add toggle for disabling newly added USB devices
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
fff4dc84 60#include <linux/cpuset.h>
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
f0d9a5f1 78 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 86DEFINE_SPINLOCK(css_set_lock);
0e1d768f 87EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 88EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 91static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
34c06254
TH
100/*
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
103 */
104static DEFINE_SPINLOCK(cgroup_file_kn_lock);
105
69e943b7
TH
106/*
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
109 */
110static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 111
1ed13287
TH
112struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
113
8353da1f 114#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
8353da1f 117 "cgroup_mutex or RCU read lock required");
780cd8b3 118
e5fca243
TH
119/*
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
124 */
125static struct workqueue_struct *cgroup_destroy_wq;
126
b1a21367
TH
127/*
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
130 */
131static struct workqueue_struct *cgroup_pidlist_destroy_wq;
132
3ed80a62 133/* generate an array of cgroup subsystem pointers */
073219e9 134#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 135static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
136#include <linux/cgroup_subsys.h>
137};
073219e9
TH
138#undef SUBSYS
139
140/* array of cgroup subsystem names */
141#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
143#include <linux/cgroup_subsys.h>
144};
073219e9 145#undef SUBSYS
ddbcc7e8 146
49d1dc4b
TH
147/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
148#define SUBSYS(_x) \
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153#include <linux/cgroup_subsys.h>
154#undef SUBSYS
155
156#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157static struct static_key_true *cgroup_subsys_enabled_key[] = {
158#include <linux/cgroup_subsys.h>
159};
160#undef SUBSYS
161
162#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164#include <linux/cgroup_subsys.h>
165};
166#undef SUBSYS
167
ddbcc7e8 168/*
3dd06ffa 169 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
ddbcc7e8 172 */
a2dd4247 173struct cgroup_root cgrp_dfl_root;
d0ec4230 174EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 175
a2dd4247
TH
176/*
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
179 */
180static bool cgrp_dfl_root_visible;
ddbcc7e8 181
5533e011 182/* some controllers are not supported in the default hierarchy */
8ab456ac 183static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 184
ddbcc7e8
PM
185/* The list of hierarchy roots */
186
9871bf95
TH
187static LIST_HEAD(cgroup_roots);
188static int cgroup_root_count;
ddbcc7e8 189
3417ae1f 190/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 191static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 192
794611a1 193/*
0cb51d71
TH
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
794611a1 199 */
0cb51d71 200static u64 css_serial_nr_next = 1;
794611a1 201
cb4a3167
AS
202/*
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 206 */
cb4a3167
AS
207static unsigned long have_fork_callback __read_mostly;
208static unsigned long have_exit_callback __read_mostly;
afcf6c8b 209static unsigned long have_free_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
ed27b9f7 219static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 220static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
221static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
222 bool visible);
9d755d33 223static void css_release(struct percpu_ref *ref);
f8f22e53 224static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
225static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 227 bool is_add);
42809dd4 228
fc5ed1e9
TH
229/**
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
232 *
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
236 */
237static bool cgroup_ssid_enabled(int ssid)
238{
603c7800
AB
239 if (CGROUP_SUBSYS_COUNT == 0)
240 return false;
241
fc5ed1e9
TH
242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
243}
244
9e10a130
TH
245/**
246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247 * @cgrp: the cgroup of interest
248 *
249 * The default hierarchy is the v2 interface of cgroup and this function
250 * can be used to test whether a cgroup is on the default hierarchy for
251 * cases where a subsystem should behave differnetly depending on the
252 * interface version.
253 *
254 * The set of behaviors which change on the default hierarchy are still
255 * being determined and the mount option is prefixed with __DEVEL__.
256 *
257 * List of changed behaviors:
258 *
259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260 * and "name" are disallowed.
261 *
262 * - When mounting an existing superblock, mount options should match.
263 *
264 * - Remount is disallowed.
265 *
266 * - rename(2) is disallowed.
267 *
268 * - "tasks" is removed. Everything should be at process granularity. Use
269 * "cgroup.procs" instead.
270 *
271 * - "cgroup.procs" is not sorted. pids will be unique unless they got
272 * recycled inbetween reads.
273 *
274 * - "release_agent" and "notify_on_release" are removed. Replacement
275 * notification mechanism will be implemented.
276 *
277 * - "cgroup.clone_children" is removed.
278 *
279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
280 * and its descendants contain no task; otherwise, 1. The file also
281 * generates kernfs notification which can be monitored through poll and
282 * [di]notify when the value of the file changes.
283 *
284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285 * take masks of ancestors with non-empty cpus/mems, instead of being
286 * moved to an ancestor.
287 *
288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
289 * masks of ancestors.
290 *
291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292 * is not created.
293 *
294 * - blkcg: blk-throttle becomes properly hierarchical.
295 *
296 * - debug: disallowed on the default hierarchy.
297 */
298static bool cgroup_on_dfl(const struct cgroup *cgrp)
299{
300 return cgrp->root == &cgrp_dfl_root;
301}
302
6fa4918d
TH
303/* IDR wrappers which synchronize using cgroup_idr_lock */
304static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 gfp_t gfp_mask)
306{
307 int ret;
308
309 idr_preload(gfp_mask);
54504e97 310 spin_lock_bh(&cgroup_idr_lock);
d0164adc 311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 312 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
313 idr_preload_end();
314 return ret;
315}
316
317static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
318{
319 void *ret;
320
54504e97 321 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 322 ret = idr_replace(idr, ptr, id);
54504e97 323 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
324 return ret;
325}
326
327static void cgroup_idr_remove(struct idr *idr, int id)
328{
54504e97 329 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 330 idr_remove(idr, id);
54504e97 331 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
332}
333
d51f39b0
TH
334static struct cgroup *cgroup_parent(struct cgroup *cgrp)
335{
336 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
337
338 if (parent_css)
339 return container_of(parent_css, struct cgroup, self);
340 return NULL;
341}
342
95109b62
TH
343/**
344 * cgroup_css - obtain a cgroup's css for the specified subsystem
345 * @cgrp: the cgroup of interest
9d800df1 346 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 347 *
ca8bdcaf
TH
348 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
349 * function must be called either under cgroup_mutex or rcu_read_lock() and
350 * the caller is responsible for pinning the returned css if it wants to
351 * keep accessing it outside the said locks. This function may return
352 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
353 */
354static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 355 struct cgroup_subsys *ss)
95109b62 356{
ca8bdcaf 357 if (ss)
aec25020 358 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 359 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 360 else
9d800df1 361 return &cgrp->self;
95109b62 362}
42809dd4 363
aec3dfcb
TH
364/**
365 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
366 * @cgrp: the cgroup of interest
9d800df1 367 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 368 *
d0f702e6 369 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
370 * as the matching css of the nearest ancestor including self which has @ss
371 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
372 * function is guaranteed to return non-NULL css.
373 */
374static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
375 struct cgroup_subsys *ss)
376{
377 lockdep_assert_held(&cgroup_mutex);
378
379 if (!ss)
9d800df1 380 return &cgrp->self;
aec3dfcb
TH
381
382 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
383 return NULL;
384
eeecbd19
TH
385 /*
386 * This function is used while updating css associations and thus
387 * can't test the csses directly. Use ->child_subsys_mask.
388 */
d51f39b0
TH
389 while (cgroup_parent(cgrp) &&
390 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
391 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
392
393 return cgroup_css(cgrp, ss);
95109b62 394}
42809dd4 395
eeecbd19
TH
396/**
397 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
398 * @cgrp: the cgroup of interest
399 * @ss: the subsystem of interest
400 *
401 * Find and get the effective css of @cgrp for @ss. The effective css is
402 * defined as the matching css of the nearest ancestor including self which
403 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
404 * the root css is returned, so this function always returns a valid css.
405 * The returned css must be put using css_put().
406 */
407struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
408 struct cgroup_subsys *ss)
409{
410 struct cgroup_subsys_state *css;
411
412 rcu_read_lock();
413
414 do {
415 css = cgroup_css(cgrp, ss);
416
417 if (css && css_tryget_online(css))
418 goto out_unlock;
419 cgrp = cgroup_parent(cgrp);
420 } while (cgrp);
421
422 css = init_css_set.subsys[ss->id];
423 css_get(css);
424out_unlock:
425 rcu_read_unlock();
426 return css;
427}
428
ddbcc7e8 429/* convenient tests for these bits */
54766d4a 430static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 431{
184faf32 432 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
433}
434
052c3f3a
TH
435static void cgroup_get(struct cgroup *cgrp)
436{
437 WARN_ON_ONCE(cgroup_is_dead(cgrp));
438 css_get(&cgrp->self);
439}
440
441static bool cgroup_tryget(struct cgroup *cgrp)
442{
443 return css_tryget(&cgrp->self);
444}
445
446static void cgroup_put(struct cgroup *cgrp)
447{
448 css_put(&cgrp->self);
449}
450
b4168640 451struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 452{
2bd59d48 453 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 454 struct cftype *cft = of_cft(of);
2bd59d48
TH
455
456 /*
457 * This is open and unprotected implementation of cgroup_css().
458 * seq_css() is only called from a kernfs file operation which has
459 * an active reference on the file. Because all the subsystem
460 * files are drained before a css is disassociated with a cgroup,
461 * the matching css from the cgroup's subsys table is guaranteed to
462 * be and stay valid until the enclosing operation is complete.
463 */
464 if (cft->ss)
465 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
466 else
9d800df1 467 return &cgrp->self;
59f5296b 468}
b4168640 469EXPORT_SYMBOL_GPL(of_css);
59f5296b 470
78574cf9
LZ
471/**
472 * cgroup_is_descendant - test ancestry
473 * @cgrp: the cgroup to be tested
474 * @ancestor: possible ancestor of @cgrp
475 *
476 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
477 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
478 * and @ancestor are accessible.
479 */
480bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
481{
482 while (cgrp) {
483 if (cgrp == ancestor)
484 return true;
d51f39b0 485 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
486 }
487 return false;
488}
ddbcc7e8 489
e9685a03 490static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 491{
bd89aabc 492 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
493}
494
1c6727af
TH
495/**
496 * for_each_css - iterate all css's of a cgroup
497 * @css: the iteration cursor
498 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
499 * @cgrp: the target cgroup to iterate css's of
500 *
aec3dfcb 501 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
502 */
503#define for_each_css(css, ssid, cgrp) \
504 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
505 if (!((css) = rcu_dereference_check( \
506 (cgrp)->subsys[(ssid)], \
507 lockdep_is_held(&cgroup_mutex)))) { } \
508 else
509
aec3dfcb
TH
510/**
511 * for_each_e_css - iterate all effective css's of a cgroup
512 * @css: the iteration cursor
513 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
514 * @cgrp: the target cgroup to iterate css's of
515 *
516 * Should be called under cgroup_[tree_]mutex.
517 */
518#define for_each_e_css(css, ssid, cgrp) \
519 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
520 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
521 ; \
522 else
523
30159ec7 524/**
3ed80a62 525 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 526 * @ss: the iteration cursor
780cd8b3 527 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 528 */
780cd8b3 529#define for_each_subsys(ss, ssid) \
3ed80a62
TH
530 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
531 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 532
cb4a3167
AS
533/**
534 * for_each_subsys_which - filter for_each_subsys with a bitmask
535 * @ss: the iteration cursor
536 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
537 * @ss_maskp: a pointer to the bitmask
538 *
539 * The block will only run for cases where the ssid-th bit (1 << ssid) of
540 * mask is set to 1.
541 */
542#define for_each_subsys_which(ss, ssid, ss_maskp) \
543 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 544 (ssid) = 0; \
cb4a3167
AS
545 else \
546 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
547 if (((ss) = cgroup_subsys[ssid]) && false) \
548 break; \
549 else
550
985ed670
TH
551/* iterate across the hierarchies */
552#define for_each_root(root) \
5549c497 553 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 554
f8f22e53
TH
555/* iterate over child cgrps, lock should be held throughout iteration */
556#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 557 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 558 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
559 cgroup_is_dead(child); })) \
560 ; \
561 else
7ae1bad9 562
81a6a5cd 563static void cgroup_release_agent(struct work_struct *work);
bd89aabc 564static void check_for_release(struct cgroup *cgrp);
81a6a5cd 565
69d0206c
TH
566/*
567 * A cgroup can be associated with multiple css_sets as different tasks may
568 * belong to different cgroups on different hierarchies. In the other
569 * direction, a css_set is naturally associated with multiple cgroups.
570 * This M:N relationship is represented by the following link structure
571 * which exists for each association and allows traversing the associations
572 * from both sides.
573 */
574struct cgrp_cset_link {
575 /* the cgroup and css_set this link associates */
576 struct cgroup *cgrp;
577 struct css_set *cset;
578
579 /* list of cgrp_cset_links anchored at cgrp->cset_links */
580 struct list_head cset_link;
581
582 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
583 struct list_head cgrp_link;
817929ec
PM
584};
585
172a2c06
TH
586/*
587 * The default css_set - used by init and its children prior to any
817929ec
PM
588 * hierarchies being mounted. It contains a pointer to the root state
589 * for each subsystem. Also used to anchor the list of css_sets. Not
590 * reference-counted, to improve performance when child cgroups
591 * haven't been created.
592 */
5024ae29 593struct css_set init_css_set = {
172a2c06
TH
594 .refcount = ATOMIC_INIT(1),
595 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
596 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
597 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
598 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
599 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 600 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 601};
817929ec 602
172a2c06 603static int css_set_count = 1; /* 1 for init_css_set */
817929ec 604
0de0942d
TH
605/**
606 * css_set_populated - does a css_set contain any tasks?
607 * @cset: target css_set
608 */
609static bool css_set_populated(struct css_set *cset)
610{
f0d9a5f1 611 lockdep_assert_held(&css_set_lock);
0de0942d
TH
612
613 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
614}
615
842b597e
TH
616/**
617 * cgroup_update_populated - updated populated count of a cgroup
618 * @cgrp: the target cgroup
619 * @populated: inc or dec populated count
620 *
0de0942d
TH
621 * One of the css_sets associated with @cgrp is either getting its first
622 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
623 * count is propagated towards root so that a given cgroup's populated_cnt
624 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
625 *
626 * @cgrp's interface file "cgroup.populated" is zero if
627 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
628 * changes from or to zero, userland is notified that the content of the
629 * interface file has changed. This can be used to detect when @cgrp and
630 * its descendants become populated or empty.
631 */
632static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
633{
f0d9a5f1 634 lockdep_assert_held(&css_set_lock);
842b597e
TH
635
636 do {
637 bool trigger;
638
639 if (populated)
640 trigger = !cgrp->populated_cnt++;
641 else
642 trigger = !--cgrp->populated_cnt;
643
644 if (!trigger)
645 break;
646
ad2ed2b3 647 check_for_release(cgrp);
6f60eade
TH
648 cgroup_file_notify(&cgrp->events_file);
649
d51f39b0 650 cgrp = cgroup_parent(cgrp);
842b597e
TH
651 } while (cgrp);
652}
653
0de0942d
TH
654/**
655 * css_set_update_populated - update populated state of a css_set
656 * @cset: target css_set
657 * @populated: whether @cset is populated or depopulated
658 *
659 * @cset is either getting the first task or losing the last. Update the
660 * ->populated_cnt of all associated cgroups accordingly.
661 */
662static void css_set_update_populated(struct css_set *cset, bool populated)
663{
664 struct cgrp_cset_link *link;
665
f0d9a5f1 666 lockdep_assert_held(&css_set_lock);
0de0942d
TH
667
668 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
669 cgroup_update_populated(link->cgrp, populated);
670}
671
f6d7d049
TH
672/**
673 * css_set_move_task - move a task from one css_set to another
674 * @task: task being moved
675 * @from_cset: css_set @task currently belongs to (may be NULL)
676 * @to_cset: new css_set @task is being moved to (may be NULL)
677 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
678 *
679 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
680 * css_set, @from_cset can be NULL. If @task is being disassociated
681 * instead of moved, @to_cset can be NULL.
682 *
ed27b9f7
TH
683 * This function automatically handles populated_cnt updates and
684 * css_task_iter adjustments but the caller is responsible for managing
685 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
686 */
687static void css_set_move_task(struct task_struct *task,
688 struct css_set *from_cset, struct css_set *to_cset,
689 bool use_mg_tasks)
690{
f0d9a5f1 691 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
692
693 if (from_cset) {
ed27b9f7
TH
694 struct css_task_iter *it, *pos;
695
f6d7d049 696 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
697
698 /*
699 * @task is leaving, advance task iterators which are
700 * pointing to it so that they can resume at the next
701 * position. Advancing an iterator might remove it from
702 * the list, use safe walk. See css_task_iter_advance*()
703 * for details.
704 */
705 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
706 iters_node)
707 if (it->task_pos == &task->cg_list)
708 css_task_iter_advance(it);
709
f6d7d049
TH
710 list_del_init(&task->cg_list);
711 if (!css_set_populated(from_cset))
712 css_set_update_populated(from_cset, false);
713 } else {
714 WARN_ON_ONCE(!list_empty(&task->cg_list));
715 }
716
717 if (to_cset) {
718 /*
719 * We are synchronized through cgroup_threadgroup_rwsem
720 * against PF_EXITING setting such that we can't race
721 * against cgroup_exit() changing the css_set to
722 * init_css_set and dropping the old one.
723 */
724 WARN_ON_ONCE(task->flags & PF_EXITING);
725
726 if (!css_set_populated(to_cset))
727 css_set_update_populated(to_cset, true);
728 rcu_assign_pointer(task->cgroups, to_cset);
729 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
730 &to_cset->tasks);
731 }
732}
733
7717f7ba
PM
734/*
735 * hash table for cgroup groups. This improves the performance to find
736 * an existing css_set. This hash doesn't (currently) take into
737 * account cgroups in empty hierarchies.
738 */
472b1053 739#define CSS_SET_HASH_BITS 7
0ac801fe 740static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 741
0ac801fe 742static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 743{
0ac801fe 744 unsigned long key = 0UL;
30159ec7
TH
745 struct cgroup_subsys *ss;
746 int i;
472b1053 747
30159ec7 748 for_each_subsys(ss, i)
0ac801fe
LZ
749 key += (unsigned long)css[i];
750 key = (key >> 16) ^ key;
472b1053 751
0ac801fe 752 return key;
472b1053
LZ
753}
754
a25eb52e 755static void put_css_set_locked(struct css_set *cset)
b4f48b63 756{
69d0206c 757 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
758 struct cgroup_subsys *ss;
759 int ssid;
5abb8855 760
f0d9a5f1 761 lockdep_assert_held(&css_set_lock);
89c5509b
TH
762
763 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 764 return;
81a6a5cd 765
53254f90
TH
766 /* This css_set is dead. unlink it and release cgroup and css refs */
767 for_each_subsys(ss, ssid) {
2d8f243a 768 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
769 css_put(cset->subsys[ssid]);
770 }
5abb8855 771 hash_del(&cset->hlist);
2c6ab6d2
PM
772 css_set_count--;
773
69d0206c 774 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
775 list_del(&link->cset_link);
776 list_del(&link->cgrp_link);
2ceb231b
TH
777 if (cgroup_parent(link->cgrp))
778 cgroup_put(link->cgrp);
2c6ab6d2 779 kfree(link);
81a6a5cd 780 }
2c6ab6d2 781
5abb8855 782 kfree_rcu(cset, rcu_head);
b4f48b63
PM
783}
784
a25eb52e 785static void put_css_set(struct css_set *cset)
89c5509b 786{
1cac41cb
MB
787 unsigned long flags;
788
89c5509b
TH
789 /*
790 * Ensure that the refcount doesn't hit zero while any readers
791 * can see it. Similar to atomic_dec_and_lock(), but for an
792 * rwlock
793 */
794 if (atomic_add_unless(&cset->refcount, -1, 1))
795 return;
796
1cac41cb 797 spin_lock_irqsave(&css_set_lock, flags);
a25eb52e 798 put_css_set_locked(cset);
1cac41cb 799 spin_unlock_irqrestore(&css_set_lock, flags);
89c5509b
TH
800}
801
817929ec
PM
802/*
803 * refcounted get/put for css_set objects
804 */
5abb8855 805static inline void get_css_set(struct css_set *cset)
817929ec 806{
5abb8855 807 atomic_inc(&cset->refcount);
817929ec
PM
808}
809
b326f9d0 810/**
7717f7ba 811 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
812 * @cset: candidate css_set being tested
813 * @old_cset: existing css_set for a task
7717f7ba
PM
814 * @new_cgrp: cgroup that's being entered by the task
815 * @template: desired set of css pointers in css_set (pre-calculated)
816 *
6f4b7e63 817 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
818 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
819 */
5abb8855
TH
820static bool compare_css_sets(struct css_set *cset,
821 struct css_set *old_cset,
7717f7ba
PM
822 struct cgroup *new_cgrp,
823 struct cgroup_subsys_state *template[])
824{
825 struct list_head *l1, *l2;
826
aec3dfcb
TH
827 /*
828 * On the default hierarchy, there can be csets which are
829 * associated with the same set of cgroups but different csses.
830 * Let's first ensure that csses match.
831 */
832 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 833 return false;
7717f7ba
PM
834
835 /*
836 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
837 * different cgroups in hierarchies. As different cgroups may
838 * share the same effective css, this comparison is always
839 * necessary.
7717f7ba 840 */
69d0206c
TH
841 l1 = &cset->cgrp_links;
842 l2 = &old_cset->cgrp_links;
7717f7ba 843 while (1) {
69d0206c 844 struct cgrp_cset_link *link1, *link2;
5abb8855 845 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
846
847 l1 = l1->next;
848 l2 = l2->next;
849 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
850 if (l1 == &cset->cgrp_links) {
851 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
852 break;
853 } else {
69d0206c 854 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
855 }
856 /* Locate the cgroups associated with these links. */
69d0206c
TH
857 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
858 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
859 cgrp1 = link1->cgrp;
860 cgrp2 = link2->cgrp;
7717f7ba 861 /* Hierarchies should be linked in the same order. */
5abb8855 862 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
863
864 /*
865 * If this hierarchy is the hierarchy of the cgroup
866 * that's changing, then we need to check that this
867 * css_set points to the new cgroup; if it's any other
868 * hierarchy, then this css_set should point to the
869 * same cgroup as the old css_set.
870 */
5abb8855
TH
871 if (cgrp1->root == new_cgrp->root) {
872 if (cgrp1 != new_cgrp)
7717f7ba
PM
873 return false;
874 } else {
5abb8855 875 if (cgrp1 != cgrp2)
7717f7ba
PM
876 return false;
877 }
878 }
879 return true;
880}
881
b326f9d0
TH
882/**
883 * find_existing_css_set - init css array and find the matching css_set
884 * @old_cset: the css_set that we're using before the cgroup transition
885 * @cgrp: the cgroup that we're moving into
886 * @template: out param for the new set of csses, should be clear on entry
817929ec 887 */
5abb8855
TH
888static struct css_set *find_existing_css_set(struct css_set *old_cset,
889 struct cgroup *cgrp,
890 struct cgroup_subsys_state *template[])
b4f48b63 891{
3dd06ffa 892 struct cgroup_root *root = cgrp->root;
30159ec7 893 struct cgroup_subsys *ss;
5abb8855 894 struct css_set *cset;
0ac801fe 895 unsigned long key;
b326f9d0 896 int i;
817929ec 897
aae8aab4
BB
898 /*
899 * Build the set of subsystem state objects that we want to see in the
900 * new css_set. while subsystems can change globally, the entries here
901 * won't change, so no need for locking.
902 */
30159ec7 903 for_each_subsys(ss, i) {
f392e51c 904 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
905 /*
906 * @ss is in this hierarchy, so we want the
907 * effective css from @cgrp.
908 */
909 template[i] = cgroup_e_css(cgrp, ss);
817929ec 910 } else {
aec3dfcb
TH
911 /*
912 * @ss is not in this hierarchy, so we don't want
913 * to change the css.
914 */
5abb8855 915 template[i] = old_cset->subsys[i];
817929ec
PM
916 }
917 }
918
0ac801fe 919 key = css_set_hash(template);
5abb8855
TH
920 hash_for_each_possible(css_set_table, cset, hlist, key) {
921 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
922 continue;
923
924 /* This css_set matches what we need */
5abb8855 925 return cset;
472b1053 926 }
817929ec
PM
927
928 /* No existing cgroup group matched */
929 return NULL;
930}
931
69d0206c 932static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 933{
69d0206c 934 struct cgrp_cset_link *link, *tmp_link;
36553434 935
69d0206c
TH
936 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
937 list_del(&link->cset_link);
36553434
LZ
938 kfree(link);
939 }
940}
941
69d0206c
TH
942/**
943 * allocate_cgrp_cset_links - allocate cgrp_cset_links
944 * @count: the number of links to allocate
945 * @tmp_links: list_head the allocated links are put on
946 *
947 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
948 * through ->cset_link. Returns 0 on success or -errno.
817929ec 949 */
69d0206c 950static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 951{
69d0206c 952 struct cgrp_cset_link *link;
817929ec 953 int i;
69d0206c
TH
954
955 INIT_LIST_HEAD(tmp_links);
956
817929ec 957 for (i = 0; i < count; i++) {
f4f4be2b 958 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 959 if (!link) {
69d0206c 960 free_cgrp_cset_links(tmp_links);
817929ec
PM
961 return -ENOMEM;
962 }
69d0206c 963 list_add(&link->cset_link, tmp_links);
817929ec
PM
964 }
965 return 0;
966}
967
c12f65d4
LZ
968/**
969 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 970 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 971 * @cset: the css_set to be linked
c12f65d4
LZ
972 * @cgrp: the destination cgroup
973 */
69d0206c
TH
974static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
975 struct cgroup *cgrp)
c12f65d4 976{
69d0206c 977 struct cgrp_cset_link *link;
c12f65d4 978
69d0206c 979 BUG_ON(list_empty(tmp_links));
6803c006
TH
980
981 if (cgroup_on_dfl(cgrp))
982 cset->dfl_cgrp = cgrp;
983
69d0206c
TH
984 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
985 link->cset = cset;
7717f7ba 986 link->cgrp = cgrp;
842b597e 987
7717f7ba 988 /*
389b9c1b
TH
989 * Always add links to the tail of the lists so that the lists are
990 * in choronological order.
7717f7ba 991 */
389b9c1b 992 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 993 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
994
995 if (cgroup_parent(cgrp))
996 cgroup_get(cgrp);
c12f65d4
LZ
997}
998
b326f9d0
TH
999/**
1000 * find_css_set - return a new css_set with one cgroup updated
1001 * @old_cset: the baseline css_set
1002 * @cgrp: the cgroup to be updated
1003 *
1004 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1005 * substituted into the appropriate hierarchy.
817929ec 1006 */
5abb8855
TH
1007static struct css_set *find_css_set(struct css_set *old_cset,
1008 struct cgroup *cgrp)
817929ec 1009{
b326f9d0 1010 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1011 struct css_set *cset;
69d0206c
TH
1012 struct list_head tmp_links;
1013 struct cgrp_cset_link *link;
2d8f243a 1014 struct cgroup_subsys *ss;
0ac801fe 1015 unsigned long key;
2d8f243a 1016 int ssid;
472b1053 1017
b326f9d0
TH
1018 lockdep_assert_held(&cgroup_mutex);
1019
817929ec
PM
1020 /* First see if we already have a cgroup group that matches
1021 * the desired set */
1cac41cb 1022 spin_lock_irq(&css_set_lock);
5abb8855
TH
1023 cset = find_existing_css_set(old_cset, cgrp, template);
1024 if (cset)
1025 get_css_set(cset);
1cac41cb 1026 spin_unlock_irq(&css_set_lock);
817929ec 1027
5abb8855
TH
1028 if (cset)
1029 return cset;
817929ec 1030
f4f4be2b 1031 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1032 if (!cset)
817929ec
PM
1033 return NULL;
1034
69d0206c 1035 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1036 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1037 kfree(cset);
817929ec
PM
1038 return NULL;
1039 }
1040
5abb8855 1041 atomic_set(&cset->refcount, 1);
69d0206c 1042 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1043 INIT_LIST_HEAD(&cset->tasks);
c7561128 1044 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1045 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1046 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1047 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1048 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1049
1050 /* Copy the set of subsystem state objects generated in
1051 * find_existing_css_set() */
5abb8855 1052 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1053
1cac41cb 1054 spin_lock_irq(&css_set_lock);
817929ec 1055 /* Add reference counts and links from the new css_set. */
69d0206c 1056 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1057 struct cgroup *c = link->cgrp;
69d0206c 1058
7717f7ba
PM
1059 if (c->root == cgrp->root)
1060 c = cgrp;
69d0206c 1061 link_css_set(&tmp_links, cset, c);
7717f7ba 1062 }
817929ec 1063
69d0206c 1064 BUG_ON(!list_empty(&tmp_links));
817929ec 1065
817929ec 1066 css_set_count++;
472b1053 1067
2d8f243a 1068 /* Add @cset to the hash table */
5abb8855
TH
1069 key = css_set_hash(cset->subsys);
1070 hash_add(css_set_table, &cset->hlist, key);
472b1053 1071
53254f90
TH
1072 for_each_subsys(ss, ssid) {
1073 struct cgroup_subsys_state *css = cset->subsys[ssid];
1074
2d8f243a 1075 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1076 &css->cgroup->e_csets[ssid]);
1077 css_get(css);
1078 }
2d8f243a 1079
1cac41cb 1080 spin_unlock_irq(&css_set_lock);
817929ec 1081
5abb8855 1082 return cset;
b4f48b63
PM
1083}
1084
3dd06ffa 1085static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1086{
3dd06ffa 1087 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1088
3dd06ffa 1089 return root_cgrp->root;
2bd59d48
TH
1090}
1091
3dd06ffa 1092static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1093{
1094 int id;
1095
1096 lockdep_assert_held(&cgroup_mutex);
1097
985ed670 1098 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1099 if (id < 0)
1100 return id;
1101
1102 root->hierarchy_id = id;
1103 return 0;
1104}
1105
3dd06ffa 1106static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1107{
1108 lockdep_assert_held(&cgroup_mutex);
1109
1110 if (root->hierarchy_id) {
1111 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1112 root->hierarchy_id = 0;
1113 }
1114}
1115
3dd06ffa 1116static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1117{
1118 if (root) {
d0f702e6 1119 /* hierarchy ID should already have been released */
f2e85d57
TH
1120 WARN_ON_ONCE(root->hierarchy_id);
1121
1122 idr_destroy(&root->cgroup_idr);
1123 kfree(root);
1124 }
1125}
1126
3dd06ffa 1127static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1128{
3dd06ffa 1129 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1130 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1131
2bd59d48 1132 mutex_lock(&cgroup_mutex);
f2e85d57 1133
776f02fa 1134 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1135 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1136
f2e85d57 1137 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1138 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1139
7717f7ba 1140 /*
f2e85d57
TH
1141 * Release all the links from cset_links to this hierarchy's
1142 * root cgroup
7717f7ba 1143 */
1cac41cb 1144 spin_lock_irq(&css_set_lock);
f2e85d57
TH
1145
1146 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1147 list_del(&link->cset_link);
1148 list_del(&link->cgrp_link);
1149 kfree(link);
1150 }
f0d9a5f1 1151
1cac41cb 1152 spin_unlock_irq(&css_set_lock);
f2e85d57
TH
1153
1154 if (!list_empty(&root->root_list)) {
1155 list_del(&root->root_list);
1156 cgroup_root_count--;
1157 }
1158
1159 cgroup_exit_root_id(root);
1160
1161 mutex_unlock(&cgroup_mutex);
f2e85d57 1162
2bd59d48 1163 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1164 cgroup_free_root(root);
1165}
1166
ceb6a081
TH
1167/* look up cgroup associated with given css_set on the specified hierarchy */
1168static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1169 struct cgroup_root *root)
7717f7ba 1170{
7717f7ba
PM
1171 struct cgroup *res = NULL;
1172
96d365e0 1173 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1174 lockdep_assert_held(&css_set_lock);
96d365e0 1175
5abb8855 1176 if (cset == &init_css_set) {
3dd06ffa 1177 res = &root->cgrp;
7717f7ba 1178 } else {
69d0206c
TH
1179 struct cgrp_cset_link *link;
1180
1181 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1182 struct cgroup *c = link->cgrp;
69d0206c 1183
7717f7ba
PM
1184 if (c->root == root) {
1185 res = c;
1186 break;
1187 }
1188 }
1189 }
96d365e0 1190
7717f7ba
PM
1191 BUG_ON(!res);
1192 return res;
1193}
1194
ddbcc7e8 1195/*
ceb6a081 1196 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1197 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1198 */
1199static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1200 struct cgroup_root *root)
ceb6a081
TH
1201{
1202 /*
1203 * No need to lock the task - since we hold cgroup_mutex the
1204 * task can't change groups, so the only thing that can happen
1205 * is that it exits and its css is set back to init_css_set.
1206 */
1207 return cset_cgroup_from_root(task_css_set(task), root);
1208}
1209
ddbcc7e8 1210/*
ddbcc7e8
PM
1211 * A task must hold cgroup_mutex to modify cgroups.
1212 *
1213 * Any task can increment and decrement the count field without lock.
1214 * So in general, code holding cgroup_mutex can't rely on the count
1215 * field not changing. However, if the count goes to zero, then only
956db3ca 1216 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1217 * means that no tasks are currently attached, therefore there is no
1218 * way a task attached to that cgroup can fork (the other way to
1219 * increment the count). So code holding cgroup_mutex can safely
1220 * assume that if the count is zero, it will stay zero. Similarly, if
1221 * a task holds cgroup_mutex on a cgroup with zero count, it
1222 * knows that the cgroup won't be removed, as cgroup_rmdir()
1223 * needs that mutex.
1224 *
ddbcc7e8
PM
1225 * A cgroup can only be deleted if both its 'count' of using tasks
1226 * is zero, and its list of 'children' cgroups is empty. Since all
1227 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1228 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1229 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1230 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1231 *
1232 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1233 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1234 */
1235
2bd59d48 1236static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1237static const struct file_operations proc_cgroupstats_operations;
a424316c 1238
8d7e6fb0
TH
1239static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1240 char *buf)
ddbcc7e8 1241{
3e1d2eed
TH
1242 struct cgroup_subsys *ss = cft->ss;
1243
8d7e6fb0
TH
1244 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1245 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1246 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1247 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1248 cft->name);
8d7e6fb0
TH
1249 else
1250 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1251 return buf;
ddbcc7e8
PM
1252}
1253
f2e85d57
TH
1254/**
1255 * cgroup_file_mode - deduce file mode of a control file
1256 * @cft: the control file in question
1257 *
7dbdb199 1258 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1259 */
1260static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1261{
f2e85d57 1262 umode_t mode = 0;
65dff759 1263
f2e85d57
TH
1264 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1265 mode |= S_IRUGO;
1266
7dbdb199
TH
1267 if (cft->write_u64 || cft->write_s64 || cft->write) {
1268 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1269 mode |= S_IWUGO;
1270 else
1271 mode |= S_IWUSR;
1272 }
f2e85d57
TH
1273
1274 return mode;
65dff759
LZ
1275}
1276
af0ba678 1277/**
0f060deb 1278 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1279 * @cgrp: the target cgroup
0f060deb 1280 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1281 *
1282 * On the default hierarchy, a subsystem may request other subsystems to be
1283 * enabled together through its ->depends_on mask. In such cases, more
1284 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1285 *
0f060deb
TH
1286 * This function calculates which subsystems need to be enabled if
1287 * @subtree_control is to be applied to @cgrp. The returned mask is always
1288 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1289 */
8ab456ac
AS
1290static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1291 unsigned long subtree_control)
667c2491 1292{
af0ba678 1293 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1294 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1295 struct cgroup_subsys *ss;
1296 int ssid;
1297
1298 lockdep_assert_held(&cgroup_mutex);
1299
0f060deb
TH
1300 if (!cgroup_on_dfl(cgrp))
1301 return cur_ss_mask;
af0ba678
TH
1302
1303 while (true) {
8ab456ac 1304 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1305
a966a4ed
AS
1306 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1307 new_ss_mask |= ss->depends_on;
af0ba678
TH
1308
1309 /*
1310 * Mask out subsystems which aren't available. This can
1311 * happen only if some depended-upon subsystems were bound
1312 * to non-default hierarchies.
1313 */
1314 if (parent)
1315 new_ss_mask &= parent->child_subsys_mask;
1316 else
1317 new_ss_mask &= cgrp->root->subsys_mask;
1318
1319 if (new_ss_mask == cur_ss_mask)
1320 break;
1321 cur_ss_mask = new_ss_mask;
1322 }
1323
0f060deb
TH
1324 return cur_ss_mask;
1325}
1326
1327/**
1328 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1329 * @cgrp: the target cgroup
1330 *
1331 * Update @cgrp->child_subsys_mask according to the current
1332 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1333 */
1334static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1335{
1336 cgrp->child_subsys_mask =
1337 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1338}
1339
a9746d8d
TH
1340/**
1341 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1342 * @kn: the kernfs_node being serviced
1343 *
1344 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1345 * the method finishes if locking succeeded. Note that once this function
1346 * returns the cgroup returned by cgroup_kn_lock_live() may become
1347 * inaccessible any time. If the caller intends to continue to access the
1348 * cgroup, it should pin it before invoking this function.
1349 */
1350static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1351{
a9746d8d
TH
1352 struct cgroup *cgrp;
1353
1354 if (kernfs_type(kn) == KERNFS_DIR)
1355 cgrp = kn->priv;
1356 else
1357 cgrp = kn->parent->priv;
1358
1359 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1360
1361 kernfs_unbreak_active_protection(kn);
1362 cgroup_put(cgrp);
ddbcc7e8
PM
1363}
1364
a9746d8d
TH
1365/**
1366 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1367 * @kn: the kernfs_node being serviced
1368 *
1369 * This helper is to be used by a cgroup kernfs method currently servicing
1370 * @kn. It breaks the active protection, performs cgroup locking and
1371 * verifies that the associated cgroup is alive. Returns the cgroup if
1372 * alive; otherwise, %NULL. A successful return should be undone by a
1373 * matching cgroup_kn_unlock() invocation.
1374 *
1375 * Any cgroup kernfs method implementation which requires locking the
1376 * associated cgroup should use this helper. It avoids nesting cgroup
1377 * locking under kernfs active protection and allows all kernfs operations
1378 * including self-removal.
1379 */
1380static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1381{
a9746d8d
TH
1382 struct cgroup *cgrp;
1383
1384 if (kernfs_type(kn) == KERNFS_DIR)
1385 cgrp = kn->priv;
1386 else
1387 cgrp = kn->parent->priv;
05ef1d7c 1388
2739d3cc 1389 /*
01f6474c 1390 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1391 * active_ref. cgroup liveliness check alone provides enough
1392 * protection against removal. Ensure @cgrp stays accessible and
1393 * break the active_ref protection.
2739d3cc 1394 */
aa32362f
LZ
1395 if (!cgroup_tryget(cgrp))
1396 return NULL;
a9746d8d
TH
1397 kernfs_break_active_protection(kn);
1398
2bd59d48 1399 mutex_lock(&cgroup_mutex);
05ef1d7c 1400
a9746d8d
TH
1401 if (!cgroup_is_dead(cgrp))
1402 return cgrp;
1403
1404 cgroup_kn_unlock(kn);
1405 return NULL;
ddbcc7e8 1406}
05ef1d7c 1407
2739d3cc 1408static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1409{
2bd59d48 1410 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1411
01f6474c 1412 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1413
1414 if (cft->file_offset) {
1415 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1416 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1417
1418 spin_lock_irq(&cgroup_file_kn_lock);
1419 cfile->kn = NULL;
1420 spin_unlock_irq(&cgroup_file_kn_lock);
1421 }
1422
2bd59d48 1423 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1424}
1425
13af07df 1426/**
4df8dc90
TH
1427 * css_clear_dir - remove subsys files in a cgroup directory
1428 * @css: taget css
1429 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1430 */
4df8dc90
TH
1431static void css_clear_dir(struct cgroup_subsys_state *css,
1432 struct cgroup *cgrp_override)
05ef1d7c 1433{
4df8dc90
TH
1434 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1435 struct cftype *cfts;
05ef1d7c 1436
4df8dc90
TH
1437 list_for_each_entry(cfts, &css->ss->cfts, node)
1438 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1439}
1440
ccdca218 1441/**
4df8dc90
TH
1442 * css_populate_dir - create subsys files in a cgroup directory
1443 * @css: target css
1444 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1445 *
1446 * On failure, no file is added.
1447 */
4df8dc90
TH
1448static int css_populate_dir(struct cgroup_subsys_state *css,
1449 struct cgroup *cgrp_override)
ccdca218 1450{
4df8dc90
TH
1451 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1452 struct cftype *cfts, *failed_cfts;
1453 int ret;
ccdca218 1454
4df8dc90
TH
1455 if (!css->ss) {
1456 if (cgroup_on_dfl(cgrp))
1457 cfts = cgroup_dfl_base_files;
1458 else
1459 cfts = cgroup_legacy_base_files;
ccdca218 1460
4df8dc90
TH
1461 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1462 }
ccdca218 1463
4df8dc90
TH
1464 list_for_each_entry(cfts, &css->ss->cfts, node) {
1465 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1466 if (ret < 0) {
1467 failed_cfts = cfts;
1468 goto err;
ccdca218
TH
1469 }
1470 }
1471 return 0;
1472err:
4df8dc90
TH
1473 list_for_each_entry(cfts, &css->ss->cfts, node) {
1474 if (cfts == failed_cfts)
1475 break;
1476 cgroup_addrm_files(css, cgrp, cfts, false);
1477 }
ccdca218
TH
1478 return ret;
1479}
1480
8ab456ac
AS
1481static int rebind_subsystems(struct cgroup_root *dst_root,
1482 unsigned long ss_mask)
ddbcc7e8 1483{
1ada4838 1484 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1485 struct cgroup_subsys *ss;
8ab456ac 1486 unsigned long tmp_ss_mask;
2d8f243a 1487 int ssid, i, ret;
ddbcc7e8 1488
ace2bee8 1489 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1490
a966a4ed 1491 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1492 /* if @ss has non-root csses attached to it, can't move */
1493 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1494 return -EBUSY;
1d5be6b2 1495
5df36032 1496 /* can't move between two non-dummy roots either */
7fd8c565 1497 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1498 return -EBUSY;
ddbcc7e8
PM
1499 }
1500
5533e011
TH
1501 /* skip creating root files on dfl_root for inhibited subsystems */
1502 tmp_ss_mask = ss_mask;
1503 if (dst_root == &cgrp_dfl_root)
1504 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1505
4df8dc90
TH
1506 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1507 struct cgroup *scgrp = &ss->root->cgrp;
1508 int tssid;
1509
1510 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1511 if (!ret)
1512 continue;
ddbcc7e8 1513
a2dd4247
TH
1514 /*
1515 * Rebinding back to the default root is not allowed to
1516 * fail. Using both default and non-default roots should
1517 * be rare. Moving subsystems back and forth even more so.
1518 * Just warn about it and continue.
1519 */
4df8dc90
TH
1520 if (dst_root == &cgrp_dfl_root) {
1521 if (cgrp_dfl_root_visible) {
1522 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1523 ret, ss_mask);
1524 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1525 }
1526 continue;
a2dd4247 1527 }
4df8dc90
TH
1528
1529 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1530 if (tssid == ssid)
1531 break;
1532 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1533 }
1534 return ret;
5df36032 1535 }
3126121f
TH
1536
1537 /*
1538 * Nothing can fail from this point on. Remove files for the
1539 * removed subsystems and rebind each subsystem.
1540 */
a966a4ed 1541 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1542 struct cgroup_root *src_root = ss->root;
1543 struct cgroup *scgrp = &src_root->cgrp;
1544 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1545 struct css_set *cset;
a8a648c4 1546
1ada4838 1547 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1548
4df8dc90
TH
1549 css_clear_dir(css, NULL);
1550
1ada4838
TH
1551 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1552 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1553 ss->root = dst_root;
1ada4838 1554 css->cgroup = dcgrp;
73e80ed8 1555
1cac41cb 1556 spin_lock_irq(&css_set_lock);
2d8f243a
TH
1557 hash_for_each(css_set_table, i, cset, hlist)
1558 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1559 &dcgrp->e_csets[ss->id]);
1cac41cb 1560 spin_unlock_irq(&css_set_lock);
2d8f243a 1561
f392e51c 1562 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1563 scgrp->subtree_control &= ~(1 << ssid);
1564 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1565
bd53d617 1566 /* default hierarchy doesn't enable controllers by default */
f392e51c 1567 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1568 if (dst_root == &cgrp_dfl_root) {
1569 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1570 } else {
1ada4838
TH
1571 dcgrp->subtree_control |= 1 << ssid;
1572 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1573 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1574 }
a8a648c4 1575
5df36032
TH
1576 if (ss->bind)
1577 ss->bind(css);
ddbcc7e8 1578 }
ddbcc7e8 1579
1ada4838 1580 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1581 return 0;
1582}
1583
2bd59d48
TH
1584static int cgroup_show_options(struct seq_file *seq,
1585 struct kernfs_root *kf_root)
ddbcc7e8 1586{
3dd06ffa 1587 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1588 struct cgroup_subsys *ss;
b85d2040 1589 int ssid;
ddbcc7e8 1590
d98817d4
TH
1591 if (root != &cgrp_dfl_root)
1592 for_each_subsys(ss, ssid)
1593 if (root->subsys_mask & (1 << ssid))
61e57c0c 1594 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1595 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1596 seq_puts(seq, ",noprefix");
93438629 1597 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1598 seq_puts(seq, ",xattr");
69e943b7
TH
1599
1600 spin_lock(&release_agent_path_lock);
81a6a5cd 1601 if (strlen(root->release_agent_path))
a068acf2
KC
1602 seq_show_option(seq, "release_agent",
1603 root->release_agent_path);
69e943b7
TH
1604 spin_unlock(&release_agent_path_lock);
1605
3dd06ffa 1606 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1607 seq_puts(seq, ",clone_children");
c6d57f33 1608 if (strlen(root->name))
a068acf2 1609 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1610 return 0;
1611}
1612
1613struct cgroup_sb_opts {
8ab456ac 1614 unsigned long subsys_mask;
69dfa00c 1615 unsigned int flags;
81a6a5cd 1616 char *release_agent;
2260e7fc 1617 bool cpuset_clone_children;
c6d57f33 1618 char *name;
2c6ab6d2
PM
1619 /* User explicitly requested empty subsystem */
1620 bool none;
ddbcc7e8
PM
1621};
1622
cf5d5941 1623static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1624{
32a8cf23
DL
1625 char *token, *o = data;
1626 bool all_ss = false, one_ss = false;
8ab456ac 1627 unsigned long mask = -1UL;
30159ec7 1628 struct cgroup_subsys *ss;
7b9a6ba5 1629 int nr_opts = 0;
30159ec7 1630 int i;
f9ab5b5b
LZ
1631
1632#ifdef CONFIG_CPUSETS
69dfa00c 1633 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1634#endif
ddbcc7e8 1635
c6d57f33 1636 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1637
1638 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1639 nr_opts++;
1640
ddbcc7e8
PM
1641 if (!*token)
1642 return -EINVAL;
32a8cf23 1643 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1644 /* Explicitly have no subsystems */
1645 opts->none = true;
32a8cf23
DL
1646 continue;
1647 }
1648 if (!strcmp(token, "all")) {
1649 /* Mutually exclusive option 'all' + subsystem name */
1650 if (one_ss)
1651 return -EINVAL;
1652 all_ss = true;
1653 continue;
1654 }
873fe09e
TH
1655 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1656 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1657 continue;
1658 }
32a8cf23 1659 if (!strcmp(token, "noprefix")) {
93438629 1660 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1661 continue;
1662 }
1663 if (!strcmp(token, "clone_children")) {
2260e7fc 1664 opts->cpuset_clone_children = true;
32a8cf23
DL
1665 continue;
1666 }
03b1cde6 1667 if (!strcmp(token, "xattr")) {
93438629 1668 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1669 continue;
1670 }
32a8cf23 1671 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1672 /* Specifying two release agents is forbidden */
1673 if (opts->release_agent)
1674 return -EINVAL;
c6d57f33 1675 opts->release_agent =
e400c285 1676 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1677 if (!opts->release_agent)
1678 return -ENOMEM;
32a8cf23
DL
1679 continue;
1680 }
1681 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1682 const char *name = token + 5;
1683 /* Can't specify an empty name */
1684 if (!strlen(name))
1685 return -EINVAL;
1686 /* Must match [\w.-]+ */
1687 for (i = 0; i < strlen(name); i++) {
1688 char c = name[i];
1689 if (isalnum(c))
1690 continue;
1691 if ((c == '.') || (c == '-') || (c == '_'))
1692 continue;
1693 return -EINVAL;
1694 }
1695 /* Specifying two names is forbidden */
1696 if (opts->name)
1697 return -EINVAL;
1698 opts->name = kstrndup(name,
e400c285 1699 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1700 GFP_KERNEL);
1701 if (!opts->name)
1702 return -ENOMEM;
32a8cf23
DL
1703
1704 continue;
1705 }
1706
30159ec7 1707 for_each_subsys(ss, i) {
3e1d2eed 1708 if (strcmp(token, ss->legacy_name))
32a8cf23 1709 continue;
fc5ed1e9 1710 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1711 continue;
1712
1713 /* Mutually exclusive option 'all' + subsystem name */
1714 if (all_ss)
1715 return -EINVAL;
69dfa00c 1716 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1717 one_ss = true;
1718
1719 break;
1720 }
1721 if (i == CGROUP_SUBSYS_COUNT)
1722 return -ENOENT;
1723 }
1724
873fe09e 1725 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1726 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1727 if (nr_opts != 1) {
1728 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1729 return -EINVAL;
1730 }
7b9a6ba5 1731 return 0;
873fe09e
TH
1732 }
1733
7b9a6ba5
TH
1734 /*
1735 * If the 'all' option was specified select all the subsystems,
1736 * otherwise if 'none', 'name=' and a subsystem name options were
1737 * not specified, let's default to 'all'
1738 */
1739 if (all_ss || (!one_ss && !opts->none && !opts->name))
1740 for_each_subsys(ss, i)
fc5ed1e9 1741 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1742 opts->subsys_mask |= (1 << i);
1743
1744 /*
1745 * We either have to specify by name or by subsystems. (So all
1746 * empty hierarchies must have a name).
1747 */
1748 if (!opts->subsys_mask && !opts->name)
1749 return -EINVAL;
1750
f9ab5b5b
LZ
1751 /*
1752 * Option noprefix was introduced just for backward compatibility
1753 * with the old cpuset, so we allow noprefix only if mounting just
1754 * the cpuset subsystem.
1755 */
93438629 1756 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1757 return -EINVAL;
1758
2c6ab6d2 1759 /* Can't specify "none" and some subsystems */
a1a71b45 1760 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1761 return -EINVAL;
1762
ddbcc7e8
PM
1763 return 0;
1764}
1765
2bd59d48 1766static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1767{
1768 int ret = 0;
3dd06ffa 1769 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1770 struct cgroup_sb_opts opts;
8ab456ac 1771 unsigned long added_mask, removed_mask;
ddbcc7e8 1772
aa6ec29b
TH
1773 if (root == &cgrp_dfl_root) {
1774 pr_err("remount is not allowed\n");
873fe09e
TH
1775 return -EINVAL;
1776 }
1777
ddbcc7e8
PM
1778 mutex_lock(&cgroup_mutex);
1779
1780 /* See what subsystems are wanted */
1781 ret = parse_cgroupfs_options(data, &opts);
1782 if (ret)
1783 goto out_unlock;
1784
f392e51c 1785 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1786 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1787 task_tgid_nr(current), current->comm);
8b5a5a9d 1788
f392e51c
TH
1789 added_mask = opts.subsys_mask & ~root->subsys_mask;
1790 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1791
cf5d5941 1792 /* Don't allow flags or name to change at remount */
7450e90b 1793 if ((opts.flags ^ root->flags) ||
cf5d5941 1794 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1795 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1796 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1797 ret = -EINVAL;
1798 goto out_unlock;
1799 }
1800
f172e67c 1801 /* remounting is not allowed for populated hierarchies */
d5c419b6 1802 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1803 ret = -EBUSY;
0670e08b 1804 goto out_unlock;
cf5d5941 1805 }
ddbcc7e8 1806
5df36032 1807 ret = rebind_subsystems(root, added_mask);
3126121f 1808 if (ret)
0670e08b 1809 goto out_unlock;
ddbcc7e8 1810
3dd06ffa 1811 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1812
69e943b7
TH
1813 if (opts.release_agent) {
1814 spin_lock(&release_agent_path_lock);
81a6a5cd 1815 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1816 spin_unlock(&release_agent_path_lock);
1817 }
ddbcc7e8 1818 out_unlock:
66bdc9cf 1819 kfree(opts.release_agent);
c6d57f33 1820 kfree(opts.name);
ddbcc7e8 1821 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1822 return ret;
1823}
1824
afeb0f9f
TH
1825/*
1826 * To reduce the fork() overhead for systems that are not actually using
1827 * their cgroups capability, we don't maintain the lists running through
1828 * each css_set to its tasks until we see the list actually used - in other
1829 * words after the first mount.
1830 */
1831static bool use_task_css_set_links __read_mostly;
1832
1833static void cgroup_enable_task_cg_lists(void)
1834{
1835 struct task_struct *p, *g;
1836
1cac41cb 1837 spin_lock_irq(&css_set_lock);
afeb0f9f
TH
1838
1839 if (use_task_css_set_links)
1840 goto out_unlock;
1841
1842 use_task_css_set_links = true;
1843
1844 /*
1845 * We need tasklist_lock because RCU is not safe against
1846 * while_each_thread(). Besides, a forking task that has passed
1847 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1848 * is not guaranteed to have its child immediately visible in the
1849 * tasklist if we walk through it with RCU.
1850 */
1851 read_lock(&tasklist_lock);
1852 do_each_thread(g, p) {
afeb0f9f
TH
1853 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1854 task_css_set(p) != &init_css_set);
1855
1856 /*
1857 * We should check if the process is exiting, otherwise
1858 * it will race with cgroup_exit() in that the list
1859 * entry won't be deleted though the process has exited.
f153ad11
TH
1860 * Do it while holding siglock so that we don't end up
1861 * racing against cgroup_exit().
1cac41cb
MB
1862 *
1863 * Interrupts were already disabled while acquiring
1864 * the css_set_lock, so we do not need to disable it
1865 * again when acquiring the sighand->siglock here.
afeb0f9f 1866 */
1cac41cb 1867 spin_lock(&p->sighand->siglock);
eaf797ab
TH
1868 if (!(p->flags & PF_EXITING)) {
1869 struct css_set *cset = task_css_set(p);
1870
0de0942d
TH
1871 if (!css_set_populated(cset))
1872 css_set_update_populated(cset, true);
389b9c1b 1873 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1874 get_css_set(cset);
1875 }
1cac41cb 1876 spin_unlock(&p->sighand->siglock);
afeb0f9f
TH
1877 } while_each_thread(g, p);
1878 read_unlock(&tasklist_lock);
1879out_unlock:
1cac41cb 1880 spin_unlock_irq(&css_set_lock);
afeb0f9f 1881}
ddbcc7e8 1882
cc31edce
PM
1883static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884{
2d8f243a
TH
1885 struct cgroup_subsys *ss;
1886 int ssid;
1887
d5c419b6
TH
1888 INIT_LIST_HEAD(&cgrp->self.sibling);
1889 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1890 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1891 INIT_LIST_HEAD(&cgrp->pidlists);
1892 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1893 cgrp->self.cgroup = cgrp;
184faf32 1894 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1895
1896 for_each_subsys(ss, ssid)
1897 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1898
1899 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1900 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1901}
c6d57f33 1902
3dd06ffa 1903static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1904 struct cgroup_sb_opts *opts)
ddbcc7e8 1905{
3dd06ffa 1906 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1907
ddbcc7e8 1908 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1909 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1910 cgrp->root = root;
cc31edce 1911 init_cgroup_housekeeping(cgrp);
4e96ee8e 1912 idr_init(&root->cgroup_idr);
c6d57f33 1913
c6d57f33
PM
1914 root->flags = opts->flags;
1915 if (opts->release_agent)
1916 strcpy(root->release_agent_path, opts->release_agent);
1917 if (opts->name)
1918 strcpy(root->name, opts->name);
2260e7fc 1919 if (opts->cpuset_clone_children)
3dd06ffa 1920 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1921}
1922
8ab456ac 1923static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1924{
d427dfeb 1925 LIST_HEAD(tmp_links);
3dd06ffa 1926 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1927 struct css_set *cset;
d427dfeb 1928 int i, ret;
2c6ab6d2 1929
d427dfeb 1930 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1931
cf780b7d 1932 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1933 if (ret < 0)
2bd59d48 1934 goto out;
d427dfeb 1935 root_cgrp->id = ret;
c6d57f33 1936
2aad2a86
TH
1937 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1938 GFP_KERNEL);
9d755d33
TH
1939 if (ret)
1940 goto out;
1941
d427dfeb 1942 /*
f0d9a5f1 1943 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1944 * but that's OK - it can only be increased by someone holding
1945 * cgroup_lock, and that's us. The worst that can happen is that we
1946 * have some link structures left over
1947 */
1948 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1949 if (ret)
9d755d33 1950 goto cancel_ref;
ddbcc7e8 1951
985ed670 1952 ret = cgroup_init_root_id(root);
ddbcc7e8 1953 if (ret)
9d755d33 1954 goto cancel_ref;
ddbcc7e8 1955
2bd59d48
TH
1956 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1957 KERNFS_ROOT_CREATE_DEACTIVATED,
1958 root_cgrp);
1959 if (IS_ERR(root->kf_root)) {
1960 ret = PTR_ERR(root->kf_root);
1961 goto exit_root_id;
1962 }
1963 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1964
4df8dc90 1965 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1966 if (ret)
2bd59d48 1967 goto destroy_root;
ddbcc7e8 1968
5df36032 1969 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1970 if (ret)
2bd59d48 1971 goto destroy_root;
ddbcc7e8 1972
d427dfeb
TH
1973 /*
1974 * There must be no failure case after here, since rebinding takes
1975 * care of subsystems' refcounts, which are explicitly dropped in
1976 * the failure exit path.
1977 */
1978 list_add(&root->root_list, &cgroup_roots);
1979 cgroup_root_count++;
0df6a63f 1980
d427dfeb 1981 /*
3dd06ffa 1982 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1983 * objects.
1984 */
1cac41cb 1985 spin_lock_irq(&css_set_lock);
0de0942d 1986 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1987 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1988 if (css_set_populated(cset))
1989 cgroup_update_populated(root_cgrp, true);
1990 }
1cac41cb 1991 spin_unlock_irq(&css_set_lock);
ddbcc7e8 1992
d5c419b6 1993 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1994 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1995
2bd59d48 1996 kernfs_activate(root_cgrp->kn);
d427dfeb 1997 ret = 0;
2bd59d48 1998 goto out;
d427dfeb 1999
2bd59d48
TH
2000destroy_root:
2001 kernfs_destroy_root(root->kf_root);
2002 root->kf_root = NULL;
2003exit_root_id:
d427dfeb 2004 cgroup_exit_root_id(root);
9d755d33 2005cancel_ref:
9a1049da 2006 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2007out:
d427dfeb
TH
2008 free_cgrp_cset_links(&tmp_links);
2009 return ret;
ddbcc7e8
PM
2010}
2011
f7e83571 2012static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2013 int flags, const char *unused_dev_name,
f7e83571 2014 void *data)
ddbcc7e8 2015{
3a32bd72 2016 struct super_block *pinned_sb = NULL;
970317aa 2017 struct cgroup_subsys *ss;
3dd06ffa 2018 struct cgroup_root *root;
ddbcc7e8 2019 struct cgroup_sb_opts opts;
2bd59d48 2020 struct dentry *dentry;
8e30e2b8 2021 int ret;
970317aa 2022 int i;
c6b3d5bc 2023 bool new_sb;
ddbcc7e8 2024
56fde9e0
TH
2025 /*
2026 * The first time anyone tries to mount a cgroup, enable the list
2027 * linking each css_set to its tasks and fix up all existing tasks.
2028 */
2029 if (!use_task_css_set_links)
2030 cgroup_enable_task_cg_lists();
e37a06f1 2031
aae8aab4 2032 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2033
2034 /* First find the desired set of subsystems */
ddbcc7e8 2035 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2036 if (ret)
8e30e2b8 2037 goto out_unlock;
a015edd2 2038
2bd59d48 2039 /* look for a matching existing root */
7b9a6ba5 2040 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
2041 cgrp_dfl_root_visible = true;
2042 root = &cgrp_dfl_root;
2043 cgroup_get(&root->cgrp);
2044 ret = 0;
2045 goto out_unlock;
ddbcc7e8
PM
2046 }
2047
970317aa
LZ
2048 /*
2049 * Destruction of cgroup root is asynchronous, so subsystems may
2050 * still be dying after the previous unmount. Let's drain the
2051 * dying subsystems. We just need to ensure that the ones
2052 * unmounted previously finish dying and don't care about new ones
2053 * starting. Testing ref liveliness is good enough.
2054 */
2055 for_each_subsys(ss, i) {
2056 if (!(opts.subsys_mask & (1 << i)) ||
2057 ss->root == &cgrp_dfl_root)
2058 continue;
2059
2060 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2061 mutex_unlock(&cgroup_mutex);
2062 msleep(10);
2063 ret = restart_syscall();
2064 goto out_free;
2065 }
2066 cgroup_put(&ss->root->cgrp);
2067 }
2068
985ed670 2069 for_each_root(root) {
2bd59d48 2070 bool name_match = false;
3126121f 2071
3dd06ffa 2072 if (root == &cgrp_dfl_root)
985ed670 2073 continue;
3126121f 2074
cf5d5941 2075 /*
2bd59d48
TH
2076 * If we asked for a name then it must match. Also, if
2077 * name matches but sybsys_mask doesn't, we should fail.
2078 * Remember whether name matched.
cf5d5941 2079 */
2bd59d48
TH
2080 if (opts.name) {
2081 if (strcmp(opts.name, root->name))
2082 continue;
2083 name_match = true;
2084 }
ddbcc7e8 2085
c6d57f33 2086 /*
2bd59d48
TH
2087 * If we asked for subsystems (or explicitly for no
2088 * subsystems) then they must match.
c6d57f33 2089 */
2bd59d48 2090 if ((opts.subsys_mask || opts.none) &&
f392e51c 2091 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2092 if (!name_match)
2093 continue;
2094 ret = -EBUSY;
2095 goto out_unlock;
2096 }
873fe09e 2097
7b9a6ba5
TH
2098 if (root->flags ^ opts.flags)
2099 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2100
776f02fa 2101 /*
3a32bd72
LZ
2102 * We want to reuse @root whose lifetime is governed by its
2103 * ->cgrp. Let's check whether @root is alive and keep it
2104 * that way. As cgroup_kill_sb() can happen anytime, we
2105 * want to block it by pinning the sb so that @root doesn't
2106 * get killed before mount is complete.
2107 *
2108 * With the sb pinned, tryget_live can reliably indicate
2109 * whether @root can be reused. If it's being killed,
2110 * drain it. We can use wait_queue for the wait but this
2111 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2112 */
3a32bd72
LZ
2113 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2114 if (IS_ERR(pinned_sb) ||
2115 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2116 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2117 if (!IS_ERR_OR_NULL(pinned_sb))
2118 deactivate_super(pinned_sb);
776f02fa 2119 msleep(10);
a015edd2
TH
2120 ret = restart_syscall();
2121 goto out_free;
776f02fa 2122 }
ddbcc7e8 2123
776f02fa 2124 ret = 0;
2bd59d48 2125 goto out_unlock;
ddbcc7e8 2126 }
ddbcc7e8 2127
817929ec 2128 /*
172a2c06
TH
2129 * No such thing, create a new one. name= matching without subsys
2130 * specification is allowed for already existing hierarchies but we
2131 * can't create new one without subsys specification.
817929ec 2132 */
172a2c06
TH
2133 if (!opts.subsys_mask && !opts.none) {
2134 ret = -EINVAL;
2135 goto out_unlock;
817929ec 2136 }
817929ec 2137
172a2c06
TH
2138 root = kzalloc(sizeof(*root), GFP_KERNEL);
2139 if (!root) {
2140 ret = -ENOMEM;
2bd59d48 2141 goto out_unlock;
839ec545 2142 }
e5f6a860 2143
172a2c06
TH
2144 init_cgroup_root(root, &opts);
2145
35585573 2146 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2147 if (ret)
2148 cgroup_free_root(root);
fa3ca07e 2149
8e30e2b8 2150out_unlock:
ddbcc7e8 2151 mutex_unlock(&cgroup_mutex);
a015edd2 2152out_free:
c6d57f33
PM
2153 kfree(opts.release_agent);
2154 kfree(opts.name);
03b1cde6 2155
2bd59d48 2156 if (ret)
8e30e2b8 2157 return ERR_PTR(ret);
2bd59d48 2158
c9482a5b
JZ
2159 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2160 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2161 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2162 cgroup_put(&root->cgrp);
3a32bd72
LZ
2163
2164 /*
2165 * If @pinned_sb, we're reusing an existing root and holding an
2166 * extra ref on its sb. Mount is complete. Put the extra ref.
2167 */
2168 if (pinned_sb) {
2169 WARN_ON(new_sb);
2170 deactivate_super(pinned_sb);
2171 }
2172
2bd59d48
TH
2173 return dentry;
2174}
2175
2176static void cgroup_kill_sb(struct super_block *sb)
2177{
2178 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2179 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2180
9d755d33
TH
2181 /*
2182 * If @root doesn't have any mounts or children, start killing it.
2183 * This prevents new mounts by disabling percpu_ref_tryget_live().
2184 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2185 *
2186 * And don't kill the default root.
9d755d33 2187 */
3c606d35 2188 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2189 root == &cgrp_dfl_root)
9d755d33
TH
2190 cgroup_put(&root->cgrp);
2191 else
2192 percpu_ref_kill(&root->cgrp.self.refcnt);
2193
2bd59d48 2194 kernfs_kill_sb(sb);
ddbcc7e8
PM
2195}
2196
2197static struct file_system_type cgroup_fs_type = {
2198 .name = "cgroup",
f7e83571 2199 .mount = cgroup_mount,
ddbcc7e8
PM
2200 .kill_sb = cgroup_kill_sb,
2201};
2202
857a2beb 2203/**
913ffdb5 2204 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2205 * @task: target task
857a2beb
TH
2206 * @buf: the buffer to write the path into
2207 * @buflen: the length of the buffer
2208 *
913ffdb5
TH
2209 * Determine @task's cgroup on the first (the one with the lowest non-zero
2210 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2211 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2212 * cgroup controller callbacks.
2213 *
e61734c5 2214 * Return value is the same as kernfs_path().
857a2beb 2215 */
e61734c5 2216char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2217{
3dd06ffa 2218 struct cgroup_root *root;
913ffdb5 2219 struct cgroup *cgrp;
e61734c5
TH
2220 int hierarchy_id = 1;
2221 char *path = NULL;
857a2beb
TH
2222
2223 mutex_lock(&cgroup_mutex);
1cac41cb 2224 spin_lock_irq(&css_set_lock);
857a2beb 2225
913ffdb5
TH
2226 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2227
857a2beb
TH
2228 if (root) {
2229 cgrp = task_cgroup_from_root(task, root);
e61734c5 2230 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2231 } else {
2232 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2233 if (strlcpy(buf, "/", buflen) < buflen)
2234 path = buf;
857a2beb
TH
2235 }
2236
1cac41cb 2237 spin_unlock_irq(&css_set_lock);
857a2beb 2238 mutex_unlock(&cgroup_mutex);
e61734c5 2239 return path;
857a2beb 2240}
913ffdb5 2241EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2242
b3dc094e 2243/* used to track tasks and other necessary states during migration */
2f7ee569 2244struct cgroup_taskset {
b3dc094e
TH
2245 /* the src and dst cset list running through cset->mg_node */
2246 struct list_head src_csets;
2247 struct list_head dst_csets;
2248
1f7dd3e5
TH
2249 /* the subsys currently being processed */
2250 int ssid;
2251
b3dc094e
TH
2252 /*
2253 * Fields for cgroup_taskset_*() iteration.
2254 *
2255 * Before migration is committed, the target migration tasks are on
2256 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2257 * the csets on ->dst_csets. ->csets point to either ->src_csets
2258 * or ->dst_csets depending on whether migration is committed.
2259 *
2260 * ->cur_csets and ->cur_task point to the current task position
2261 * during iteration.
2262 */
2263 struct list_head *csets;
2264 struct css_set *cur_cset;
2265 struct task_struct *cur_task;
2f7ee569
TH
2266};
2267
adaae5dc
TH
2268#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2269 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2270 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2271 .csets = &tset.src_csets, \
2272}
2273
2274/**
2275 * cgroup_taskset_add - try to add a migration target task to a taskset
2276 * @task: target task
2277 * @tset: target taskset
2278 *
2279 * Add @task, which is a migration target, to @tset. This function becomes
2280 * noop if @task doesn't need to be migrated. @task's css_set should have
2281 * been added as a migration source and @task->cg_list will be moved from
2282 * the css_set's tasks list to mg_tasks one.
2283 */
2284static void cgroup_taskset_add(struct task_struct *task,
2285 struct cgroup_taskset *tset)
2286{
2287 struct css_set *cset;
2288
f0d9a5f1 2289 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2290
2291 /* @task either already exited or can't exit until the end */
2292 if (task->flags & PF_EXITING)
2293 return;
2294
2295 /* leave @task alone if post_fork() hasn't linked it yet */
2296 if (list_empty(&task->cg_list))
2297 return;
2298
2299 cset = task_css_set(task);
2300 if (!cset->mg_src_cgrp)
2301 return;
2302
2303 list_move_tail(&task->cg_list, &cset->mg_tasks);
2304 if (list_empty(&cset->mg_node))
2305 list_add_tail(&cset->mg_node, &tset->src_csets);
2306 if (list_empty(&cset->mg_dst_cset->mg_node))
2307 list_move_tail(&cset->mg_dst_cset->mg_node,
2308 &tset->dst_csets);
2309}
2310
2f7ee569
TH
2311/**
2312 * cgroup_taskset_first - reset taskset and return the first task
2313 * @tset: taskset of interest
1f7dd3e5 2314 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2315 *
2316 * @tset iteration is initialized and the first task is returned.
2317 */
1f7dd3e5
TH
2318struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2319 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2320{
b3dc094e
TH
2321 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2322 tset->cur_task = NULL;
2323
1f7dd3e5 2324 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2325}
2f7ee569
TH
2326
2327/**
2328 * cgroup_taskset_next - iterate to the next task in taskset
2329 * @tset: taskset of interest
1f7dd3e5 2330 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2331 *
2332 * Return the next task in @tset. Iteration must have been initialized
2333 * with cgroup_taskset_first().
2334 */
1f7dd3e5
TH
2335struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2336 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2337{
b3dc094e
TH
2338 struct css_set *cset = tset->cur_cset;
2339 struct task_struct *task = tset->cur_task;
2f7ee569 2340
b3dc094e
TH
2341 while (&cset->mg_node != tset->csets) {
2342 if (!task)
2343 task = list_first_entry(&cset->mg_tasks,
2344 struct task_struct, cg_list);
2345 else
2346 task = list_next_entry(task, cg_list);
2f7ee569 2347
b3dc094e
TH
2348 if (&task->cg_list != &cset->mg_tasks) {
2349 tset->cur_cset = cset;
2350 tset->cur_task = task;
1f7dd3e5
TH
2351
2352 /*
2353 * This function may be called both before and
2354 * after cgroup_taskset_migrate(). The two cases
2355 * can be distinguished by looking at whether @cset
2356 * has its ->mg_dst_cset set.
2357 */
2358 if (cset->mg_dst_cset)
2359 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2360 else
2361 *dst_cssp = cset->subsys[tset->ssid];
2362
b3dc094e
TH
2363 return task;
2364 }
2f7ee569 2365
b3dc094e
TH
2366 cset = list_next_entry(cset, mg_node);
2367 task = NULL;
2368 }
2f7ee569 2369
b3dc094e 2370 return NULL;
2f7ee569 2371}
2f7ee569 2372
adaae5dc
TH
2373/**
2374 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2375 * @tset: taget taskset
2376 * @dst_cgrp: destination cgroup
2377 *
2378 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2379 * ->can_attach callbacks fails and guarantees that either all or none of
2380 * the tasks in @tset are migrated. @tset is consumed regardless of
2381 * success.
2382 */
2383static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2384 struct cgroup *dst_cgrp)
2385{
2386 struct cgroup_subsys_state *css, *failed_css = NULL;
2387 struct task_struct *task, *tmp_task;
2388 struct css_set *cset, *tmp_cset;
2389 int i, ret;
2390
2391 /* methods shouldn't be called if no task is actually migrating */
2392 if (list_empty(&tset->src_csets))
2393 return 0;
2394
2395 /* check that we can legitimately attach to the cgroup */
2396 for_each_e_css(css, i, dst_cgrp) {
2397 if (css->ss->can_attach) {
1f7dd3e5
TH
2398 tset->ssid = i;
2399 ret = css->ss->can_attach(tset);
adaae5dc
TH
2400 if (ret) {
2401 failed_css = css;
2402 goto out_cancel_attach;
2403 }
2404 }
2405 }
2406
2407 /*
2408 * Now that we're guaranteed success, proceed to move all tasks to
2409 * the new cgroup. There are no failure cases after here, so this
2410 * is the commit point.
2411 */
1cac41cb 2412 spin_lock_irq(&css_set_lock);
adaae5dc 2413 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2414 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2415 struct css_set *from_cset = task_css_set(task);
2416 struct css_set *to_cset = cset->mg_dst_cset;
2417
2418 get_css_set(to_cset);
2419 css_set_move_task(task, from_cset, to_cset, true);
2420 put_css_set_locked(from_cset);
2421 }
adaae5dc 2422 }
1cac41cb 2423 spin_unlock_irq(&css_set_lock);
adaae5dc
TH
2424
2425 /*
2426 * Migration is committed, all target tasks are now on dst_csets.
2427 * Nothing is sensitive to fork() after this point. Notify
2428 * controllers that migration is complete.
2429 */
2430 tset->csets = &tset->dst_csets;
2431
1f7dd3e5
TH
2432 for_each_e_css(css, i, dst_cgrp) {
2433 if (css->ss->attach) {
2434 tset->ssid = i;
2435 css->ss->attach(tset);
2436 }
2437 }
adaae5dc
TH
2438
2439 ret = 0;
2440 goto out_release_tset;
2441
2442out_cancel_attach:
2443 for_each_e_css(css, i, dst_cgrp) {
2444 if (css == failed_css)
2445 break;
1f7dd3e5
TH
2446 if (css->ss->cancel_attach) {
2447 tset->ssid = i;
2448 css->ss->cancel_attach(tset);
2449 }
adaae5dc
TH
2450 }
2451out_release_tset:
1cac41cb 2452 spin_lock_irq(&css_set_lock);
adaae5dc
TH
2453 list_splice_init(&tset->dst_csets, &tset->src_csets);
2454 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2455 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2456 list_del_init(&cset->mg_node);
2457 }
1cac41cb 2458 spin_unlock_irq(&css_set_lock);
adaae5dc
TH
2459 return ret;
2460}
2461
a043e3b2 2462/**
1958d2d5
TH
2463 * cgroup_migrate_finish - cleanup after attach
2464 * @preloaded_csets: list of preloaded css_sets
74a1166d 2465 *
1958d2d5
TH
2466 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2467 * those functions for details.
74a1166d 2468 */
1958d2d5 2469static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2470{
1958d2d5 2471 struct css_set *cset, *tmp_cset;
74a1166d 2472
1958d2d5
TH
2473 lockdep_assert_held(&cgroup_mutex);
2474
1cac41cb 2475 spin_lock_irq(&css_set_lock);
1958d2d5
TH
2476 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2477 cset->mg_src_cgrp = NULL;
2478 cset->mg_dst_cset = NULL;
2479 list_del_init(&cset->mg_preload_node);
a25eb52e 2480 put_css_set_locked(cset);
1958d2d5 2481 }
1cac41cb 2482 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2483}
2484
2485/**
2486 * cgroup_migrate_add_src - add a migration source css_set
2487 * @src_cset: the source css_set to add
2488 * @dst_cgrp: the destination cgroup
2489 * @preloaded_csets: list of preloaded css_sets
2490 *
2491 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2492 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2493 * up by cgroup_migrate_finish().
2494 *
1ed13287
TH
2495 * This function may be called without holding cgroup_threadgroup_rwsem
2496 * even if the target is a process. Threads may be created and destroyed
2497 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2498 * into play and the preloaded css_sets are guaranteed to cover all
2499 * migrations.
1958d2d5
TH
2500 */
2501static void cgroup_migrate_add_src(struct css_set *src_cset,
2502 struct cgroup *dst_cgrp,
2503 struct list_head *preloaded_csets)
2504{
2505 struct cgroup *src_cgrp;
2506
2507 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2508 lockdep_assert_held(&css_set_lock);
1958d2d5 2509
36591ef1
TH
2510 /*
2511 * If ->dead, @src_set is associated with one or more dead cgroups
2512 * and doesn't contain any migratable tasks. Ignore it early so
2513 * that the rest of migration path doesn't get confused by it.
2514 */
2515 if (src_cset->dead)
2516 return;
2517
1958d2d5
TH
2518 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2519
1958d2d5
TH
2520 if (!list_empty(&src_cset->mg_preload_node))
2521 return;
2522
2523 WARN_ON(src_cset->mg_src_cgrp);
2524 WARN_ON(!list_empty(&src_cset->mg_tasks));
2525 WARN_ON(!list_empty(&src_cset->mg_node));
2526
2527 src_cset->mg_src_cgrp = src_cgrp;
2528 get_css_set(src_cset);
2529 list_add(&src_cset->mg_preload_node, preloaded_csets);
2530}
2531
2532/**
2533 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2534 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2535 * @preloaded_csets: list of preloaded source css_sets
2536 *
2537 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2538 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2539 * pins all destination css_sets, links each to its source, and append them
2540 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2541 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2542 *
2543 * This function must be called after cgroup_migrate_add_src() has been
2544 * called on each migration source css_set. After migration is performed
2545 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2546 * @preloaded_csets.
2547 */
2548static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2549 struct list_head *preloaded_csets)
2550{
2551 LIST_HEAD(csets);
f817de98 2552 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2553
2554 lockdep_assert_held(&cgroup_mutex);
2555
f8f22e53
TH
2556 /*
2557 * Except for the root, child_subsys_mask must be zero for a cgroup
2558 * with tasks so that child cgroups don't compete against tasks.
2559 */
d51f39b0 2560 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2561 dst_cgrp->child_subsys_mask)
2562 return -EBUSY;
2563
1958d2d5 2564 /* look up the dst cset for each src cset and link it to src */
f817de98 2565 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2566 struct css_set *dst_cset;
2567
f817de98
TH
2568 dst_cset = find_css_set(src_cset,
2569 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2570 if (!dst_cset)
2571 goto err;
2572
2573 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2574
2575 /*
2576 * If src cset equals dst, it's noop. Drop the src.
2577 * cgroup_migrate() will skip the cset too. Note that we
2578 * can't handle src == dst as some nodes are used by both.
2579 */
2580 if (src_cset == dst_cset) {
2581 src_cset->mg_src_cgrp = NULL;
2582 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2583 put_css_set(src_cset);
2584 put_css_set(dst_cset);
f817de98
TH
2585 continue;
2586 }
2587
1958d2d5
TH
2588 src_cset->mg_dst_cset = dst_cset;
2589
2590 if (list_empty(&dst_cset->mg_preload_node))
2591 list_add(&dst_cset->mg_preload_node, &csets);
2592 else
a25eb52e 2593 put_css_set(dst_cset);
1958d2d5
TH
2594 }
2595
f817de98 2596 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2597 return 0;
2598err:
2599 cgroup_migrate_finish(&csets);
2600 return -ENOMEM;
2601}
2602
2603/**
2604 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2605 * @leader: the leader of the process or the task to migrate
2606 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2607 * @cgrp: the destination cgroup
1958d2d5
TH
2608 *
2609 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2610 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2611 * caller is also responsible for invoking cgroup_migrate_add_src() and
2612 * cgroup_migrate_prepare_dst() on the targets before invoking this
2613 * function and following up with cgroup_migrate_finish().
2614 *
2615 * As long as a controller's ->can_attach() doesn't fail, this function is
2616 * guaranteed to succeed. This means that, excluding ->can_attach()
2617 * failure, when migrating multiple targets, the success or failure can be
2618 * decided for all targets by invoking group_migrate_prepare_dst() before
2619 * actually starting migrating.
2620 */
9af2ec45
TH
2621static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2622 struct cgroup *cgrp)
74a1166d 2623{
adaae5dc
TH
2624 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2625 struct task_struct *task;
74a1166d 2626
fb5d2b4c
MSB
2627 /*
2628 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2629 * already PF_EXITING could be freed from underneath us unless we
2630 * take an rcu_read_lock.
2631 */
1cac41cb 2632 spin_lock_irq(&css_set_lock);
fb5d2b4c 2633 rcu_read_lock();
9db8de37 2634 task = leader;
74a1166d 2635 do {
adaae5dc 2636 cgroup_taskset_add(task, &tset);
081aa458
LZ
2637 if (!threadgroup)
2638 break;
9db8de37 2639 } while_each_thread(leader, task);
fb5d2b4c 2640 rcu_read_unlock();
1cac41cb 2641 spin_unlock_irq(&css_set_lock);
74a1166d 2642
adaae5dc 2643 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2644}
2645
1958d2d5
TH
2646/**
2647 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2648 * @dst_cgrp: the cgroup to attach to
2649 * @leader: the task or the leader of the threadgroup to be attached
2650 * @threadgroup: attach the whole threadgroup?
2651 *
1ed13287 2652 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2653 */
2654static int cgroup_attach_task(struct cgroup *dst_cgrp,
2655 struct task_struct *leader, bool threadgroup)
2656{
2657 LIST_HEAD(preloaded_csets);
2658 struct task_struct *task;
2659 int ret;
2660
2661 /* look up all src csets */
1cac41cb 2662 spin_lock_irq(&css_set_lock);
1958d2d5
TH
2663 rcu_read_lock();
2664 task = leader;
2665 do {
2666 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2667 &preloaded_csets);
2668 if (!threadgroup)
2669 break;
2670 } while_each_thread(leader, task);
2671 rcu_read_unlock();
1cac41cb 2672 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2673
2674 /* prepare dst csets and commit */
2675 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2676 if (!ret)
9af2ec45 2677 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2678
2679 cgroup_migrate_finish(&preloaded_csets);
2680 return ret;
74a1166d
BB
2681}
2682
187fe840
TH
2683static int cgroup_procs_write_permission(struct task_struct *task,
2684 struct cgroup *dst_cgrp,
2685 struct kernfs_open_file *of)
dedf22e9
TH
2686{
2687 const struct cred *cred = current_cred();
2688 const struct cred *tcred = get_task_cred(task);
2689 int ret = 0;
2690
2691 /*
2692 * even if we're attaching all tasks in the thread group, we only
2693 * need to check permissions on one of them.
2694 */
2695 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2696 !uid_eq(cred->euid, tcred->uid) &&
140cab83 2697 !uid_eq(cred->euid, tcred->suid) &&
d77312ae 2698 !ns_capable(tcred->user_ns, CAP_SYS_NICE))
e78f134a 2699 ret = -EACCES;
dedf22e9 2700
187fe840
TH
2701 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2702 struct super_block *sb = of->file->f_path.dentry->d_sb;
2703 struct cgroup *cgrp;
2704 struct inode *inode;
2705
1cac41cb 2706 spin_lock_irq(&css_set_lock);
187fe840 2707 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
1cac41cb 2708 spin_unlock_irq(&css_set_lock);
187fe840
TH
2709
2710 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2711 cgrp = cgroup_parent(cgrp);
2712
2713 ret = -ENOMEM;
6f60eade 2714 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2715 if (inode) {
2716 ret = inode_permission(inode, MAY_WRITE);
2717 iput(inode);
2718 }
2719 }
2720
dedf22e9
TH
2721 put_cred(tcred);
2722 return ret;
2723}
2724
74a1166d
BB
2725/*
2726 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2727 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2728 * cgroup_mutex and threadgroup.
bbcb81d0 2729 */
acbef755
TH
2730static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2731 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2732{
bbcb81d0 2733 struct task_struct *tsk;
d5209747 2734 struct cgroup_subsys *ss;
e76ecaee 2735 struct cgroup *cgrp;
acbef755 2736 pid_t pid;
d5209747 2737 int ssid, ret;
bbcb81d0 2738
acbef755
TH
2739 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2740 return -EINVAL;
2741
e76ecaee
TH
2742 cgrp = cgroup_kn_lock_live(of->kn);
2743 if (!cgrp)
74a1166d
BB
2744 return -ENODEV;
2745
3014dde7 2746 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2747 rcu_read_lock();
bbcb81d0 2748 if (pid) {
73507f33 2749 tsk = find_task_by_vpid(pid);
74a1166d 2750 if (!tsk) {
dd4b0a46 2751 ret = -ESRCH;
3014dde7 2752 goto out_unlock_rcu;
bbcb81d0 2753 }
dedf22e9 2754 } else {
b78949eb 2755 tsk = current;
dedf22e9 2756 }
cd3d0952
TH
2757
2758 if (threadgroup)
b78949eb 2759 tsk = tsk->group_leader;
c4c27fbd
MG
2760
2761 /*
3144d81a
TH
2762 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2763 * If userland migrates such a kthread to a non-root cgroup, it can
2764 * become trapped in a cpuset, or RT kthread may be born in a
2765 * cgroup with no rt_runtime allocated. Just say no.
c4c27fbd 2766 */
3144d81a 2767 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2768 ret = -EINVAL;
3014dde7 2769 goto out_unlock_rcu;
c4c27fbd
MG
2770 }
2771
b78949eb
MSB
2772 get_task_struct(tsk);
2773 rcu_read_unlock();
2774
187fe840 2775 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2776 if (!ret)
2777 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2778
f9f9e7b7 2779 put_task_struct(tsk);
3014dde7
TH
2780 goto out_unlock_threadgroup;
2781
2782out_unlock_rcu:
2783 rcu_read_unlock();
2784out_unlock_threadgroup:
2785 percpu_up_write(&cgroup_threadgroup_rwsem);
d5209747
TH
2786 for_each_subsys(ss, ssid)
2787 if (ss->post_attach)
2788 ss->post_attach();
e76ecaee 2789 cgroup_kn_unlock(of->kn);
acbef755 2790 return ret ?: nbytes;
bbcb81d0
PM
2791}
2792
7ae1bad9
TH
2793/**
2794 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2795 * @from: attach to all cgroups of a given task
2796 * @tsk: the task to be attached
2797 */
2798int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2799{
3dd06ffa 2800 struct cgroup_root *root;
7ae1bad9
TH
2801 int retval = 0;
2802
47cfcd09 2803 mutex_lock(&cgroup_mutex);
985ed670 2804 for_each_root(root) {
96d365e0
TH
2805 struct cgroup *from_cgrp;
2806
3dd06ffa 2807 if (root == &cgrp_dfl_root)
985ed670
TH
2808 continue;
2809
1cac41cb 2810 spin_lock_irq(&css_set_lock);
96d365e0 2811 from_cgrp = task_cgroup_from_root(from, root);
1cac41cb 2812 spin_unlock_irq(&css_set_lock);
7ae1bad9 2813
6f4b7e63 2814 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2815 if (retval)
2816 break;
2817 }
47cfcd09 2818 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2819
2820 return retval;
2821}
2822EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2823
acbef755
TH
2824static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2825 char *buf, size_t nbytes, loff_t off)
74a1166d 2826{
acbef755 2827 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2828}
2829
acbef755
TH
2830static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2831 char *buf, size_t nbytes, loff_t off)
af351026 2832{
acbef755 2833 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2834}
2835
451af504
TH
2836static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2837 char *buf, size_t nbytes, loff_t off)
e788e066 2838{
e76ecaee 2839 struct cgroup *cgrp;
5f469907 2840
e76ecaee 2841 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2842
e76ecaee
TH
2843 cgrp = cgroup_kn_lock_live(of->kn);
2844 if (!cgrp)
e788e066 2845 return -ENODEV;
69e943b7 2846 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2847 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2848 sizeof(cgrp->root->release_agent_path));
69e943b7 2849 spin_unlock(&release_agent_path_lock);
e76ecaee 2850 cgroup_kn_unlock(of->kn);
451af504 2851 return nbytes;
e788e066
PM
2852}
2853
2da8ca82 2854static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2855{
2da8ca82 2856 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2857
46cfeb04 2858 spin_lock(&release_agent_path_lock);
e788e066 2859 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2860 spin_unlock(&release_agent_path_lock);
e788e066 2861 seq_putc(seq, '\n');
e788e066
PM
2862 return 0;
2863}
2864
2da8ca82 2865static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2866{
c1d5d42e 2867 seq_puts(seq, "0\n");
e788e066
PM
2868 return 0;
2869}
2870
8ab456ac 2871static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2872{
f8f22e53
TH
2873 struct cgroup_subsys *ss;
2874 bool printed = false;
2875 int ssid;
a742c59d 2876
a966a4ed
AS
2877 for_each_subsys_which(ss, ssid, &ss_mask) {
2878 if (printed)
2879 seq_putc(seq, ' ');
2880 seq_printf(seq, "%s", ss->name);
2881 printed = true;
e73d2c61 2882 }
f8f22e53
TH
2883 if (printed)
2884 seq_putc(seq, '\n');
355e0c48
PM
2885}
2886
f8f22e53
TH
2887/* show controllers which are currently attached to the default hierarchy */
2888static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2889{
f8f22e53
TH
2890 struct cgroup *cgrp = seq_css(seq)->cgroup;
2891
5533e011
TH
2892 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2893 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2894 return 0;
db3b1497
PM
2895}
2896
f8f22e53
TH
2897/* show controllers which are enabled from the parent */
2898static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2899{
f8f22e53
TH
2900 struct cgroup *cgrp = seq_css(seq)->cgroup;
2901
667c2491 2902 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2903 return 0;
ddbcc7e8
PM
2904}
2905
f8f22e53
TH
2906/* show controllers which are enabled for a given cgroup's children */
2907static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2908{
f8f22e53
TH
2909 struct cgroup *cgrp = seq_css(seq)->cgroup;
2910
667c2491 2911 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2912 return 0;
2913}
2914
2915/**
2916 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2917 * @cgrp: root of the subtree to update csses for
2918 *
2919 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2920 * css associations need to be updated accordingly. This function looks up
2921 * all css_sets which are attached to the subtree, creates the matching
2922 * updated css_sets and migrates the tasks to the new ones.
2923 */
2924static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2925{
2926 LIST_HEAD(preloaded_csets);
10265075 2927 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2928 struct cgroup_subsys_state *css;
2929 struct css_set *src_cset;
2930 int ret;
2931
f8f22e53
TH
2932 lockdep_assert_held(&cgroup_mutex);
2933
3014dde7
TH
2934 percpu_down_write(&cgroup_threadgroup_rwsem);
2935
f8f22e53 2936 /* look up all csses currently attached to @cgrp's subtree */
1cac41cb 2937 spin_lock_irq(&css_set_lock);
f8f22e53
TH
2938 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2939 struct cgrp_cset_link *link;
2940
2941 /* self is not affected by child_subsys_mask change */
2942 if (css->cgroup == cgrp)
2943 continue;
2944
2945 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2946 cgroup_migrate_add_src(link->cset, cgrp,
2947 &preloaded_csets);
2948 }
1cac41cb 2949 spin_unlock_irq(&css_set_lock);
f8f22e53
TH
2950
2951 /* NULL dst indicates self on default hierarchy */
2952 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2953 if (ret)
2954 goto out_finish;
2955
1cac41cb 2956 spin_lock_irq(&css_set_lock);
f8f22e53 2957 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2958 struct task_struct *task, *ntask;
f8f22e53
TH
2959
2960 /* src_csets precede dst_csets, break on the first dst_cset */
2961 if (!src_cset->mg_src_cgrp)
2962 break;
2963
10265075
TH
2964 /* all tasks in src_csets need to be migrated */
2965 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2966 cgroup_taskset_add(task, &tset);
f8f22e53 2967 }
1cac41cb 2968 spin_unlock_irq(&css_set_lock);
f8f22e53 2969
10265075 2970 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2971out_finish:
2972 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2973 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2974 return ret;
2975}
2976
2977/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2978static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2979 char *buf, size_t nbytes,
2980 loff_t off)
f8f22e53 2981{
8ab456ac
AS
2982 unsigned long enable = 0, disable = 0;
2983 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2984 struct cgroup *cgrp, *child;
f8f22e53 2985 struct cgroup_subsys *ss;
451af504 2986 char *tok;
f8f22e53
TH
2987 int ssid, ret;
2988
2989 /*
d37167ab
TH
2990 * Parse input - space separated list of subsystem names prefixed
2991 * with either + or -.
f8f22e53 2992 */
451af504
TH
2993 buf = strstrip(buf);
2994 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2995 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2996
d37167ab
TH
2997 if (tok[0] == '\0')
2998 continue;
a966a4ed 2999 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
3000 if (!cgroup_ssid_enabled(ssid) ||
3001 strcmp(tok + 1, ss->name))
f8f22e53
TH
3002 continue;
3003
3004 if (*tok == '+') {
7d331fa9
TH
3005 enable |= 1 << ssid;
3006 disable &= ~(1 << ssid);
f8f22e53 3007 } else if (*tok == '-') {
7d331fa9
TH
3008 disable |= 1 << ssid;
3009 enable &= ~(1 << ssid);
f8f22e53
TH
3010 } else {
3011 return -EINVAL;
3012 }
3013 break;
3014 }
3015 if (ssid == CGROUP_SUBSYS_COUNT)
3016 return -EINVAL;
3017 }
3018
a9746d8d
TH
3019 cgrp = cgroup_kn_lock_live(of->kn);
3020 if (!cgrp)
3021 return -ENODEV;
f8f22e53
TH
3022
3023 for_each_subsys(ss, ssid) {
3024 if (enable & (1 << ssid)) {
667c2491 3025 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3026 enable &= ~(1 << ssid);
3027 continue;
3028 }
3029
c29adf24
TH
3030 /* unavailable or not enabled on the parent? */
3031 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3032 (cgroup_parent(cgrp) &&
667c2491 3033 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
3034 ret = -ENOENT;
3035 goto out_unlock;
3036 }
f8f22e53 3037 } else if (disable & (1 << ssid)) {
667c2491 3038 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3039 disable &= ~(1 << ssid);
3040 continue;
3041 }
3042
3043 /* a child has it enabled? */
3044 cgroup_for_each_live_child(child, cgrp) {
667c2491 3045 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3046 ret = -EBUSY;
ddab2b6e 3047 goto out_unlock;
f8f22e53
TH
3048 }
3049 }
3050 }
3051 }
3052
3053 if (!enable && !disable) {
3054 ret = 0;
ddab2b6e 3055 goto out_unlock;
f8f22e53
TH
3056 }
3057
3058 /*
667c2491 3059 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3060 * with tasks so that child cgroups don't compete against tasks.
3061 */
d51f39b0 3062 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3063 ret = -EBUSY;
3064 goto out_unlock;
3065 }
3066
3067 /*
f63070d3
TH
3068 * Update subsys masks and calculate what needs to be done. More
3069 * subsystems than specified may need to be enabled or disabled
3070 * depending on subsystem dependencies.
3071 */
755bf5ee
TH
3072 old_sc = cgrp->subtree_control;
3073 old_ss = cgrp->child_subsys_mask;
3074 new_sc = (old_sc | enable) & ~disable;
3075 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 3076
755bf5ee
TH
3077 css_enable = ~old_ss & new_ss;
3078 css_disable = old_ss & ~new_ss;
f63070d3
TH
3079 enable |= css_enable;
3080 disable |= css_disable;
c29adf24 3081
db6e3053
TH
3082 /*
3083 * Because css offlining is asynchronous, userland might try to
3084 * re-enable the same controller while the previous instance is
3085 * still around. In such cases, wait till it's gone using
3086 * offline_waitq.
3087 */
a966a4ed 3088 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3089 cgroup_for_each_live_child(child, cgrp) {
3090 DEFINE_WAIT(wait);
3091
3092 if (!cgroup_css(child, ss))
3093 continue;
3094
3095 cgroup_get(child);
3096 prepare_to_wait(&child->offline_waitq, &wait,
3097 TASK_UNINTERRUPTIBLE);
3098 cgroup_kn_unlock(of->kn);
3099 schedule();
3100 finish_wait(&child->offline_waitq, &wait);
3101 cgroup_put(child);
3102
3103 return restart_syscall();
3104 }
3105 }
3106
755bf5ee
TH
3107 cgrp->subtree_control = new_sc;
3108 cgrp->child_subsys_mask = new_ss;
3109
f63070d3
TH
3110 /*
3111 * Create new csses or make the existing ones visible. A css is
3112 * created invisible if it's being implicitly enabled through
3113 * dependency. An invisible css is made visible when the userland
3114 * explicitly enables it.
f8f22e53
TH
3115 */
3116 for_each_subsys(ss, ssid) {
3117 if (!(enable & (1 << ssid)))
3118 continue;
3119
3120 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3121 if (css_enable & (1 << ssid))
3122 ret = create_css(child, ss,
3123 cgrp->subtree_control & (1 << ssid));
3124 else
4df8dc90
TH
3125 ret = css_populate_dir(cgroup_css(child, ss),
3126 NULL);
f8f22e53
TH
3127 if (ret)
3128 goto err_undo_css;
3129 }
3130 }
3131
c29adf24
TH
3132 /*
3133 * At this point, cgroup_e_css() results reflect the new csses
3134 * making the following cgroup_update_dfl_csses() properly update
3135 * css associations of all tasks in the subtree.
3136 */
f8f22e53
TH
3137 ret = cgroup_update_dfl_csses(cgrp);
3138 if (ret)
3139 goto err_undo_css;
3140
f63070d3
TH
3141 /*
3142 * All tasks are migrated out of disabled csses. Kill or hide
3143 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3144 * disabled while other subsystems are still depending on it. The
3145 * css must not actively control resources and be in the vanilla
3146 * state if it's made visible again later. Controllers which may
3147 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3148 */
f8f22e53
TH
3149 for_each_subsys(ss, ssid) {
3150 if (!(disable & (1 << ssid)))
3151 continue;
3152
f63070d3 3153 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3154 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3155
3156 if (css_disable & (1 << ssid)) {
3157 kill_css(css);
3158 } else {
4df8dc90 3159 css_clear_dir(css, NULL);
b4536f0c
TH
3160 if (ss->css_reset)
3161 ss->css_reset(css);
3162 }
f63070d3 3163 }
f8f22e53
TH
3164 }
3165
56c807ba
TH
3166 /*
3167 * The effective csses of all the descendants (excluding @cgrp) may
3168 * have changed. Subsystems can optionally subscribe to this event
3169 * by implementing ->css_e_css_changed() which is invoked if any of
3170 * the effective csses seen from the css's cgroup may have changed.
3171 */
3172 for_each_subsys(ss, ssid) {
3173 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3174 struct cgroup_subsys_state *css;
3175
3176 if (!ss->css_e_css_changed || !this_css)
3177 continue;
3178
3179 css_for_each_descendant_pre(css, this_css)
3180 if (css != this_css)
3181 ss->css_e_css_changed(css);
3182 }
3183
f8f22e53
TH
3184 kernfs_activate(cgrp->kn);
3185 ret = 0;
3186out_unlock:
a9746d8d 3187 cgroup_kn_unlock(of->kn);
451af504 3188 return ret ?: nbytes;
f8f22e53
TH
3189
3190err_undo_css:
755bf5ee
TH
3191 cgrp->subtree_control = old_sc;
3192 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3193
3194 for_each_subsys(ss, ssid) {
3195 if (!(enable & (1 << ssid)))
3196 continue;
3197
3198 cgroup_for_each_live_child(child, cgrp) {
3199 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3200
3201 if (!css)
3202 continue;
3203
3204 if (css_enable & (1 << ssid))
f8f22e53 3205 kill_css(css);
f63070d3 3206 else
4df8dc90 3207 css_clear_dir(css, NULL);
f8f22e53
TH
3208 }
3209 }
3210 goto out_unlock;
3211}
3212
4a07c222 3213static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3214{
4a07c222 3215 seq_printf(seq, "populated %d\n",
27bd4dbb 3216 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3217 return 0;
3218}
3219
2bd59d48
TH
3220static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3221 size_t nbytes, loff_t off)
355e0c48 3222{
2bd59d48
TH
3223 struct cgroup *cgrp = of->kn->parent->priv;
3224 struct cftype *cft = of->kn->priv;
3225 struct cgroup_subsys_state *css;
a742c59d 3226 int ret;
355e0c48 3227
b4168640
TH
3228 if (cft->write)
3229 return cft->write(of, buf, nbytes, off);
3230
2bd59d48
TH
3231 /*
3232 * kernfs guarantees that a file isn't deleted with operations in
3233 * flight, which means that the matching css is and stays alive and
3234 * doesn't need to be pinned. The RCU locking is not necessary
3235 * either. It's just for the convenience of using cgroup_css().
3236 */
3237 rcu_read_lock();
3238 css = cgroup_css(cgrp, cft->ss);
3239 rcu_read_unlock();
a742c59d 3240
451af504 3241 if (cft->write_u64) {
a742c59d
TH
3242 unsigned long long v;
3243 ret = kstrtoull(buf, 0, &v);
3244 if (!ret)
3245 ret = cft->write_u64(css, cft, v);
3246 } else if (cft->write_s64) {
3247 long long v;
3248 ret = kstrtoll(buf, 0, &v);
3249 if (!ret)
3250 ret = cft->write_s64(css, cft, v);
e73d2c61 3251 } else {
a742c59d 3252 ret = -EINVAL;
e73d2c61 3253 }
2bd59d48 3254
a742c59d 3255 return ret ?: nbytes;
355e0c48
PM
3256}
3257
6612f05b 3258static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3259{
2bd59d48 3260 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3261}
3262
6612f05b 3263static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3264{
2bd59d48 3265 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3266}
3267
6612f05b 3268static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3269{
2bd59d48 3270 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3271}
3272
91796569 3273static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3274{
7da11279
TH
3275 struct cftype *cft = seq_cft(m);
3276 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3277
2da8ca82
TH
3278 if (cft->seq_show)
3279 return cft->seq_show(m, arg);
e73d2c61 3280
f4c753b7 3281 if (cft->read_u64)
896f5199
TH
3282 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3283 else if (cft->read_s64)
3284 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3285 else
3286 return -EINVAL;
3287 return 0;
91796569
PM
3288}
3289
2bd59d48
TH
3290static struct kernfs_ops cgroup_kf_single_ops = {
3291 .atomic_write_len = PAGE_SIZE,
3292 .write = cgroup_file_write,
3293 .seq_show = cgroup_seqfile_show,
91796569
PM
3294};
3295
2bd59d48
TH
3296static struct kernfs_ops cgroup_kf_ops = {
3297 .atomic_write_len = PAGE_SIZE,
3298 .write = cgroup_file_write,
3299 .seq_start = cgroup_seqfile_start,
3300 .seq_next = cgroup_seqfile_next,
3301 .seq_stop = cgroup_seqfile_stop,
3302 .seq_show = cgroup_seqfile_show,
3303};
ddbcc7e8
PM
3304
3305/*
3306 * cgroup_rename - Only allow simple rename of directories in place.
3307 */
2bd59d48
TH
3308static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3309 const char *new_name_str)
ddbcc7e8 3310{
2bd59d48 3311 struct cgroup *cgrp = kn->priv;
65dff759 3312 int ret;
65dff759 3313
2bd59d48 3314 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3315 return -ENOTDIR;
2bd59d48 3316 if (kn->parent != new_parent)
ddbcc7e8 3317 return -EIO;
65dff759 3318
6db8e85c
TH
3319 /*
3320 * This isn't a proper migration and its usefulness is very
aa6ec29b 3321 * limited. Disallow on the default hierarchy.
6db8e85c 3322 */
aa6ec29b 3323 if (cgroup_on_dfl(cgrp))
6db8e85c 3324 return -EPERM;
099fca32 3325
e1b2dc17 3326 /*
8353da1f 3327 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3328 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3329 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3330 */
3331 kernfs_break_active_protection(new_parent);
3332 kernfs_break_active_protection(kn);
099fca32 3333
2bd59d48 3334 mutex_lock(&cgroup_mutex);
099fca32 3335
2bd59d48 3336 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3337
2bd59d48 3338 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3339
3340 kernfs_unbreak_active_protection(kn);
3341 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3342 return ret;
099fca32
LZ
3343}
3344
49957f8e
TH
3345/* set uid and gid of cgroup dirs and files to that of the creator */
3346static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3347{
3348 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3349 .ia_uid = current_fsuid(),
3350 .ia_gid = current_fsgid(), };
3351
3352 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3353 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3354 return 0;
3355
3356 return kernfs_setattr(kn, &iattr);
3357}
3358
4df8dc90
TH
3359static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3360 struct cftype *cft)
ddbcc7e8 3361{
8d7e6fb0 3362 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3363 struct kernfs_node *kn;
3364 struct lock_class_key *key = NULL;
49957f8e 3365 int ret;
05ef1d7c 3366
2bd59d48
TH
3367#ifdef CONFIG_DEBUG_LOCK_ALLOC
3368 key = &cft->lockdep_key;
3369#endif
3370 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3371 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3372 NULL, key);
49957f8e
TH
3373 if (IS_ERR(kn))
3374 return PTR_ERR(kn);
3375
3376 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3377 if (ret) {
49957f8e 3378 kernfs_remove(kn);
f8f22e53
TH
3379 return ret;
3380 }
3381
6f60eade
TH
3382 if (cft->file_offset) {
3383 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3384
34c06254 3385 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3386 cfile->kn = kn;
34c06254 3387 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3388 }
3389
f8f22e53 3390 return 0;
ddbcc7e8
PM
3391}
3392
b1f28d31
TH
3393/**
3394 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3395 * @css: the target css
3396 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3397 * @cfts: array of cftypes to be added
3398 * @is_add: whether to add or remove
3399 *
3400 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3401 * For removals, this function never fails.
b1f28d31 3402 */
4df8dc90
TH
3403static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3404 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3405 bool is_add)
ddbcc7e8 3406{
6732ed85 3407 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3408 int ret;
3409
01f6474c 3410 lockdep_assert_held(&cgroup_mutex);
db0416b6 3411
6732ed85
TH
3412restart:
3413 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3414 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3415 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3416 continue;
05ebb6e6 3417 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3418 continue;
d51f39b0 3419 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3420 continue;
d51f39b0 3421 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3422 continue;
3423
2739d3cc 3424 if (is_add) {
4df8dc90 3425 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3426 if (ret) {
ed3d261b
JP
3427 pr_warn("%s: failed to add %s, err=%d\n",
3428 __func__, cft->name, ret);
6732ed85
TH
3429 cft_end = cft;
3430 is_add = false;
3431 goto restart;
b1f28d31 3432 }
2739d3cc
LZ
3433 } else {
3434 cgroup_rm_file(cgrp, cft);
db0416b6 3435 }
ddbcc7e8 3436 }
b1f28d31 3437 return 0;
ddbcc7e8
PM
3438}
3439
21a2d343 3440static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3441{
3442 LIST_HEAD(pending);
2bb566cb 3443 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3444 struct cgroup *root = &ss->root->cgrp;
492eb21b 3445 struct cgroup_subsys_state *css;
9ccece80 3446 int ret = 0;
8e3f6541 3447
01f6474c 3448 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3449
e8c82d20 3450 /* add/rm files for all cgroups created before */
ca8bdcaf 3451 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3452 struct cgroup *cgrp = css->cgroup;
3453
e8c82d20
LZ
3454 if (cgroup_is_dead(cgrp))
3455 continue;
3456
4df8dc90 3457 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3458 if (ret)
3459 break;
8e3f6541 3460 }
21a2d343
TH
3461
3462 if (is_add && !ret)
3463 kernfs_activate(root->kn);
9ccece80 3464 return ret;
8e3f6541
TH
3465}
3466
2da440a2 3467static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3468{
2bb566cb 3469 struct cftype *cft;
8e3f6541 3470
2bd59d48
TH
3471 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3472 /* free copy for custom atomic_write_len, see init_cftypes() */
3473 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3474 kfree(cft->kf_ops);
3475 cft->kf_ops = NULL;
2da440a2 3476 cft->ss = NULL;
a8ddc821
TH
3477
3478 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3479 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3480 }
2da440a2
TH
3481}
3482
2bd59d48 3483static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3484{
3485 struct cftype *cft;
3486
2bd59d48
TH
3487 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3488 struct kernfs_ops *kf_ops;
3489
0adb0704
TH
3490 WARN_ON(cft->ss || cft->kf_ops);
3491
2bd59d48
TH
3492 if (cft->seq_start)
3493 kf_ops = &cgroup_kf_ops;
3494 else
3495 kf_ops = &cgroup_kf_single_ops;
3496
3497 /*
3498 * Ugh... if @cft wants a custom max_write_len, we need to
3499 * make a copy of kf_ops to set its atomic_write_len.
3500 */
3501 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3502 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3503 if (!kf_ops) {
3504 cgroup_exit_cftypes(cfts);
3505 return -ENOMEM;
3506 }
3507 kf_ops->atomic_write_len = cft->max_write_len;
3508 }
8e3f6541 3509
2bd59d48 3510 cft->kf_ops = kf_ops;
2bb566cb 3511 cft->ss = ss;
2bd59d48 3512 }
2bb566cb 3513
2bd59d48 3514 return 0;
2da440a2
TH
3515}
3516
21a2d343
TH
3517static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3518{
01f6474c 3519 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3520
3521 if (!cfts || !cfts[0].ss)
3522 return -ENOENT;
3523
3524 list_del(&cfts->node);
3525 cgroup_apply_cftypes(cfts, false);
3526 cgroup_exit_cftypes(cfts);
3527 return 0;
8e3f6541 3528}
8e3f6541 3529
79578621
TH
3530/**
3531 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3532 * @cfts: zero-length name terminated array of cftypes
3533 *
2bb566cb
TH
3534 * Unregister @cfts. Files described by @cfts are removed from all
3535 * existing cgroups and all future cgroups won't have them either. This
3536 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3537 *
3538 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3539 * registered.
79578621 3540 */
2bb566cb 3541int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3542{
21a2d343 3543 int ret;
79578621 3544
01f6474c 3545 mutex_lock(&cgroup_mutex);
21a2d343 3546 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3547 mutex_unlock(&cgroup_mutex);
21a2d343 3548 return ret;
80b13586
TH
3549}
3550
8e3f6541
TH
3551/**
3552 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3553 * @ss: target cgroup subsystem
3554 * @cfts: zero-length name terminated array of cftypes
3555 *
3556 * Register @cfts to @ss. Files described by @cfts are created for all
3557 * existing cgroups to which @ss is attached and all future cgroups will
3558 * have them too. This function can be called anytime whether @ss is
3559 * attached or not.
3560 *
3561 * Returns 0 on successful registration, -errno on failure. Note that this
3562 * function currently returns 0 as long as @cfts registration is successful
3563 * even if some file creation attempts on existing cgroups fail.
3564 */
2cf669a5 3565static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3566{
9ccece80 3567 int ret;
8e3f6541 3568
fc5ed1e9 3569 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3570 return 0;
3571
dc5736ed
LZ
3572 if (!cfts || cfts[0].name[0] == '\0')
3573 return 0;
2bb566cb 3574
2bd59d48
TH
3575 ret = cgroup_init_cftypes(ss, cfts);
3576 if (ret)
3577 return ret;
79578621 3578
01f6474c 3579 mutex_lock(&cgroup_mutex);
21a2d343 3580
0adb0704 3581 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3582 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3583 if (ret)
21a2d343 3584 cgroup_rm_cftypes_locked(cfts);
79578621 3585
01f6474c 3586 mutex_unlock(&cgroup_mutex);
9ccece80 3587 return ret;
79578621
TH
3588}
3589
a8ddc821
TH
3590/**
3591 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3592 * @ss: target cgroup subsystem
3593 * @cfts: zero-length name terminated array of cftypes
3594 *
3595 * Similar to cgroup_add_cftypes() but the added files are only used for
3596 * the default hierarchy.
3597 */
3598int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3599{
3600 struct cftype *cft;
3601
3602 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3603 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3604 return cgroup_add_cftypes(ss, cfts);
3605}
3606
3607/**
3608 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3609 * @ss: target cgroup subsystem
3610 * @cfts: zero-length name terminated array of cftypes
3611 *
3612 * Similar to cgroup_add_cftypes() but the added files are only used for
3613 * the legacy hierarchies.
3614 */
2cf669a5
TH
3615int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3616{
a8ddc821
TH
3617 struct cftype *cft;
3618
e4b7037c
TH
3619 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3620 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3621 return cgroup_add_cftypes(ss, cfts);
3622}
3623
34c06254
TH
3624/**
3625 * cgroup_file_notify - generate a file modified event for a cgroup_file
3626 * @cfile: target cgroup_file
3627 *
3628 * @cfile must have been obtained by setting cftype->file_offset.
3629 */
3630void cgroup_file_notify(struct cgroup_file *cfile)
3631{
3632 unsigned long flags;
3633
3634 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3635 if (cfile->kn)
3636 kernfs_notify(cfile->kn);
3637 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3638}
3639
a043e3b2
LZ
3640/**
3641 * cgroup_task_count - count the number of tasks in a cgroup.
3642 * @cgrp: the cgroup in question
3643 *
3644 * Return the number of tasks in the cgroup.
3645 */
07bc356e 3646static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3647{
3648 int count = 0;
69d0206c 3649 struct cgrp_cset_link *link;
817929ec 3650
1cac41cb 3651 spin_lock_irq(&css_set_lock);
69d0206c
TH
3652 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3653 count += atomic_read(&link->cset->refcount);
1cac41cb 3654 spin_unlock_irq(&css_set_lock);
bbcb81d0
PM
3655 return count;
3656}
3657
53fa5261 3658/**
492eb21b 3659 * css_next_child - find the next child of a given css
c2931b70
TH
3660 * @pos: the current position (%NULL to initiate traversal)
3661 * @parent: css whose children to walk
53fa5261 3662 *
c2931b70 3663 * This function returns the next child of @parent and should be called
87fb54f1 3664 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3665 * that @parent and @pos are accessible. The next sibling is guaranteed to
3666 * be returned regardless of their states.
3667 *
3668 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3669 * css which finished ->css_online() is guaranteed to be visible in the
3670 * future iterations and will stay visible until the last reference is put.
3671 * A css which hasn't finished ->css_online() or already finished
3672 * ->css_offline() may show up during traversal. It's each subsystem's
3673 * responsibility to synchronize against on/offlining.
53fa5261 3674 */
c2931b70
TH
3675struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3676 struct cgroup_subsys_state *parent)
53fa5261 3677{
c2931b70 3678 struct cgroup_subsys_state *next;
53fa5261 3679
8353da1f 3680 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3681
3682 /*
de3f0341
TH
3683 * @pos could already have been unlinked from the sibling list.
3684 * Once a cgroup is removed, its ->sibling.next is no longer
3685 * updated when its next sibling changes. CSS_RELEASED is set when
3686 * @pos is taken off list, at which time its next pointer is valid,
3687 * and, as releases are serialized, the one pointed to by the next
3688 * pointer is guaranteed to not have started release yet. This
3689 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3690 * critical section, the one pointed to by its next pointer is
3691 * guaranteed to not have finished its RCU grace period even if we
3692 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3693 *
de3f0341
TH
3694 * If @pos has CSS_RELEASED set, its next pointer can't be
3695 * dereferenced; however, as each css is given a monotonically
3696 * increasing unique serial number and always appended to the
3697 * sibling list, the next one can be found by walking the parent's
3698 * children until the first css with higher serial number than
3699 * @pos's. While this path can be slower, it happens iff iteration
3700 * races against release and the race window is very small.
53fa5261 3701 */
3b287a50 3702 if (!pos) {
c2931b70
TH
3703 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3704 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3705 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3706 } else {
c2931b70 3707 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3708 if (next->serial_nr > pos->serial_nr)
3709 break;
53fa5261
TH
3710 }
3711
3b281afb
TH
3712 /*
3713 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3714 * the next sibling.
3b281afb 3715 */
c2931b70
TH
3716 if (&next->sibling != &parent->children)
3717 return next;
3b281afb 3718 return NULL;
53fa5261 3719}
53fa5261 3720
574bd9f7 3721/**
492eb21b 3722 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3723 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3724 * @root: css whose descendants to walk
574bd9f7 3725 *
492eb21b 3726 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3727 * to visit for pre-order traversal of @root's descendants. @root is
3728 * included in the iteration and the first node to be visited.
75501a6d 3729 *
87fb54f1
TH
3730 * While this function requires cgroup_mutex or RCU read locking, it
3731 * doesn't require the whole traversal to be contained in a single critical
3732 * section. This function will return the correct next descendant as long
3733 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3734 *
3735 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3736 * css which finished ->css_online() is guaranteed to be visible in the
3737 * future iterations and will stay visible until the last reference is put.
3738 * A css which hasn't finished ->css_online() or already finished
3739 * ->css_offline() may show up during traversal. It's each subsystem's
3740 * responsibility to synchronize against on/offlining.
574bd9f7 3741 */
492eb21b
TH
3742struct cgroup_subsys_state *
3743css_next_descendant_pre(struct cgroup_subsys_state *pos,
3744 struct cgroup_subsys_state *root)
574bd9f7 3745{
492eb21b 3746 struct cgroup_subsys_state *next;
574bd9f7 3747
8353da1f 3748 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3749
bd8815a6 3750 /* if first iteration, visit @root */
7805d000 3751 if (!pos)
bd8815a6 3752 return root;
574bd9f7
TH
3753
3754 /* visit the first child if exists */
492eb21b 3755 next = css_next_child(NULL, pos);
574bd9f7
TH
3756 if (next)
3757 return next;
3758
3759 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3760 while (pos != root) {
5c9d535b 3761 next = css_next_child(pos, pos->parent);
75501a6d 3762 if (next)
574bd9f7 3763 return next;
5c9d535b 3764 pos = pos->parent;
7805d000 3765 }
574bd9f7
TH
3766
3767 return NULL;
3768}
574bd9f7 3769
12a9d2fe 3770/**
492eb21b
TH
3771 * css_rightmost_descendant - return the rightmost descendant of a css
3772 * @pos: css of interest
12a9d2fe 3773 *
492eb21b
TH
3774 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3775 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3776 * subtree of @pos.
75501a6d 3777 *
87fb54f1
TH
3778 * While this function requires cgroup_mutex or RCU read locking, it
3779 * doesn't require the whole traversal to be contained in a single critical
3780 * section. This function will return the correct rightmost descendant as
3781 * long as @pos is accessible.
12a9d2fe 3782 */
492eb21b
TH
3783struct cgroup_subsys_state *
3784css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3785{
492eb21b 3786 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3787
8353da1f 3788 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3789
3790 do {
3791 last = pos;
3792 /* ->prev isn't RCU safe, walk ->next till the end */
3793 pos = NULL;
492eb21b 3794 css_for_each_child(tmp, last)
12a9d2fe
TH
3795 pos = tmp;
3796 } while (pos);
3797
3798 return last;
3799}
12a9d2fe 3800
492eb21b
TH
3801static struct cgroup_subsys_state *
3802css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3803{
492eb21b 3804 struct cgroup_subsys_state *last;
574bd9f7
TH
3805
3806 do {
3807 last = pos;
492eb21b 3808 pos = css_next_child(NULL, pos);
574bd9f7
TH
3809 } while (pos);
3810
3811 return last;
3812}
3813
3814/**
492eb21b 3815 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3816 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3817 * @root: css whose descendants to walk
574bd9f7 3818 *
492eb21b 3819 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3820 * to visit for post-order traversal of @root's descendants. @root is
3821 * included in the iteration and the last node to be visited.
75501a6d 3822 *
87fb54f1
TH
3823 * While this function requires cgroup_mutex or RCU read locking, it
3824 * doesn't require the whole traversal to be contained in a single critical
3825 * section. This function will return the correct next descendant as long
3826 * as both @pos and @cgroup are accessible and @pos is a descendant of
3827 * @cgroup.
c2931b70
TH
3828 *
3829 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3830 * css which finished ->css_online() is guaranteed to be visible in the
3831 * future iterations and will stay visible until the last reference is put.
3832 * A css which hasn't finished ->css_online() or already finished
3833 * ->css_offline() may show up during traversal. It's each subsystem's
3834 * responsibility to synchronize against on/offlining.
574bd9f7 3835 */
492eb21b
TH
3836struct cgroup_subsys_state *
3837css_next_descendant_post(struct cgroup_subsys_state *pos,
3838 struct cgroup_subsys_state *root)
574bd9f7 3839{
492eb21b 3840 struct cgroup_subsys_state *next;
574bd9f7 3841
8353da1f 3842 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3843
58b79a91
TH
3844 /* if first iteration, visit leftmost descendant which may be @root */
3845 if (!pos)
3846 return css_leftmost_descendant(root);
574bd9f7 3847
bd8815a6
TH
3848 /* if we visited @root, we're done */
3849 if (pos == root)
3850 return NULL;
3851
574bd9f7 3852 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3853 next = css_next_child(pos, pos->parent);
75501a6d 3854 if (next)
492eb21b 3855 return css_leftmost_descendant(next);
574bd9f7
TH
3856
3857 /* no sibling left, visit parent */
5c9d535b 3858 return pos->parent;
574bd9f7 3859}
574bd9f7 3860
f3d46500
TH
3861/**
3862 * css_has_online_children - does a css have online children
3863 * @css: the target css
3864 *
3865 * Returns %true if @css has any online children; otherwise, %false. This
3866 * function can be called from any context but the caller is responsible
3867 * for synchronizing against on/offlining as necessary.
3868 */
3869bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3870{
f3d46500
TH
3871 struct cgroup_subsys_state *child;
3872 bool ret = false;
cbc125ef
TH
3873
3874 rcu_read_lock();
f3d46500 3875 css_for_each_child(child, css) {
99bae5f9 3876 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3877 ret = true;
3878 break;
cbc125ef
TH
3879 }
3880 }
3881 rcu_read_unlock();
f3d46500 3882 return ret;
574bd9f7 3883}
574bd9f7 3884
0942eeee 3885/**
ecb9d535 3886 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3887 * @it: the iterator to advance
3888 *
3889 * Advance @it to the next css_set to walk.
d515876e 3890 */
ecb9d535 3891static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3892{
0f0a2b4f 3893 struct list_head *l = it->cset_pos;
d515876e
TH
3894 struct cgrp_cset_link *link;
3895 struct css_set *cset;
3896
f0d9a5f1 3897 lockdep_assert_held(&css_set_lock);
ed27b9f7 3898
d515876e
TH
3899 /* Advance to the next non-empty css_set */
3900 do {
3901 l = l->next;
0f0a2b4f
TH
3902 if (l == it->cset_head) {
3903 it->cset_pos = NULL;
ecb9d535 3904 it->task_pos = NULL;
d515876e
TH
3905 return;
3906 }
3ebb2b6e
TH
3907
3908 if (it->ss) {
3909 cset = container_of(l, struct css_set,
3910 e_cset_node[it->ss->id]);
3911 } else {
3912 link = list_entry(l, struct cgrp_cset_link, cset_link);
3913 cset = link->cset;
3914 }
0de0942d 3915 } while (!css_set_populated(cset));
c7561128 3916
0f0a2b4f 3917 it->cset_pos = l;
c7561128
TH
3918
3919 if (!list_empty(&cset->tasks))
0f0a2b4f 3920 it->task_pos = cset->tasks.next;
c7561128 3921 else
0f0a2b4f
TH
3922 it->task_pos = cset->mg_tasks.next;
3923
3924 it->tasks_head = &cset->tasks;
3925 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3926
3927 /*
3928 * We don't keep css_sets locked across iteration steps and thus
3929 * need to take steps to ensure that iteration can be resumed after
3930 * the lock is re-acquired. Iteration is performed at two levels -
3931 * css_sets and tasks in them.
3932 *
3933 * Once created, a css_set never leaves its cgroup lists, so a
3934 * pinned css_set is guaranteed to stay put and we can resume
3935 * iteration afterwards.
3936 *
3937 * Tasks may leave @cset across iteration steps. This is resolved
3938 * by registering each iterator with the css_set currently being
3939 * walked and making css_set_move_task() advance iterators whose
3940 * next task is leaving.
3941 */
3942 if (it->cur_cset) {
3943 list_del(&it->iters_node);
3944 put_css_set_locked(it->cur_cset);
3945 }
3946 get_css_set(cset);
3947 it->cur_cset = cset;
3948 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3949}
3950
ecb9d535
TH
3951static void css_task_iter_advance(struct css_task_iter *it)
3952{
3953 struct list_head *l = it->task_pos;
3954
f0d9a5f1 3955 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3956 WARN_ON_ONCE(!l);
3957
3958 /*
3959 * Advance iterator to find next entry. cset->tasks is consumed
3960 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3961 * next cset.
3962 */
3963 l = l->next;
3964
3965 if (l == it->tasks_head)
3966 l = it->mg_tasks_head->next;
3967
3968 if (l == it->mg_tasks_head)
3969 css_task_iter_advance_css_set(it);
3970 else
3971 it->task_pos = l;
3972}
3973
0942eeee 3974/**
72ec7029
TH
3975 * css_task_iter_start - initiate task iteration
3976 * @css: the css to walk tasks of
0942eeee
TH
3977 * @it: the task iterator to use
3978 *
72ec7029
TH
3979 * Initiate iteration through the tasks of @css. The caller can call
3980 * css_task_iter_next() to walk through the tasks until the function
3981 * returns NULL. On completion of iteration, css_task_iter_end() must be
3982 * called.
0942eeee 3983 */
72ec7029
TH
3984void css_task_iter_start(struct cgroup_subsys_state *css,
3985 struct css_task_iter *it)
817929ec 3986{
56fde9e0
TH
3987 /* no one should try to iterate before mounting cgroups */
3988 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3989
ed27b9f7
TH
3990 memset(it, 0, sizeof(*it));
3991
1cac41cb 3992 spin_lock_irq(&css_set_lock);
c59cd3d8 3993
3ebb2b6e
TH
3994 it->ss = css->ss;
3995
3996 if (it->ss)
3997 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3998 else
3999 it->cset_pos = &css->cgroup->cset_links;
4000
0f0a2b4f 4001 it->cset_head = it->cset_pos;
c59cd3d8 4002
ecb9d535 4003 css_task_iter_advance_css_set(it);
ed27b9f7 4004
1cac41cb 4005 spin_unlock_irq(&css_set_lock);
817929ec
PM
4006}
4007
0942eeee 4008/**
72ec7029 4009 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4010 * @it: the task iterator being iterated
4011 *
4012 * The "next" function for task iteration. @it should have been
72ec7029
TH
4013 * initialized via css_task_iter_start(). Returns NULL when the iteration
4014 * reaches the end.
0942eeee 4015 */
72ec7029 4016struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4017{
d5745675 4018 if (it->cur_task) {
ed27b9f7 4019 put_task_struct(it->cur_task);
d5745675
TH
4020 it->cur_task = NULL;
4021 }
ed27b9f7 4022
1cac41cb 4023 spin_lock_irq(&css_set_lock);
ed27b9f7 4024
d5745675
TH
4025 if (it->task_pos) {
4026 it->cur_task = list_entry(it->task_pos, struct task_struct,
4027 cg_list);
4028 get_task_struct(it->cur_task);
4029 css_task_iter_advance(it);
4030 }
ed27b9f7 4031
1cac41cb 4032 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4033
4034 return it->cur_task;
817929ec
PM
4035}
4036
0942eeee 4037/**
72ec7029 4038 * css_task_iter_end - finish task iteration
0942eeee
TH
4039 * @it: the task iterator to finish
4040 *
72ec7029 4041 * Finish task iteration started by css_task_iter_start().
0942eeee 4042 */
72ec7029 4043void css_task_iter_end(struct css_task_iter *it)
31a7df01 4044{
ed27b9f7 4045 if (it->cur_cset) {
1cac41cb 4046 spin_lock_irq(&css_set_lock);
ed27b9f7
TH
4047 list_del(&it->iters_node);
4048 put_css_set_locked(it->cur_cset);
1cac41cb 4049 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4050 }
4051
4052 if (it->cur_task)
4053 put_task_struct(it->cur_task);
31a7df01
CW
4054}
4055
4056/**
8cc99345
TH
4057 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4058 * @to: cgroup to which the tasks will be moved
4059 * @from: cgroup in which the tasks currently reside
31a7df01 4060 *
eaf797ab
TH
4061 * Locking rules between cgroup_post_fork() and the migration path
4062 * guarantee that, if a task is forking while being migrated, the new child
4063 * is guaranteed to be either visible in the source cgroup after the
4064 * parent's migration is complete or put into the target cgroup. No task
4065 * can slip out of migration through forking.
31a7df01 4066 */
8cc99345 4067int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4068{
952aaa12
TH
4069 LIST_HEAD(preloaded_csets);
4070 struct cgrp_cset_link *link;
72ec7029 4071 struct css_task_iter it;
e406d1cf 4072 struct task_struct *task;
952aaa12 4073 int ret;
31a7df01 4074
952aaa12 4075 mutex_lock(&cgroup_mutex);
31a7df01 4076
952aaa12 4077 /* all tasks in @from are being moved, all csets are source */
1cac41cb 4078 spin_lock_irq(&css_set_lock);
952aaa12
TH
4079 list_for_each_entry(link, &from->cset_links, cset_link)
4080 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
1cac41cb 4081 spin_unlock_irq(&css_set_lock);
31a7df01 4082
952aaa12
TH
4083 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4084 if (ret)
4085 goto out_err;
8cc99345 4086
952aaa12
TH
4087 /*
4088 * Migrate tasks one-by-one until @form is empty. This fails iff
4089 * ->can_attach() fails.
4090 */
e406d1cf 4091 do {
9d800df1 4092 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4093 task = css_task_iter_next(&it);
4094 if (task)
4095 get_task_struct(task);
4096 css_task_iter_end(&it);
4097
4098 if (task) {
9af2ec45 4099 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4100 put_task_struct(task);
4101 }
4102 } while (task && !ret);
952aaa12
TH
4103out_err:
4104 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4105 mutex_unlock(&cgroup_mutex);
e406d1cf 4106 return ret;
8cc99345
TH
4107}
4108
bbcb81d0 4109/*
102a775e 4110 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4111 *
4112 * Reading this file can return large amounts of data if a cgroup has
4113 * *lots* of attached tasks. So it may need several calls to read(),
4114 * but we cannot guarantee that the information we produce is correct
4115 * unless we produce it entirely atomically.
4116 *
bbcb81d0 4117 */
bbcb81d0 4118
24528255
LZ
4119/* which pidlist file are we talking about? */
4120enum cgroup_filetype {
4121 CGROUP_FILE_PROCS,
4122 CGROUP_FILE_TASKS,
4123};
4124
4125/*
4126 * A pidlist is a list of pids that virtually represents the contents of one
4127 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4128 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4129 * to the cgroup.
4130 */
4131struct cgroup_pidlist {
4132 /*
4133 * used to find which pidlist is wanted. doesn't change as long as
4134 * this particular list stays in the list.
4135 */
4136 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4137 /* array of xids */
4138 pid_t *list;
4139 /* how many elements the above list has */
4140 int length;
24528255
LZ
4141 /* each of these stored in a list by its cgroup */
4142 struct list_head links;
4143 /* pointer to the cgroup we belong to, for list removal purposes */
4144 struct cgroup *owner;
b1a21367
TH
4145 /* for delayed destruction */
4146 struct delayed_work destroy_dwork;
24528255
LZ
4147};
4148
d1d9fd33
BB
4149/*
4150 * The following two functions "fix" the issue where there are more pids
4151 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4152 * TODO: replace with a kernel-wide solution to this problem
4153 */
4154#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4155static void *pidlist_allocate(int count)
4156{
4157 if (PIDLIST_TOO_LARGE(count))
4158 return vmalloc(count * sizeof(pid_t));
4159 else
4160 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4161}
b1a21367 4162
d1d9fd33
BB
4163static void pidlist_free(void *p)
4164{
58794514 4165 kvfree(p);
d1d9fd33 4166}
d1d9fd33 4167
b1a21367
TH
4168/*
4169 * Used to destroy all pidlists lingering waiting for destroy timer. None
4170 * should be left afterwards.
4171 */
4172static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4173{
4174 struct cgroup_pidlist *l, *tmp_l;
4175
4176 mutex_lock(&cgrp->pidlist_mutex);
4177 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4178 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4179 mutex_unlock(&cgrp->pidlist_mutex);
4180
4181 flush_workqueue(cgroup_pidlist_destroy_wq);
4182 BUG_ON(!list_empty(&cgrp->pidlists));
4183}
4184
4185static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4186{
4187 struct delayed_work *dwork = to_delayed_work(work);
4188 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4189 destroy_dwork);
4190 struct cgroup_pidlist *tofree = NULL;
4191
4192 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4193
4194 /*
04502365
TH
4195 * Destroy iff we didn't get queued again. The state won't change
4196 * as destroy_dwork can only be queued while locked.
b1a21367 4197 */
04502365 4198 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4199 list_del(&l->links);
4200 pidlist_free(l->list);
4201 put_pid_ns(l->key.ns);
4202 tofree = l;
4203 }
4204
b1a21367
TH
4205 mutex_unlock(&l->owner->pidlist_mutex);
4206 kfree(tofree);
4207}
4208
bbcb81d0 4209/*
102a775e 4210 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4211 * Returns the number of unique elements.
bbcb81d0 4212 */
6ee211ad 4213static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4214{
102a775e 4215 int src, dest = 1;
102a775e
BB
4216
4217 /*
4218 * we presume the 0th element is unique, so i starts at 1. trivial
4219 * edge cases first; no work needs to be done for either
4220 */
4221 if (length == 0 || length == 1)
4222 return length;
4223 /* src and dest walk down the list; dest counts unique elements */
4224 for (src = 1; src < length; src++) {
4225 /* find next unique element */
4226 while (list[src] == list[src-1]) {
4227 src++;
4228 if (src == length)
4229 goto after;
4230 }
4231 /* dest always points to where the next unique element goes */
4232 list[dest] = list[src];
4233 dest++;
4234 }
4235after:
102a775e
BB
4236 return dest;
4237}
4238
afb2bc14
TH
4239/*
4240 * The two pid files - task and cgroup.procs - guaranteed that the result
4241 * is sorted, which forced this whole pidlist fiasco. As pid order is
4242 * different per namespace, each namespace needs differently sorted list,
4243 * making it impossible to use, for example, single rbtree of member tasks
4244 * sorted by task pointer. As pidlists can be fairly large, allocating one
4245 * per open file is dangerous, so cgroup had to implement shared pool of
4246 * pidlists keyed by cgroup and namespace.
4247 *
4248 * All this extra complexity was caused by the original implementation
4249 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4250 * want to do away with it. Explicitly scramble sort order if on the
4251 * default hierarchy so that no such expectation exists in the new
4252 * interface.
afb2bc14
TH
4253 *
4254 * Scrambling is done by swapping every two consecutive bits, which is
4255 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4256 */
4257static pid_t pid_fry(pid_t pid)
4258{
4259 unsigned a = pid & 0x55555555;
4260 unsigned b = pid & 0xAAAAAAAA;
4261
4262 return (a << 1) | (b >> 1);
4263}
4264
4265static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4266{
aa6ec29b 4267 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4268 return pid_fry(pid);
4269 else
4270 return pid;
4271}
4272
102a775e
BB
4273static int cmppid(const void *a, const void *b)
4274{
4275 return *(pid_t *)a - *(pid_t *)b;
4276}
4277
afb2bc14
TH
4278static int fried_cmppid(const void *a, const void *b)
4279{
4280 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4281}
4282
e6b81710
TH
4283static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4284 enum cgroup_filetype type)
4285{
4286 struct cgroup_pidlist *l;
4287 /* don't need task_nsproxy() if we're looking at ourself */
4288 struct pid_namespace *ns = task_active_pid_ns(current);
4289
4290 lockdep_assert_held(&cgrp->pidlist_mutex);
4291
4292 list_for_each_entry(l, &cgrp->pidlists, links)
4293 if (l->key.type == type && l->key.ns == ns)
4294 return l;
4295 return NULL;
4296}
4297
72a8cb30
BB
4298/*
4299 * find the appropriate pidlist for our purpose (given procs vs tasks)
4300 * returns with the lock on that pidlist already held, and takes care
4301 * of the use count, or returns NULL with no locks held if we're out of
4302 * memory.
4303 */
e6b81710
TH
4304static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4305 enum cgroup_filetype type)
72a8cb30
BB
4306{
4307 struct cgroup_pidlist *l;
b70cc5fd 4308
e6b81710
TH
4309 lockdep_assert_held(&cgrp->pidlist_mutex);
4310
4311 l = cgroup_pidlist_find(cgrp, type);
4312 if (l)
4313 return l;
4314
72a8cb30 4315 /* entry not found; create a new one */
f4f4be2b 4316 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4317 if (!l)
72a8cb30 4318 return l;
e6b81710 4319
b1a21367 4320 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4321 l->key.type = type;
e6b81710
TH
4322 /* don't need task_nsproxy() if we're looking at ourself */
4323 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4324 l->owner = cgrp;
4325 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4326 return l;
4327}
4328
102a775e
BB
4329/*
4330 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4331 */
72a8cb30
BB
4332static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4333 struct cgroup_pidlist **lp)
102a775e
BB
4334{
4335 pid_t *array;
4336 int length;
4337 int pid, n = 0; /* used for populating the array */
72ec7029 4338 struct css_task_iter it;
817929ec 4339 struct task_struct *tsk;
102a775e
BB
4340 struct cgroup_pidlist *l;
4341
4bac00d1
TH
4342 lockdep_assert_held(&cgrp->pidlist_mutex);
4343
102a775e
BB
4344 /*
4345 * If cgroup gets more users after we read count, we won't have
4346 * enough space - tough. This race is indistinguishable to the
4347 * caller from the case that the additional cgroup users didn't
4348 * show up until sometime later on.
4349 */
4350 length = cgroup_task_count(cgrp);
d1d9fd33 4351 array = pidlist_allocate(length);
102a775e
BB
4352 if (!array)
4353 return -ENOMEM;
4354 /* now, populate the array */
9d800df1 4355 css_task_iter_start(&cgrp->self, &it);
72ec7029 4356 while ((tsk = css_task_iter_next(&it))) {
102a775e 4357 if (unlikely(n == length))
817929ec 4358 break;
1cac41cb
MB
4359 /* avoid the use-after-free for task */
4360 if (unlikely(tsk->state == TASK_DEAD))
4361 continue;
102a775e 4362 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4363 if (type == CGROUP_FILE_PROCS)
4364 pid = task_tgid_vnr(tsk);
4365 else
4366 pid = task_pid_vnr(tsk);
102a775e
BB
4367 if (pid > 0) /* make sure to only use valid results */
4368 array[n++] = pid;
817929ec 4369 }
72ec7029 4370 css_task_iter_end(&it);
102a775e
BB
4371 length = n;
4372 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4373 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4374 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4375 else
4376 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4377 if (type == CGROUP_FILE_PROCS)
6ee211ad 4378 length = pidlist_uniq(array, length);
e6b81710 4379
e6b81710 4380 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4381 if (!l) {
d1d9fd33 4382 pidlist_free(array);
72a8cb30 4383 return -ENOMEM;
102a775e 4384 }
e6b81710
TH
4385
4386 /* store array, freeing old if necessary */
d1d9fd33 4387 pidlist_free(l->list);
102a775e
BB
4388 l->list = array;
4389 l->length = length;
72a8cb30 4390 *lp = l;
102a775e 4391 return 0;
bbcb81d0
PM
4392}
4393
846c7bb0 4394/**
a043e3b2 4395 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4396 * @stats: cgroupstats to fill information into
4397 * @dentry: A dentry entry belonging to the cgroup for which stats have
4398 * been requested.
a043e3b2
LZ
4399 *
4400 * Build and fill cgroupstats so that taskstats can export it to user
4401 * space.
846c7bb0
BS
4402 */
4403int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4404{
2bd59d48 4405 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4406 struct cgroup *cgrp;
72ec7029 4407 struct css_task_iter it;
846c7bb0 4408 struct task_struct *tsk;
33d283be 4409
2bd59d48
TH
4410 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4411 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4412 kernfs_type(kn) != KERNFS_DIR)
4413 return -EINVAL;
4414
bad34660
LZ
4415 mutex_lock(&cgroup_mutex);
4416
846c7bb0 4417 /*
2bd59d48 4418 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4419 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4420 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4421 */
2bd59d48
TH
4422 rcu_read_lock();
4423 cgrp = rcu_dereference(kn->priv);
bad34660 4424 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4425 rcu_read_unlock();
bad34660 4426 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4427 return -ENOENT;
4428 }
bad34660 4429 rcu_read_unlock();
846c7bb0 4430
9d800df1 4431 css_task_iter_start(&cgrp->self, &it);
72ec7029 4432 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4433 switch (tsk->state) {
4434 case TASK_RUNNING:
4435 stats->nr_running++;
4436 break;
4437 case TASK_INTERRUPTIBLE:
4438 stats->nr_sleeping++;
4439 break;
4440 case TASK_UNINTERRUPTIBLE:
4441 stats->nr_uninterruptible++;
4442 break;
4443 case TASK_STOPPED:
4444 stats->nr_stopped++;
4445 break;
4446 default:
4447 if (delayacct_is_task_waiting_on_io(tsk))
4448 stats->nr_io_wait++;
4449 break;
4450 }
4451 }
72ec7029 4452 css_task_iter_end(&it);
846c7bb0 4453
bad34660 4454 mutex_unlock(&cgroup_mutex);
2bd59d48 4455 return 0;
846c7bb0
BS
4456}
4457
8f3ff208 4458
bbcb81d0 4459/*
102a775e 4460 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4461 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4462 * in the cgroup->l->list array.
bbcb81d0 4463 */
cc31edce 4464
102a775e 4465static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4466{
cc31edce
PM
4467 /*
4468 * Initially we receive a position value that corresponds to
4469 * one more than the last pid shown (or 0 on the first call or
4470 * after a seek to the start). Use a binary-search to find the
4471 * next pid to display, if any
4472 */
2bd59d48 4473 struct kernfs_open_file *of = s->private;
7da11279 4474 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4475 struct cgroup_pidlist *l;
7da11279 4476 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4477 int index = 0, pid = *pos;
4bac00d1
TH
4478 int *iter, ret;
4479
4480 mutex_lock(&cgrp->pidlist_mutex);
4481
4482 /*
5d22444f 4483 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4484 * after open. If the matching pidlist is around, we can use that.
5d22444f 4485 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4486 * could already have been destroyed.
4487 */
5d22444f
TH
4488 if (of->priv)
4489 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4490
4491 /*
4492 * Either this is the first start() after open or the matching
4493 * pidlist has been destroyed inbetween. Create a new one.
4494 */
5d22444f
TH
4495 if (!of->priv) {
4496 ret = pidlist_array_load(cgrp, type,
4497 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4498 if (ret)
4499 return ERR_PTR(ret);
4500 }
5d22444f 4501 l = of->priv;
cc31edce 4502
cc31edce 4503 if (pid) {
102a775e 4504 int end = l->length;
20777766 4505
cc31edce
PM
4506 while (index < end) {
4507 int mid = (index + end) / 2;
afb2bc14 4508 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4509 index = mid;
4510 break;
afb2bc14 4511 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4512 index = mid + 1;
4513 else
4514 end = mid;
4515 }
4516 }
4517 /* If we're off the end of the array, we're done */
102a775e 4518 if (index >= l->length)
cc31edce
PM
4519 return NULL;
4520 /* Update the abstract position to be the actual pid that we found */
102a775e 4521 iter = l->list + index;
afb2bc14 4522 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4523 return iter;
4524}
4525
102a775e 4526static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4527{
2bd59d48 4528 struct kernfs_open_file *of = s->private;
5d22444f 4529 struct cgroup_pidlist *l = of->priv;
62236858 4530
5d22444f
TH
4531 if (l)
4532 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4533 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4534 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4535}
4536
102a775e 4537static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4538{
2bd59d48 4539 struct kernfs_open_file *of = s->private;
5d22444f 4540 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4541 pid_t *p = v;
4542 pid_t *end = l->list + l->length;
cc31edce
PM
4543 /*
4544 * Advance to the next pid in the array. If this goes off the
4545 * end, we're done
4546 */
4547 p++;
4548 if (p >= end) {
4549 return NULL;
4550 } else {
7da11279 4551 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4552 return p;
4553 }
4554}
4555
102a775e 4556static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4557{
94ff212d
JP
4558 seq_printf(s, "%d\n", *(int *)v);
4559
4560 return 0;
cc31edce 4561}
bbcb81d0 4562
182446d0
TH
4563static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4564 struct cftype *cft)
81a6a5cd 4565{
182446d0 4566 return notify_on_release(css->cgroup);
81a6a5cd
PM
4567}
4568
182446d0
TH
4569static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4570 struct cftype *cft, u64 val)
6379c106 4571{
6379c106 4572 if (val)
182446d0 4573 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4574 else
182446d0 4575 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4576 return 0;
4577}
4578
182446d0
TH
4579static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4580 struct cftype *cft)
97978e6d 4581{
182446d0 4582 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4583}
4584
182446d0
TH
4585static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4586 struct cftype *cft, u64 val)
97978e6d
DL
4587{
4588 if (val)
182446d0 4589 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4590 else
182446d0 4591 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4592 return 0;
4593}
4594
a14c6874
TH
4595/* cgroup core interface files for the default hierarchy */
4596static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4597 {
d5c56ced 4598 .name = "cgroup.procs",
6f60eade 4599 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4600 .seq_start = cgroup_pidlist_start,
4601 .seq_next = cgroup_pidlist_next,
4602 .seq_stop = cgroup_pidlist_stop,
4603 .seq_show = cgroup_pidlist_show,
5d22444f 4604 .private = CGROUP_FILE_PROCS,
acbef755 4605 .write = cgroup_procs_write,
102a775e 4606 },
f8f22e53
TH
4607 {
4608 .name = "cgroup.controllers",
a14c6874 4609 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4610 .seq_show = cgroup_root_controllers_show,
4611 },
4612 {
4613 .name = "cgroup.controllers",
a14c6874 4614 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4615 .seq_show = cgroup_controllers_show,
4616 },
4617 {
4618 .name = "cgroup.subtree_control",
f8f22e53 4619 .seq_show = cgroup_subtree_control_show,
451af504 4620 .write = cgroup_subtree_control_write,
f8f22e53 4621 },
842b597e 4622 {
4a07c222 4623 .name = "cgroup.events",
a14c6874 4624 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4625 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4626 .seq_show = cgroup_events_show,
842b597e 4627 },
a14c6874
TH
4628 { } /* terminate */
4629};
d5c56ced 4630
a14c6874
TH
4631/* cgroup core interface files for the legacy hierarchies */
4632static struct cftype cgroup_legacy_base_files[] = {
4633 {
4634 .name = "cgroup.procs",
4635 .seq_start = cgroup_pidlist_start,
4636 .seq_next = cgroup_pidlist_next,
4637 .seq_stop = cgroup_pidlist_stop,
4638 .seq_show = cgroup_pidlist_show,
4639 .private = CGROUP_FILE_PROCS,
4640 .write = cgroup_procs_write,
a14c6874
TH
4641 },
4642 {
4643 .name = "cgroup.clone_children",
4644 .read_u64 = cgroup_clone_children_read,
4645 .write_u64 = cgroup_clone_children_write,
4646 },
4647 {
4648 .name = "cgroup.sane_behavior",
4649 .flags = CFTYPE_ONLY_ON_ROOT,
4650 .seq_show = cgroup_sane_behavior_show,
4651 },
d5c56ced
TH
4652 {
4653 .name = "tasks",
6612f05b
TH
4654 .seq_start = cgroup_pidlist_start,
4655 .seq_next = cgroup_pidlist_next,
4656 .seq_stop = cgroup_pidlist_stop,
4657 .seq_show = cgroup_pidlist_show,
5d22444f 4658 .private = CGROUP_FILE_TASKS,
acbef755 4659 .write = cgroup_tasks_write,
d5c56ced
TH
4660 },
4661 {
4662 .name = "notify_on_release",
d5c56ced
TH
4663 .read_u64 = cgroup_read_notify_on_release,
4664 .write_u64 = cgroup_write_notify_on_release,
4665 },
6e6ff25b
TH
4666 {
4667 .name = "release_agent",
a14c6874 4668 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4669 .seq_show = cgroup_release_agent_show,
451af504 4670 .write = cgroup_release_agent_write,
5f469907 4671 .max_write_len = PATH_MAX - 1,
6e6ff25b 4672 },
db0416b6 4673 { } /* terminate */
bbcb81d0
PM
4674};
4675
0c21ead1
TH
4676/*
4677 * css destruction is four-stage process.
4678 *
4679 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4680 * Implemented in kill_css().
4681 *
4682 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4683 * and thus css_tryget_online() is guaranteed to fail, the css can be
4684 * offlined by invoking offline_css(). After offlining, the base ref is
4685 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4686 *
4687 * 3. When the percpu_ref reaches zero, the only possible remaining
4688 * accessors are inside RCU read sections. css_release() schedules the
4689 * RCU callback.
4690 *
4691 * 4. After the grace period, the css can be freed. Implemented in
4692 * css_free_work_fn().
4693 *
4694 * It is actually hairier because both step 2 and 4 require process context
4695 * and thus involve punting to css->destroy_work adding two additional
4696 * steps to the already complex sequence.
4697 */
35ef10da 4698static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4699{
4700 struct cgroup_subsys_state *css =
35ef10da 4701 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4702 struct cgroup_subsys *ss = css->ss;
0c21ead1 4703 struct cgroup *cgrp = css->cgroup;
48ddbe19 4704
9a1049da
TH
4705 percpu_ref_exit(&css->refcnt);
4706
01e58659 4707 if (ss) {
9d755d33 4708 /* css free path */
3c6266d5 4709 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4710 int id = css->id;
4711
01e58659
VD
4712 ss->css_free(css);
4713 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4714 cgroup_put(cgrp);
3c6266d5
TH
4715
4716 if (parent)
4717 css_put(parent);
9d755d33
TH
4718 } else {
4719 /* cgroup free path */
4720 atomic_dec(&cgrp->root->nr_cgrps);
4721 cgroup_pidlist_destroy_all(cgrp);
971ff493 4722 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4723
d51f39b0 4724 if (cgroup_parent(cgrp)) {
9d755d33
TH
4725 /*
4726 * We get a ref to the parent, and put the ref when
4727 * this cgroup is being freed, so it's guaranteed
4728 * that the parent won't be destroyed before its
4729 * children.
4730 */
d51f39b0 4731 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4732 kernfs_put(cgrp->kn);
4733 kfree(cgrp);
4734 } else {
4735 /*
4736 * This is root cgroup's refcnt reaching zero,
4737 * which indicates that the root should be
4738 * released.
4739 */
4740 cgroup_destroy_root(cgrp->root);
4741 }
4742 }
48ddbe19
TH
4743}
4744
0c21ead1 4745static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4746{
4747 struct cgroup_subsys_state *css =
0c21ead1 4748 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4749
35ef10da 4750 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4751 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4752}
4753
25e15d83 4754static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4755{
4756 struct cgroup_subsys_state *css =
25e15d83 4757 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4758 struct cgroup_subsys *ss = css->ss;
9d755d33 4759 struct cgroup *cgrp = css->cgroup;
15a4c835 4760
1fed1b2e
TH
4761 mutex_lock(&cgroup_mutex);
4762
de3f0341 4763 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4764 list_del_rcu(&css->sibling);
4765
9d755d33
TH
4766 if (ss) {
4767 /* css release path */
01e58659 4768 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4769 if (ss->css_released)
4770 ss->css_released(css);
9d755d33
TH
4771 } else {
4772 /* cgroup release path */
9d755d33
TH
4773 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4774 cgrp->id = -1;
a4189487
LZ
4775
4776 /*
4777 * There are two control paths which try to determine
4778 * cgroup from dentry without going through kernfs -
4779 * cgroupstats_build() and css_tryget_online_from_dir().
4780 * Those are supported by RCU protecting clearing of
4781 * cgrp->kn->priv backpointer.
4782 */
4783 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4784 }
d3daf28d 4785
1fed1b2e
TH
4786 mutex_unlock(&cgroup_mutex);
4787
0c21ead1 4788 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4789}
4790
d3daf28d
TH
4791static void css_release(struct percpu_ref *ref)
4792{
4793 struct cgroup_subsys_state *css =
4794 container_of(ref, struct cgroup_subsys_state, refcnt);
4795
25e15d83
TH
4796 INIT_WORK(&css->destroy_work, css_release_work_fn);
4797 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4798}
4799
ddfcadab
TH
4800static void init_and_link_css(struct cgroup_subsys_state *css,
4801 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4802{
0cb51d71
TH
4803 lockdep_assert_held(&cgroup_mutex);
4804
ddfcadab
TH
4805 cgroup_get(cgrp);
4806
d5c419b6 4807 memset(css, 0, sizeof(*css));
bd89aabc 4808 css->cgroup = cgrp;
72c97e54 4809 css->ss = ss;
75d6026f 4810 css->id = -1;
d5c419b6
TH
4811 INIT_LIST_HEAD(&css->sibling);
4812 INIT_LIST_HEAD(&css->children);
0cb51d71 4813 css->serial_nr = css_serial_nr_next++;
4cbd1963 4814 atomic_set(&css->online_cnt, 0);
0ae78e0b 4815
d51f39b0
TH
4816 if (cgroup_parent(cgrp)) {
4817 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4818 css_get(css->parent);
ddfcadab 4819 }
48ddbe19 4820
ca8bdcaf 4821 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4822}
4823
2a4ac633 4824/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4825static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4826{
623f926b 4827 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4828 int ret = 0;
4829
a31f2d3f
TH
4830 lockdep_assert_held(&cgroup_mutex);
4831
92fb9748 4832 if (ss->css_online)
eb95419b 4833 ret = ss->css_online(css);
ae7f164a 4834 if (!ret) {
eb95419b 4835 css->flags |= CSS_ONLINE;
aec25020 4836 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4cbd1963
TH
4837
4838 atomic_inc(&css->online_cnt);
4839 if (css->parent)
4840 atomic_inc(&css->parent->online_cnt);
ae7f164a 4841 }
b1929db4 4842 return ret;
a31f2d3f
TH
4843}
4844
2a4ac633 4845/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4846static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4847{
623f926b 4848 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4849
4850 lockdep_assert_held(&cgroup_mutex);
4851
4852 if (!(css->flags & CSS_ONLINE))
4853 return;
4854
d7eeac19 4855 if (ss->css_offline)
eb95419b 4856 ss->css_offline(css);
a31f2d3f 4857
eb95419b 4858 css->flags &= ~CSS_ONLINE;
e3297803 4859 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4860
4861 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4862}
4863
c81c925a
TH
4864/**
4865 * create_css - create a cgroup_subsys_state
4866 * @cgrp: the cgroup new css will be associated with
4867 * @ss: the subsys of new css
f63070d3 4868 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4869 *
4870 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4871 * css is online and installed in @cgrp with all interface files created if
4872 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4873 */
f63070d3
TH
4874static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4875 bool visible)
c81c925a 4876{
d51f39b0 4877 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4878 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4879 struct cgroup_subsys_state *css;
4880 int err;
4881
c81c925a
TH
4882 lockdep_assert_held(&cgroup_mutex);
4883
1fed1b2e 4884 css = ss->css_alloc(parent_css);
c81c925a
TH
4885 if (IS_ERR(css))
4886 return PTR_ERR(css);
4887
ddfcadab 4888 init_and_link_css(css, ss, cgrp);
a2bed820 4889
2aad2a86 4890 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4891 if (err)
3eb59ec6 4892 goto err_free_css;
c81c925a 4893
cf780b7d 4894 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4895 if (err < 0)
4896 goto err_free_percpu_ref;
4897 css->id = err;
c81c925a 4898
f63070d3 4899 if (visible) {
4df8dc90 4900 err = css_populate_dir(css, NULL);
f63070d3
TH
4901 if (err)
4902 goto err_free_id;
4903 }
15a4c835
TH
4904
4905 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4906 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4907 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4908
4909 err = online_css(css);
4910 if (err)
1fed1b2e 4911 goto err_list_del;
94419627 4912
c81c925a 4913 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4914 cgroup_parent(parent)) {
ed3d261b 4915 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4916 current->comm, current->pid, ss->name);
c81c925a 4917 if (!strcmp(ss->name, "memory"))
ed3d261b 4918 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4919 ss->warned_broken_hierarchy = true;
4920 }
4921
4922 return 0;
4923
1fed1b2e
TH
4924err_list_del:
4925 list_del_rcu(&css->sibling);
4df8dc90 4926 css_clear_dir(css, NULL);
15a4c835
TH
4927err_free_id:
4928 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4929err_free_percpu_ref:
9a1049da 4930 percpu_ref_exit(&css->refcnt);
3eb59ec6 4931err_free_css:
a2bed820 4932 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4933 return err;
4934}
4935
b3bfd983
TH
4936static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4937 umode_t mode)
ddbcc7e8 4938{
a9746d8d
TH
4939 struct cgroup *parent, *cgrp;
4940 struct cgroup_root *root;
ddbcc7e8 4941 struct cgroup_subsys *ss;
2bd59d48 4942 struct kernfs_node *kn;
b3bfd983 4943 int ssid, ret;
ddbcc7e8 4944
71b1fb5c
AC
4945 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4946 */
4947 if (strchr(name, '\n'))
4948 return -EINVAL;
4949
a9746d8d
TH
4950 parent = cgroup_kn_lock_live(parent_kn);
4951 if (!parent)
4952 return -ENODEV;
4953 root = parent->root;
ddbcc7e8 4954
0a950f65 4955 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4956 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4957 if (!cgrp) {
4958 ret = -ENOMEM;
4959 goto out_unlock;
0ab02ca8
LZ
4960 }
4961
2aad2a86 4962 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4963 if (ret)
4964 goto out_free_cgrp;
4965
0ab02ca8
LZ
4966 /*
4967 * Temporarily set the pointer to NULL, so idr_find() won't return
4968 * a half-baked cgroup.
4969 */
cf780b7d 4970 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4971 if (cgrp->id < 0) {
ba0f4d76 4972 ret = -ENOMEM;
9d755d33 4973 goto out_cancel_ref;
976c06bc
TH
4974 }
4975
cc31edce 4976 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4977
9d800df1 4978 cgrp->self.parent = &parent->self;
ba0f4d76 4979 cgrp->root = root;
ddbcc7e8 4980
b6abdb0e
LZ
4981 if (notify_on_release(parent))
4982 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4983
2260e7fc
TH
4984 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4985 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4986
2bd59d48 4987 /* create the directory */
e61734c5 4988 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4989 if (IS_ERR(kn)) {
ba0f4d76
TH
4990 ret = PTR_ERR(kn);
4991 goto out_free_id;
2bd59d48
TH
4992 }
4993 cgrp->kn = kn;
ddbcc7e8 4994
4e139afc 4995 /*
6f30558f
TH
4996 * This extra ref will be put in cgroup_free_fn() and guarantees
4997 * that @cgrp->kn is always accessible.
4e139afc 4998 */
6f30558f 4999 kernfs_get(kn);
ddbcc7e8 5000
0cb51d71 5001 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5002
4e139afc 5003 /* allocation complete, commit to creation */
d5c419b6 5004 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5005 atomic_inc(&root->nr_cgrps);
59f5296b 5006 cgroup_get(parent);
415cf07a 5007
0d80255e
TH
5008 /*
5009 * @cgrp is now fully operational. If something fails after this
5010 * point, it'll be released via the normal destruction path.
5011 */
6fa4918d 5012 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5013
ba0f4d76
TH
5014 ret = cgroup_kn_set_ugid(kn);
5015 if (ret)
5016 goto out_destroy;
49957f8e 5017
4df8dc90 5018 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
5019 if (ret)
5020 goto out_destroy;
628f7cd4 5021
9d403e99 5022 /* let's create and online css's */
b85d2040 5023 for_each_subsys(ss, ssid) {
f392e51c 5024 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
5025 ret = create_css(cgrp, ss,
5026 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
5027 if (ret)
5028 goto out_destroy;
b85d2040 5029 }
a8638030 5030 }
ddbcc7e8 5031
bd53d617
TH
5032 /*
5033 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5034 * subtree_control from the parent. Each is configured manually.
bd53d617 5035 */
667c2491
TH
5036 if (!cgroup_on_dfl(cgrp)) {
5037 cgrp->subtree_control = parent->subtree_control;
5038 cgroup_refresh_child_subsys_mask(cgrp);
5039 }
2bd59d48 5040
2bd59d48 5041 kernfs_activate(kn);
ddbcc7e8 5042
ba0f4d76
TH
5043 ret = 0;
5044 goto out_unlock;
ddbcc7e8 5045
ba0f4d76 5046out_free_id:
6fa4918d 5047 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 5048out_cancel_ref:
9a1049da 5049 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 5050out_free_cgrp:
bd89aabc 5051 kfree(cgrp);
ba0f4d76 5052out_unlock:
a9746d8d 5053 cgroup_kn_unlock(parent_kn);
ba0f4d76 5054 return ret;
4b8b47eb 5055
ba0f4d76 5056out_destroy:
4b8b47eb 5057 cgroup_destroy_locked(cgrp);
ba0f4d76 5058 goto out_unlock;
ddbcc7e8
PM
5059}
5060
223dbc38
TH
5061/*
5062 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5063 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5064 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5065 */
5066static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5067{
223dbc38
TH
5068 struct cgroup_subsys_state *css =
5069 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5070
f20104de 5071 mutex_lock(&cgroup_mutex);
09a503ea 5072
4cbd1963
TH
5073 do {
5074 offline_css(css);
5075 css_put(css);
5076 /* @css can't go away while we're holding cgroup_mutex */
5077 css = css->parent;
5078 } while (css && atomic_dec_and_test(&css->online_cnt));
5079
5080 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5081}
5082
223dbc38
TH
5083/* css kill confirmation processing requires process context, bounce */
5084static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5085{
5086 struct cgroup_subsys_state *css =
5087 container_of(ref, struct cgroup_subsys_state, refcnt);
5088
4cbd1963
TH
5089 if (atomic_dec_and_test(&css->online_cnt)) {
5090 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5091 queue_work(cgroup_destroy_wq, &css->destroy_work);
5092 }
d3daf28d
TH
5093}
5094
f392e51c
TH
5095/**
5096 * kill_css - destroy a css
5097 * @css: css to destroy
5098 *
5099 * This function initiates destruction of @css by removing cgroup interface
5100 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5101 * asynchronously once css_tryget_online() is guaranteed to fail and when
5102 * the reference count reaches zero, @css will be released.
f392e51c
TH
5103 */
5104static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5105{
01f6474c 5106 lockdep_assert_held(&cgroup_mutex);
94419627 5107
2bd59d48
TH
5108 /*
5109 * This must happen before css is disassociated with its cgroup.
5110 * See seq_css() for details.
5111 */
4df8dc90 5112 css_clear_dir(css, NULL);
3c14f8b4 5113
edae0c33
TH
5114 /*
5115 * Killing would put the base ref, but we need to keep it alive
5116 * until after ->css_offline().
5117 */
5118 css_get(css);
5119
5120 /*
5121 * cgroup core guarantees that, by the time ->css_offline() is
5122 * invoked, no new css reference will be given out via
ec903c0c 5123 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5124 * proceed to offlining css's because percpu_ref_kill() doesn't
5125 * guarantee that the ref is seen as killed on all CPUs on return.
5126 *
5127 * Use percpu_ref_kill_and_confirm() to get notifications as each
5128 * css is confirmed to be seen as killed on all CPUs.
5129 */
5130 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5131}
5132
5133/**
5134 * cgroup_destroy_locked - the first stage of cgroup destruction
5135 * @cgrp: cgroup to be destroyed
5136 *
5137 * css's make use of percpu refcnts whose killing latency shouldn't be
5138 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5139 * guarantee that css_tryget_online() won't succeed by the time
5140 * ->css_offline() is invoked. To satisfy all the requirements,
5141 * destruction is implemented in the following two steps.
d3daf28d
TH
5142 *
5143 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5144 * userland visible parts and start killing the percpu refcnts of
5145 * css's. Set up so that the next stage will be kicked off once all
5146 * the percpu refcnts are confirmed to be killed.
5147 *
5148 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5149 * rest of destruction. Once all cgroup references are gone, the
5150 * cgroup is RCU-freed.
5151 *
5152 * This function implements s1. After this step, @cgrp is gone as far as
5153 * the userland is concerned and a new cgroup with the same name may be
5154 * created. As cgroup doesn't care about the names internally, this
5155 * doesn't cause any problem.
5156 */
42809dd4
TH
5157static int cgroup_destroy_locked(struct cgroup *cgrp)
5158 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5159{
2bd59d48 5160 struct cgroup_subsys_state *css;
36591ef1 5161 struct cgrp_cset_link *link;
1c6727af 5162 int ssid;
ddbcc7e8 5163
42809dd4
TH
5164 lockdep_assert_held(&cgroup_mutex);
5165
91486f61
TH
5166 /*
5167 * Only migration can raise populated from zero and we're already
5168 * holding cgroup_mutex.
5169 */
5170 if (cgroup_is_populated(cgrp))
ddbcc7e8 5171 return -EBUSY;
a043e3b2 5172
bb78a92f 5173 /*
d5c419b6
TH
5174 * Make sure there's no live children. We can't test emptiness of
5175 * ->self.children as dead children linger on it while being
5176 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5177 */
f3d46500 5178 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5179 return -EBUSY;
5180
455050d2 5181 /*
36591ef1
TH
5182 * Mark @cgrp and the associated csets dead. The former prevents
5183 * further task migration and child creation by disabling
5184 * cgroup_lock_live_group(). The latter makes the csets ignored by
5185 * the migration path.
455050d2 5186 */
184faf32 5187 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5188
1cac41cb 5189 spin_lock_irq(&css_set_lock);
36591ef1
TH
5190 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5191 link->cset->dead = true;
1cac41cb 5192 spin_unlock_irq(&css_set_lock);
36591ef1 5193
249f3468 5194 /* initiate massacre of all css's */
1c6727af
TH
5195 for_each_css(css, ssid, cgrp)
5196 kill_css(css);
455050d2 5197
455050d2 5198 /*
01f6474c
TH
5199 * Remove @cgrp directory along with the base files. @cgrp has an
5200 * extra ref on its kn.
f20104de 5201 */
01f6474c 5202 kernfs_remove(cgrp->kn);
f20104de 5203
d51f39b0 5204 check_for_release(cgroup_parent(cgrp));
2bd59d48 5205
249f3468 5206 /* put the base reference */
9d755d33 5207 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5208
ea15f8cc
TH
5209 return 0;
5210};
5211
2bd59d48 5212static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5213{
a9746d8d 5214 struct cgroup *cgrp;
2bd59d48 5215 int ret = 0;
42809dd4 5216
a9746d8d
TH
5217 cgrp = cgroup_kn_lock_live(kn);
5218 if (!cgrp)
5219 return 0;
42809dd4 5220
a9746d8d 5221 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5222
a9746d8d 5223 cgroup_kn_unlock(kn);
42809dd4 5224 return ret;
8e3f6541
TH
5225}
5226
2bd59d48
TH
5227static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5228 .remount_fs = cgroup_remount,
5229 .show_options = cgroup_show_options,
5230 .mkdir = cgroup_mkdir,
5231 .rmdir = cgroup_rmdir,
5232 .rename = cgroup_rename,
5233};
5234
15a4c835 5235static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5236{
ddbcc7e8 5237 struct cgroup_subsys_state *css;
cfe36bde
DC
5238
5239 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5240
648bb56d
TH
5241 mutex_lock(&cgroup_mutex);
5242
15a4c835 5243 idr_init(&ss->css_idr);
0adb0704 5244 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5245
3dd06ffa
TH
5246 /* Create the root cgroup state for this subsystem */
5247 ss->root = &cgrp_dfl_root;
5248 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5249 /* We don't handle early failures gracefully */
5250 BUG_ON(IS_ERR(css));
ddfcadab 5251 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5252
5253 /*
5254 * Root csses are never destroyed and we can't initialize
5255 * percpu_ref during early init. Disable refcnting.
5256 */
5257 css->flags |= CSS_NO_REF;
5258
15a4c835 5259 if (early) {
9395a450 5260 /* allocation can't be done safely during early init */
15a4c835
TH
5261 css->id = 1;
5262 } else {
5263 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5264 BUG_ON(css->id < 0);
5265 }
ddbcc7e8 5266
e8d55fde 5267 /* Update the init_css_set to contain a subsys
817929ec 5268 * pointer to this state - since the subsystem is
e8d55fde 5269 * newly registered, all tasks and hence the
3dd06ffa 5270 * init_css_set is in the subsystem's root cgroup. */
aec25020 5271 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5272
cb4a3167
AS
5273 have_fork_callback |= (bool)ss->fork << ss->id;
5274 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5275 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5276 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5277
e8d55fde
LZ
5278 /* At system boot, before all subsystems have been
5279 * registered, no tasks have been forked, so we don't
5280 * need to invoke fork callbacks here. */
5281 BUG_ON(!list_empty(&init_task.tasks));
5282
ae7f164a 5283 BUG_ON(online_css(css));
a8638030 5284
cf5d5941
BB
5285 mutex_unlock(&cgroup_mutex);
5286}
cf5d5941 5287
ddbcc7e8 5288/**
a043e3b2
LZ
5289 * cgroup_init_early - cgroup initialization at system boot
5290 *
5291 * Initialize cgroups at system boot, and initialize any
5292 * subsystems that request early init.
ddbcc7e8
PM
5293 */
5294int __init cgroup_init_early(void)
5295{
7b9a6ba5 5296 static struct cgroup_sb_opts __initdata opts;
30159ec7 5297 struct cgroup_subsys *ss;
ddbcc7e8 5298 int i;
30159ec7 5299
3dd06ffa 5300 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5301 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5302
a4ea1cc9 5303 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5304
3ed80a62 5305 for_each_subsys(ss, i) {
aec25020 5306 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5307 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5308 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5309 ss->id, ss->name);
073219e9
TH
5310 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5311 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5312
aec25020 5313 ss->id = i;
073219e9 5314 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5315 if (!ss->legacy_name)
5316 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5317
5318 if (ss->early_init)
15a4c835 5319 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5320 }
5321 return 0;
5322}
5323
a3e72739
TH
5324static unsigned long cgroup_disable_mask __initdata;
5325
ddbcc7e8 5326/**
a043e3b2
LZ
5327 * cgroup_init - cgroup initialization
5328 *
5329 * Register cgroup filesystem and /proc file, and initialize
5330 * any subsystems that didn't request early init.
ddbcc7e8
PM
5331 */
5332int __init cgroup_init(void)
5333{
30159ec7 5334 struct cgroup_subsys *ss;
0ac801fe 5335 unsigned long key;
035f4f51 5336 int ssid;
ddbcc7e8 5337
1ed13287 5338 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5339 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5340 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5341
0c3240a1
PZ
5342 /*
5343 * The latency of the synchronize_sched() is too high for cgroups,
5344 * avoid it at the cost of forcing all readers into the slow path.
5345 */
5346 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5347
54e7b4eb 5348 mutex_lock(&cgroup_mutex);
54e7b4eb 5349
82fe9b0d
TH
5350 /* Add init_css_set to the hash table */
5351 key = css_set_hash(init_css_set.subsys);
5352 hash_add(css_set_table, &init_css_set.hlist, key);
5353
3dd06ffa 5354 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5355
54e7b4eb
TH
5356 mutex_unlock(&cgroup_mutex);
5357
172a2c06 5358 for_each_subsys(ss, ssid) {
15a4c835
TH
5359 if (ss->early_init) {
5360 struct cgroup_subsys_state *css =
5361 init_css_set.subsys[ss->id];
5362
5363 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5364 GFP_KERNEL);
5365 BUG_ON(css->id < 0);
5366 } else {
5367 cgroup_init_subsys(ss, false);
5368 }
172a2c06 5369
2d8f243a
TH
5370 list_add_tail(&init_css_set.e_cset_node[ssid],
5371 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5372
5373 /*
c731ae1d
LZ
5374 * Setting dfl_root subsys_mask needs to consider the
5375 * disabled flag and cftype registration needs kmalloc,
5376 * both of which aren't available during early_init.
172a2c06 5377 */
a3e72739
TH
5378 if (cgroup_disable_mask & (1 << ssid)) {
5379 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5380 printk(KERN_INFO "Disabling %s control group subsystem\n",
5381 ss->name);
a8ddc821 5382 continue;
a3e72739 5383 }
a8ddc821
TH
5384
5385 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5386
5de4fa13
TH
5387 if (!ss->dfl_cftypes)
5388 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5389
a8ddc821
TH
5390 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5391 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5392 } else {
5393 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5394 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5395 }
295458e6
VD
5396
5397 if (ss->bind)
5398 ss->bind(init_css_set.subsys[ssid]);
676db4af
GKH
5399 }
5400
035f4f51
TH
5401 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5402 WARN_ON(register_filesystem(&cgroup_fs_type));
5403 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5404
2bd59d48 5405 return 0;
ddbcc7e8 5406}
b4f48b63 5407
e5fca243
TH
5408static int __init cgroup_wq_init(void)
5409{
5410 /*
5411 * There isn't much point in executing destruction path in
5412 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5413 * Use 1 for @max_active.
e5fca243
TH
5414 *
5415 * We would prefer to do this in cgroup_init() above, but that
5416 * is called before init_workqueues(): so leave this until after.
5417 */
1a11533f 5418 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5419 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5420
5421 /*
5422 * Used to destroy pidlists and separate to serve as flush domain.
5423 * Cap @max_active to 1 too.
5424 */
5425 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5426 0, 1);
5427 BUG_ON(!cgroup_pidlist_destroy_wq);
5428
e5fca243
TH
5429 return 0;
5430}
5431core_initcall(cgroup_wq_init);
5432
a424316c
PM
5433/*
5434 * proc_cgroup_show()
5435 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5436 * - Used for /proc/<pid>/cgroup.
a424316c 5437 */
006f4ac4
ZL
5438int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5439 struct pid *pid, struct task_struct *tsk)
a424316c 5440{
e61734c5 5441 char *buf, *path;
a424316c 5442 int retval;
3dd06ffa 5443 struct cgroup_root *root;
a424316c
PM
5444
5445 retval = -ENOMEM;
e61734c5 5446 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5447 if (!buf)
5448 goto out;
5449
a424316c 5450 mutex_lock(&cgroup_mutex);
1cac41cb 5451 spin_lock_irq(&css_set_lock);
a424316c 5452
985ed670 5453 for_each_root(root) {
a424316c 5454 struct cgroup_subsys *ss;
bd89aabc 5455 struct cgroup *cgrp;
b85d2040 5456 int ssid, count = 0;
a424316c 5457
a2dd4247 5458 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5459 continue;
5460
2c6ab6d2 5461 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5462 if (root != &cgrp_dfl_root)
5463 for_each_subsys(ss, ssid)
5464 if (root->subsys_mask & (1 << ssid))
5465 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5466 ss->legacy_name);
c6d57f33
PM
5467 if (strlen(root->name))
5468 seq_printf(m, "%sname=%s", count ? "," : "",
5469 root->name);
a424316c 5470 seq_putc(m, ':');
2e91fa7f 5471
7717f7ba 5472 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5473
5474 /*
5475 * On traditional hierarchies, all zombie tasks show up as
5476 * belonging to the root cgroup. On the default hierarchy,
5477 * while a zombie doesn't show up in "cgroup.procs" and
5478 * thus can't be migrated, its /proc/PID/cgroup keeps
5479 * reporting the cgroup it belonged to before exiting. If
5480 * the cgroup is removed before the zombie is reaped,
5481 * " (deleted)" is appended to the cgroup path.
5482 */
5483 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5484 path = cgroup_path(cgrp, buf, PATH_MAX);
5485 if (!path) {
5486 retval = -ENAMETOOLONG;
5487 goto out_unlock;
5488 }
5489 } else {
5490 path = "/";
e61734c5 5491 }
2e91fa7f 5492
e61734c5 5493 seq_puts(m, path);
2e91fa7f
TH
5494
5495 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5496 seq_puts(m, " (deleted)\n");
5497 else
5498 seq_putc(m, '\n');
a424316c
PM
5499 }
5500
006f4ac4 5501 retval = 0;
a424316c 5502out_unlock:
1cac41cb 5503 spin_unlock_irq(&css_set_lock);
a424316c 5504 mutex_unlock(&cgroup_mutex);
a424316c
PM
5505 kfree(buf);
5506out:
5507 return retval;
5508}
5509
a424316c
PM
5510/* Display information about each subsystem and each hierarchy */
5511static int proc_cgroupstats_show(struct seq_file *m, void *v)
5512{
30159ec7 5513 struct cgroup_subsys *ss;
a424316c 5514 int i;
a424316c 5515
8bab8dde 5516 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5517 /*
5518 * ideally we don't want subsystems moving around while we do this.
5519 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5520 * subsys/hierarchy state.
5521 */
a424316c 5522 mutex_lock(&cgroup_mutex);
30159ec7
TH
5523
5524 for_each_subsys(ss, i)
2c6ab6d2 5525 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5526 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5527 atomic_read(&ss->root->nr_cgrps),
5528 cgroup_ssid_enabled(i));
30159ec7 5529
a424316c
PM
5530 mutex_unlock(&cgroup_mutex);
5531 return 0;
5532}
5533
5534static int cgroupstats_open(struct inode *inode, struct file *file)
5535{
9dce07f1 5536 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5537}
5538
828c0950 5539static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5540 .open = cgroupstats_open,
5541 .read = seq_read,
5542 .llseek = seq_lseek,
5543 .release = single_release,
5544};
5545
7e47682e
AS
5546static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5547{
5548 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5549 return &ss_priv[i - CGROUP_CANFORK_START];
5550 return NULL;
5551}
5552
5553static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5554{
5555 void **private = subsys_canfork_priv_p(ss_priv, i);
5556 return private ? *private : NULL;
5557}
5558
b4f48b63 5559/**
eaf797ab 5560 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5561 * @child: pointer to task_struct of forking parent process.
b4f48b63 5562 *
eaf797ab
TH
5563 * A task is associated with the init_css_set until cgroup_post_fork()
5564 * attaches it to the parent's css_set. Empty cg_list indicates that
5565 * @child isn't holding reference to its css_set.
b4f48b63
PM
5566 */
5567void cgroup_fork(struct task_struct *child)
5568{
eaf797ab 5569 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5570 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5571}
5572
7e47682e
AS
5573/**
5574 * cgroup_can_fork - called on a new task before the process is exposed
5575 * @child: the task in question.
5576 *
5577 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5578 * returns an error, the fork aborts with that error code. This allows for
5579 * a cgroup subsystem to conditionally allow or deny new forks.
5580 */
5581int cgroup_can_fork(struct task_struct *child,
5582 void *ss_priv[CGROUP_CANFORK_COUNT])
5583{
5584 struct cgroup_subsys *ss;
5585 int i, j, ret;
5586
5587 for_each_subsys_which(ss, i, &have_canfork_callback) {
5588 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5589 if (ret)
5590 goto out_revert;
5591 }
5592
5593 return 0;
5594
5595out_revert:
5596 for_each_subsys(ss, j) {
5597 if (j >= i)
5598 break;
5599 if (ss->cancel_fork)
5600 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5601 }
5602
5603 return ret;
5604}
5605
5606/**
5607 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5608 * @child: the task in question
5609 *
5610 * This calls the cancel_fork() callbacks if a fork failed *after*
5611 * cgroup_can_fork() succeded.
5612 */
5613void cgroup_cancel_fork(struct task_struct *child,
5614 void *ss_priv[CGROUP_CANFORK_COUNT])
5615{
5616 struct cgroup_subsys *ss;
5617 int i;
5618
5619 for_each_subsys(ss, i)
5620 if (ss->cancel_fork)
5621 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5622}
5623
817929ec 5624/**
a043e3b2
LZ
5625 * cgroup_post_fork - called on a new task after adding it to the task list
5626 * @child: the task in question
5627 *
5edee61e
TH
5628 * Adds the task to the list running through its css_set if necessary and
5629 * call the subsystem fork() callbacks. Has to be after the task is
5630 * visible on the task list in case we race with the first call to
0942eeee 5631 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5632 * list.
a043e3b2 5633 */
7e47682e
AS
5634void cgroup_post_fork(struct task_struct *child,
5635 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5636{
30159ec7 5637 struct cgroup_subsys *ss;
5edee61e
TH
5638 int i;
5639
3ce3230a 5640 /*
251f8c03 5641 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5642 * function sets use_task_css_set_links before grabbing
5643 * tasklist_lock and we just went through tasklist_lock to add
5644 * @child, it's guaranteed that either we see the set
5645 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5646 * @child during its iteration.
5647 *
5648 * If we won the race, @child is associated with %current's
f0d9a5f1 5649 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5650 * association is stable, and, on completion of the parent's
5651 * migration, @child is visible in the source of migration or
5652 * already in the destination cgroup. This guarantee is necessary
5653 * when implementing operations which need to migrate all tasks of
5654 * a cgroup to another.
5655 *
251f8c03 5656 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5657 * will remain in init_css_set. This is safe because all tasks are
5658 * in the init_css_set before cg_links is enabled and there's no
5659 * operation which transfers all tasks out of init_css_set.
3ce3230a 5660 */
817929ec 5661 if (use_task_css_set_links) {
eaf797ab
TH
5662 struct css_set *cset;
5663
1cac41cb 5664 spin_lock_irq(&css_set_lock);
0e1d768f 5665 cset = task_css_set(current);
eaf797ab 5666 if (list_empty(&child->cg_list)) {
eaf797ab 5667 get_css_set(cset);
f6d7d049 5668 css_set_move_task(child, NULL, cset, false);
eaf797ab 5669 }
1cac41cb 5670 spin_unlock_irq(&css_set_lock);
817929ec 5671 }
5edee61e
TH
5672
5673 /*
5674 * Call ss->fork(). This must happen after @child is linked on
5675 * css_set; otherwise, @child might change state between ->fork()
5676 * and addition to css_set.
5677 */
cb4a3167 5678 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5679 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5680}
5edee61e 5681
b4f48b63
PM
5682/**
5683 * cgroup_exit - detach cgroup from exiting task
5684 * @tsk: pointer to task_struct of exiting process
5685 *
5686 * Description: Detach cgroup from @tsk and release it.
5687 *
5688 * Note that cgroups marked notify_on_release force every task in
5689 * them to take the global cgroup_mutex mutex when exiting.
5690 * This could impact scaling on very large systems. Be reluctant to
5691 * use notify_on_release cgroups where very high task exit scaling
5692 * is required on large systems.
5693 *
0e1d768f
TH
5694 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5695 * call cgroup_exit() while the task is still competent to handle
5696 * notify_on_release(), then leave the task attached to the root cgroup in
5697 * each hierarchy for the remainder of its exit. No need to bother with
5698 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5699 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5700 */
1ec41830 5701void cgroup_exit(struct task_struct *tsk)
b4f48b63 5702{
30159ec7 5703 struct cgroup_subsys *ss;
5abb8855 5704 struct css_set *cset;
d41d5a01 5705 int i;
817929ec
PM
5706
5707 /*
0e1d768f 5708 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5709 * with us, we can check css_set and cg_list without synchronization.
817929ec 5710 */
0de0942d
TH
5711 cset = task_css_set(tsk);
5712
817929ec 5713 if (!list_empty(&tsk->cg_list)) {
1cac41cb 5714 spin_lock_irq(&css_set_lock);
f6d7d049 5715 css_set_move_task(tsk, cset, NULL, false);
1cac41cb 5716 spin_unlock_irq(&css_set_lock);
2e91fa7f
TH
5717 } else {
5718 get_css_set(cset);
817929ec
PM
5719 }
5720
cb4a3167 5721 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5722 for_each_subsys_which(ss, i, &have_exit_callback)
5723 ss->exit(tsk);
5724}
30159ec7 5725
2e91fa7f
TH
5726void cgroup_free(struct task_struct *task)
5727{
5728 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5729 struct cgroup_subsys *ss;
5730 int ssid;
5731
5732 for_each_subsys_which(ss, ssid, &have_free_callback)
5733 ss->free(task);
d41d5a01 5734
2e91fa7f 5735 put_css_set(cset);
b4f48b63 5736}
697f4161 5737
bd89aabc 5738static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5739{
27bd4dbb 5740 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5741 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5742 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5743}
5744
81a6a5cd
PM
5745/*
5746 * Notify userspace when a cgroup is released, by running the
5747 * configured release agent with the name of the cgroup (path
5748 * relative to the root of cgroup file system) as the argument.
5749 *
5750 * Most likely, this user command will try to rmdir this cgroup.
5751 *
5752 * This races with the possibility that some other task will be
5753 * attached to this cgroup before it is removed, or that some other
5754 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5755 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5756 * unused, and this cgroup will be reprieved from its death sentence,
5757 * to continue to serve a useful existence. Next time it's released,
5758 * we will get notified again, if it still has 'notify_on_release' set.
5759 *
5760 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5761 * means only wait until the task is successfully execve()'d. The
5762 * separate release agent task is forked by call_usermodehelper(),
5763 * then control in this thread returns here, without waiting for the
5764 * release agent task. We don't bother to wait because the caller of
5765 * this routine has no use for the exit status of the release agent
5766 * task, so no sense holding our caller up for that.
81a6a5cd 5767 */
81a6a5cd
PM
5768static void cgroup_release_agent(struct work_struct *work)
5769{
971ff493
ZL
5770 struct cgroup *cgrp =
5771 container_of(work, struct cgroup, release_agent_work);
5772 char *pathbuf = NULL, *agentbuf = NULL, *path;
5773 char *argv[3], *envp[3];
5774
81a6a5cd 5775 mutex_lock(&cgroup_mutex);
971ff493
ZL
5776
5777 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5778 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5779 if (!pathbuf || !agentbuf)
5780 goto out;
5781
5782 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5783 if (!path)
5784 goto out;
5785
5786 argv[0] = agentbuf;
5787 argv[1] = path;
5788 argv[2] = NULL;
5789
5790 /* minimal command environment */
5791 envp[0] = "HOME=/";
5792 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5793 envp[2] = NULL;
5794
81a6a5cd 5795 mutex_unlock(&cgroup_mutex);
971ff493 5796 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5797 goto out_free;
971ff493 5798out:
81a6a5cd 5799 mutex_unlock(&cgroup_mutex);
3e2cd91a 5800out_free:
971ff493
ZL
5801 kfree(agentbuf);
5802 kfree(pathbuf);
81a6a5cd 5803}
8bab8dde
PM
5804
5805static int __init cgroup_disable(char *str)
5806{
30159ec7 5807 struct cgroup_subsys *ss;
8bab8dde 5808 char *token;
30159ec7 5809 int i;
8bab8dde
PM
5810
5811 while ((token = strsep(&str, ",")) != NULL) {
5812 if (!*token)
5813 continue;
be45c900 5814
3ed80a62 5815 for_each_subsys(ss, i) {
3e1d2eed
TH
5816 if (strcmp(token, ss->name) &&
5817 strcmp(token, ss->legacy_name))
5818 continue;
a3e72739 5819 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5820 }
5821 }
5822 return 1;
5823}
5824__setup("cgroup_disable=", cgroup_disable);
38460b48 5825
b77d7b60 5826/**
ec903c0c 5827 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5828 * @dentry: directory dentry of interest
5829 * @ss: subsystem of interest
b77d7b60 5830 *
5a17f543
TH
5831 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5832 * to get the corresponding css and return it. If such css doesn't exist
5833 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5834 */
ec903c0c
TH
5835struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5836 struct cgroup_subsys *ss)
e5d1367f 5837{
2bd59d48
TH
5838 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5839 struct cgroup_subsys_state *css = NULL;
e5d1367f 5840 struct cgroup *cgrp;
e5d1367f 5841
35cf0836 5842 /* is @dentry a cgroup dir? */
2bd59d48
TH
5843 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5844 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5845 return ERR_PTR(-EBADF);
5846
5a17f543
TH
5847 rcu_read_lock();
5848
2bd59d48
TH
5849 /*
5850 * This path doesn't originate from kernfs and @kn could already
5851 * have been or be removed at any point. @kn->priv is RCU
a4189487 5852 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5853 */
5854 cgrp = rcu_dereference(kn->priv);
5855 if (cgrp)
5856 css = cgroup_css(cgrp, ss);
5a17f543 5857
ec903c0c 5858 if (!css || !css_tryget_online(css))
5a17f543
TH
5859 css = ERR_PTR(-ENOENT);
5860
5861 rcu_read_unlock();
5862 return css;
e5d1367f 5863}
e5d1367f 5864
1cb650b9
LZ
5865/**
5866 * css_from_id - lookup css by id
5867 * @id: the cgroup id
5868 * @ss: cgroup subsys to be looked into
5869 *
5870 * Returns the css if there's valid one with @id, otherwise returns NULL.
5871 * Should be called under rcu_read_lock().
5872 */
5873struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5874{
6fa4918d 5875 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5876 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5877}
5878
fe693435 5879#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5880static struct cgroup_subsys_state *
5881debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5882{
5883 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5884
5885 if (!css)
5886 return ERR_PTR(-ENOMEM);
5887
5888 return css;
5889}
5890
eb95419b 5891static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5892{
eb95419b 5893 kfree(css);
fe693435
PM
5894}
5895
182446d0
TH
5896static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5897 struct cftype *cft)
fe693435 5898{
182446d0 5899 return cgroup_task_count(css->cgroup);
fe693435
PM
5900}
5901
182446d0
TH
5902static u64 current_css_set_read(struct cgroup_subsys_state *css,
5903 struct cftype *cft)
fe693435
PM
5904{
5905 return (u64)(unsigned long)current->cgroups;
5906}
5907
182446d0 5908static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5909 struct cftype *cft)
fe693435
PM
5910{
5911 u64 count;
5912
5913 rcu_read_lock();
a8ad805c 5914 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5915 rcu_read_unlock();
5916 return count;
5917}
5918
2da8ca82 5919static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5920{
69d0206c 5921 struct cgrp_cset_link *link;
5abb8855 5922 struct css_set *cset;
e61734c5
TH
5923 char *name_buf;
5924
5925 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5926 if (!name_buf)
5927 return -ENOMEM;
7717f7ba 5928
1cac41cb 5929 spin_lock_irq(&css_set_lock);
7717f7ba 5930 rcu_read_lock();
5abb8855 5931 cset = rcu_dereference(current->cgroups);
69d0206c 5932 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5933 struct cgroup *c = link->cgrp;
7717f7ba 5934
a2dd4247 5935 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5936 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5937 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5938 }
5939 rcu_read_unlock();
1cac41cb 5940 spin_unlock_irq(&css_set_lock);
e61734c5 5941 kfree(name_buf);
7717f7ba
PM
5942 return 0;
5943}
5944
5945#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5946static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5947{
2da8ca82 5948 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5949 struct cgrp_cset_link *link;
7717f7ba 5950
1cac41cb 5951 spin_lock_irq(&css_set_lock);
182446d0 5952 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5953 struct css_set *cset = link->cset;
7717f7ba
PM
5954 struct task_struct *task;
5955 int count = 0;
c7561128 5956
1cac41cb 5957 seq_printf(seq, "css_set %pK\n", cset);
c7561128 5958
5abb8855 5959 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5960 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5961 goto overflow;
5962 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5963 }
5964
5965 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5966 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5967 goto overflow;
5968 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5969 }
c7561128
TH
5970 continue;
5971 overflow:
5972 seq_puts(seq, " ...\n");
7717f7ba 5973 }
1cac41cb 5974 spin_unlock_irq(&css_set_lock);
7717f7ba
PM
5975 return 0;
5976}
5977
182446d0 5978static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5979{
27bd4dbb 5980 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5981 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5982}
5983
5984static struct cftype debug_files[] = {
fe693435
PM
5985 {
5986 .name = "taskcount",
5987 .read_u64 = debug_taskcount_read,
5988 },
5989
5990 {
5991 .name = "current_css_set",
5992 .read_u64 = current_css_set_read,
5993 },
5994
5995 {
5996 .name = "current_css_set_refcount",
5997 .read_u64 = current_css_set_refcount_read,
5998 },
5999
7717f7ba
PM
6000 {
6001 .name = "current_css_set_cg_links",
2da8ca82 6002 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6003 },
6004
6005 {
6006 .name = "cgroup_css_links",
2da8ca82 6007 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6008 },
6009
fe693435
PM
6010 {
6011 .name = "releasable",
6012 .read_u64 = releasable_read,
6013 },
fe693435 6014
4baf6e33
TH
6015 { } /* terminate */
6016};
fe693435 6017
073219e9 6018struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6019 .css_alloc = debug_css_alloc,
6020 .css_free = debug_css_free,
5577964e 6021 .legacy_cftypes = debug_files,
fe693435
PM
6022};
6023#endif /* CONFIG_CGROUP_DEBUG */