcc7e8
PM
911static void cgroup_diput(struct dentry *dentry, struct inode *inode)
912{
913 /* is dentry a directory ? if so, kfree() associated cgroup */
914 if (S_ISDIR(inode->i_mode)) {
bd89aabc 915 struct cgroup *cgrp = dentry->d_fsdata;
be445626 916
bd89aabc 917 BUG_ON(!(cgroup_is_removed(cgrp)));
be445626 918 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
919 } else {
920 struct cfent *cfe = __d_cfe(dentry);
921 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
03b1cde6 922 struct cftype *cft = cfe->type;
05ef1d7c
TH
923
924 WARN_ONCE(!list_empty(&cfe->node) &&
925 cgrp != &cgrp->root->top_cgroup,
926 "cfe still linked for %s\n", cfe->type->name);
927 kfree(cfe);
03b1cde6 928 simple_xattrs_free(&cft->xattrs);
ddbcc7e8
PM
929 }
930 iput(inode);
931}
932
c72a04e3
AV
933static int cgroup_delete(const struct dentry *d)
934{
935 return 1;
936}
937
ddbcc7e8
PM
938static void remove_dir(struct dentry *d)
939{
940 struct dentry *parent = dget(d->d_parent);
941
942 d_delete(d);
943 simple_rmdir(parent->d_inode, d);
944 dput(parent);
945}
946
2739d3cc 947static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
948{
949 struct cfent *cfe;
950
951 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
952 lockdep_assert_held(&cgroup_mutex);
953
2739d3cc
LZ
954 /*
955 * If we're doing cleanup due to failure of cgroup_create(),
956 * the corresponding @cfe may not exist.
957 */
05ef1d7c
TH
958 list_for_each_entry(cfe, &cgrp->files, node) {
959 struct dentry *d = cfe->dentry;
960
961 if (cft && cfe->type != cft)
962 continue;
963
964 dget(d);
965 d_delete(d);
ce27e317 966 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
967 list_del_init(&cfe->node);
968 dput(d);
969
2739d3cc 970 break;
ddbcc7e8 971 }
05ef1d7c
TH
972}
973
13af07df
AR
974/**
975 * cgroup_clear_directory - selective removal of base and subsystem files
976 * @dir: directory containing the files
977 * @base_files: true if the base files should be removed
978 * @subsys_mask: mask of the subsystem ids whose files should be removed
979 */
980static void cgroup_clear_directory(struct dentry *dir, bool base_files,
981 unsigned long subsys_mask)
05ef1d7c
TH
982{
983 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 984 struct cgroup_subsys *ss;
05ef1d7c 985
13af07df
AR
986 for_each_subsys(cgrp->root, ss) {
987 struct cftype_set *set;
988 if (!test_bit(ss->subsys_id, &subsys_mask))
989 continue;
990 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 991 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
992 }
993 if (base_files) {
994 while (!list_empty(&cgrp->files))
995 cgroup_rm_file(cgrp, NULL);
996 }
ddbcc7e8
PM
997}
998
999/*
1000 * NOTE : the dentry must have been dget()'ed
1001 */
1002static void cgroup_d_remove_dir(struct dentry *dentry)
1003{
2fd6b7f5 1004 struct dentry *parent;
13af07df 1005 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 1006
a1a71b45 1007 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 1008
2fd6b7f5
NP
1009 parent = dentry->d_parent;
1010 spin_lock(&parent->d_lock);
3ec762ad 1011 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 1012 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
1013 spin_unlock(&dentry->d_lock);
1014 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1015 remove_dir(dentry);
1016}
1017
aae8aab4 1018/*
cf5d5941
BB
1019 * Call with cgroup_mutex held. Drops reference counts on modules, including
1020 * any duplicate ones that parse_cgroupfs_options took. If this function
1021 * returns an error, no reference counts are touched.
aae8aab4 1022 */
ddbcc7e8 1023static int rebind_subsystems(struct cgroupfs_root *root,
a1a71b45 1024 unsigned long final_subsys_mask)
ddbcc7e8 1025{
a1a71b45 1026 unsigned long added_mask, removed_mask;
bd89aabc 1027 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1028 int i;
1029
aae8aab4 1030 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1031 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1032
a1a71b45
AR
1033 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1034 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
ddbcc7e8
PM
1035 /* Check that any added subsystems are currently free */
1036 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 1037 unsigned long bit = 1UL << i;
ddbcc7e8 1038 struct cgroup_subsys *ss = subsys[i];
a1a71b45 1039 if (!(bit & added_mask))
ddbcc7e8 1040 continue;
aae8aab4
BB
1041 /*
1042 * Nobody should tell us to do a subsys that doesn't exist:
1043 * parse_cgroupfs_options should catch that case and refcounts
1044 * ensure that subsystems won't disappear once selected.
1045 */
1046 BUG_ON(ss == NULL);
ddbcc7e8
PM
1047 if (ss->root != &rootnode) {
1048 /* Subsystem isn't free */
1049 return -EBUSY;
1050 }
1051 }
1052
1053 /* Currently we don't handle adding/removing subsystems when
1054 * any child cgroups exist. This is theoretically supportable
1055 * but involves complex error handling, so it's being left until
1056 * later */
307257cf 1057 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1058 return -EBUSY;
1059
1060 /* Process each subsystem */
1061 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1062 struct cgroup_subsys *ss = subsys[i];
1063 unsigned long bit = 1UL << i;
a1a71b45 1064 if (bit & added_mask) {
ddbcc7e8 1065 /* We're binding this subsystem to this hierarchy */
aae8aab4 1066 BUG_ON(ss == NULL);
bd89aabc 1067 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1068 BUG_ON(!dummytop->subsys[i]);
1069 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
1070 cgrp->subsys[i] = dummytop->subsys[i];
1071 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1072 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1073 ss->root = root;
cf5d5941 1074 /* refcount was already taken, and we're keeping it */
a1a71b45 1075 } else if (bit & removed_mask) {
ddbcc7e8 1076 /* We're removing this subsystem */
aae8aab4 1077 BUG_ON(ss == NULL);
bd89aabc
PM
1078 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1079 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8 1080 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1081 cgrp->subsys[i] = NULL;
b2aa30f7 1082 subsys[i]->root = &rootnode;
33a68ac1 1083 list_move(&ss->sibling, &rootnode.subsys_list);
cf5d5941
BB
1084 /* subsystem is now free - drop reference on module */
1085 module_put(ss->module);
a1a71b45 1086 } else if (bit & final_subsys_mask) {
ddbcc7e8 1087 /* Subsystem state should already exist */
aae8aab4 1088 BUG_ON(ss == NULL);
bd89aabc 1089 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1090 /*
1091 * a refcount was taken, but we already had one, so
1092 * drop the extra reference.
1093 */
1094 module_put(ss->module);
1095#ifdef CONFIG_MODULE_UNLOAD
1096 BUG_ON(ss->module && !module_refcount(ss->module));
1097#endif
ddbcc7e8
PM
1098 } else {
1099 /* Subsystem state shouldn't exist */
bd89aabc 1100 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1101 }
1102 }
a1a71b45 1103 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
ddbcc7e8
PM
1104
1105 return 0;
1106}
1107
34c80b1d 1108static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1109{
34c80b1d 1110 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1111 struct cgroup_subsys *ss;
1112
e25e2cbb 1113 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1114 for_each_subsys(root, ss)
1115 seq_printf(seq, ",%s", ss->name);
1116 if (test_bit(ROOT_NOPREFIX, &root->flags))
1117 seq_puts(seq, ",noprefix");
03b1cde6
AR
1118 if (test_bit(ROOT_XATTR, &root->flags))
1119 seq_puts(seq, ",xattr");
81a6a5cd
PM
1120 if (strlen(root->release_agent_path))
1121 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1122 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1123 seq_puts(seq, ",clone_children");
c6d57f33
PM
1124 if (strlen(root->name))
1125 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1126 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1127 return 0;
1128}
1129
1130struct cgroup_sb_opts {
a1a71b45 1131 unsigned long subsys_mask;
ddbcc7e8 1132 unsigned long flags;
81a6a5cd 1133 char *release_agent;
2260e7fc 1134 bool cpuset_clone_children;
c6d57f33 1135 char *name;
2c6ab6d2
PM
1136 /* User explicitly requested empty subsystem */
1137 bool none;
c6d57f33
PM
1138
1139 struct cgroupfs_root *new_root;
2c6ab6d2 1140
ddbcc7e8
PM
1141};
1142
aae8aab4
BB
1143/*
1144 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1145 * with cgroup_mutex held to protect the subsys[] array. This function takes
1146 * refcounts on subsystems to be used, unless it returns error, in which case
1147 * no refcounts are taken.
aae8aab4 1148 */
cf5d5941 1149static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1150{
32a8cf23
DL
1151 char *token, *o = data;
1152 bool all_ss = false, one_ss = false;
f9ab5b5b 1153 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1154 int i;
1155 bool module_pin_failed = false;
f9ab5b5b 1156
aae8aab4
BB
1157 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1158
f9ab5b5b
LZ
1159#ifdef CONFIG_CPUSETS
1160 mask = ~(1UL << cpuset_subsys_id);
1161#endif
ddbcc7e8 1162
c6d57f33 1163 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1164
1165 while ((token = strsep(&o, ",")) != NULL) {
1166 if (!*token)
1167 return -EINVAL;
32a8cf23 1168 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1169 /* Explicitly have no subsystems */
1170 opts->none = true;
32a8cf23
DL
1171 continue;
1172 }
1173 if (!strcmp(token, "all")) {
1174 /* Mutually exclusive option 'all' + subsystem name */
1175 if (one_ss)
1176 return -EINVAL;
1177 all_ss = true;
1178 continue;
1179 }
1180 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1181 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1182 continue;
1183 }
1184 if (!strcmp(token, "clone_children")) {
2260e7fc 1185 opts->cpuset_clone_children = true;
32a8cf23
DL
1186 continue;
1187 }
03b1cde6
AR
1188 if (!strcmp(token, "xattr")) {
1189 set_bit(ROOT_XATTR, &opts->flags);
1190 continue;
1191 }
32a8cf23 1192 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1193 /* Specifying two release agents is forbidden */
1194 if (opts->release_agent)
1195 return -EINVAL;
c6d57f33 1196 opts->release_agent =
e400c285 1197 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1198 if (!opts->release_agent)
1199 return -ENOMEM;
32a8cf23
DL
1200 continue;
1201 }
1202 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1203 const char *name = token + 5;
1204 /* Can't specify an empty name */
1205 if (!strlen(name))
1206 return -EINVAL;
1207 /* Must match [\w.-]+ */
1208 for (i = 0; i < strlen(name); i++) {
1209 char c = name[i];
1210 if (isalnum(c))
1211 continue;
1212 if ((c == '.') || (c == '-') || (c == '_'))
1213 continue;
1214 return -EINVAL;
1215 }
1216 /* Specifying two names is forbidden */
1217 if (opts->name)
1218 return -EINVAL;
1219 opts->name = kstrndup(name,
e400c285 1220 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1221 GFP_KERNEL);
1222 if (!opts->name)
1223 return -ENOMEM;
32a8cf23
DL
1224
1225 continue;
1226 }
1227
1228 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1229 struct cgroup_subsys *ss = subsys[i];
1230 if (ss == NULL)
1231 continue;
1232 if (strcmp(token, ss->name))
1233 continue;
1234 if (ss->disabled)
1235 continue;
1236
1237 /* Mutually exclusive option 'all' + subsystem name */
1238 if (all_ss)
1239 return -EINVAL;
a1a71b45 1240 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1241 one_ss = true;
1242
1243 break;
1244 }
1245 if (i == CGROUP_SUBSYS_COUNT)
1246 return -ENOENT;
1247 }
1248
1249 /*
1250 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1251 * otherwise if 'none', 'name=' and a subsystem name options
1252 * were not specified, let's default to 'all'
32a8cf23 1253 */
0d19ea86 1254 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1255 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1256 struct cgroup_subsys *ss = subsys[i];
1257 if (ss == NULL)
1258 continue;
1259 if (ss->disabled)
1260 continue;
a1a71b45 1261 set_bit(i, &opts->subsys_mask);
ddbcc7e8
PM
1262 }
1263 }
1264
2c6ab6d2
PM
1265 /* Consistency checks */
1266
f9ab5b5b
LZ
1267 /*
1268 * Option noprefix was introduced just for backward compatibility
1269 * with the old cpuset, so we allow noprefix only if mounting just
1270 * the cpuset subsystem.
1271 */
1272 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
a1a71b45 1273 (opts->subsys_mask & mask))
f9ab5b5b
LZ
1274 return -EINVAL;
1275
2c6ab6d2
PM
1276
1277 /* Can't specify "none" and some subsystems */
a1a71b45 1278 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1279 return -EINVAL;
1280
1281 /*
1282 * We either have to specify by name or by subsystems. (So all
1283 * empty hierarchies must have a name).
1284 */
a1a71b45 1285 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1286 return -EINVAL;
1287
cf5d5941
BB
1288 /*
1289 * Grab references on all the modules we'll need, so the subsystems
1290 * don't dance around before rebind_subsystems attaches them. This may
1291 * take duplicate reference counts on a subsystem that's already used,
1292 * but rebind_subsystems handles this case.
1293 */
be45c900 1294 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1295 unsigned long bit = 1UL << i;
1296
a1a71b45 1297 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1298 continue;
1299 if (!try_module_get(subsys[i]->module)) {
1300 module_pin_failed = true;
1301 break;
1302 }
1303 }
1304 if (module_pin_failed) {
1305 /*
1306 * oops, one of the modules was going away. this means that we
1307 * raced with a module_delete call, and to the user this is
1308 * essentially a "subsystem doesn't exist" case.
1309 */
be45c900 1310 for (i--; i >= 0; i--) {
cf5d5941
BB
1311 /* drop refcounts only on the ones we took */
1312 unsigned long bit = 1UL << i;
1313
a1a71b45 1314 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1315 continue;
1316 module_put(subsys[i]->module);
1317 }
1318 return -ENOENT;
1319 }
1320
ddbcc7e8
PM
1321 return 0;
1322}
1323
a1a71b45 1324static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941
BB
1325{
1326 int i;
be45c900 1327 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1328 unsigned long bit = 1UL << i;
1329
a1a71b45 1330 if (!(bit & subsys_mask))
cf5d5941
BB
1331 continue;
1332 module_put(subsys[i]->module);
1333 }
1334}
1335
ddbcc7e8
PM
1336static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1337{
1338 int ret = 0;
1339 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1340 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1341 struct cgroup_sb_opts opts;
a1a71b45 1342 unsigned long added_mask, removed_mask;
ddbcc7e8 1343
bd89aabc 1344 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1345 mutex_lock(&cgroup_mutex);
e25e2cbb 1346 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1347
1348 /* See what subsystems are wanted */
1349 ret = parse_cgroupfs_options(data, &opts);
1350 if (ret)
1351 goto out_unlock;
1352
a1a71b45 1353 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
8b5a5a9d
TH
1354 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1355 task_tgid_nr(current), current->comm);
1356
a1a71b45
AR
1357 added_mask = opts.subsys_mask & ~root->subsys_mask;
1358 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1359
cf5d5941
BB
1360 /* Don't allow flags or name to change at remount */
1361 if (opts.flags != root->flags ||
1362 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1363 ret = -EINVAL;
a1a71b45 1364 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1365 goto out_unlock;
1366 }
1367
7083d037
G
1368 /*
1369 * Clear out the files of subsystems that should be removed, do
1370 * this before rebind_subsystems, since rebind_subsystems may
1371 * change this hierarchy's subsys_list.
1372 */
1373 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1374
a1a71b45 1375 ret = rebind_subsystems(root, opts.subsys_mask);
cf5d5941 1376 if (ret) {
7083d037
G
1377 /* rebind_subsystems failed, re-populate the removed files */
1378 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1379 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1380 goto out_unlock;
cf5d5941 1381 }
ddbcc7e8 1382
13af07df 1383 /* re-populate subsystem files */
a1a71b45 1384 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1385
81a6a5cd
PM
1386 if (opts.release_agent)
1387 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1388 out_unlock:
66bdc9cf 1389 kfree(opts.release_agent);
c6d57f33 1390 kfree(opts.name);
e25e2cbb 1391 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1392 mutex_unlock(&cgroup_mutex);
bd89aabc 1393 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1394 return ret;
1395}
1396
b87221de 1397static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1398 .statfs = simple_statfs,
1399 .drop_inode = generic_delete_inode,
1400 .show_options = cgroup_show_options,
1401 .remount_fs = cgroup_remount,
1402};
1403
cc31edce
PM
1404static void init_cgroup_housekeeping(struct cgroup *cgrp)
1405{
1406 INIT_LIST_HEAD(&cgrp->sibling);
1407 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1408 INIT_LIST_HEAD(&cgrp->files);
cc31edce 1409 INIT_LIST_HEAD(&cgrp->css_sets);
2243076a 1410 INIT_LIST_HEAD(&cgrp->allcg_node);
cc31edce 1411 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30 1412 INIT_LIST_HEAD(&cgrp->pidlists);
be445626 1413 INIT_WORK(&cgrp->free_work, cgroup_free_fn);
72a8cb30 1414 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1415 INIT_LIST_HEAD(&cgrp->event_list);
1416 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1417 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1418}
c6d57f33 1419
ddbcc7e8
PM
1420static void init_cgroup_root(struct cgroupfs_root *root)
1421{
bd89aabc 1422 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1423
ddbcc7e8
PM
1424 INIT_LIST_HEAD(&root->subsys_list);
1425 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1426 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1427 root->number_of_cgroups = 1;
bd89aabc 1428 cgrp->root = root;
65dff759 1429 cgrp->name = &root_cgroup_name;
bd89aabc 1430 cgrp->top_cgroup = cgrp;
cc31edce 1431 init_cgroup_housekeeping(cgrp);
fddfb02a 1432 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
ddbcc7e8
PM
1433}
1434
2c6ab6d2
PM
1435static bool init_root_id(struct cgroupfs_root *root)
1436{
1437 int ret = 0;
1438
1439 do {
1440 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1441 return false;
1442 spin_lock(&hierarchy_id_lock);
1443 /* Try to allocate the next unused ID */
1444 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1445 &root->hierarchy_id);
1446 if (ret == -ENOSPC)
1447 /* Try again starting from 0 */
1448 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1449 if (!ret) {
1450 next_hierarchy_id = root->hierarchy_id + 1;
1451 } else if (ret != -EAGAIN) {
1452 /* Can only get here if the 31-bit IDR is full ... */
1453 BUG_ON(ret);
1454 }
1455 spin_unlock(&hierarchy_id_lock);
1456 } while (ret);
1457 return true;
1458}
1459
ddbcc7e8
PM
1460static int cgroup_test_super(struct super_block *sb, void *data)
1461{
c6d57f33 1462 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1463 struct cgroupfs_root *root = sb->s_fs_info;
1464
c6d57f33
PM
1465 /* If we asked for a name then it must match */
1466 if (opts->name && strcmp(opts->name, root->name))
1467 return 0;
ddbcc7e8 1468
2c6ab6d2
PM
1469 /*
1470 * If we asked for subsystems (or explicitly for no
1471 * subsystems) then they must match
1472 */
a1a71b45
AR
1473 if ((opts->subsys_mask || opts->none)
1474 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1475 return 0;
1476
1477 return 1;
1478}
1479
c6d57f33
PM
1480static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1481{
1482 struct cgroupfs_root *root;
1483
a1a71b45 1484 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1485 return NULL;
1486
1487 root = kzalloc(sizeof(*root), GFP_KERNEL);
1488 if (!root)
1489 return ERR_PTR(-ENOMEM);
1490
2c6ab6d2
PM
1491 if (!init_root_id(root)) {
1492 kfree(root);
1493 return ERR_PTR(-ENOMEM);
1494 }
c6d57f33 1495 init_cgroup_root(root);
2c6ab6d2 1496
a1a71b45 1497 root->subsys_mask = opts->subsys_mask;
c6d57f33 1498 root->flags = opts->flags;
0a950f65 1499 ida_init(&root->cgroup_ida);
c6d57f33
PM
1500 if (opts->release_agent)
1501 strcpy(root->release_agent_path, opts->release_agent);
1502 if (opts->name)
1503 strcpy(root->name, opts->name);
2260e7fc
TH
1504 if (opts->cpuset_clone_children)
1505 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1506 return root;
1507}
1508
2c6ab6d2
PM
1509static void cgroup_drop_root(struct cgroupfs_root *root)
1510{
1511 if (!root)
1512 return;
1513
1514 BUG_ON(!root->hierarchy_id);
1515 spin_lock(&hierarchy_id_lock);
1516 ida_remove(&hierarchy_ida, root->hierarchy_id);
1517 spin_unlock(&hierarchy_id_lock);
0a950f65 1518 ida_destroy(&root->cgroup_ida);
2c6ab6d2
PM
1519 kfree(root);
1520}
1521
ddbcc7e8
PM
1522static int cgroup_set_super(struct super_block *sb, void *data)
1523{
1524 int ret;
c6d57f33
PM
1525 struct cgroup_sb_opts *opts = data;
1526
1527 /* If we don't have a new root, we can't set up a new sb */
1528 if (!opts->new_root)
1529 return -EINVAL;
1530
a1a71b45 1531 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1532
1533 ret = set_anon_super(sb, NULL);
1534 if (ret)
1535 return ret;
1536
c6d57f33
PM
1537 sb->s_fs_info = opts->new_root;
1538 opts->new_root->sb = sb;
ddbcc7e8
PM
1539
1540 sb->s_blocksize = PAGE_CACHE_SIZE;
1541 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1542 sb->s_magic = CGROUP_SUPER_MAGIC;
1543 sb->s_op = &cgroup_ops;
1544
1545 return 0;
1546}
1547
1548static int cgroup_get_rootdir(struct super_block *sb)
1549{
0df6a63f
AV
1550 static const struct dentry_operations cgroup_dops = {
1551 .d_iput = cgroup_diput,
c72a04e3 1552 .d_delete = cgroup_delete,
0df6a63f
AV
1553 };
1554
ddbcc7e8
PM
1555 struct inode *inode =
1556 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1557
1558 if (!inode)
1559 return -ENOMEM;
1560
ddbcc7e8
PM
1561 inode->i_fop = &simple_dir_operations;
1562 inode->i_op = &cgroup_dir_inode_operations;
1563 /* directories start off with i_nlink == 2 (for "." entry) */
1564 inc_nlink(inode);
48fde701
AV
1565 sb->s_root = d_make_root(inode);
1566 if (!sb->s_root)
ddbcc7e8 1567 return -ENOMEM;
0df6a63f
AV
1568 /* for everything else we want ->d_op set */
1569 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1570 return 0;
1571}
1572
f7e83571 1573static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1574 int flags, const char *unused_dev_name,
f7e83571 1575 void *data)
ddbcc7e8
PM
1576{
1577 struct cgroup_sb_opts opts;
c6d57f33 1578 struct cgroupfs_root *root;
ddbcc7e8
PM
1579 int ret = 0;
1580 struct super_block *sb;
c6d57f33 1581 struct cgroupfs_root *new_root;
e25e2cbb 1582 struct inode *inode;
ddbcc7e8
PM
1583
1584 /* First find the desired set of subsystems */
aae8aab4 1585 mutex_lock(&cgroup_mutex);
ddbcc7e8 1586 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1587 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1588 if (ret)
1589 goto out_err;
ddbcc7e8 1590
c6d57f33
PM
1591 /*
1592 * Allocate a new cgroup root. We may not need it if we're
1593 * reusing an existing hierarchy.
1594 */
1595 new_root = cgroup_root_from_opts(&opts);
1596 if (IS_ERR(new_root)) {
1597 ret = PTR_ERR(new_root);
cf5d5941 1598 goto drop_modules;
81a6a5cd 1599 }
c6d57f33 1600 opts.new_root = new_root;
ddbcc7e8 1601
c6d57f33 1602 /* Locate an existing or new sb for this hierarchy */
9249e17f 1603 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1604 if (IS_ERR(sb)) {
c6d57f33 1605 ret = PTR_ERR(sb);
2c6ab6d2 1606 cgroup_drop_root(opts.new_root);
cf5d5941 1607 goto drop_modules;
ddbcc7e8
PM
1608 }
1609
c6d57f33
PM
1610 root = sb->s_fs_info;
1611 BUG_ON(!root);
1612 if (root == opts.new_root) {
1613 /* We used the new root structure, so this is a new hierarchy */
1614 struct list_head tmp_cg_links;
c12f65d4 1615 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1616 struct cgroupfs_root *existing_root;
2ce9738b 1617 const struct cred *cred;
28fd5dfc 1618 int i;
0ac801fe 1619 struct css_set *cg;
ddbcc7e8
PM
1620
1621 BUG_ON(sb->s_root != NULL);
1622
1623 ret = cgroup_get_rootdir(sb);
1624 if (ret)
1625 goto drop_new_super;
817929ec 1626 inode = sb->s_root->d_inode;
ddbcc7e8 1627
817929ec 1628 mutex_lock(&inode->i_mutex);
ddbcc7e8 1629 mutex_lock(&cgroup_mutex);
e25e2cbb 1630 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1631
e25e2cbb
TH
1632 /* Check for name clashes with existing mounts */
1633 ret = -EBUSY;
1634 if (strlen(root->name))
1635 for_each_active_root(existing_root)
1636 if (!strcmp(existing_root->name, root->name))
1637 goto unlock_drop;
c6d57f33 1638
817929ec
PM
1639 /*
1640 * We're accessing css_set_count without locking
1641 * css_set_lock here, but that's OK - it can only be
1642 * increased by someone holding cgroup_lock, and
1643 * that's us. The worst that can happen is that we
1644 * have some link structures left over
1645 */
1646 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1647 if (ret)
1648 goto unlock_drop;
817929ec 1649
a1a71b45 1650 ret = rebind_subsystems(root, root->subsys_mask);
ddbcc7e8 1651 if (ret == -EBUSY) {
c6d57f33 1652 free_cg_links(&tmp_cg_links);
e25e2cbb 1653 goto unlock_drop;
ddbcc7e8 1654 }
cf5d5941
BB
1655 /*
1656 * There must be no failure case after here, since rebinding
1657 * takes care of subsystems' refcounts, which are explicitly
1658 * dropped in the failure exit path.
1659 */
ddbcc7e8
PM
1660
1661 /* EBUSY should be the only error here */
1662 BUG_ON(ret);
1663
1664 list_add(&root->root_list, &roots);
817929ec 1665 root_count++;
ddbcc7e8 1666
c12f65d4 1667 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1668 root->top_cgroup.dentry = sb->s_root;
1669
817929ec
PM
1670 /* Link the top cgroup in this hierarchy into all
1671 * the css_set objects */
1672 write_lock(&css_set_lock);
b67bfe0d 1673 hash_for_each(css_set_table, i, cg, hlist)
0ac801fe 1674 link_css_set(&tmp_cg_links, cg, root_cgrp);
817929ec
PM
1675 write_unlock(&css_set_lock);
1676
1677 free_cg_links(&tmp_cg_links);
1678
c12f65d4 1679 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1680 BUG_ON(root->number_of_cgroups != 1);
1681
2ce9738b 1682 cred = override_creds(&init_cred);
a1a71b45 1683 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1684 revert_creds(cred);
e25e2cbb 1685 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1686 mutex_unlock(&cgroup_mutex);
34f77a90 1687 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1688 } else {
1689 /*
1690 * We re-used an existing hierarchy - the new root (if
1691 * any) is not needed
1692 */
2c6ab6d2 1693 cgroup_drop_root(opts.new_root);
cf5d5941 1694 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1695 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1696 }
1697
c6d57f33
PM
1698 kfree(opts.release_agent);
1699 kfree(opts.name);
f7e83571 1700 return dget(sb->s_root);
ddbcc7e8 1701
e25e2cbb
TH
1702 unlock_drop:
1703 mutex_unlock(&cgroup_root_mutex);
1704 mutex_unlock(&cgroup_mutex);
1705 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1706 drop_new_super:
6f5bbff9 1707 deactivate_locked_super(sb);
cf5d5941 1708 drop_modules:
a1a71b45 1709 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1710 out_err:
1711 kfree(opts.release_agent);
1712 kfree(opts.name);
f7e83571 1713 return ERR_PTR(ret);
ddbcc7e8
PM
1714}
1715
1716static void cgroup_kill_sb(struct super_block *sb) {
1717 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1718 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1719 int ret;
71cbb949
KM
1720 struct cg_cgroup_link *link;
1721 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1722
1723 BUG_ON(!root);
1724
1725 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1726 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1727
1728 mutex_lock(&cgroup_mutex);
e25e2cbb 1729 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1730
1731 /* Rebind all subsystems back to the default hierarchy */
1732 ret = rebind_subsystems(root, 0);
1733 /* Shouldn't be able to fail ... */
1734 BUG_ON(ret);
1735
817929ec
PM
1736 /*
1737 * Release all the links from css_sets to this hierarchy's
1738 * root cgroup
1739 */
1740 write_lock(&css_set_lock);
71cbb949
KM
1741
1742 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1743 cgrp_link_list) {
817929ec 1744 list_del(&link->cg_link_list);
bd89aabc 1745 list_del(&link->cgrp_link_list);
817929ec
PM
1746 kfree(link);
1747 }
1748 write_unlock(&css_set_lock);
1749
839ec545
PM
1750 if (!list_empty(&root->root_list)) {
1751 list_del(&root->root_list);
1752 root_count--;
1753 }
e5f6a860 1754
e25e2cbb 1755 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1756 mutex_unlock(&cgroup_mutex);
1757
03b1cde6
AR
1758 simple_xattrs_free(&cgrp->xattrs);
1759
ddbcc7e8 1760 kill_litter_super(sb);
2c6ab6d2 1761 cgroup_drop_root(root);
ddbcc7e8
PM
1762}
1763
1764static struct file_system_type cgroup_fs_type = {
1765 .name = "cgroup",
f7e83571 1766 .mount = cgroup_mount,
ddbcc7e8
PM
1767 .kill_sb = cgroup_kill_sb,
1768};
1769
676db4af
GKH
1770static struct kobject *cgroup_kobj;
1771
a043e3b2
LZ
1772/**
1773 * cgroup_path - generate the path of a cgroup
1774 * @cgrp: the cgroup in question
1775 * @buf: the buffer to write the path into
1776 * @buflen: the length of the buffer
1777 *
65dff759
LZ
1778 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1779 *
1780 * We can't generate cgroup path using dentry->d_name, as accessing
1781 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1782 * inode's i_mutex, while on the other hand cgroup_path() can be called
1783 * with some irq-safe spinlocks held.
ddbcc7e8 1784 */
bd89aabc 1785int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1786{
65dff759 1787 int ret = -ENAMETOOLONG;
ddbcc7e8 1788 char *start;
febfcef6 1789
316eb661 1790 start = buf + buflen - 1;
316eb661 1791 *start = '\0';
9a9686b6 1792
65dff759
LZ
1793 rcu_read_lock();
1794 while (cgrp) {
1795 const char *name = cgroup_name(cgrp);
1796 int len;
1797
1798 len = strlen(name);
ddbcc7e8 1799 if ((start -= len) < buf)
65dff759
LZ
1800 goto out;
1801 memcpy(start, name, len);
9a9686b6 1802
bd89aabc 1803 if (!cgrp->parent)
65dff759
LZ
1804 break;
1805
ddbcc7e8 1806 if (--start < buf)
65dff759 1807 goto out;
ddbcc7e8 1808 *start = '/';
65dff759
LZ
1809
1810 cgrp = cgrp->parent;
ddbcc7e8 1811 }
65dff759 1812 ret = 0;
ddbcc7e8 1813 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1814out:
1815 rcu_read_unlock();
1816 return ret;
ddbcc7e8 1817}
67523c48 1818EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1819
2f7ee569
TH
1820/*
1821 * Control Group taskset
1822 */
134d3373
TH
1823struct task_and_cgroup {
1824 struct task_struct *task;
1825 struct cgroup *cgrp;
61d1d219 1826 struct css_set *cg;
134d3373
TH
1827};
1828
2f7ee569
TH
1829struct cgroup_taskset {
1830 struct task_and_cgroup single;
1831 struct flex_array *tc_array;
1832 int tc_array_len;
1833 int idx;
1834 struct cgroup *cur_cgrp;
1835};
1836
1837/**
1838 * cgroup_taskset_first - reset taskset and return the first task
1839 * @tset: taskset of interest
1840 *
1841 * @tset iteration is initialized and the first task is returned.
1842 */
1843struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1844{
1845 if (tset->tc_array) {
1846 tset->idx = 0;
1847 return cgroup_taskset_next(tset);
1848 } else {
1849 tset->cur_cgrp = tset->single.cgrp;
1850 return tset->single.task;
1851 }
1852}
1853EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1854
1855/**
1856 * cgroup_taskset_next - iterate to the next task in taskset
1857 * @tset: taskset of interest
1858 *
1859 * Return the next task in @tset. Iteration must have been initialized
1860 * with cgroup_taskset_first().
1861 */
1862struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1863{
1864 struct task_and_cgroup *tc;
1865
1866 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1867 return NULL;
1868
1869 tc = flex_array_get(tset->tc_array, tset->idx++);
1870 tset->cur_cgrp = tc->cgrp;
1871 return tc->task;
1872}
1873EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1874
1875/**
1876 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1877 * @tset: taskset of interest
1878 *
1879 * Return the cgroup for the current (last returned) task of @tset. This
1880 * function must be preceded by either cgroup_taskset_first() or
1881 * cgroup_taskset_next().
1882 */
1883struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1884{
1885 return tset->cur_cgrp;
1886}
1887EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1888
1889/**
1890 * cgroup_taskset_size - return the number of tasks in taskset
1891 * @tset: taskset of interest
1892 */
1893int cgroup_taskset_size(struct cgroup_taskset *tset)
1894{
1895 return tset->tc_array ? tset->tc_array_len : 1;
1896}
1897EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1898
1899
74a1166d
BB
1900/*
1901 * cgroup_task_migrate - move a task from one cgroup to another.
1902 *
d0b2fdd2 1903 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1904 */
1e2ccd1c 1905static void cgroup_task_migrate(struct cgroup *oldcgrp,
61d1d219 1906 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1907{
1908 struct css_set *oldcg;
74a1166d
BB
1909
1910 /*
026085ef
MSB
1911 * We are synchronized through threadgroup_lock() against PF_EXITING
1912 * setting such that we can't race against cgroup_exit() changing the
1913 * css_set to init_css_set and dropping the old one.
74a1166d 1914 */
c84cdf75 1915 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1916 oldcg = tsk->cgroups;
74a1166d 1917
74a1166d 1918 task_lock(tsk);
74a1166d
BB
1919 rcu_assign_pointer(tsk->cgroups, newcg);
1920 task_unlock(tsk);
1921
1922 /* Update the css_set linked lists if we're using them */
1923 write_lock(&css_set_lock);
1924 if (!list_empty(&tsk->cg_list))
1925 list_move(&tsk->cg_list, &newcg->tasks);
1926 write_unlock(&css_set_lock);
1927
1928 /*
1929 * We just gained a reference on oldcg by taking it from the task. As
1930 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1931 * it here; it will be freed under RCU.
1932 */
74a1166d 1933 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1f5320d5 1934 put_css_set(oldcg);
74a1166d
BB
1935}
1936
74a1166d 1937/**
081aa458 1938 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1939 * @cgrp: the cgroup to attach to
081aa458
LZ
1940 * @tsk: the task or the leader of the threadgroup to be attached
1941 * @threadgroup: attach the whole threadgroup?
74a1166d 1942 *
257058ae 1943 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1944 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1945 */
47cfcd09
TH
1946static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1947 bool threadgroup)
74a1166d
BB
1948{
1949 int retval, i, group_size;
1950 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1951 struct cgroupfs_root *root = cgrp->root;
1952 /* threadgroup list cursor and array */
081aa458 1953 struct task_struct *leader = tsk;
134d3373 1954 struct task_and_cgroup *tc;
d846687d 1955 struct flex_array *group;
2f7ee569 1956 struct cgroup_taskset tset = { };
74a1166d
BB
1957
1958 /*
1959 * step 0: in order to do expensive, possibly blocking operations for
1960 * every thread, we cannot iterate the thread group list, since it needs
1961 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1962 * group - group_rwsem prevents new threads from appearing, and if
1963 * threads exit, this will just be an over-estimate.
74a1166d 1964 */
081aa458
LZ
1965 if (threadgroup)
1966 group_size = get_nr_threads(tsk);
1967 else
1968 group_size = 1;
d846687d 1969 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1970 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1971 if (!group)
1972 return -ENOMEM;
d846687d 1973 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1974 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1975 if (retval)
1976 goto out_free_group_list;
74a1166d 1977
74a1166d 1978 i = 0;
fb5d2b4c
MSB
1979 /*
1980 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1981 * already PF_EXITING could be freed from underneath us unless we
1982 * take an rcu_read_lock.
1983 */
1984 rcu_read_lock();
74a1166d 1985 do {
134d3373
TH
1986 struct task_and_cgroup ent;
1987
cd3d0952
TH
1988 /* @tsk either already exited or can't exit until the end */
1989 if (tsk->flags & PF_EXITING)
1990 continue;
1991
74a1166d
BB
1992 /* as per above, nr_threads may decrease, but not increase. */
1993 BUG_ON(i >= group_size);
134d3373
TH
1994 ent.task = tsk;
1995 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
1996 /* nothing to do if this task is already in the cgroup */
1997 if (ent.cgrp == cgrp)
1998 continue;
61d1d219
MSB
1999 /*
2000 * saying GFP_ATOMIC has no effect here because we did prealloc
2001 * earlier, but it's good form to communicate our expectations.
2002 */
134d3373 2003 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2004 BUG_ON(retval != 0);
74a1166d 2005 i++;
081aa458
LZ
2006
2007 if (!threadgroup)
2008 break;
74a1166d 2009 } while_each_thread(leader, tsk);
fb5d2b4c 2010 rcu_read_unlock();
74a1166d
BB
2011 /* remember the number of threads in the array for later. */
2012 group_size = i;
2f7ee569
TH
2013 tset.tc_array = group;
2014 tset.tc_array_len = group_size;
74a1166d 2015
134d3373
TH
2016 /* methods shouldn't be called if no task is actually migrating */
2017 retval = 0;
892a2b90 2018 if (!group_size)
b07ef774 2019 goto out_free_group_list;
134d3373 2020
74a1166d
BB
2021 /*
2022 * step 1: check that we can legitimately attach to the cgroup.
2023 */
2024 for_each_subsys(root, ss) {
2025 if (ss->can_attach) {
761b3ef5 2026 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2027 if (retval) {
2028 failed_ss = ss;
2029 goto out_cancel_attach;
2030 }
2031 }
74a1166d
BB
2032 }
2033
2034 /*
2035 * step 2: make sure css_sets exist for all threads to be migrated.
2036 * we use find_css_set, which allocates a new one if necessary.
2037 */
74a1166d 2038 for (i = 0; i < group_size; i++) {
134d3373 2039 tc = flex_array_get(group, i);
61d1d219
MSB
2040 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2041 if (!tc->cg) {
2042 retval = -ENOMEM;
2043 goto out_put_css_set_refs;
74a1166d
BB
2044 }
2045 }
2046
2047 /*
494c167c
TH
2048 * step 3: now that we're guaranteed success wrt the css_sets,
2049 * proceed to move all tasks to the new cgroup. There are no
2050 * failure cases after here, so this is the commit point.
74a1166d 2051 */
74a1166d 2052 for (i = 0; i < group_size; i++) {
134d3373 2053 tc = flex_array_get(group, i);
1e2ccd1c 2054 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2055 }
2056 /* nothing is sensitive to fork() after this point. */
2057
2058 /*
494c167c 2059 * step 4: do subsystem attach callbacks.
74a1166d
BB
2060 */
2061 for_each_subsys(root, ss) {
2062 if (ss->attach)
761b3ef5 2063 ss->attach(cgrp, &tset);
74a1166d
BB
2064 }
2065
2066 /*
2067 * step 5: success! and cleanup
2068 */
74a1166d 2069 retval = 0;
61d1d219
MSB
2070out_put_css_set_refs:
2071 if (retval) {
2072 for (i = 0; i < group_size; i++) {
2073 tc = flex_array_get(group, i);
2074 if (!tc->cg)
2075 break;
2076 put_css_set(tc->cg);
2077 }
74a1166d
BB
2078 }
2079out_cancel_attach:
74a1166d
BB
2080 if (retval) {
2081 for_each_subsys(root, ss) {
494c167c 2082 if (ss == failed_ss)
74a1166d 2083 break;
74a1166d 2084 if (ss->cancel_attach)
761b3ef5 2085 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2086 }
2087 }
74a1166d 2088out_free_group_list:
d846687d 2089 flex_array_free(group);
74a1166d
BB
2090 return retval;
2091}
2092
2093/*
2094 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2095 * function to attach either it or all tasks in its threadgroup. Will lock
2096 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2097 */
74a1166d 2098static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2099{
bbcb81d0 2100 struct task_struct *tsk;
c69e8d9c 2101 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2102 int ret;
2103
74a1166d
BB
2104 if (!cgroup_lock_live_group(cgrp))
2105 return -ENODEV;
2106
b78949eb
MSB
2107retry_find_task:
2108 rcu_read_lock();
bbcb81d0 2109 if (pid) {
73507f33 2110 tsk = find_task_by_vpid(pid);
74a1166d
BB
2111 if (!tsk) {
2112 rcu_read_unlock();
b78949eb
MSB
2113 ret= -ESRCH;
2114 goto out_unlock_cgroup;
bbcb81d0 2115 }
74a1166d
BB
2116 /*
2117 * even if we're attaching all tasks in the thread group, we
2118 * only need to check permissions on one of them.
2119 */
c69e8d9c 2120 tcred = __task_cred(tsk);
14a590c3
EB
2121 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2122 !uid_eq(cred->euid, tcred->uid) &&
2123 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2124 rcu_read_unlock();
b78949eb
MSB
2125 ret = -EACCES;
2126 goto out_unlock_cgroup;
bbcb81d0 2127 }
b78949eb
MSB
2128 } else
2129 tsk = current;
cd3d0952
TH
2130
2131 if (threadgroup)
b78949eb 2132 tsk = tsk->group_leader;
c4c27fbd
MG
2133
2134 /*
2135 * Workqueue threads may acquire PF_THREAD_BOUND and become
2136 * trapped in a cpuset, or RT worker may be born in a cgroup
2137 * with no rt_runtime allocated. Just say no.
2138 */
2139 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2140 ret = -EINVAL;
2141 rcu_read_unlock();
2142 goto out_unlock_cgroup;
2143 }
2144
b78949eb
MSB
2145 get_task_struct(tsk);
2146 rcu_read_unlock();
2147
2148 threadgroup_lock(tsk);
2149 if (threadgroup) {
2150 if (!thread_group_leader(tsk)) {
2151 /*
2152 * a race with de_thread from another thread's exec()
2153 * may strip us of our leadership, if this happens,
2154 * there is no choice but to throw this task away and
2155 * try again; this is
2156 * "double-double-toil-and-trouble-check locking".
2157 */
2158 threadgroup_unlock(tsk);
2159 put_task_struct(tsk);
2160 goto retry_find_task;
2161 }
081aa458
LZ
2162 }
2163
2164 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2165
cd3d0952
TH
2166 threadgroup_unlock(tsk);
2167
bbcb81d0 2168 put_task_struct(tsk);
b78949eb 2169out_unlock_cgroup:
47cfcd09 2170 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2171 return ret;
2172}
2173
7ae1bad9
TH
2174/**
2175 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2176 * @from: attach to all cgroups of a given task
2177 * @tsk: the task to be attached
2178 */
2179int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2180{
2181 struct cgroupfs_root *root;
2182 int retval = 0;
2183
47cfcd09 2184 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2185 for_each_active_root(root) {
2186 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2187
2188 retval = cgroup_attach_task(from_cg, tsk, false);
2189 if (retval)
2190 break;
2191 }
47cfcd09 2192 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2193
2194 return retval;
2195}
2196EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2197
af351026 2198static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2199{
2200 return attach_task_by_pid(cgrp, pid, false);
2201}
2202
2203static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2204{
b78949eb 2205 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2206}
2207
e788e066
PM
2208static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2209 const char *buffer)
2210{
2211 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2212 if (strlen(buffer) >= PATH_MAX)
2213 return -EINVAL;
e788e066
PM
2214 if (!cgroup_lock_live_group(cgrp))
2215 return -ENODEV;
e25e2cbb 2216 mutex_lock(&cgroup_root_mutex);
e788e066 2217 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2218 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2219 mutex_unlock(&cgroup_mutex);
e788e066
PM
2220 return 0;
2221}
2222
2223static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2224 struct seq_file *seq)
2225{
2226 if (!cgroup_lock_live_group(cgrp))
2227 return -ENODEV;
2228 seq_puts(seq, cgrp->root->release_agent_path);
2229 seq_putc(seq, '\n');
47cfcd09 2230 mutex_unlock(&cgroup_mutex);
e788e066
PM
2231 return 0;
2232}
2233
84eea842
PM
2234/* A buffer size big enough for numbers or short strings */
2235#define CGROUP_LOCAL_BUFFER_SIZE 64
2236
e73d2c61 2237static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2238 struct file *file,
2239 const char __user *userbuf,
2240 size_t nbytes, loff_t *unused_ppos)
355e0c48 2241{
84eea842 2242 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2243 int retval = 0;
355e0c48
PM
2244 char *end;
2245
2246 if (!nbytes)
2247 return -EINVAL;
2248 if (nbytes >= sizeof(buffer))
2249 return -E2BIG;
2250 if (copy_from_user(buffer, userbuf, nbytes))
2251 return -EFAULT;
2252
2253 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2254 if (cft->write_u64) {
478988d3 2255 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2256 if (*end)
2257 return -EINVAL;
2258 retval = cft->write_u64(cgrp, cft, val);
2259 } else {
478988d3 2260 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2261 if (*end)
2262 return -EINVAL;
2263 retval = cft->write_s64(cgrp, cft, val);
2264 }
355e0c48
PM
2265 if (!retval)
2266 retval = nbytes;
2267 return retval;
2268}
2269
db3b1497
PM
2270static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2271 struct file *file,
2272 const char __user *userbuf,
2273 size_t nbytes, loff_t *unused_ppos)
2274{
84eea842 2275 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2276 int retval = 0;
2277 size_t max_bytes = cft->max_write_len;
2278 char *buffer = local_buffer;
2279
2280 if (!max_bytes)
2281 max_bytes = sizeof(local_buffer) - 1;
2282 if (nbytes >= max_bytes)
2283 return -E2BIG;
2284 /* Allocate a dynamic buffer if we need one */
2285 if (nbytes >= sizeof(local_buffer)) {
2286 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2287 if (buffer == NULL)
2288 return -ENOMEM;
2289 }
5a3eb9f6
LZ
2290 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2291 retval = -EFAULT;
2292 goto out;
2293 }
db3b1497
PM
2294
2295 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2296 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2297 if (!retval)
2298 retval = nbytes;
5a3eb9f6 2299out:
db3b1497
PM
2300 if (buffer != local_buffer)
2301 kfree(buffer);
2302 return retval;
2303}
2304
ddbcc7e8
PM
2305static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2306 size_t nbytes, loff_t *ppos)
2307{
2308 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2309 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2310
75139b82 2311 if (cgroup_is_removed(cgrp))
ddbcc7e8 2312 return -ENODEV;
355e0c48 2313 if (cft->write)
bd89aabc 2314 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2315 if (cft->write_u64 || cft->write_s64)
2316 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2317 if (cft->write_string)
2318 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2319 if (cft->trigger) {
2320 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2321 return ret ? ret : nbytes;
2322 }
355e0c48 2323 return -EINVAL;
ddbcc7e8
PM
2324}
2325
f4c753b7
PM
2326static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2327 struct file *file,
2328 char __user *buf, size_t nbytes,
2329 loff_t *ppos)
ddbcc7e8 2330{
84eea842 2331 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2332 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2333 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2334
2335 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2336}
2337
e73d2c61
PM
2338static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2339 struct file *file,
2340 char __user *buf, size_t nbytes,
2341 loff_t *ppos)
2342{
84eea842 2343 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2344 s64 val = cft->read_s64(cgrp, cft);
2345 int len = sprintf(tmp, "%lld\n", (long long) val);
2346
2347 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2348}
2349
ddbcc7e8
PM
2350static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2351 size_t nbytes, loff_t *ppos)
2352{
2353 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2354 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2355
75139b82 2356 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2357 return -ENODEV;
2358
2359 if (cft->read)
bd89aabc 2360 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2361 if (cft->read_u64)
2362 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2363 if (cft->read_s64)
2364 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2365 return -EINVAL;
2366}
2367
91796569
PM
2368/*
2369 * seqfile ops/methods for returning structured data. Currently just
2370 * supports string->u64 maps, but can be extended in future.
2371 */
2372
2373struct cgroup_seqfile_state {
2374 struct cftype *cft;
2375 struct cgroup *cgroup;
2376};
2377
2378static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2379{
2380 struct seq_file *sf = cb->state;
2381 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2382}
2383
2384static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2385{
2386 struct cgroup_seqfile_state *state = m->private;
2387 struct cftype *cft = state->cft;
29486df3
SH
2388 if (cft->read_map) {
2389 struct cgroup_map_cb cb = {
2390 .fill = cgroup_map_add,
2391 .state = m,
2392 };
2393 return cft->read_map(state->cgroup, cft, &cb);
2394 }
2395 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2396}
2397
96930a63 2398static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2399{
2400 struct seq_file *seq = file->private_data;
2401 kfree(seq->private);
2402 return single_release(inode, file);
2403}
2404
828c0950 2405static const struct file_operations cgroup_seqfile_operations = {
91796569 2406 .read = seq_read,
e788e066 2407 .write = cgroup_file_write,
91796569
PM
2408 .llseek = seq_lseek,
2409 .release = cgroup_seqfile_release,
2410};
2411
ddbcc7e8
PM
2412static int cgroup_file_open(struct inode *inode, struct file *file)
2413{
2414 int err;
2415 struct cftype *cft;
2416
2417 err = generic_file_open(inode, file);
2418 if (err)
2419 return err;
ddbcc7e8 2420 cft = __d_cft(file->f_dentry);
75139b82 2421
29486df3 2422 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2423 struct cgroup_seqfile_state *state =
2424 kzalloc(sizeof(*state), GFP_USER);
2425 if (!state)
2426 return -ENOMEM;
2427 state->cft = cft;
2428 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2429 file->f_op = &cgroup_seqfile_operations;
2430 err = single_open(file, cgroup_seqfile_show, state);
2431 if (err < 0)
2432 kfree(state);
2433 } else if (cft->open)
ddbcc7e8
PM
2434 err = cft->open(inode, file);
2435 else
2436 err = 0;
2437
2438 return err;
2439}
2440
2441static int cgroup_file_release(struct inode *inode, struct file *file)
2442{
2443 struct cftype *cft = __d_cft(file->f_dentry);
2444 if (cft->release)
2445 return cft->release(inode, file);
2446 return 0;
2447}
2448
2449/*
2450 * cgroup_rename - Only allow simple rename of directories in place.
2451 */
2452static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2453 struct inode *new_dir, struct dentry *new_dentry)
2454{
65dff759
LZ
2455 int ret;
2456 struct cgroup_name *name, *old_name;
2457 struct cgroup *cgrp;
2458
2459 /*
2460 * It's convinient to use parent dir's i_mutex to protected
2461 * cgrp->name.
2462 */
2463 lockdep_assert_held(&old_dir->i_mutex);
2464
ddbcc7e8
PM
2465 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2466 return -ENOTDIR;
2467 if (new_dentry->d_inode)
2468 return -EEXIST;
2469 if (old_dir != new_dir)
2470 return -EIO;
65dff759
LZ
2471
2472 cgrp = __d_cgrp(old_dentry);
2473
2474 name = cgroup_alloc_name(new_dentry);
2475 if (!name)
2476 return -ENOMEM;
2477
2478 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2479 if (ret) {
2480 kfree(name);
2481 return ret;
2482 }
2483
2484 old_name = cgrp->name;
2485 rcu_assign_pointer(cgrp->name, name);
2486
2487 kfree_rcu(old_name, rcu_head);
2488 return 0;
ddbcc7e8
PM
2489}
2490
03b1cde6
AR
2491static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2492{
2493 if (S_ISDIR(dentry->d_inode->i_mode))
2494 return &__d_cgrp(dentry)->xattrs;
2495 else
2496 return &__d_cft(dentry)->xattrs;
2497}
2498
2499static inline int xattr_enabled(struct dentry *dentry)
2500{
2501 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2502 return test_bit(ROOT_XATTR, &root->flags);
2503}
2504
2505static bool is_valid_xattr(const char *name)
2506{
2507 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2508 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2509 return true;
2510 return false;
2511}
2512
2513static int cgroup_setxattr(struct dentry *dentry, const char *name,
2514 const void *val, size_t size, int flags)
2515{
2516 if (!xattr_enabled(dentry))
2517 return -EOPNOTSUPP;
2518 if (!is_valid_xattr(name))
2519 return -EINVAL;
2520 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2521}
2522
2523static int cgroup_removexattr(struct dentry *dentry, const char *name)
2524{
2525 if (!xattr_enabled(dentry))
2526 return -EOPNOTSUPP;
2527 if (!is_valid_xattr(name))
2528 return -EINVAL;
2529 return simple_xattr_remove(__d_xattrs(dentry), name);
2530}
2531
2532static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2533 void *buf, size_t size)
2534{
2535 if (!xattr_enabled(dentry))
2536 return -EOPNOTSUPP;
2537 if (!is_valid_xattr(name))
2538 return -EINVAL;
2539 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2540}
2541
2542static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2543{
2544 if (!xattr_enabled(dentry))
2545 return -EOPNOTSUPP;
2546 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2547}
2548
828c0950 2549static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2550 .read = cgroup_file_read,
2551 .write = cgroup_file_write,
2552 .llseek = generic_file_llseek,
2553 .open = cgroup_file_open,
2554 .release = cgroup_file_release,
2555};
2556
03b1cde6
AR
2557static const struct inode_operations cgroup_file_inode_operations = {
2558 .setxattr = cgroup_setxattr,
2559 .getxattr = cgroup_getxattr,
2560 .listxattr = cgroup_listxattr,
2561 .removexattr = cgroup_removexattr,
2562};
2563
6e1d5dcc 2564static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2565 .lookup = cgroup_lookup,
ddbcc7e8
PM
2566 .mkdir = cgroup_mkdir,
2567 .rmdir = cgroup_rmdir,
2568 .rename = cgroup_rename,
03b1cde6
AR
2569 .setxattr = cgroup_setxattr,
2570 .getxattr = cgroup_getxattr,
2571 .listxattr = cgroup_listxattr,
2572 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2573};
2574
00cd8dd3 2575static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2576{
2577 if (dentry->d_name.len > NAME_MAX)
2578 return ERR_PTR(-ENAMETOOLONG);
2579 d_add(dentry, NULL);
2580 return NULL;
2581}
2582
0dea1168
KS
2583/*
2584 * Check if a file is a control file
2585 */
2586static inline struct cftype *__file_cft(struct file *file)
2587{
496ad9aa 2588 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2589 return ERR_PTR(-EINVAL);
2590 return __d_cft(file->f_dentry);
2591}
2592
a5e7ed32 2593static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2594 struct super_block *sb)
2595{
ddbcc7e8
PM
2596 struct inode *inode;
2597
2598 if (!dentry)
2599 return -ENOENT;
2600 if (dentry->d_inode)
2601 return -EEXIST;
2602
2603 inode = cgroup_new_inode(mode, sb);
2604 if (!inode)
2605 return -ENOMEM;
2606
2607 if (S_ISDIR(mode)) {
2608 inode->i_op = &cgroup_dir_inode_operations;
2609 inode->i_fop = &simple_dir_operations;
2610
2611 /* start off with i_nlink == 2 (for "." entry) */
2612 inc_nlink(inode);
28fd6f30 2613 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2614
b8a2df6a
TH
2615 /*
2616 * Control reaches here with cgroup_mutex held.
2617 * @inode->i_mutex should nest outside cgroup_mutex but we
2618 * want to populate it immediately without releasing
2619 * cgroup_mutex. As @inode isn't visible to anyone else
2620 * yet, trylock will always succeed without affecting
2621 * lockdep checks.
2622 */
2623 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2624 } else if (S_ISREG(mode)) {
2625 inode->i_size = 0;
2626 inode->i_fop = &cgroup_file_operations;
03b1cde6 2627 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2628 }
ddbcc7e8
PM
2629 d_instantiate(dentry, inode);
2630 dget(dentry); /* Extra count - pin the dentry in core */
2631 return 0;
2632}
2633
099fca32
LZ
2634/**
2635 * cgroup_file_mode - deduce file mode of a control file
2636 * @cft: the control file in question
2637 *
2638 * returns cft->mode if ->mode is not 0
2639 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2640 * returns S_IRUGO if it has only a read handler
2641 * returns S_IWUSR if it has only a write hander
2642 */
a5e7ed32 2643static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2644{
a5e7ed32 2645 umode_t mode = 0;
099fca32
LZ
2646
2647 if (cft->mode)
2648 return cft->mode;
2649
2650 if (cft->read || cft->read_u64 || cft->read_s64 ||
2651 cft->read_map || cft->read_seq_string)
2652 mode |= S_IRUGO;
2653
2654 if (cft->write || cft->write_u64 || cft->write_s64 ||
2655 cft->write_string || cft->trigger)
2656 mode |= S_IWUSR;
2657
2658 return mode;
2659}
2660
db0416b6 2661static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2662 struct cftype *cft)
ddbcc7e8 2663{
bd89aabc 2664 struct dentry *dir = cgrp->dentry;
05ef1d7c 2665 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2666 struct dentry *dentry;
05ef1d7c 2667 struct cfent *cfe;
ddbcc7e8 2668 int error;
a5e7ed32 2669 umode_t mode;
ddbcc7e8 2670 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2671
03b1cde6
AR
2672 simple_xattrs_init(&cft->xattrs);
2673
bd89aabc 2674 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2675 strcpy(name, subsys->name);
2676 strcat(name, ".");
2677 }
2678 strcat(name, cft->name);
05ef1d7c 2679
ddbcc7e8 2680 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2681
2682 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2683 if (!cfe)
2684 return -ENOMEM;
2685
ddbcc7e8 2686 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2687 if (IS_ERR(dentry)) {
ddbcc7e8 2688 error = PTR_ERR(dentry);
05ef1d7c
TH
2689 goto out;
2690 }
2691
2692 mode = cgroup_file_mode(cft);
2693 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2694 if (!error) {
2695 cfe->type = (void *)cft;
2696 cfe->dentry = dentry;
2697 dentry->d_fsdata = cfe;
2698 list_add_tail(&cfe->node, &parent->files);
2699 cfe = NULL;
2700 }
2701 dput(dentry);
2702out:
2703 kfree(cfe);
ddbcc7e8
PM
2704 return error;
2705}
2706
79578621 2707static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2708 struct cftype cfts[], bool is_add)
ddbcc7e8 2709{
03b1cde6 2710 struct cftype *cft;
db0416b6
TH
2711 int err, ret = 0;
2712
2713 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2
G
2714 /* does cft->flags tell us to skip this file on @cgrp? */
2715 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2716 continue;
2717 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2718 continue;
2719
2739d3cc 2720 if (is_add) {
79578621 2721 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2722 if (err)
2723 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2724 cft->name, err);
db0416b6 2725 ret = err;
2739d3cc
LZ
2726 } else {
2727 cgroup_rm_file(cgrp, cft);
db0416b6 2728 }
ddbcc7e8 2729 }
db0416b6 2730 return ret;
ddbcc7e8
PM
2731}
2732
8e3f6541
TH
2733static DEFINE_MUTEX(cgroup_cft_mutex);
2734
2735static void cgroup_cfts_prepare(void)
2736 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2737{
2738 /*
2739 * Thanks to the entanglement with vfs inode locking, we can't walk
2740 * the existing cgroups under cgroup_mutex and create files.
2741 * Instead, we increment reference on all cgroups and build list of
2742 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2743 * exclusive access to the field.
2744 */
2745 mutex_lock(&cgroup_cft_mutex);
2746 mutex_lock(&cgroup_mutex);
2747}
2748
2749static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2750 struct cftype *cfts, bool is_add)
8e3f6541
TH
2751 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2752{
2753 LIST_HEAD(pending);
2754 struct cgroup *cgrp, *n;
8e3f6541
TH
2755
2756 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2757 if (cfts && ss->root != &rootnode) {
2758 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2759 dget(cgrp->dentry);
2760 list_add_tail(&cgrp->cft_q_node, &pending);
2761 }
2762 }
2763
2764 mutex_unlock(&cgroup_mutex);
2765
2766 /*
2767 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2768 * files for all cgroups which were created before.
2769 */
2770 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2771 struct inode *inode = cgrp->dentry->d_inode;
2772
2773 mutex_lock(&inode->i_mutex);
2774 mutex_lock(&cgroup_mutex);
2775 if (!cgroup_is_removed(cgrp))
79578621 2776 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2777 mutex_unlock(&cgroup_mutex);
2778 mutex_unlock(&inode->i_mutex);
2779
2780 list_del_init(&cgrp->cft_q_node);
2781 dput(cgrp->dentry);
2782 }
2783
2784 mutex_unlock(&cgroup_cft_mutex);
2785}
2786
2787/**
2788 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2789 * @ss: target cgroup subsystem
2790 * @cfts: zero-length name terminated array of cftypes
2791 *
2792 * Register @cfts to @ss. Files described by @cfts are created for all
2793 * existing cgroups to which @ss is attached and all future cgroups will
2794 * have them too. This function can be called anytime whether @ss is
2795 * attached or not.
2796 *
2797 * Returns 0 on successful registration, -errno on failure. Note that this
2798 * function currently returns 0 as long as @cfts registration is successful
2799 * even if some file creation attempts on existing cgroups fail.
2800 */
03b1cde6 2801int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2802{
2803 struct cftype_set *set;
2804
2805 set = kzalloc(sizeof(*set), GFP_KERNEL);
2806 if (!set)
2807 return -ENOMEM;
2808
2809 cgroup_cfts_prepare();
2810 set->cfts = cfts;
2811 list_add_tail(&set->node, &ss->cftsets);
79578621 2812 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2813
2814 return 0;
2815}
2816EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2817
79578621
TH
2818/**
2819 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2820 * @ss: target cgroup subsystem
2821 * @cfts: zero-length name terminated array of cftypes
2822 *
2823 * Unregister @cfts from @ss. Files described by @cfts are removed from
2824 * all existing cgroups to which @ss is attached and all future cgroups
2825 * won't have them either. This function can be called anytime whether @ss
2826 * is attached or not.
2827 *
2828 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2829 * registered with @ss.
2830 */
03b1cde6 2831int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2832{
2833 struct cftype_set *set;
2834
2835 cgroup_cfts_prepare();
2836
2837 list_for_each_entry(set, &ss->cftsets, node) {
2838 if (set->cfts == cfts) {
2839 list_del_init(&set->node);
2840 cgroup_cfts_commit(ss, cfts, false);
2841 return 0;
2842 }
2843 }
2844
2845 cgroup_cfts_commit(ss, NULL, false);
2846 return -ENOENT;
2847}
2848
a043e3b2
LZ
2849/**
2850 * cgroup_task_count - count the number of tasks in a cgroup.
2851 * @cgrp: the cgroup in question
2852 *
2853 * Return the number of tasks in the cgroup.
2854 */
bd89aabc 2855int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2856{
2857 int count = 0;
71cbb949 2858 struct cg_cgroup_link *link;
817929ec
PM
2859
2860 read_lock(&css_set_lock);
71cbb949 2861 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2862 count += atomic_read(&link->cg->refcount);
817929ec
PM
2863 }
2864 read_unlock(&css_set_lock);
bbcb81d0
PM
2865 return count;
2866}
2867
817929ec
PM
2868/*
2869 * Advance a list_head iterator. The iterator should be positioned at
2870 * the start of a css_set
2871 */
bd89aabc 2872static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2873 struct cgroup_iter *it)
817929ec
PM
2874{
2875 struct list_head *l = it->cg_link;
2876 struct cg_cgroup_link *link;
2877 struct css_set *cg;
2878
2879 /* Advance to the next non-empty css_set */
2880 do {
2881 l = l->next;
bd89aabc 2882 if (l == &cgrp->css_sets) {
817929ec
PM
2883 it->cg_link = NULL;
2884 return;
2885 }
bd89aabc 2886 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2887 cg = link->cg;
2888 } while (list_empty(&cg->tasks));
2889 it->cg_link = l;
2890 it->task = cg->tasks.next;
2891}
2892
31a7df01
CW
2893/*
2894 * To reduce the fork() overhead for systems that are not actually
2895 * using their cgroups capability, we don't maintain the lists running
2896 * through each css_set to its tasks until we see the list actually
2897 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2898 */
3df91fe3 2899static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2900{
2901 struct task_struct *p, *g;
2902 write_lock(&css_set_lock);
2903 use_task_css_set_links = 1;
3ce3230a
FW
2904 /*
2905 * We need tasklist_lock because RCU is not safe against
2906 * while_each_thread(). Besides, a forking task that has passed
2907 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2908 * is not guaranteed to have its child immediately visible in the
2909 * tasklist if we walk through it with RCU.
2910 */
2911 read_lock(&tasklist_lock);
31a7df01
CW
2912 do_each_thread(g, p) {
2913 task_lock(p);
0e04388f
LZ
2914 /*
2915 * We should check if the process is exiting, otherwise
2916 * it will race with cgroup_exit() in that the list
2917 * entry won't be deleted though the process has exited.
2918 */
2919 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2920 list_add(&p->cg_list, &p->cgroups->tasks);
2921 task_unlock(p);
2922 } while_each_thread(g, p);
3ce3230a 2923 read_unlock(&tasklist_lock);
31a7df01
CW
2924 write_unlock(&css_set_lock);
2925}
2926
574bd9f7
TH
2927/**
2928 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2929 * @pos: the current position (%NULL to initiate traversal)
2930 * @cgroup: cgroup whose descendants to walk
2931 *
2932 * To be used by cgroup_for_each_descendant_pre(). Find the next
2933 * descendant to visit for pre-order traversal of @cgroup's descendants.
2934 */
2935struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2936 struct cgroup *cgroup)
2937{
2938 struct cgroup *next;
2939
2940 WARN_ON_ONCE(!rcu_read_lock_held());
2941
2942 /* if first iteration, pretend we just visited @cgroup */
2943 if (!pos) {
2944 if (list_empty(&cgroup->children))
2945 return NULL;
2946 pos = cgroup;
2947 }
2948
2949 /* visit the first child if exists */
2950 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
2951 if (next)
2952 return next;
2953
2954 /* no child, visit my or the closest ancestor's next sibling */
2955 do {
2956 next = list_entry_rcu(pos->sibling.next, struct cgroup,
2957 sibling);
2958 if (&next->sibling != &pos->parent->children)
2959 return next;
2960
2961 pos = pos->parent;
2962 } while (pos != cgroup);
2963
2964 return NULL;
2965}
2966EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
2967
12a9d2fe
TH
2968/**
2969 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
2970 * @pos: cgroup of interest
2971 *
2972 * Return the rightmost descendant of @pos. If there's no descendant,
2973 * @pos is returned. This can be used during pre-order traversal to skip
2974 * subtree of @pos.
2975 */
2976struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
2977{
2978 struct cgroup *last, *tmp;
2979
2980 WARN_ON_ONCE(!rcu_read_lock_held());
2981
2982 do {
2983 last = pos;
2984 /* ->prev isn't RCU safe, walk ->next till the end */
2985 pos = NULL;
2986 list_for_each_entry_rcu(tmp, &last->children, sibling)
2987 pos = tmp;
2988 } while (pos);
2989
2990 return last;
2991}
2992EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
2993
574bd9f7
TH
2994static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
2995{
2996 struct cgroup *last;
2997
2998 do {
2999 last = pos;
3000 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3001 sibling);
3002 } while (pos);
3003
3004 return last;
3005}
3006
3007/**
3008 * cgroup_next_descendant_post - find the next descendant for post-order walk
3009 * @pos: the current position (%NULL to initiate traversal)
3010 * @cgroup: cgroup whose descendants to walk
3011 *
3012 * To be used by cgroup_for_each_descendant_post(). Find the next
3013 * descendant to visit for post-order traversal of @cgroup's descendants.
3014 */
3015struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3016 struct cgroup *cgroup)
3017{
3018 struct cgroup *next;
3019
3020 WARN_ON_ONCE(!rcu_read_lock_held());
3021
3022 /* if first iteration, visit the leftmost descendant */
3023 if (!pos) {
3024 next = cgroup_leftmost_descendant(cgroup);
3025 return next != cgroup ? next : NULL;
3026 }
3027
3028 /* if there's an unvisited sibling, visit its leftmost descendant */
3029 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3030 if (&next->sibling != &pos->parent->children)
3031 return cgroup_leftmost_descendant(next);
3032
3033 /* no sibling left, visit parent */
3034 next = pos->parent;
3035 return next != cgroup ? next : NULL;
3036}
3037EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3038
bd89aabc 3039void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3040 __acquires(css_set_lock)
817929ec
PM
3041{
3042 /*
3043 * The first time anyone tries to iterate across a cgroup,
3044 * we need to enable the list linking each css_set to its
3045 * tasks, and fix up all existing tasks.
3046 */
31a7df01
CW
3047 if (!use_task_css_set_links)
3048 cgroup_enable_task_cg_lists();
3049
817929ec 3050 read_lock(&css_set_lock);
bd89aabc
PM
3051 it->cg_link = &cgrp->css_sets;
3052 cgroup_advance_iter(cgrp, it);
817929ec
PM
3053}
3054
bd89aabc 3055struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3056 struct cgroup_iter *it)
3057{
3058 struct task_struct *res;
3059 struct list_head *l = it->task;
2019f634 3060 struct cg_cgroup_link *link;
817929ec
PM
3061
3062 /* If the iterator cg is NULL, we have no tasks */
3063 if (!it->cg_link)
3064 return NULL;
3065 res = list_entry(l, struct task_struct, cg_list);
3066 /* Advance iterator to find next entry */
3067 l = l->next;
2019f634
LJ
3068 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3069 if (l == &link->cg->tasks) {
817929ec
PM
3070 /* We reached the end of this task list - move on to
3071 * the next cg_cgroup_link */
bd89aabc 3072 cgroup_advance_iter(cgrp, it);
817929ec
PM
3073 } else {
3074 it->task = l;
3075 }
3076 return res;
3077}
3078
bd89aabc 3079void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3080 __releases(css_set_lock)
817929ec
PM
3081{
3082 read_unlock(&css_set_lock);
3083}
3084
31a7df01
CW
3085static inline int started_after_time(struct task_struct *t1,
3086 struct timespec *time,
3087 struct task_struct *t2)
3088{
3089 int start_diff = timespec_compare(&t1->start_time, time);
3090 if (start_diff > 0) {
3091 return 1;
3092 } else if (start_diff < 0) {
3093 return 0;
3094 } else {
3095 /*
3096 * Arbitrarily, if two processes started at the same
3097 * time, we'll say that the lower pointer value
3098 * started first. Note that t2 may have exited by now
3099 * so this may not be a valid pointer any longer, but
3100 * that's fine - it still serves to distinguish
3101 * between two tasks started (effectively) simultaneously.
3102 */
3103 return t1 > t2;
3104 }
3105}
3106
3107/*
3108 * This function is a callback from heap_insert() and is used to order
3109 * the heap.
3110 * In this case we order the heap in descending task start time.
3111 */
3112static inline int started_after(void *p1, void *p2)
3113{
3114 struct task_struct *t1 = p1;
3115 struct task_struct *t2 = p2;
3116 return started_after_time(t1, &t2->start_time, t2);
3117}
3118
3119/**
3120 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3121 * @scan: struct cgroup_scanner containing arguments for the scan
3122 *
3123 * Arguments include pointers to callback functions test_task() and
3124 * process_task().
3125 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3126 * and if it returns true, call process_task() for it also.
3127 * The test_task pointer may be NULL, meaning always true (select all tasks).
3128 * Effectively duplicates cgroup_iter_{start,next,end}()
3129 * but does not lock css_set_lock for the call to process_task().
3130 * The struct cgroup_scanner may be embedded in any structure of the caller's
3131 * creation.
3132 * It is guaranteed that process_task() will act on every task that
3133 * is a member of the cgroup for the duration of this call. This
3134 * function may or may not call process_task() for tasks that exit
3135 * or move to a different cgroup during the call, or are forked or
3136 * move into the cgroup during the call.
3137 *
3138 * Note that test_task() may be called with locks held, and may in some
3139 * situations be called multiple times for the same task, so it should
3140 * be cheap.
3141 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3142 * pre-allocated and will be used for heap operations (and its "gt" member will
3143 * be overwritten), else a temporary heap will be used (allocation of which
3144 * may cause this function to fail).
3145 */
3146int cgroup_scan_tasks(struct cgroup_scanner *scan)
3147{
3148 int retval, i;
3149 struct cgroup_iter it;
3150 struct task_struct *p, *dropped;
3151 /* Never dereference latest_task, since it's not refcounted */
3152 struct task_struct *latest_task = NULL;
3153 struct ptr_heap tmp_heap;
3154 struct ptr_heap *heap;
3155 struct timespec latest_time = { 0, 0 };
3156
3157 if (scan->heap) {
3158 /* The caller supplied our heap and pre-allocated its memory */
3159 heap = scan->heap;
3160 heap->gt = &started_after;
3161 } else {
3162 /* We need to allocate our own heap memory */
3163 heap = &tmp_heap;
3164 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3165 if (retval)
3166 /* cannot allocate the heap */
3167 return retval;
3168 }
3169
3170 again:
3171 /*
3172 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3173 * to determine which are of interest, and using the scanner's
3174 * "process_task" callback to process any of them that need an update.
3175 * Since we don't want to hold any locks during the task updates,
3176 * gather tasks to be processed in a heap structure.
3177 * The heap is sorted by descending task start time.
3178 * If the statically-sized heap fills up, we overflow tasks that
3179 * started later, and in future iterations only consider tasks that
3180 * started after the latest task in the previous pass. This
3181 * guarantees forward progress and that we don't miss any tasks.
3182 */
3183 heap->size = 0;
3184 cgroup_iter_start(scan->cg, &it);
3185 while ((p = cgroup_iter_next(scan->cg, &it))) {
3186 /*
3187 * Only affect tasks that qualify per the caller's callback,
3188 * if he provided one
3189 */
3190 if (scan->test_task && !scan->test_task(p, scan))
3191 continue;
3192 /*
3193 * Only process tasks that started after the last task
3194 * we processed
3195 */
3196 if (!started_after_time(p, &latest_time, latest_task))
3197 continue;
3198 dropped = heap_insert(heap, p);
3199 if (dropped == NULL) {
3200 /*
3201 * The new task was inserted; the heap wasn't
3202 * previously full
3203 */
3204 get_task_struct(p);
3205 } else if (dropped != p) {
3206 /*
3207 * The new task was inserted, and pushed out a
3208 * different task
3209 */
3210 get_task_struct(p);
3211 put_task_struct(dropped);
3212 }
3213 /*
3214 * Else the new task was newer than anything already in
3215 * the heap and wasn't inserted
3216 */
3217 }
3218 cgroup_iter_end(scan->cg, &it);
3219
3220 if (heap->size) {
3221 for (i = 0; i < heap->size; i++) {
4fe91d51 3222 struct task_struct *q = heap->ptrs[i];
31a7df01 3223 if (i == 0) {
4fe91d51
PJ
3224 latest_time = q->start_time;
3225 latest_task = q;
31a7df01
CW
3226 }
3227 /* Process the task per the caller's callback */
4fe91d51
PJ
3228 scan->process_task(q, scan);
3229 put_task_struct(q);
31a7df01
CW
3230 }
3231 /*
3232 * If we had to process any tasks at all, scan again
3233 * in case some of them were in the middle of forking
3234 * children that didn't get processed.
3235 * Not the most efficient way to do it, but it avoids
3236 * having to take callback_mutex in the fork path
3237 */
3238 goto again;
3239 }
3240 if (heap == &tmp_heap)
3241 heap_free(&tmp_heap);
3242 return 0;
3243}
3244
8cc99345
TH
3245static void cgroup_transfer_one_task(struct task_struct *task,
3246 struct cgroup_scanner *scan)
3247{
3248 struct cgroup *new_cgroup = scan->data;
3249
47cfcd09 3250 mutex_lock(&cgroup_mutex);
8cc99345 3251 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3252 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3253}
3254
3255/**
3256 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3257 * @to: cgroup to which the tasks will be moved
3258 * @from: cgroup in which the tasks currently reside
3259 */
3260int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3261{
3262 struct cgroup_scanner scan;
3263
3264 scan.cg = from;
3265 scan.test_task = NULL; /* select all tasks in cgroup */
3266 scan.process_task = cgroup_transfer_one_task;
3267 scan.heap = NULL;
3268 scan.data = to;
3269
3270 return cgroup_scan_tasks(&scan);
3271}
3272
bbcb81d0 3273/*
102a775e 3274 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3275 *
3276 * Reading this file can return large amounts of data if a cgroup has
3277 * *lots* of attached tasks. So it may need several calls to read(),
3278 * but we cannot guarantee that the information we produce is correct
3279 * unless we produce it entirely atomically.
3280 *
bbcb81d0 3281 */
bbcb81d0 3282
24528255
LZ
3283/* which pidlist file are we talking about? */
3284enum cgroup_filetype {
3285 CGROUP_FILE_PROCS,
3286 CGROUP_FILE_TASKS,
3287};
3288
3289/*
3290 * A pidlist is a list of pids that virtually represents the contents of one
3291 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3292 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3293 * to the cgroup.
3294 */
3295struct cgroup_pidlist {
3296 /*
3297 * used to find which pidlist is wanted. doesn't change as long as
3298 * this particular list stays in the list.
3299 */
3300 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3301 /* array of xids */
3302 pid_t *list;
3303 /* how many elements the above list has */
3304 int length;
3305 /* how many files are using the current array */
3306 int use_count;
3307 /* each of these stored in a list by its cgroup */
3308 struct list_head links;
3309 /* pointer to the cgroup we belong to, for list removal purposes */
3310 struct cgroup *owner;
3311 /* protects the other fields */
3312 struct rw_semaphore mutex;
3313};
3314
d1d9fd33
BB
3315/*
3316 * The following two functions "fix" the issue where there are more pids
3317 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3318 * TODO: replace with a kernel-wide solution to this problem
3319 */
3320#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3321static void *pidlist_allocate(int count)
3322{
3323 if (PIDLIST_TOO_LARGE(count))
3324 return vmalloc(count * sizeof(pid_t));
3325 else
3326 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3327}
3328static void pidlist_free(void *p)
3329{
3330 if (is_vmalloc_addr(p))
3331 vfree(p);
3332 else
3333 kfree(p);
3334}
d1d9fd33 3335
bbcb81d0 3336/*
102a775e 3337 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3338 * Returns the number of unique elements.
bbcb81d0 3339 */
6ee211ad 3340static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3341{
102a775e 3342 int src, dest = 1;
102a775e
BB
3343
3344 /*
3345 * we presume the 0th element is unique, so i starts at 1. trivial
3346 * edge cases first; no work needs to be done for either
3347 */
3348 if (length == 0 || length == 1)
3349 return length;
3350 /* src and dest walk down the list; dest counts unique elements */
3351 for (src = 1; src < length; src++) {
3352 /* find next unique element */
3353 while (list[src] == list[src-1]) {
3354 src++;
3355 if (src == length)
3356 goto after;
3357 }
3358 /* dest always points to where the next unique element goes */
3359 list[dest] = list[src];
3360 dest++;
3361 }
3362after:
102a775e
BB
3363 return dest;
3364}
3365
3366static int cmppid(const void *a, const void *b)
3367{
3368 return *(pid_t *)a - *(pid_t *)b;
3369}
3370
72a8cb30
BB
3371/*
3372 * find the appropriate pidlist for our purpose (given procs vs tasks)
3373 * returns with the lock on that pidlist already held, and takes care
3374 * of the use count, or returns NULL with no locks held if we're out of
3375 * memory.
3376 */
3377static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3378 enum cgroup_filetype type)
3379{
3380 struct cgroup_pidlist *l;
3381 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3382 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3383
72a8cb30
BB
3384 /*
3385 * We can't drop the pidlist_mutex before taking the l->mutex in case
3386 * the last ref-holder is trying to remove l from the list at the same
3387 * time. Holding the pidlist_mutex precludes somebody taking whichever
3388 * list we find out from under us - compare release_pid_array().
3389 */
3390 mutex_lock(&cgrp->pidlist_mutex);
3391 list_for_each_entry(l, &cgrp->pidlists, links) {
3392 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3393 /* make sure l doesn't vanish out from under us */
3394 down_write(&l->mutex);
3395 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3396 return l;
3397 }
3398 }
3399 /* entry not found; create a new one */
3400 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3401 if (!l) {
3402 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3403 return l;
3404 }
3405 init_rwsem(&l->mutex);
3406 down_write(&l->mutex);
3407 l->key.type = type;
b70cc5fd 3408 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3409 l->use_count = 0; /* don't increment here */
3410 l->list = NULL;
3411 l->owner = cgrp;
3412 list_add(&l->links, &cgrp->pidlists);
3413 mutex_unlock(&cgrp->pidlist_mutex);
3414 return l;
3415}
3416
102a775e
BB
3417/*
3418 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3419 */
72a8cb30
BB
3420static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3421 struct cgroup_pidlist **lp)
102a775e
BB
3422{
3423 pid_t *array;
3424 int length;
3425 int pid, n = 0; /* used for populating the array */
817929ec
PM
3426 struct cgroup_iter it;
3427 struct task_struct *tsk;
102a775e
BB
3428 struct cgroup_pidlist *l;
3429
3430 /*
3431 * If cgroup gets more users after we read count, we won't have
3432 * enough space - tough. This race is indistinguishable to the
3433 * caller from the case that the additional cgroup users didn't
3434 * show up until sometime later on.
3435 */
3436 length = cgroup_task_count(cgrp);
d1d9fd33 3437 array = pidlist_allocate(length);
102a775e
BB
3438 if (!array)
3439 return -ENOMEM;
3440 /* now, populate the array */
bd89aabc
PM
3441 cgroup_iter_start(cgrp, &it);
3442 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3443 if (unlikely(n == length))
817929ec 3444 break;
102a775e 3445 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3446 if (type == CGROUP_FILE_PROCS)
3447 pid = task_tgid_vnr(tsk);
3448 else
3449 pid = task_pid_vnr(tsk);
102a775e
BB
3450 if (pid > 0) /* make sure to only use valid results */
3451 array[n++] = pid;
817929ec 3452 }
bd89aabc 3453 cgroup_iter_end(cgrp, &it);
102a775e
BB
3454 length = n;
3455 /* now sort & (if procs) strip out duplicates */
3456 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3457 if (type == CGROUP_FILE_PROCS)
6ee211ad 3458 length = pidlist_uniq(array, length);
72a8cb30
BB
3459 l = cgroup_pidlist_find(cgrp, type);
3460 if (!l) {
d1d9fd33 3461 pidlist_free(array);
72a8cb30 3462 return -ENOMEM;
102a775e 3463 }
72a8cb30 3464 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3465 pidlist_free(l->list);
102a775e
BB
3466 l->list = array;
3467 l->length = length;
3468 l->use_count++;
3469 up_write(&l->mutex);
72a8cb30 3470 *lp = l;
102a775e 3471 return 0;
bbcb81d0
PM
3472}
3473
846c7bb0 3474/**
a043e3b2 3475 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3476 * @stats: cgroupstats to fill information into
3477 * @dentry: A dentry entry belonging to the cgroup for which stats have
3478 * been requested.
a043e3b2
LZ
3479 *
3480 * Build and fill cgroupstats so that taskstats can export it to user
3481 * space.
846c7bb0
BS
3482 */
3483int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3484{
3485 int ret = -EINVAL;
bd89aabc 3486 struct cgroup *cgrp;
846c7bb0
BS
3487 struct cgroup_iter it;
3488 struct task_struct *tsk;
33d283be 3489
846c7bb0 3490 /*
33d283be
LZ
3491 * Validate dentry by checking the superblock operations,
3492 * and make sure it's a directory.
846c7bb0 3493 */
33d283be
LZ
3494 if (dentry->d_sb->s_op != &cgroup_ops ||
3495 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3496 goto err;
3497
3498 ret = 0;
bd89aabc 3499 cgrp = dentry->d_fsdata;
846c7bb0 3500
bd89aabc
PM
3501 cgroup_iter_start(cgrp, &it);
3502 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3503 switch (tsk->state) {
3504 case TASK_RUNNING:
3505 stats->nr_running++;
3506 break;
3507 case TASK_INTERRUPTIBLE:
3508 stats->nr_sleeping++;
3509 break;
3510 case TASK_UNINTERRUPTIBLE:
3511 stats->nr_uninterruptible++;
3512 break;
3513 case TASK_STOPPED:
3514 stats->nr_stopped++;
3515 break;
3516 default:
3517 if (delayacct_is_task_waiting_on_io(tsk))
3518 stats->nr_io_wait++;
3519 break;
3520 }
3521 }
bd89aabc 3522 cgroup_iter_end(cgrp, &it);
846c7bb0 3523
846c7bb0
BS
3524err:
3525 return ret;
3526}
3527
8f3ff208 3528
bbcb81d0 3529/*
102a775e 3530 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3531 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3532 * in the cgroup->l->list array.
bbcb81d0 3533 */
cc31edce 3534
102a775e 3535static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3536{
cc31edce
PM
3537 /*
3538 * Initially we receive a position value that corresponds to
3539 * one more than the last pid shown (or 0 on the first call or
3540 * after a seek to the start). Use a binary-search to find the
3541 * next pid to display, if any
3542 */
102a775e 3543 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3544 int index = 0, pid = *pos;
3545 int *iter;
3546
102a775e 3547 down_read(&l->mutex);
cc31edce 3548 if (pid) {
102a775e 3549 int end = l->length;
20777766 3550
cc31edce
PM
3551 while (index < end) {
3552 int mid = (index + end) / 2;
102a775e 3553 if (l->list[mid] == pid) {
cc31edce
PM
3554 index = mid;
3555 break;
102a775e 3556 } else if (l->list[mid] <= pid)
cc31edce
PM
3557 index = mid + 1;
3558 else
3559 end = mid;
3560 }
3561 }
3562 /* If we're off the end of the array, we're done */
102a775e 3563 if (index >= l->length)
cc31edce
PM
3564 return NULL;
3565 /* Update the abstract position to be the actual pid that we found */
102a775e 3566 iter = l->list + index;
cc31edce
PM
3567 *pos = *iter;
3568 return iter;
3569}
3570
102a775e 3571static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3572{
102a775e
BB
3573 struct cgroup_pidlist *l = s->private;
3574 up_read(&l->mutex);
cc31edce
PM
3575}
3576
102a775e 3577static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3578{
102a775e
BB
3579 struct cgroup_pidlist *l = s->private;
3580 pid_t *p = v;
3581 pid_t *end = l->list + l->length;
cc31edce
PM
3582 /*
3583 * Advance to the next pid in the array. If this goes off the
3584 * end, we're done
3585 */
3586 p++;
3587 if (p >= end) {
3588 return NULL;
3589 } else {
3590 *pos = *p;
3591 return p;
3592 }
3593}
3594
102a775e 3595static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3596{
3597 return seq_printf(s, "%d\n", *(int *)v);
3598}
bbcb81d0 3599
102a775e
BB
3600/*
3601 * seq_operations functions for iterating on pidlists through seq_file -
3602 * independent of whether it's tasks or procs
3603 */
3604static const struct seq_operations cgroup_pidlist_seq_operations = {
3605 .start = cgroup_pidlist_start,
3606 .stop = cgroup_pidlist_stop,
3607 .next = cgroup_pidlist_next,
3608 .show = cgroup_pidlist_show,
cc31edce
PM
3609};
3610
102a775e 3611static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3612{
72a8cb30
BB
3613 /*
3614 * the case where we're the last user of this particular pidlist will
3615 * have us remove it from the cgroup's list, which entails taking the
3616 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3617 * pidlist_mutex, we have to take pidlist_mutex first.
3618 */
3619 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3620 down_write(&l->mutex);
3621 BUG_ON(!l->use_count);
3622 if (!--l->use_count) {
72a8cb30
BB
3623 /* we're the last user if refcount is 0; remove and free */
3624 list_del(&l->links);
3625 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3626 pidlist_free(l->list);
72a8cb30
BB
3627 put_pid_ns(l->key.ns);
3628 up_write(&l->mutex);
3629 kfree(l);
3630 return;
cc31edce 3631 }
72a8cb30 3632 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3633 up_write(&l->mutex);
bbcb81d0
PM
3634}
3635
102a775e 3636static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3637{
102a775e 3638 struct cgroup_pidlist *l;
cc31edce
PM
3639 if (!(file->f_mode & FMODE_READ))
3640 return 0;
102a775e
BB
3641 /*
3642 * the seq_file will only be initialized if the file was opened for
3643 * reading; hence we check if it's not null only in that case.
3644 */
3645 l = ((struct seq_file *)file->private_data)->private;
3646 cgroup_release_pid_array(l);
cc31edce
PM
3647 return seq_release(inode, file);
3648}
3649
102a775e 3650static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3651 .read = seq_read,
3652 .llseek = seq_lseek,
3653 .write = cgroup_file_write,
102a775e 3654 .release = cgroup_pidlist_release,
cc31edce
PM
3655};
3656
bbcb81d0 3657/*
102a775e
BB
3658 * The following functions handle opens on a file that displays a pidlist
3659 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3660 * in the cgroup.
bbcb81d0 3661 */
102a775e 3662/* helper function for the two below it */
72a8cb30 3663static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3664{
bd89aabc 3665 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3666 struct cgroup_pidlist *l;
cc31edce 3667 int retval;
bbcb81d0 3668
cc31edce 3669 /* Nothing to do for write-only files */
bbcb81d0
PM
3670 if (!(file->f_mode & FMODE_READ))
3671 return 0;
3672
102a775e 3673 /* have the array populated */
72a8cb30 3674 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3675 if (retval)
3676 return retval;
3677 /* configure file information */
3678 file->f_op = &cgroup_pidlist_operations;
cc31edce 3679
102a775e 3680 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3681 if (retval) {
102a775e 3682 cgroup_release_pid_array(l);
cc31edce 3683 return retval;
bbcb81d0 3684 }
102a775e 3685 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3686 return 0;
3687}
102a775e
BB
3688static int cgroup_tasks_open(struct inode *unused, struct file *file)
3689{
72a8cb30 3690 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3691}
3692static int cgroup_procs_open(struct inode *unused, struct file *file)
3693{
72a8cb30 3694 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3695}
bbcb81d0 3696
bd89aabc 3697static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3698 struct cftype *cft)
3699{
bd89aabc 3700 return notify_on_release(cgrp);
81a6a5cd
PM
3701}
3702
6379c106
PM
3703static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3704 struct cftype *cft,
3705 u64 val)
3706{
3707 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3708 if (val)
3709 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3710 else
3711 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3712 return 0;
3713}
3714
0dea1168
KS
3715/*
3716 * Unregister event and free resources.
3717 *
3718 * Gets called from workqueue.
3719 */
3720static void cgroup_event_remove(struct work_struct *work)
3721{
3722 struct cgroup_event *event = container_of(work, struct cgroup_event,
3723 remove);
3724 struct cgroup *cgrp = event->cgrp;
3725
810cbee4
LZ
3726 remove_wait_queue(event->wqh, &event->wait);
3727
0dea1168
KS
3728 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3729
810cbee4
LZ
3730 /* Notify userspace the event is going away. */
3731 eventfd_signal(event->eventfd, 1);
3732
0dea1168 3733 eventfd_ctx_put(event->eventfd);
0dea1168 3734 kfree(event);
a0a4db54 3735 dput(cgrp->dentry);
0dea1168
KS
3736}
3737
3738/*
3739 * Gets called on POLLHUP on eventfd when user closes it.
3740 *
3741 * Called with wqh->lock held and interrupts disabled.
3742 */
3743static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3744 int sync, void *key)
3745{
3746 struct cgroup_event *event = container_of(wait,
3747 struct cgroup_event, wait);
3748 struct cgroup *cgrp = event->cgrp;
3749 unsigned long flags = (unsigned long)key;
3750
3751 if (flags & POLLHUP) {
0dea1168 3752 /*
810cbee4
LZ
3753 * If the event has been detached at cgroup removal, we
3754 * can simply return knowing the other side will cleanup
3755 * for us.
3756 *
3757 * We can't race against event freeing since the other
3758 * side will require wqh->lock via remove_wait_queue(),
3759 * which we hold.
0dea1168 3760 */
810cbee4
LZ
3761 spin_lock(&cgrp->event_list_lock);
3762 if (!list_empty(&event->list)) {
3763 list_del_init(&event->list);
3764 /*
3765 * We are in atomic context, but cgroup_event_remove()
3766 * may sleep, so we have to call it in workqueue.
3767 */
3768 schedule_work(&event->remove);
3769 }
3770 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3771 }
3772
3773 return 0;
3774}
3775
3776static void cgroup_event_ptable_queue_proc(struct file *file,
3777 wait_queue_head_t *wqh, poll_table *pt)
3778{
3779 struct cgroup_event *event = container_of(pt,
3780 struct cgroup_event, pt);
3781
3782 event->wqh = wqh;
3783 add_wait_queue(wqh, &event->wait);
3784}
3785
3786/*
3787 * Parse input and register new cgroup event handler.
3788 *
3789 * Input must be in format '<event_fd> <control_fd> <args>'.
3790 * Interpretation of args is defined by control file implementation.
3791 */
3792static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3793 const char *buffer)
3794{
3795 struct cgroup_event *event = NULL;
f169007b 3796 struct cgroup *cgrp_cfile;
0dea1168
KS
3797 unsigned int efd, cfd;
3798 struct file *efile = NULL;
3799 struct file *cfile = NULL;
3800 char *endp;
3801 int ret;
3802
3803 efd = simple_strtoul(buffer, &endp, 10);
3804 if (*endp != ' ')
3805 return -EINVAL;
3806 buffer = endp + 1;
3807
3808 cfd = simple_strtoul(buffer, &endp, 10);
3809 if ((*endp != ' ') && (*endp != '\0'))
3810 return -EINVAL;
3811 buffer = endp + 1;
3812
3813 event = kzalloc(sizeof(*event), GFP_KERNEL);
3814 if (!event)
3815 return -ENOMEM;
3816 event->cgrp = cgrp;
3817 INIT_LIST_HEAD(&event->list);
3818 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3819 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3820 INIT_WORK(&event->remove, cgroup_event_remove);
3821
3822 efile = eventfd_fget(efd);
3823 if (IS_ERR(efile)) {
3824 ret = PTR_ERR(efile);
3825 goto fail;
3826 }
3827
3828 event->eventfd = eventfd_ctx_fileget(efile);
3829 if (IS_ERR(event->eventfd)) {
3830 ret = PTR_ERR(event->eventfd);
3831 goto fail;
3832 }
3833
3834 cfile = fget(cfd);
3835 if (!cfile) {
3836 ret = -EBADF;
3837 goto fail;
3838 }
3839
3840 /* the process need read permission on control file */
3bfa784a 3841 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3842 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3843 if (ret < 0)
3844 goto fail;
3845
3846 event->cft = __file_cft(cfile);
3847 if (IS_ERR(event->cft)) {
3848 ret = PTR_ERR(event->cft);
3849 goto fail;
3850 }
3851
f169007b
LZ
3852 /*
3853 * The file to be monitored must be in the same cgroup as
3854 * cgroup.event_control is.
3855 */
3856 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3857 if (cgrp_cfile != cgrp) {
3858 ret = -EINVAL;
3859 goto fail;
3860 }
3861
0dea1168
KS
3862 if (!event->cft->register_event || !event->cft->unregister_event) {
3863 ret = -EINVAL;
3864 goto fail;
3865 }
3866
3867 ret = event->cft->register_event(cgrp, event->cft,
3868 event->eventfd, buffer);
3869 if (ret)
3870 goto fail;
3871
a0a4db54
KS
3872 /*
3873 * Events should be removed after rmdir of cgroup directory, but before
3874 * destroying subsystem state objects. Let's take reference to cgroup
3875 * directory dentry to do that.
3876 */
3877 dget(cgrp->dentry);
3878
0dea1168
KS
3879 spin_lock(&cgrp->event_list_lock);
3880 list_add(&event->list, &cgrp->event_list);
3881 spin_unlock(&cgrp->event_list_lock);
3882
3883 fput(cfile);
3884 fput(efile);
3885
3886 return 0;
3887
3888fail:
3889 if (cfile)
3890 fput(cfile);
3891
3892 if (event && event->eventfd && !IS_ERR(event->eventfd))
3893 eventfd_ctx_put(event->eventfd);
3894
3895 if (!IS_ERR_OR_NULL(efile))
3896 fput(efile);
3897
3898 kfree(event);
3899
3900 return ret;
3901}
3902
97978e6d
DL
3903static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3904 struct cftype *cft)
3905{
2260e7fc 3906 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
3907}
3908
3909static int cgroup_clone_children_write(struct cgroup *cgrp,
3910 struct cftype *cft,
3911 u64 val)
3912{
3913 if (val)
2260e7fc 3914 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3915 else
2260e7fc 3916 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
3917 return 0;
3918}
3919
bbcb81d0
PM
3920/*
3921 * for the common functions, 'private' gives the type of file
3922 */
102a775e
BB
3923/* for hysterical raisins, we can't put this on the older files */
3924#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3925static struct cftype files[] = {
3926 {
3927 .name = "tasks",
3928 .open = cgroup_tasks_open,
af351026 3929 .write_u64 = cgroup_tasks_write,
102a775e 3930 .release = cgroup_pidlist_release,
099fca32 3931 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3932 },
102a775e
BB
3933 {
3934 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3935 .open = cgroup_procs_open,
74a1166d 3936 .write_u64 = cgroup_procs_write,
102a775e 3937 .release = cgroup_pidlist_release,
74a1166d 3938 .mode = S_IRUGO | S_IWUSR,
102a775e 3939 },
81a6a5cd
PM
3940 {
3941 .name = "notify_on_release",
f4c753b7 3942 .read_u64 = cgroup_read_notify_on_release,
6379c106 3943 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3944 },
0dea1168
KS
3945 {
3946 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3947 .write_string = cgroup_write_event_control,
3948 .mode = S_IWUGO,
3949 },
97978e6d
DL
3950 {
3951 .name = "cgroup.clone_children",
3952 .read_u64 = cgroup_clone_children_read,
3953 .write_u64 = cgroup_clone_children_write,
3954 },
6e6ff25b
TH
3955 {
3956 .name = "release_agent",
3957 .flags = CFTYPE_ONLY_ON_ROOT,
3958 .read_seq_string = cgroup_release_agent_show,
3959 .write_string = cgroup_release_agent_write,
3960 .max_write_len = PATH_MAX,
3961 },
db0416b6 3962 { } /* terminate */
bbcb81d0
PM
3963};
3964
13af07df
AR
3965/**
3966 * cgroup_populate_dir - selectively creation of files in a directory
3967 * @cgrp: target cgroup
3968 * @base_files: true if the base files should be added
3969 * @subsys_mask: mask of the subsystem ids whose files should be added
3970 */
3971static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3972 unsigned long subsys_mask)
ddbcc7e8
PM
3973{
3974 int err;
3975 struct cgroup_subsys *ss;
3976
13af07df
AR
3977 if (base_files) {
3978 err = cgroup_addrm_files(cgrp, NULL, files, true);
3979 if (err < 0)
3980 return err;
3981 }
bbcb81d0 3982
8e3f6541 3983 /* process cftsets of each subsystem */
bd89aabc 3984 for_each_subsys(cgrp->root, ss) {
8e3f6541 3985 struct cftype_set *set;
13af07df
AR
3986 if (!test_bit(ss->subsys_id, &subsys_mask))
3987 continue;
8e3f6541 3988
db0416b6 3989 list_for_each_entry(set, &ss->cftsets, node)
79578621 3990 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 3991 }
8e3f6541 3992
38460b48
KH
3993 /* This cgroup is ready now */
3994 for_each_subsys(cgrp->root, ss) {
3995 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3996 /*
3997 * Update id->css pointer and make this css visible from
3998 * CSS ID functions. This pointer will be dereferened
3999 * from RCU-read-side without locks.
4000 */
4001 if (css->id)
4002 rcu_assign_pointer(css->id->css, css);
4003 }
ddbcc7e8
PM
4004
4005 return 0;
4006}
4007
48ddbe19
TH
4008static void css_dput_fn(struct work_struct *work)
4009{
4010 struct cgroup_subsys_state *css =
4011 container_of(work, struct cgroup_subsys_state, dput_work);
5db9a4d9
TH
4012 struct dentry *dentry = css->cgroup->dentry;
4013 struct super_block *sb = dentry->d_sb;
48ddbe19 4014
5db9a4d9
TH
4015 atomic_inc(&sb->s_active);
4016 dput(dentry);
4017 deactivate_super(sb);
48ddbe19
TH
4018}
4019
ddbcc7e8
PM
4020static void init_cgroup_css(struct cgroup_subsys_state *css,
4021 struct cgroup_subsys *ss,
bd89aabc 4022 struct cgroup *cgrp)
ddbcc7e8 4023{
bd89aabc 4024 css->cgroup = cgrp;
e7c5ec91 4025 atomic_set(&css->refcnt, 1);
ddbcc7e8 4026 css->flags = 0;
38460b48 4027 css->id = NULL;
bd89aabc 4028 if (cgrp == dummytop)
38b53aba 4029 css->flags |= CSS_ROOT;
bd89aabc
PM
4030 BUG_ON(cgrp->subsys[ss->subsys_id]);
4031 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4032
4033 /*
ed957793
TH
4034 * css holds an extra ref to @cgrp->dentry which is put on the last
4035 * css_put(). dput() requires process context, which css_put() may
4036 * be called without. @css->dput_work will be used to invoke
4037 * dput() asynchronously from css_put().
48ddbe19
TH
4038 */
4039 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4040}
4041
b1929db4
TH
4042/* invoke ->post_create() on a new CSS and mark it online if successful */
4043static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4044{
b1929db4
TH
4045 int ret = 0;
4046
a31f2d3f
TH
4047 lockdep_assert_held(&cgroup_mutex);
4048
92fb9748
TH
4049 if (ss->css_online)
4050 ret = ss->css_online(cgrp);
b1929db4
TH
4051 if (!ret)
4052 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4053 return ret;
a31f2d3f
TH
4054}
4055
4056/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4057static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4058 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4059{
4060 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4061
4062 lockdep_assert_held(&cgroup_mutex);
4063
4064 if (!(css->flags & CSS_ONLINE))
4065 return;
4066
d7eeac19 4067 if (ss->css_offline)
92fb9748 4068 ss->css_offline(cgrp);
a31f2d3f
TH
4069
4070 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4071}
4072
ddbcc7e8 4073/*
a043e3b2
LZ
4074 * cgroup_create - create a cgroup
4075 * @parent: cgroup that will be parent of the new cgroup
4076 * @dentry: dentry of the new cgroup
4077 * @mode: mode to set on new inode
ddbcc7e8 4078 *
a043e3b2 4079 * Must be called with the mutex on the parent inode held
ddbcc7e8 4080 */
ddbcc7e8 4081static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4082 umode_t mode)
ddbcc7e8 4083{
bd89aabc 4084 struct cgroup *cgrp;
65dff759 4085 struct cgroup_name *name;
ddbcc7e8
PM
4086 struct cgroupfs_root *root = parent->root;
4087 int err = 0;
4088 struct cgroup_subsys *ss;
4089 struct super_block *sb = root->sb;
4090
0a950f65 4091 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4092 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4093 if (!cgrp)
ddbcc7e8
PM
4094 return -ENOMEM;
4095
65dff759
LZ
4096 name = cgroup_alloc_name(dentry);
4097 if (!name)
4098 goto err_free_cgrp;
4099 rcu_assign_pointer(cgrp->name, name);
4100
0a950f65
TH
4101 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4102 if (cgrp->id < 0)
65dff759 4103 goto err_free_name;
0a950f65 4104
976c06bc
TH
4105 /*
4106 * Only live parents can have children. Note that the liveliness
4107 * check isn't strictly necessary because cgroup_mkdir() and
4108 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4109 * anyway so that locking is contained inside cgroup proper and we
4110 * don't get nasty surprises if we ever grow another caller.
4111 */
4112 if (!cgroup_lock_live_group(parent)) {
4113 err = -ENODEV;
0a950f65 4114 goto err_free_id;
976c06bc
TH
4115 }
4116
ddbcc7e8
PM
4117 /* Grab a reference on the superblock so the hierarchy doesn't
4118 * get deleted on unmount if there are child cgroups. This
4119 * can be done outside cgroup_mutex, since the sb can't
4120 * disappear while someone has an open control file on the
4121 * fs */
4122 atomic_inc(&sb->s_active);
4123
cc31edce 4124 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4125
fe1c06ca
LZ
4126 dentry->d_fsdata = cgrp;
4127 cgrp->dentry = dentry;
4128
bd89aabc
PM
4129 cgrp->parent = parent;
4130 cgrp->root = parent->root;
4131 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 4132
b6abdb0e
LZ
4133 if (notify_on_release(parent))
4134 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4135
2260e7fc
TH
4136 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4137 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4138
ddbcc7e8 4139 for_each_subsys(root, ss) {
8c7f6edb 4140 struct cgroup_subsys_state *css;
4528fd05 4141
92fb9748 4142 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4143 if (IS_ERR(css)) {
4144 err = PTR_ERR(css);
4b8b47eb 4145 goto err_free_all;
ddbcc7e8 4146 }
bd89aabc 4147 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
4148 if (ss->use_id) {
4149 err = alloc_css_id(ss, parent, cgrp);
4150 if (err)
4b8b47eb 4151 goto err_free_all;
4528fd05 4152 }
ddbcc7e8
PM
4153 }
4154
4e139afc
TH
4155 /*
4156 * Create directory. cgroup_create_file() returns with the new
4157 * directory locked on success so that it can be populated without
4158 * dropping cgroup_mutex.
4159 */
28fd6f30 4160 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4161 if (err < 0)
4b8b47eb 4162 goto err_free_all;
4e139afc 4163 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4164
4e139afc 4165 /* allocation complete, commit to creation */
4e139afc
TH
4166 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4167 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4168 root->number_of_cgroups++;
28fd6f30 4169
b1929db4
TH
4170 /* each css holds a ref to the cgroup's dentry */
4171 for_each_subsys(root, ss)
ed957793 4172 dget(dentry);
48ddbe19 4173
415cf07a
LZ
4174 /* hold a ref to the parent's dentry */
4175 dget(parent->dentry);
4176
b1929db4
TH
4177 /* creation succeeded, notify subsystems */
4178 for_each_subsys(root, ss) {
4179 err = online_css(ss, cgrp);
4180 if (err)
4181 goto err_destroy;
1f869e87
GC
4182
4183 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4184 parent->parent) {
4185 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4186 current->comm, current->pid, ss->name);
4187 if (!strcmp(ss->name, "memory"))
4188 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4189 ss->warned_broken_hierarchy = true;
4190 }
a8638030
TH
4191 }
4192
a1a71b45 4193 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4194 if (err)
4195 goto err_destroy;
ddbcc7e8
PM
4196
4197 mutex_unlock(&cgroup_mutex);
bd89aabc 4198 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4199
4200 return 0;
4201
4b8b47eb 4202err_free_all:
ddbcc7e8 4203 for_each_subsys(root, ss) {
bd89aabc 4204 if (cgrp->subsys[ss->subsys_id])
92fb9748 4205 ss->css_free(cgrp);
ddbcc7e8 4206 }
ddbcc7e8 4207 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4208 /* Release the reference count that we took on the superblock */
4209 deactivate_super(sb);
0a950f65
TH
4210err_free_id:
4211 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4212err_free_name:
4213 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4214err_free_cgrp:
bd89aabc 4215 kfree(cgrp);
ddbcc7e8 4216 return err;
4b8b47eb
TH
4217
4218err_destroy:
4219 cgroup_destroy_locked(cgrp);
4220 mutex_unlock(&cgroup_mutex);
4221 mutex_unlock(&dentry->d_inode->i_mutex);
4222 return err;
ddbcc7e8
PM
4223}
4224
18bb1db3 4225static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4226{
4227 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4228
4229 /* the vfs holds inode->i_mutex already */
4230 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4231}
4232
42809dd4
TH
4233static int cgroup_destroy_locked(struct cgroup *cgrp)
4234 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4235{
42809dd4
TH
4236 struct dentry *d = cgrp->dentry;
4237 struct cgroup *parent = cgrp->parent;
4ab78683 4238 struct cgroup_event *event, *tmp;
ed957793 4239 struct cgroup_subsys *ss;
ddbcc7e8 4240
42809dd4
TH
4241 lockdep_assert_held(&d->d_inode->i_mutex);
4242 lockdep_assert_held(&cgroup_mutex);
4243
4244 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
ddbcc7e8 4245 return -EBUSY;
a043e3b2 4246
88703267 4247 /*
1a90dd50
TH
4248 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4249 * removed. This makes future css_tryget() and child creation
4250 * attempts fail thus maintaining the removal conditions verified
4251 * above.
88703267 4252 */
ed957793
TH
4253 for_each_subsys(cgrp->root, ss) {
4254 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4255
ed957793
TH
4256 WARN_ON(atomic_read(&css->refcnt) < 0);
4257 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
88703267 4258 }
1a90dd50 4259 set_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8 4260
a31f2d3f 4261 /* tell subsystems to initate destruction */
1a90dd50 4262 for_each_subsys(cgrp->root, ss)
a31f2d3f 4263 offline_css(ss, cgrp);
ed957793
TH
4264
4265 /*
ed957793
TH
4266 * Put all the base refs. Each css holds an extra reference to the
4267 * cgroup's dentry and cgroup removal proceeds regardless of css
4268 * refs. On the last put of each css, whenever that may be, the
4269 * extra dentry ref is put so that dentry destruction happens only
4270 * after all css's are released.
4271 */
e9316080
TH
4272 for_each_subsys(cgrp->root, ss)
4273 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4274
cdcc136f 4275 raw_spin_lock(&release_list_lock);
bd89aabc 4276 if (!list_empty(&cgrp->release_list))
8d258797 4277 list_del_init(&cgrp->release_list);
cdcc136f 4278 raw_spin_unlock(&release_list_lock);
999cd8a4 4279
999cd8a4 4280 /* delete this cgroup from parent->children */
eb6fd504 4281 list_del_rcu(&cgrp->sibling);
b0ca5a84
TH
4282 list_del_init(&cgrp->allcg_node);
4283
42809dd4 4284 dget(d);
ddbcc7e8
PM
4285 cgroup_d_remove_dir(d);
4286 dput(d);
ddbcc7e8 4287
bd89aabc 4288 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4289 check_for_release(parent);
4290
4ab78683
KS
4291 /*
4292 * Unregister events and notify userspace.
4293 * Notify userspace about cgroup removing only after rmdir of cgroup
810cbee4 4294 * directory to avoid race between userspace and kernelspace.
4ab78683
KS
4295 */
4296 spin_lock(&cgrp->event_list_lock);
810cbee4 4297 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
9718ceb3 4298 list_del_init(&event->list);
4ab78683
KS
4299 schedule_work(&event->remove);
4300 }
810cbee4 4301 spin_unlock(&cgrp->event_list_lock);
4ab78683 4302
ddbcc7e8
PM
4303 return 0;
4304}
4305
42809dd4
TH
4306static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4307{
4308 int ret;
4309
4310 mutex_lock(&cgroup_mutex);
4311 ret = cgroup_destroy_locked(dentry->d_fsdata);
4312 mutex_unlock(&cgroup_mutex);
4313
4314 return ret;
4315}
4316
8e3f6541
TH
4317static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4318{
4319 INIT_LIST_HEAD(&ss->cftsets);
4320
4321 /*
4322 * base_cftset is embedded in subsys itself, no need to worry about
4323 * deregistration.
4324 */
4325 if (ss->base_cftypes) {
4326 ss->base_cftset.cfts = ss->base_cftypes;
4327 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4328 }
4329}
4330
06a11920 4331static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4332{
ddbcc7e8 4333 struct cgroup_subsys_state *css;
cfe36bde
DC
4334
4335 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4336
648bb56d
TH
4337 mutex_lock(&cgroup_mutex);
4338
8e3f6541
TH
4339 /* init base cftset */
4340 cgroup_init_cftsets(ss);
4341
ddbcc7e8 4342 /* Create the top cgroup state for this subsystem */
33a68ac1 4343 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4344 ss->root = &rootnode;
92fb9748 4345 css = ss->css_alloc(dummytop);
ddbcc7e8
PM
4346 /* We don't handle early failures gracefully */
4347 BUG_ON(IS_ERR(css));
4348 init_cgroup_css(css, ss, dummytop);
4349
e8d55fde 4350 /* Update the init_css_set to contain a subsys
817929ec 4351 * pointer to this state - since the subsystem is
e8d55fde
LZ
4352 * newly registered, all tasks and hence the
4353 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4354 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4355
4356 need_forkexit_callback |= ss->fork || ss->exit;
4357
e8d55fde
LZ
4358 /* At system boot, before all subsystems have been
4359 * registered, no tasks have been forked, so we don't
4360 * need to invoke fork callbacks here. */
4361 BUG_ON(!list_empty(&init_task.tasks));
4362
ddbcc7e8 4363 ss->active = 1;
b1929db4 4364 BUG_ON(online_css(ss, dummytop));
a8638030 4365
648bb56d
TH
4366 mutex_unlock(&cgroup_mutex);
4367
e6a1105b
BB
4368 /* this function shouldn't be used with modular subsystems, since they
4369 * need to register a subsys_id, among other things */
4370 BUG_ON(ss->module);
4371}
4372
4373/**
4374 * cgroup_load_subsys: load and register a modular subsystem at runtime
4375 * @ss: the subsystem to load
4376 *
4377 * This function should be called in a modular subsystem's initcall. If the
88393161 4378 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4379 * up for use. If the subsystem is built-in anyway, work is delegated to the
4380 * simpler cgroup_init_subsys.
4381 */
4382int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4383{
e6a1105b 4384 struct cgroup_subsys_state *css;
d19e19de 4385 int i, ret;
b67bfe0d 4386 struct hlist_node *tmp;
0ac801fe
LZ
4387 struct css_set *cg;
4388 unsigned long key;
e6a1105b
BB
4389
4390 /* check name and function validity */
4391 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4392 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4393 return -EINVAL;
4394
4395 /*
4396 * we don't support callbacks in modular subsystems. this check is
4397 * before the ss->module check for consistency; a subsystem that could
4398 * be a module should still have no callbacks even if the user isn't
4399 * compiling it as one.
4400 */
4401 if (ss->fork || ss->exit)
4402 return -EINVAL;
4403
4404 /*
4405 * an optionally modular subsystem is built-in: we want to do nothing,
4406 * since cgroup_init_subsys will have already taken care of it.
4407 */
4408 if (ss->module == NULL) {
be45c900 4409 /* a sanity check */
e6a1105b
BB
4410 BUG_ON(subsys[ss->subsys_id] != ss);
4411 return 0;
4412 }
4413
8e3f6541
TH
4414 /* init base cftset */
4415 cgroup_init_cftsets(ss);
4416
e6a1105b 4417 mutex_lock(&cgroup_mutex);
8a8e04df 4418 subsys[ss->subsys_id] = ss;
e6a1105b
BB
4419
4420 /*
92fb9748
TH
4421 * no ss->css_alloc seems to need anything important in the ss
4422 * struct, so this can happen first (i.e. before the rootnode
4423 * attachment).
e6a1105b 4424 */
92fb9748 4425 css = ss->css_alloc(dummytop);
e6a1105b
BB
4426 if (IS_ERR(css)) {
4427 /* failure case - need to deassign the subsys[] slot. */
8a8e04df 4428 subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4429 mutex_unlock(&cgroup_mutex);
4430 return PTR_ERR(css);
4431 }
4432
4433 list_add(&ss->sibling, &rootnode.subsys_list);
4434 ss->root = &rootnode;
4435
4436 /* our new subsystem will be attached to the dummy hierarchy. */
4437 init_cgroup_css(css, ss, dummytop);
4438 /* init_idr must be after init_cgroup_css because it sets css->id. */
4439 if (ss->use_id) {
d19e19de
TH
4440 ret = cgroup_init_idr(ss, css);
4441 if (ret)
4442 goto err_unload;
e6a1105b
BB
4443 }
4444
4445 /*
4446 * Now we need to entangle the css into the existing css_sets. unlike
4447 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4448 * will need a new pointer to it; done by iterating the css_set_table.
4449 * furthermore, modifying the existing css_sets will corrupt the hash
4450 * table state, so each changed css_set will need its hash recomputed.
4451 * this is all done under the css_set_lock.
4452 */
4453 write_lock(&css_set_lock);
b67bfe0d 4454 hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
0ac801fe
LZ
4455 /* skip entries that we already rehashed */
4456 if (cg->subsys[ss->subsys_id])
4457 continue;
4458 /* remove existing entry */
4459 hash_del(&cg->hlist);
4460 /* set new value */
4461 cg->subsys[ss->subsys_id] = css;
4462 /* recompute hash and restore entry */
4463 key = css_set_hash(cg->subsys);
b67bfe0d 4464 hash_add(css_set_table, &cg->hlist, key);
e6a1105b
BB
4465 }
4466 write_unlock(&css_set_lock);
4467
e6a1105b 4468 ss->active = 1;
b1929db4
TH
4469 ret = online_css(ss, dummytop);
4470 if (ret)
4471 goto err_unload;
a8638030 4472
e6a1105b
BB
4473 /* success! */
4474 mutex_unlock(&cgroup_mutex);
4475 return 0;
d19e19de
TH
4476
4477err_unload:
4478 mutex_unlock(&cgroup_mutex);
4479 /* @ss can't be mounted here as try_module_get() would fail */
4480 cgroup_unload_subsys(ss);
4481 return ret;
ddbcc7e8 4482}
e6a1105b 4483EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4484
cf5d5941
BB
4485/**
4486 * cgroup_unload_subsys: unload a modular subsystem
4487 * @ss: the subsystem to unload
4488 *
4489 * This function should be called in a modular subsystem's exitcall. When this
4490 * function is invoked, the refcount on the subsystem's module will be 0, so
4491 * the subsystem will not be attached to any hierarchy.
4492 */
4493void cgroup_unload_subsys(struct cgroup_subsys *ss)
4494{
4495 struct cg_cgroup_link *link;
cf5d5941
BB
4496
4497 BUG_ON(ss->module == NULL);
4498
4499 /*
4500 * we shouldn't be called if the subsystem is in use, and the use of
4501 * try_module_get in parse_cgroupfs_options should ensure that it
4502 * doesn't start being used while we're killing it off.
4503 */
4504 BUG_ON(ss->root != &rootnode);
4505
4506 mutex_lock(&cgroup_mutex);
02ae7486 4507
a31f2d3f 4508 offline_css(ss, dummytop);
02ae7486
TH
4509 ss->active = 0;
4510
c897ff68 4511 if (ss->use_id)
02ae7486 4512 idr_destroy(&ss->idr);
02ae7486 4513
cf5d5941 4514 /* deassign the subsys_id */
cf5d5941
BB
4515 subsys[ss->subsys_id] = NULL;
4516
4517 /* remove subsystem from rootnode's list of subsystems */
8d258797 4518 list_del_init(&ss->sibling);
cf5d5941
BB
4519
4520 /*
4521 * disentangle the css from all css_sets attached to the dummytop. as
4522 * in loading, we need to pay our respects to the hashtable gods.
4523 */
4524 write_lock(&css_set_lock);
4525 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4526 struct css_set *cg = link->cg;
0ac801fe 4527 unsigned long key;
cf5d5941 4528
0ac801fe 4529 hash_del(&cg->hlist);
cf5d5941 4530 cg->subsys[ss->subsys_id] = NULL;
0ac801fe
LZ
4531 key = css_set_hash(cg->subsys);
4532 hash_add(css_set_table, &cg->hlist, key);
cf5d5941
BB
4533 }
4534 write_unlock(&css_set_lock);
4535
4536 /*
92fb9748
TH
4537 * remove subsystem's css from the dummytop and free it - need to
4538 * free before marking as null because ss->css_free needs the
4539 * cgrp->subsys pointer to find their state. note that this also
4540 * takes care of freeing the css_id.
cf5d5941 4541 */
92fb9748 4542 ss->css_free(dummytop);
cf5d5941
BB
4543 dummytop->subsys[ss->subsys_id] = NULL;
4544
4545 mutex_unlock(&cgroup_mutex);
4546}
4547EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4548
ddbcc7e8 4549/**
a043e3b2
LZ
4550 * cgroup_init_early - cgroup initialization at system boot
4551 *
4552 * Initialize cgroups at system boot, and initialize any
4553 * subsystems that request early init.
ddbcc7e8
PM
4554 */
4555int __init cgroup_init_early(void)
4556{
4557 int i;
146aa1bd 4558 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4559 INIT_LIST_HEAD(&init_css_set.cg_links);
4560 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4561 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4562 css_set_count = 1;
ddbcc7e8 4563 init_cgroup_root(&rootnode);
817929ec
PM
4564 root_count = 1;
4565 init_task.cgroups = &init_css_set;
4566
4567 init_css_set_link.cg = &init_css_set;
7717f7ba 4568 init_css_set_link.cgrp = dummytop;
bd89aabc 4569 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4570 &rootnode.top_cgroup.css_sets);
4571 list_add(&init_css_set_link.cg_link_list,
4572 &init_css_set.cg_links);
ddbcc7e8 4573
be45c900 4574 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4575 struct cgroup_subsys *ss = subsys[i];
4576
be45c900
DW
4577 /* at bootup time, we don't worry about modular subsystems */
4578 if (!ss || ss->module)
4579 continue;
4580
ddbcc7e8
PM
4581 BUG_ON(!ss->name);
4582 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4583 BUG_ON(!ss->css_alloc);
4584 BUG_ON(!ss->css_free);
ddbcc7e8 4585 if (ss->subsys_id != i) {
cfe36bde 4586 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4587 ss->name, ss->subsys_id);
4588 BUG();
4589 }
4590
4591 if (ss->early_init)
4592 cgroup_init_subsys(ss);
4593 }
4594 return 0;
4595}
4596
4597/**
a043e3b2
LZ
4598 * cgroup_init - cgroup initialization
4599 *
4600 * Register cgroup filesystem and /proc file, and initialize
4601 * any subsystems that didn't request early init.
ddbcc7e8
PM
4602 */
4603int __init cgroup_init(void)
4604{
4605 int err;
4606 int i;
0ac801fe 4607 unsigned long key;
a424316c
PM
4608
4609 err = bdi_init(&cgroup_backing_dev_info);
4610 if (err)
4611 return err;
ddbcc7e8 4612
be45c900 4613 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8 4614 struct cgroup_subsys *ss = subsys[i];
be45c900
DW
4615
4616 /* at bootup time, we don't worry about modular subsystems */
4617 if (!ss || ss->module)
4618 continue;
ddbcc7e8
PM
4619 if (!ss->early_init)
4620 cgroup_init_subsys(ss);
38460b48 4621 if (ss->use_id)
e6a1105b 4622 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4623 }
4624
472b1053 4625 /* Add init_css_set to the hash table */
0ac801fe
LZ
4626 key = css_set_hash(init_css_set.subsys);
4627 hash_add(css_set_table, &init_css_set.hlist, key);
2c6ab6d2 4628 BUG_ON(!init_root_id(&rootnode));
676db4af
GKH
4629
4630 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4631 if (!cgroup_kobj) {
4632 err = -ENOMEM;
4633 goto out;
4634 }
4635
ddbcc7e8 4636 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
4637 if (err < 0) {
4638 kobject_put(cgroup_kobj);
ddbcc7e8 4639 goto out;
676db4af 4640 }
ddbcc7e8 4641
46ae220b 4642 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4643
ddbcc7e8 4644out:
a424316c
PM
4645 if (err)
4646 bdi_destroy(&cgroup_backing_dev_info);
4647
ddbcc7e8
PM
4648 return err;
4649}
b4f48b63 4650
a424316c
PM
4651/*
4652 * proc_cgroup_show()
4653 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4654 * - Used for /proc/<pid>/cgroup.
4655 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4656 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4657 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4658 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4659 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4660 * cgroup to top_cgroup.
4661 */
4662
4663/* TODO: Use a proper seq_file iterator */
4664static int proc_cgroup_show(struct seq_file *m, void *v)
4665{
4666 struct pid *pid;
4667 struct task_struct *tsk;
4668 char *buf;
4669 int retval;
4670 struct cgroupfs_root *root;
4671
4672 retval = -ENOMEM;
4673 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4674 if (!buf)
4675 goto out;
4676
4677 retval = -ESRCH;
4678 pid = m->private;
4679 tsk = get_pid_task(pid, PIDTYPE_PID);
4680 if (!tsk)
4681 goto out_free;
4682
4683 retval = 0;
4684
4685 mutex_lock(&cgroup_mutex);
4686
e5f6a860 4687 for_each_active_root(root) {
a424316c 4688 struct cgroup_subsys *ss;
bd89aabc 4689 struct cgroup *cgrp;
a424316c
PM
4690 int count = 0;
4691
2c6ab6d2 4692 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4693 for_each_subsys(root, ss)
4694 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4695 if (strlen(root->name))
4696 seq_printf(m, "%sname=%s", count ? "," : "",
4697 root->name);
a424316c 4698 seq_putc(m, ':');
7717f7ba 4699 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4700 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4701 if (retval < 0)
4702 goto out_unlock;
4703 seq_puts(m, buf);
4704 seq_putc(m, '\n');
4705 }
4706
4707out_unlock:
4708 mutex_unlock(&cgroup_mutex);
4709 put_task_struct(tsk);
4710out_free:
4711 kfree(buf);
4712out:
4713 return retval;
4714}
4715
4716static int cgroup_open(struct inode *inode, struct file *file)
4717{
4718 struct pid *pid = PROC_I(inode)->pid;
4719 return single_open(file, proc_cgroup_show, pid);
4720}
4721
828c0950 4722const struct file_operations proc_cgroup_operations = {
a424316c
PM
4723 .open = cgroup_open,
4724 .read = seq_read,
4725 .llseek = seq_lseek,
4726 .release = single_release,
4727};
4728
4729/* Display information about each subsystem and each hierarchy */
4730static int proc_cgroupstats_show(struct seq_file *m, void *v)
4731{
4732 int i;
a424316c 4733
8bab8dde 4734 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4735 /*
4736 * ideally we don't want subsystems moving around while we do this.
4737 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4738 * subsys/hierarchy state.
4739 */
a424316c 4740 mutex_lock(&cgroup_mutex);
a424316c
PM
4741 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4742 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4743 if (ss == NULL)
4744 continue;
2c6ab6d2
PM
4745 seq_printf(m, "%s\t%d\t%d\t%d\n",
4746 ss->name, ss->root->hierarchy_id,
8bab8dde 4747 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4748 }
4749 mutex_unlock(&cgroup_mutex);
4750 return 0;
4751}
4752
4753static int cgroupstats_open(struct inode *inode, struct file *file)
4754{
9dce07f1 4755 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4756}
4757
828c0950 4758static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4759 .open = cgroupstats_open,
4760 .read = seq_read,
4761 .llseek = seq_lseek,
4762 .release = single_release,
4763};
4764
b4f48b63
PM
4765/**
4766 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4767 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4768 *
4769 * Description: A task inherits its parent's cgroup at fork().
4770 *
4771 * A pointer to the shared css_set was automatically copied in
4772 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4773 * it was not made under the protection of RCU or cgroup_mutex, so
4774 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4775 * have already changed current->cgroups, allowing the previously
4776 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4777 *
4778 * At the point that cgroup_fork() is called, 'current' is the parent
4779 * task, and the passed argument 'child' points to the child task.
4780 */
4781void cgroup_fork(struct task_struct *child)
4782{
9bb71308 4783 task_lock(current);
817929ec
PM
4784 child->cgroups = current->cgroups;
4785 get_css_set(child->cgroups);
9bb71308 4786 task_unlock(current);
817929ec 4787 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4788}
4789
817929ec 4790/**
a043e3b2
LZ
4791 * cgroup_post_fork - called on a new task after adding it to the task list
4792 * @child: the task in question
4793 *
5edee61e
TH
4794 * Adds the task to the list running through its css_set if necessary and
4795 * call the subsystem fork() callbacks. Has to be after the task is
4796 * visible on the task list in case we race with the first call to
4797 * cgroup_iter_start() - to guarantee that the new task ends up on its
4798 * list.
a043e3b2 4799 */
817929ec
PM
4800void cgroup_post_fork(struct task_struct *child)
4801{
5edee61e
TH
4802 int i;
4803
3ce3230a
FW
4804 /*
4805 * use_task_css_set_links is set to 1 before we walk the tasklist
4806 * under the tasklist_lock and we read it here after we added the child
4807 * to the tasklist under the tasklist_lock as well. If the child wasn't
4808 * yet in the tasklist when we walked through it from
4809 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4810 * should be visible now due to the paired locking and barriers implied
4811 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4812 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4813 * lock on fork.
4814 */
817929ec
PM
4815 if (use_task_css_set_links) {
4816 write_lock(&css_set_lock);
d8783832
TH
4817 task_lock(child);
4818 if (list_empty(&child->cg_list))
817929ec 4819 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 4820 task_unlock(child);
817929ec
PM
4821 write_unlock(&css_set_lock);
4822 }
5edee61e
TH
4823
4824 /*
4825 * Call ss->fork(). This must happen after @child is linked on
4826 * css_set; otherwise, @child might change state between ->fork()
4827 * and addition to css_set.
4828 */
4829 if (need_forkexit_callback) {
7d8e0bf5
LZ
4830 /*
4831 * fork/exit callbacks are supported only for builtin
4832 * subsystems, and the builtin section of the subsys
4833 * array is immutable, so we don't need to lock the
4834 * subsys array here. On the other hand, modular section
4835 * of the array can be freed at module unload, so we
4836 * can't touch that.
4837 */
4838 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5edee61e
TH
4839 struct cgroup_subsys *ss = subsys[i];
4840
5edee61e
TH
4841 if (ss->fork)
4842 ss->fork(child);
4843 }
4844 }
817929ec 4845}
5edee61e 4846
b4f48b63
PM
4847/**
4848 * cgroup_exit - detach cgroup from exiting task
4849 * @tsk: pointer to task_struct of exiting process
a043e3b2 4850 * @run_callback: run exit callbacks?
b4f48b63
PM
4851 *
4852 * Description: Detach cgroup from @tsk and release it.
4853 *
4854 * Note that cgroups marked notify_on_release force every task in
4855 * them to take the global cgroup_mutex mutex when exiting.
4856 * This could impact scaling on very large systems. Be reluctant to
4857 * use notify_on_release cgroups where very high task exit scaling
4858 * is required on large systems.
4859 *
4860 * the_top_cgroup_hack:
4861 *
4862 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4863 *
4864 * We call cgroup_exit() while the task is still competent to
4865 * handle notify_on_release(), then leave the task attached to the
4866 * root cgroup in each hierarchy for the remainder of its exit.
4867 *
4868 * To do this properly, we would increment the reference count on
4869 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4870 * code we would add a second cgroup function call, to drop that
4871 * reference. This would just create an unnecessary hot spot on
4872 * the top_cgroup reference count, to no avail.
4873 *
4874 * Normally, holding a reference to a cgroup without bumping its
4875 * count is unsafe. The cgroup could go away, or someone could
4876 * attach us to a different cgroup, decrementing the count on
4877 * the first cgroup that we never incremented. But in this case,
4878 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4879 * which wards off any cgroup_attach_task() attempts, or task is a failed
4880 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4881 */
4882void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4883{
817929ec 4884 struct css_set *cg;
d41d5a01 4885 int i;
817929ec
PM
4886
4887 /*
4888 * Unlink from the css_set task list if necessary.
4889 * Optimistically check cg_list before taking
4890 * css_set_lock
4891 */
4892 if (!list_empty(&tsk->cg_list)) {
4893 write_lock(&css_set_lock);
4894 if (!list_empty(&tsk->cg_list))
8d258797 4895 list_del_init(&tsk->cg_list);
817929ec
PM
4896 write_unlock(&css_set_lock);
4897 }
4898
b4f48b63
PM
4899 /* Reassign the task to the init_css_set. */
4900 task_lock(tsk);
817929ec
PM
4901 cg = tsk->cgroups;
4902 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4903
4904 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
4905 /*
4906 * fork/exit callbacks are supported only for builtin
4907 * subsystems, see cgroup_post_fork() for details.
4908 */
4909 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
d41d5a01 4910 struct cgroup_subsys *ss = subsys[i];
be45c900 4911
d41d5a01
PZ
4912 if (ss->exit) {
4913 struct cgroup *old_cgrp =
4914 rcu_dereference_raw(cg->subsys[i])->cgroup;
4915 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4916 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4917 }
4918 }
4919 }
b4f48b63 4920 task_unlock(tsk);
d41d5a01 4921
b5d646f5 4922 put_css_set_taskexit(cg);
b4f48b63 4923}
697f4161 4924
bd89aabc 4925static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4926{
4927 /* All of these checks rely on RCU to keep the cgroup
4928 * structure alive */
f50daa70
LZ
4929 if (cgroup_is_releasable(cgrp) &&
4930 !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) {
4931 /*
4932 * Control Group is currently removeable. If it's not
81a6a5cd 4933 * already queued for a userspace notification, queue
f50daa70
LZ
4934 * it now
4935 */
81a6a5cd 4936 int need_schedule_work = 0;
f50daa70 4937
cdcc136f 4938 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4939 if (!cgroup_is_removed(cgrp) &&
4940 list_empty(&cgrp->release_list)) {
4941 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4942 need_schedule_work = 1;
4943 }
cdcc136f 4944 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4945 if (need_schedule_work)
4946 schedule_work(&release_agent_work);
4947 }
4948}
4949
d7b9fff7 4950/* Caller must verify that the css is not for root cgroup */
28b4c27b
TH
4951bool __css_tryget(struct cgroup_subsys_state *css)
4952{
e9316080
TH
4953 while (true) {
4954 int t, v;
28b4c27b 4955
e9316080
TH
4956 v = css_refcnt(css);
4957 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4958 if (likely(t == v))
28b4c27b 4959 return true;
e9316080
TH
4960 else if (t < 0)
4961 return false;
28b4c27b 4962 cpu_relax();
e9316080 4963 }
28b4c27b
TH
4964}
4965EXPORT_SYMBOL_GPL(__css_tryget);
4966
4967/* Caller must verify that the css is not for root cgroup */
4968void __css_put(struct cgroup_subsys_state *css)
81a6a5cd 4969{
8e3bbf42 4970 int v;
28b4c27b 4971
8e3bbf42 4972 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
f50daa70 4973 if (v == 0)
ed957793 4974 schedule_work(&css->dput_work);
81a6a5cd 4975}
67523c48 4976EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4977
4978/*
4979 * Notify userspace when a cgroup is released, by running the
4980 * configured release agent with the name of the cgroup (path
4981 * relative to the root of cgroup file system) as the argument.
4982 *
4983 * Most likely, this user command will try to rmdir this cgroup.
4984 *
4985 * This races with the possibility that some other task will be
4986 * attached to this cgroup before it is removed, or that some other
4987 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4988 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4989 * unused, and this cgroup will be reprieved from its death sentence,
4990 * to continue to serve a useful existence. Next time it's released,
4991 * we will get notified again, if it still has 'notify_on_release' set.
4992 *
4993 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4994 * means only wait until the task is successfully execve()'d. The
4995 * separate release agent task is forked by call_usermodehelper(),
4996 * then control in this thread returns here, without waiting for the
4997 * release agent task. We don't bother to wait because the caller of
4998 * this routine has no use for the exit status of the release agent
4999 * task, so no sense holding our caller up for that.
81a6a5cd 5000 */
81a6a5cd
PM
5001static void cgroup_release_agent(struct work_struct *work)
5002{
5003 BUG_ON(work != &release_agent_work);
5004 mutex_lock(&cgroup_mutex);
cdcc136f 5005 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5006 while (!list_empty(&release_list)) {
5007 char *argv[3], *envp[3];
5008 int i;
e788e066 5009 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5010 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5011 struct cgroup,
5012 release_list);
bd89aabc 5013 list_del_init(&cgrp->release_list);
cdcc136f 5014 raw_spin_unlock(&release_list_lock);
81a6a5cd 5015 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5016 if (!pathbuf)
5017 goto continue_free;
5018 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5019 goto continue_free;
5020 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5021 if (!agentbuf)
5022 goto continue_free;
81a6a5cd
PM
5023
5024 i = 0;
e788e066
PM
5025 argv[i++] = agentbuf;
5026 argv[i++] = pathbuf;
81a6a5cd
PM
5027 argv[i] = NULL;
5028
5029 i = 0;
5030 /* minimal command environment */
5031 envp[i++] = "HOME=/";
5032 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5033 envp[i] = NULL;
5034
5035 /* Drop the lock while we invoke the usermode helper,
5036 * since the exec could involve hitting disk and hence
5037 * be a slow process */
5038 mutex_unlock(&cgroup_mutex);
5039 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5040 mutex_lock(&cgroup_mutex);
e788e066
PM
5041 continue_free:
5042 kfree(pathbuf);
5043 kfree(agentbuf);
cdcc136f 5044 raw_spin_lock(&release_list_lock);
81a6a5cd 5045 }
cdcc136f 5046 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5047 mutex_unlock(&cgroup_mutex);
5048}
8bab8dde
PM
5049
5050static int __init cgroup_disable(char *str)
5051{
5052 int i;
5053 char *token;
5054
5055 while ((token = strsep(&str, ",")) != NULL) {
5056 if (!*token)
5057 continue;
be45c900 5058 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8bab8dde
PM
5059 struct cgroup_subsys *ss = subsys[i];
5060
be45c900
DW
5061 /*
5062 * cgroup_disable, being at boot time, can't
5063 * know about module subsystems, so we don't
5064 * worry about them.
5065 */
5066 if (!ss || ss->module)
5067 continue;
5068
8bab8dde
PM
5069 if (!strcmp(token, ss->name)) {
5070 ss->disabled = 1;
5071 printk(KERN_INFO "Disabling %s control group"
5072 " subsystem\n", ss->name);
5073 break;
5074 }
5075 }
5076 }
5077 return 1;
5078}
5079__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5080
5081/*
5082 * Functons for CSS ID.
5083 */
5084
5085/*
5086 *To get ID other than 0, this should be called when !cgroup_is_removed().
5087 */
5088unsigned short css_id(struct cgroup_subsys_state *css)
5089{
7f0f1546
KH
5090 struct css_id *cssid;
5091
5092 /*
5093 * This css_id() can return correct value when somone has refcnt
5094 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5095 * it's unchanged until freed.
5096 */
28b4c27b 5097 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5098
5099 if (cssid)
5100 return cssid->id;
5101 return 0;
5102}
67523c48 5103EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
5104
5105unsigned short css_depth(struct cgroup_subsys_state *css)
5106{
7f0f1546
KH
5107 struct css_id *cssid;
5108
28b4c27b 5109 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5110
5111 if (cssid)
5112 return cssid->depth;
5113 return 0;
5114}
67523c48 5115EXPORT_SYMBOL_GPL(css_depth);
38460b48 5116
747388d7
KH
5117/**
5118 * css_is_ancestor - test "root" css is an ancestor of "child"
5119 * @child: the css to be tested.
5120 * @root: the css supporsed to be an ancestor of the child.
5121 *
5122 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5123 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5124 * But, considering usual usage, the csses should be valid objects after test.
5125 * Assuming that the caller will do some action to the child if this returns
5126 * returns true, the caller must take "child";s reference count.
5127 * If "child" is valid object and this returns true, "root" is valid, too.
5128 */
5129
38460b48 5130bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5131 const struct cgroup_subsys_state *root)
38460b48 5132{
747388d7
KH
5133 struct css_id *child_id;
5134 struct css_id *root_id;
38460b48 5135
747388d7 5136 child_id = rcu_dereference(child->id);
91c63734
JW
5137 if (!child_id)
5138 return false;
747388d7 5139 root_id = rcu_dereference(root->id);
91c63734
JW
5140 if (!root_id)
5141 return false;
5142 if (child_id->depth < root_id->depth)
5143 return false;
5144 if (child_id->stack[root_id->depth] != root_id->id)
5145 return false;
5146 return true;
38460b48
KH
5147}
5148
38460b48
KH
5149void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5150{
5151 struct css_id *id = css->id;
5152 /* When this is called before css_id initialization, id can be NULL */
5153 if (!id)
5154 return;
5155
5156 BUG_ON(!ss->use_id);
5157
5158 rcu_assign_pointer(id->css, NULL);
5159 rcu_assign_pointer(css->id, NULL);
42aee6c4 5160 spin_lock(&ss->id_lock);
38460b48 5161 idr_remove(&ss->idr, id->id);
42aee6c4 5162 spin_unlock(&ss->id_lock);
025cea99 5163 kfree_rcu(id, rcu_head);
38460b48 5164}
67523c48 5165EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5166
5167/*
5168 * This is called by init or create(). Then, calls to this function are
5169 * always serialized (By cgroup_mutex() at create()).
5170 */
5171
5172static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5173{
5174 struct css_id *newid;
d228d9ec 5175 int ret, size;
38460b48
KH
5176
5177 BUG_ON(!ss->use_id);
5178
5179 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5180 newid = kzalloc(size, GFP_KERNEL);
5181 if (!newid)
5182 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5183
5184 idr_preload(GFP_KERNEL);
42aee6c4 5185 spin_lock(&ss->id_lock);
38460b48 5186 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5187 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5188 spin_unlock(&ss->id_lock);
d228d9ec 5189 idr_preload_end();
38460b48
KH
5190
5191 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5192 if (ret < 0)
38460b48 5193 goto err_out;
38460b48 5194
d228d9ec 5195 newid->id = ret;
38460b48
KH
5196 newid->depth = depth;
5197 return newid;
38460b48
KH
5198err_out:
5199 kfree(newid);
d228d9ec 5200 return ERR_PTR(ret);
38460b48
KH
5201
5202}
5203
e6a1105b
BB
5204static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5205 struct cgroup_subsys_state *rootcss)
38460b48
KH
5206{
5207 struct css_id *newid;
38460b48 5208
42aee6c4 5209 spin_lock_init(&ss->id_lock);
38460b48
KH
5210 idr_init(&ss->idr);
5211
38460b48
KH
5212 newid = get_new_cssid(ss, 0);
5213 if (IS_ERR(newid))
5214 return PTR_ERR(newid);
5215
5216 newid->stack[0] = newid->id;
5217 newid->css = rootcss;
5218 rootcss->id = newid;
5219 return 0;
5220}
5221
5222static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5223 struct cgroup *child)
5224{
5225 int subsys_id, i, depth = 0;
5226 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5227 struct css_id *child_id, *parent_id;
38460b48
KH
5228
5229 subsys_id = ss->subsys_id;
5230 parent_css = parent->subsys[subsys_id];
5231 child_css = child->subsys[subsys_id];
38460b48 5232 parent_id = parent_css->id;
94b3dd0f 5233 depth = parent_id->depth + 1;
38460b48
KH
5234
5235 child_id = get_new_cssid(ss, depth);
5236 if (IS_ERR(child_id))
5237 return PTR_ERR(child_id);
5238
5239 for (i = 0; i < depth; i++)
5240 child_id->stack[i] = parent_id->stack[i];
5241 child_id->stack[depth] = child_id->id;
5242 /*
5243 * child_id->css pointer will be set after this cgroup is available
5244 * see cgroup_populate_dir()
5245 */
5246 rcu_assign_pointer(child_css->id, child_id);
5247
5248 return 0;
5249}
5250
5251/**
5252 * css_lookup - lookup css by id
5253 * @ss: cgroup subsys to be looked into.
5254 * @id: the id
5255 *
5256 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5257 * NULL if not. Should be called under rcu_read_lock()
5258 */
5259struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5260{
5261 struct css_id *cssid = NULL;
5262
5263 BUG_ON(!ss->use_id);
5264 cssid = idr_find(&ss->idr, id);
5265
5266 if (unlikely(!cssid))
5267 return NULL;
5268
5269 return rcu_dereference(cssid->css);
5270}
67523c48 5271EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5272
5273/**
5274 * css_get_next - lookup next cgroup under specified hierarchy.
5275 * @ss: pointer to subsystem
5276 * @id: current position of iteration.
5277 * @root: pointer to css. search tree under this.
5278 * @foundid: position of found object.
5279 *
5280 * Search next css under the specified hierarchy of rootid. Calling under
5281 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5282 */
5283struct cgroup_subsys_state *
5284css_get_next(struct cgroup_subsys *ss, int id,
5285 struct cgroup_subsys_state *root, int *foundid)
5286{
5287 struct cgroup_subsys_state *ret = NULL;
5288 struct css_id *tmp;
5289 int tmpid;
5290 int rootid = css_id(root);
5291 int depth = css_depth(root);
5292
5293 if (!rootid)
5294 return NULL;
5295
5296 BUG_ON(!ss->use_id);
ca464d69
HD
5297 WARN_ON_ONCE(!rcu_read_lock_held());
5298
38460b48
KH
5299 /* fill start point for scan */
5300 tmpid = id;
5301 while (1) {
5302 /*
5303 * scan next entry from bitmap(tree), tmpid is updated after
5304 * idr_get_next().
5305 */
38460b48 5306 tmp = idr_get_next(&ss->idr, &tmpid);
38460b48
KH
5307 if (!tmp)
5308 break;
5309 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5310 ret = rcu_dereference(tmp->css);
5311 if (ret) {
5312 *foundid = tmpid;
5313 break;
5314 }
5315 }
5316 /* continue to scan from next id */
5317 tmpid = tmpid + 1;
5318 }
5319 return ret;
5320}
5321
e5d1367f
SE
5322/*
5323 * get corresponding css from file open on cgroupfs directory
5324 */
5325struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5326{
5327 struct cgroup *cgrp;
5328 struct inode *inode;
5329 struct cgroup_subsys_state *css;
5330
496ad9aa 5331 inode = file_inode(f);
e5d1367f
SE
5332 /* check in cgroup filesystem dir */
5333 if (inode->i_op != &cgroup_dir_inode_operations)
5334 return ERR_PTR(-EBADF);
5335
5336 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5337 return ERR_PTR(-EINVAL);
5338
5339 /* get cgroup */
5340 cgrp = __d_cgrp(f->f_dentry);
5341 css = cgrp->subsys[id];
5342 return css ? css : ERR_PTR(-ENOENT);
5343}
5344
fe693435 5345#ifdef CONFIG_CGROUP_DEBUG
92fb9748 5346static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
fe693435
PM
5347{
5348 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5349
5350 if (!css)
5351 return ERR_PTR(-ENOMEM);
5352
5353 return css;
5354}
5355
92fb9748 5356static void debug_css_free(struct cgroup *cont)
fe693435
PM
5357{
5358 kfree(cont->subsys[debug_subsys_id]);
5359}
5360
5361static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5362{
5363 return atomic_read(&cont->count);
5364}
5365
5366static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5367{
5368 return cgroup_task_count(cont);
5369}
5370
5371static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5372{
5373 return (u64)(unsigned long)current->cgroups;
5374}
5375
5376static u64 current_css_set_refcount_read(struct cgroup *cont,
5377 struct cftype *cft)
5378{
5379 u64 count;
5380
5381 rcu_read_lock();
5382 count = atomic_read(&current->cgroups->refcount);
5383 rcu_read_unlock();
5384 return count;
5385}
5386
7717f7ba
PM
5387static int current_css_set_cg_links_read(struct cgroup *cont,
5388 struct cftype *cft,
5389 struct seq_file *seq)
5390{
5391 struct cg_cgroup_link *link;
5392 struct css_set *cg;
5393
5394 read_lock(&css_set_lock);
5395 rcu_read_lock();
5396 cg = rcu_dereference(current->cgroups);
5397 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5398 struct cgroup *c = link->cgrp;
5399 const char *name;
5400
5401 if (c->dentry)
5402 name = c->dentry->d_name.name;
5403 else
5404 name = "?";
2c6ab6d2
PM
5405 seq_printf(seq, "Root %d group %s\n",
5406 c->root->hierarchy_id, name);
7717f7ba
PM
5407 }
5408 rcu_read_unlock();
5409 read_unlock(&css_set_lock);
5410 return 0;
5411}
5412
5413#define MAX_TASKS_SHOWN_PER_CSS 25
5414static int cgroup_css_links_read(struct cgroup *cont,
5415 struct cftype *cft,
5416 struct seq_file *seq)
5417{
5418 struct cg_cgroup_link *link;
5419
5420 read_lock(&css_set_lock);
5421 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5422 struct css_set *cg = link->cg;
5423 struct task_struct *task;
5424 int count = 0;
5425 seq_printf(seq, "css_set %p\n", cg);
5426 list_for_each_entry(task, &cg->tasks, cg_list) {
5427 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5428 seq_puts(seq, " ...\n");
5429 break;
5430 } else {
5431 seq_printf(seq, " task %d\n",
5432 task_pid_vnr(task));
5433 }
5434 }
5435 }
5436 read_unlock(&css_set_lock);
5437 return 0;
5438}
5439
fe693435
PM
5440static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5441{
5442 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5443}
5444
5445static struct cftype debug_files[] = {
5446 {
5447 .name = "cgroup_refcount",
5448 .read_u64 = cgroup_refcount_read,
5449 },
5450 {
5451 .name = "taskcount",
5452 .read_u64 = debug_taskcount_read,
5453 },
5454
5455 {
5456 .name = "current_css_set",
5457 .read_u64 = current_css_set_read,
5458 },
5459
5460 {
5461 .name = "current_css_set_refcount",
5462 .read_u64 = current_css_set_refcount_read,
5463 },
5464
7717f7ba
PM
5465 {
5466 .name = "current_css_set_cg_links",
5467 .read_seq_string = current_css_set_cg_links_read,
5468 },
5469
5470 {
5471 .name = "cgroup_css_links",
5472 .read_seq_string = cgroup_css_links_read,
5473 },
5474
fe693435
PM
5475 {
5476 .name = "releasable",
5477 .read_u64 = releasable_read,
5478 },
fe693435 5479
4baf6e33
TH
5480 { } /* terminate */
5481};
fe693435
PM
5482
5483struct cgroup_subsys debug_subsys = {
5484 .name = "debug",
92fb9748
TH
5485 .css_alloc = debug_css_alloc,
5486 .css_free = debug_css_free,
fe693435 5487 .subsys_id = debug_subsys_id,
4baf6e33 5488 .base_cftypes = debug_files,
fe693435
PM
5489};
5490#endif /* CONFIG_CGROUP_DEBUG */